linux/mm/page-writeback.c
<<
>>
Prefs
   1/*
   2 * mm/page-writeback.c
   3 *
   4 * Copyright (C) 2002, Linus Torvalds.
   5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
   6 *
   7 * Contains functions related to writing back dirty pages at the
   8 * address_space level.
   9 *
  10 * 10Apr2002    Andrew Morton
  11 *              Initial version
  12 */
  13
  14#include <linux/kernel.h>
  15#include <linux/export.h>
  16#include <linux/spinlock.h>
  17#include <linux/fs.h>
  18#include <linux/mm.h>
  19#include <linux/swap.h>
  20#include <linux/slab.h>
  21#include <linux/pagemap.h>
  22#include <linux/writeback.h>
  23#include <linux/init.h>
  24#include <linux/backing-dev.h>
  25#include <linux/task_io_accounting_ops.h>
  26#include <linux/blkdev.h>
  27#include <linux/mpage.h>
  28#include <linux/rmap.h>
  29#include <linux/percpu.h>
  30#include <linux/notifier.h>
  31#include <linux/smp.h>
  32#include <linux/sysctl.h>
  33#include <linux/cpu.h>
  34#include <linux/syscalls.h>
  35#include <linux/buffer_head.h>
  36#include <linux/pagevec.h>
  37#include <trace/events/writeback.h>
  38
  39/*
  40 * Sleep at most 200ms at a time in balance_dirty_pages().
  41 */
  42#define MAX_PAUSE               max(HZ/5, 1)
  43
  44/*
  45 * Estimate write bandwidth at 200ms intervals.
  46 */
  47#define BANDWIDTH_INTERVAL      max(HZ/5, 1)
  48
  49#define RATELIMIT_CALC_SHIFT    10
  50
  51/*
  52 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  53 * will look to see if it needs to force writeback or throttling.
  54 */
  55static long ratelimit_pages = 32;
  56
  57/* The following parameters are exported via /proc/sys/vm */
  58
  59/*
  60 * Start background writeback (via writeback threads) at this percentage
  61 */
  62int dirty_background_ratio = 10;
  63
  64/*
  65 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
  66 * dirty_background_ratio * the amount of dirtyable memory
  67 */
  68unsigned long dirty_background_bytes;
  69
  70/*
  71 * free highmem will not be subtracted from the total free memory
  72 * for calculating free ratios if vm_highmem_is_dirtyable is true
  73 */
  74int vm_highmem_is_dirtyable;
  75
  76/*
  77 * The generator of dirty data starts writeback at this percentage
  78 */
  79int vm_dirty_ratio = 20;
  80
  81/*
  82 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
  83 * vm_dirty_ratio * the amount of dirtyable memory
  84 */
  85unsigned long vm_dirty_bytes;
  86
  87/*
  88 * The interval between `kupdate'-style writebacks
  89 */
  90unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
  91
  92/*
  93 * The longest time for which data is allowed to remain dirty
  94 */
  95unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
  96
  97/*
  98 * Flag that makes the machine dump writes/reads and block dirtyings.
  99 */
 100int block_dump;
 101
 102/*
 103 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
 104 * a full sync is triggered after this time elapses without any disk activity.
 105 */
 106int laptop_mode;
 107
 108EXPORT_SYMBOL(laptop_mode);
 109
 110/* End of sysctl-exported parameters */
 111
 112unsigned long global_dirty_limit;
 113
 114/*
 115 * Scale the writeback cache size proportional to the relative writeout speeds.
 116 *
 117 * We do this by keeping a floating proportion between BDIs, based on page
 118 * writeback completions [end_page_writeback()]. Those devices that write out
 119 * pages fastest will get the larger share, while the slower will get a smaller
 120 * share.
 121 *
 122 * We use page writeout completions because we are interested in getting rid of
 123 * dirty pages. Having them written out is the primary goal.
 124 *
 125 * We introduce a concept of time, a period over which we measure these events,
 126 * because demand can/will vary over time. The length of this period itself is
 127 * measured in page writeback completions.
 128 *
 129 */
 130static struct prop_descriptor vm_completions;
 131
 132/*
 133 * couple the period to the dirty_ratio:
 134 *
 135 *   period/2 ~ roundup_pow_of_two(dirty limit)
 136 */
 137static int calc_period_shift(void)
 138{
 139        unsigned long dirty_total;
 140
 141        if (vm_dirty_bytes)
 142                dirty_total = vm_dirty_bytes / PAGE_SIZE;
 143        else
 144                dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
 145                                100;
 146        return 2 + ilog2(dirty_total - 1);
 147}
 148
 149/*
 150 * update the period when the dirty threshold changes.
 151 */
 152static void update_completion_period(void)
 153{
 154        int shift = calc_period_shift();
 155        prop_change_shift(&vm_completions, shift);
 156
 157        writeback_set_ratelimit();
 158}
 159
 160int dirty_background_ratio_handler(struct ctl_table *table, int write,
 161                void __user *buffer, size_t *lenp,
 162                loff_t *ppos)
 163{
 164        int ret;
 165
 166        ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 167        if (ret == 0 && write)
 168                dirty_background_bytes = 0;
 169        return ret;
 170}
 171
 172int dirty_background_bytes_handler(struct ctl_table *table, int write,
 173                void __user *buffer, size_t *lenp,
 174                loff_t *ppos)
 175{
 176        int ret;
 177
 178        ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 179        if (ret == 0 && write)
 180                dirty_background_ratio = 0;
 181        return ret;
 182}
 183
 184int dirty_ratio_handler(struct ctl_table *table, int write,
 185                void __user *buffer, size_t *lenp,
 186                loff_t *ppos)
 187{
 188        int old_ratio = vm_dirty_ratio;
 189        int ret;
 190
 191        ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 192        if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
 193                update_completion_period();
 194                vm_dirty_bytes = 0;
 195        }
 196        return ret;
 197}
 198
 199
 200int dirty_bytes_handler(struct ctl_table *table, int write,
 201                void __user *buffer, size_t *lenp,
 202                loff_t *ppos)
 203{
 204        unsigned long old_bytes = vm_dirty_bytes;
 205        int ret;
 206
 207        ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 208        if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
 209                update_completion_period();
 210                vm_dirty_ratio = 0;
 211        }
 212        return ret;
 213}
 214
 215/*
 216 * Increment the BDI's writeout completion count and the global writeout
 217 * completion count. Called from test_clear_page_writeback().
 218 */
 219static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
 220{
 221        __inc_bdi_stat(bdi, BDI_WRITTEN);
 222        __prop_inc_percpu_max(&vm_completions, &bdi->completions,
 223                              bdi->max_prop_frac);
 224}
 225
 226void bdi_writeout_inc(struct backing_dev_info *bdi)
 227{
 228        unsigned long flags;
 229
 230        local_irq_save(flags);
 231        __bdi_writeout_inc(bdi);
 232        local_irq_restore(flags);
 233}
 234EXPORT_SYMBOL_GPL(bdi_writeout_inc);
 235
 236/*
 237 * Obtain an accurate fraction of the BDI's portion.
 238 */
 239static void bdi_writeout_fraction(struct backing_dev_info *bdi,
 240                long *numerator, long *denominator)
 241{
 242        prop_fraction_percpu(&vm_completions, &bdi->completions,
 243                                numerator, denominator);
 244}
 245
 246/*
 247 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
 248 * registered backing devices, which, for obvious reasons, can not
 249 * exceed 100%.
 250 */
 251static unsigned int bdi_min_ratio;
 252
 253int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
 254{
 255        int ret = 0;
 256
 257        spin_lock_bh(&bdi_lock);
 258        if (min_ratio > bdi->max_ratio) {
 259                ret = -EINVAL;
 260        } else {
 261                min_ratio -= bdi->min_ratio;
 262                if (bdi_min_ratio + min_ratio < 100) {
 263                        bdi_min_ratio += min_ratio;
 264                        bdi->min_ratio += min_ratio;
 265                } else {
 266                        ret = -EINVAL;
 267                }
 268        }
 269        spin_unlock_bh(&bdi_lock);
 270
 271        return ret;
 272}
 273
 274int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
 275{
 276        int ret = 0;
 277
 278        if (max_ratio > 100)
 279                return -EINVAL;
 280
 281        spin_lock_bh(&bdi_lock);
 282        if (bdi->min_ratio > max_ratio) {
 283                ret = -EINVAL;
 284        } else {
 285                bdi->max_ratio = max_ratio;
 286                bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
 287        }
 288        spin_unlock_bh(&bdi_lock);
 289
 290        return ret;
 291}
 292EXPORT_SYMBOL(bdi_set_max_ratio);
 293
 294/*
 295 * Work out the current dirty-memory clamping and background writeout
 296 * thresholds.
 297 *
 298 * The main aim here is to lower them aggressively if there is a lot of mapped
 299 * memory around.  To avoid stressing page reclaim with lots of unreclaimable
 300 * pages.  It is better to clamp down on writers than to start swapping, and
 301 * performing lots of scanning.
 302 *
 303 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
 304 *
 305 * We don't permit the clamping level to fall below 5% - that is getting rather
 306 * excessive.
 307 *
 308 * We make sure that the background writeout level is below the adjusted
 309 * clamping level.
 310 */
 311
 312static unsigned long highmem_dirtyable_memory(unsigned long total)
 313{
 314#ifdef CONFIG_HIGHMEM
 315        int node;
 316        unsigned long x = 0;
 317
 318        for_each_node_state(node, N_HIGH_MEMORY) {
 319                struct zone *z =
 320                        &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
 321
 322                x += zone_page_state(z, NR_FREE_PAGES) +
 323                     zone_reclaimable_pages(z);
 324        }
 325        /*
 326         * Make sure that the number of highmem pages is never larger
 327         * than the number of the total dirtyable memory. This can only
 328         * occur in very strange VM situations but we want to make sure
 329         * that this does not occur.
 330         */
 331        return min(x, total);
 332#else
 333        return 0;
 334#endif
 335}
 336
 337/**
 338 * determine_dirtyable_memory - amount of memory that may be used
 339 *
 340 * Returns the numebr of pages that can currently be freed and used
 341 * by the kernel for direct mappings.
 342 */
 343unsigned long determine_dirtyable_memory(void)
 344{
 345        unsigned long x;
 346
 347        x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
 348
 349        if (!vm_highmem_is_dirtyable)
 350                x -= highmem_dirtyable_memory(x);
 351
 352        return x + 1;   /* Ensure that we never return 0 */
 353}
 354
 355static unsigned long dirty_freerun_ceiling(unsigned long thresh,
 356                                           unsigned long bg_thresh)
 357{
 358        return (thresh + bg_thresh) / 2;
 359}
 360
 361static unsigned long hard_dirty_limit(unsigned long thresh)
 362{
 363        return max(thresh, global_dirty_limit);
 364}
 365
 366/*
 367 * global_dirty_limits - background-writeback and dirty-throttling thresholds
 368 *
 369 * Calculate the dirty thresholds based on sysctl parameters
 370 * - vm.dirty_background_ratio  or  vm.dirty_background_bytes
 371 * - vm.dirty_ratio             or  vm.dirty_bytes
 372 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
 373 * real-time tasks.
 374 */
 375void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
 376{
 377        unsigned long background;
 378        unsigned long dirty;
 379        unsigned long uninitialized_var(available_memory);
 380        struct task_struct *tsk;
 381
 382        if (!vm_dirty_bytes || !dirty_background_bytes)
 383                available_memory = determine_dirtyable_memory();
 384
 385        if (vm_dirty_bytes)
 386                dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
 387        else
 388                dirty = (vm_dirty_ratio * available_memory) / 100;
 389
 390        if (dirty_background_bytes)
 391                background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
 392        else
 393                background = (dirty_background_ratio * available_memory) / 100;
 394
 395        if (background >= dirty)
 396                background = dirty / 2;
 397        tsk = current;
 398        if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
 399                background += background / 4;
 400                dirty += dirty / 4;
 401        }
 402        *pbackground = background;
 403        *pdirty = dirty;
 404        trace_global_dirty_state(background, dirty);
 405}
 406
 407/**
 408 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
 409 * @bdi: the backing_dev_info to query
 410 * @dirty: global dirty limit in pages
 411 *
 412 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
 413 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
 414 *
 415 * Note that balance_dirty_pages() will only seriously take it as a hard limit
 416 * when sleeping max_pause per page is not enough to keep the dirty pages under
 417 * control. For example, when the device is completely stalled due to some error
 418 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
 419 * In the other normal situations, it acts more gently by throttling the tasks
 420 * more (rather than completely block them) when the bdi dirty pages go high.
 421 *
 422 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
 423 * - starving fast devices
 424 * - piling up dirty pages (that will take long time to sync) on slow devices
 425 *
 426 * The bdi's share of dirty limit will be adapting to its throughput and
 427 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
 428 */
 429unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
 430{
 431        u64 bdi_dirty;
 432        long numerator, denominator;
 433
 434        /*
 435         * Calculate this BDI's share of the dirty ratio.
 436         */
 437        bdi_writeout_fraction(bdi, &numerator, &denominator);
 438
 439        bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
 440        bdi_dirty *= numerator;
 441        do_div(bdi_dirty, denominator);
 442
 443        bdi_dirty += (dirty * bdi->min_ratio) / 100;
 444        if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
 445                bdi_dirty = dirty * bdi->max_ratio / 100;
 446
 447        return bdi_dirty;
 448}
 449
 450/*
 451 * Dirty position control.
 452 *
 453 * (o) global/bdi setpoints
 454 *
 455 * We want the dirty pages be balanced around the global/bdi setpoints.
 456 * When the number of dirty pages is higher/lower than the setpoint, the
 457 * dirty position control ratio (and hence task dirty ratelimit) will be
 458 * decreased/increased to bring the dirty pages back to the setpoint.
 459 *
 460 *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
 461 *
 462 *     if (dirty < setpoint) scale up   pos_ratio
 463 *     if (dirty > setpoint) scale down pos_ratio
 464 *
 465 *     if (bdi_dirty < bdi_setpoint) scale up   pos_ratio
 466 *     if (bdi_dirty > bdi_setpoint) scale down pos_ratio
 467 *
 468 *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
 469 *
 470 * (o) global control line
 471 *
 472 *     ^ pos_ratio
 473 *     |
 474 *     |            |<===== global dirty control scope ======>|
 475 * 2.0 .............*
 476 *     |            .*
 477 *     |            . *
 478 *     |            .   *
 479 *     |            .     *
 480 *     |            .        *
 481 *     |            .            *
 482 * 1.0 ................................*
 483 *     |            .                  .     *
 484 *     |            .                  .          *
 485 *     |            .                  .              *
 486 *     |            .                  .                 *
 487 *     |            .                  .                    *
 488 *   0 +------------.------------------.----------------------*------------->
 489 *           freerun^          setpoint^                 limit^   dirty pages
 490 *
 491 * (o) bdi control line
 492 *
 493 *     ^ pos_ratio
 494 *     |
 495 *     |            *
 496 *     |              *
 497 *     |                *
 498 *     |                  *
 499 *     |                    * |<=========== span ============>|
 500 * 1.0 .......................*
 501 *     |                      . *
 502 *     |                      .   *
 503 *     |                      .     *
 504 *     |                      .       *
 505 *     |                      .         *
 506 *     |                      .           *
 507 *     |                      .             *
 508 *     |                      .               *
 509 *     |                      .                 *
 510 *     |                      .                   *
 511 *     |                      .                     *
 512 * 1/4 ...............................................* * * * * * * * * * * *
 513 *     |                      .                         .
 514 *     |                      .                           .
 515 *     |                      .                             .
 516 *   0 +----------------------.-------------------------------.------------->
 517 *                bdi_setpoint^                    x_intercept^
 518 *
 519 * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
 520 * be smoothly throttled down to normal if it starts high in situations like
 521 * - start writing to a slow SD card and a fast disk at the same time. The SD
 522 *   card's bdi_dirty may rush to many times higher than bdi_setpoint.
 523 * - the bdi dirty thresh drops quickly due to change of JBOD workload
 524 */
 525static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
 526                                        unsigned long thresh,
 527                                        unsigned long bg_thresh,
 528                                        unsigned long dirty,
 529                                        unsigned long bdi_thresh,
 530                                        unsigned long bdi_dirty)
 531{
 532        unsigned long write_bw = bdi->avg_write_bandwidth;
 533        unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
 534        unsigned long limit = hard_dirty_limit(thresh);
 535        unsigned long x_intercept;
 536        unsigned long setpoint;         /* dirty pages' target balance point */
 537        unsigned long bdi_setpoint;
 538        unsigned long span;
 539        long long pos_ratio;            /* for scaling up/down the rate limit */
 540        long x;
 541
 542        if (unlikely(dirty >= limit))
 543                return 0;
 544
 545        /*
 546         * global setpoint
 547         *
 548         *                           setpoint - dirty 3
 549         *        f(dirty) := 1.0 + (----------------)
 550         *                           limit - setpoint
 551         *
 552         * it's a 3rd order polynomial that subjects to
 553         *
 554         * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
 555         * (2) f(setpoint) = 1.0 => the balance point
 556         * (3) f(limit)    = 0   => the hard limit
 557         * (4) df/dx      <= 0   => negative feedback control
 558         * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
 559         *     => fast response on large errors; small oscillation near setpoint
 560         */
 561        setpoint = (freerun + limit) / 2;
 562        x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT,
 563                    limit - setpoint + 1);
 564        pos_ratio = x;
 565        pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
 566        pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
 567        pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
 568
 569        /*
 570         * We have computed basic pos_ratio above based on global situation. If
 571         * the bdi is over/under its share of dirty pages, we want to scale
 572         * pos_ratio further down/up. That is done by the following mechanism.
 573         */
 574
 575        /*
 576         * bdi setpoint
 577         *
 578         *        f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
 579         *
 580         *                        x_intercept - bdi_dirty
 581         *                     := --------------------------
 582         *                        x_intercept - bdi_setpoint
 583         *
 584         * The main bdi control line is a linear function that subjects to
 585         *
 586         * (1) f(bdi_setpoint) = 1.0
 587         * (2) k = - 1 / (8 * write_bw)  (in single bdi case)
 588         *     or equally: x_intercept = bdi_setpoint + 8 * write_bw
 589         *
 590         * For single bdi case, the dirty pages are observed to fluctuate
 591         * regularly within range
 592         *        [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
 593         * for various filesystems, where (2) can yield in a reasonable 12.5%
 594         * fluctuation range for pos_ratio.
 595         *
 596         * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
 597         * own size, so move the slope over accordingly and choose a slope that
 598         * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
 599         */
 600        if (unlikely(bdi_thresh > thresh))
 601                bdi_thresh = thresh;
 602        /*
 603         * It's very possible that bdi_thresh is close to 0 not because the
 604         * device is slow, but that it has remained inactive for long time.
 605         * Honour such devices a reasonable good (hopefully IO efficient)
 606         * threshold, so that the occasional writes won't be blocked and active
 607         * writes can rampup the threshold quickly.
 608         */
 609        bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
 610        /*
 611         * scale global setpoint to bdi's:
 612         *      bdi_setpoint = setpoint * bdi_thresh / thresh
 613         */
 614        x = div_u64((u64)bdi_thresh << 16, thresh + 1);
 615        bdi_setpoint = setpoint * (u64)x >> 16;
 616        /*
 617         * Use span=(8*write_bw) in single bdi case as indicated by
 618         * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
 619         *
 620         *        bdi_thresh                    thresh - bdi_thresh
 621         * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
 622         *          thresh                            thresh
 623         */
 624        span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
 625        x_intercept = bdi_setpoint + span;
 626
 627        if (bdi_dirty < x_intercept - span / 4) {
 628                pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
 629                                    x_intercept - bdi_setpoint + 1);
 630        } else
 631                pos_ratio /= 4;
 632
 633        /*
 634         * bdi reserve area, safeguard against dirty pool underrun and disk idle
 635         * It may push the desired control point of global dirty pages higher
 636         * than setpoint.
 637         */
 638        x_intercept = bdi_thresh / 2;
 639        if (bdi_dirty < x_intercept) {
 640                if (bdi_dirty > x_intercept / 8)
 641                        pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
 642                else
 643                        pos_ratio *= 8;
 644        }
 645
 646        return pos_ratio;
 647}
 648
 649static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
 650                                       unsigned long elapsed,
 651                                       unsigned long written)
 652{
 653        const unsigned long period = roundup_pow_of_two(3 * HZ);
 654        unsigned long avg = bdi->avg_write_bandwidth;
 655        unsigned long old = bdi->write_bandwidth;
 656        u64 bw;
 657
 658        /*
 659         * bw = written * HZ / elapsed
 660         *
 661         *                   bw * elapsed + write_bandwidth * (period - elapsed)
 662         * write_bandwidth = ---------------------------------------------------
 663         *                                          period
 664         */
 665        bw = written - bdi->written_stamp;
 666        bw *= HZ;
 667        if (unlikely(elapsed > period)) {
 668                do_div(bw, elapsed);
 669                avg = bw;
 670                goto out;
 671        }
 672        bw += (u64)bdi->write_bandwidth * (period - elapsed);
 673        bw >>= ilog2(period);
 674
 675        /*
 676         * one more level of smoothing, for filtering out sudden spikes
 677         */
 678        if (avg > old && old >= (unsigned long)bw)
 679                avg -= (avg - old) >> 3;
 680
 681        if (avg < old && old <= (unsigned long)bw)
 682                avg += (old - avg) >> 3;
 683
 684out:
 685        bdi->write_bandwidth = bw;
 686        bdi->avg_write_bandwidth = avg;
 687}
 688
 689/*
 690 * The global dirtyable memory and dirty threshold could be suddenly knocked
 691 * down by a large amount (eg. on the startup of KVM in a swapless system).
 692 * This may throw the system into deep dirty exceeded state and throttle
 693 * heavy/light dirtiers alike. To retain good responsiveness, maintain
 694 * global_dirty_limit for tracking slowly down to the knocked down dirty
 695 * threshold.
 696 */
 697static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
 698{
 699        unsigned long limit = global_dirty_limit;
 700
 701        /*
 702         * Follow up in one step.
 703         */
 704        if (limit < thresh) {
 705                limit = thresh;
 706                goto update;
 707        }
 708
 709        /*
 710         * Follow down slowly. Use the higher one as the target, because thresh
 711         * may drop below dirty. This is exactly the reason to introduce
 712         * global_dirty_limit which is guaranteed to lie above the dirty pages.
 713         */
 714        thresh = max(thresh, dirty);
 715        if (limit > thresh) {
 716                limit -= (limit - thresh) >> 5;
 717                goto update;
 718        }
 719        return;
 720update:
 721        global_dirty_limit = limit;
 722}
 723
 724static void global_update_bandwidth(unsigned long thresh,
 725                                    unsigned long dirty,
 726                                    unsigned long now)
 727{
 728        static DEFINE_SPINLOCK(dirty_lock);
 729        static unsigned long update_time;
 730
 731        /*
 732         * check locklessly first to optimize away locking for the most time
 733         */
 734        if (time_before(now, update_time + BANDWIDTH_INTERVAL))
 735                return;
 736
 737        spin_lock(&dirty_lock);
 738        if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
 739                update_dirty_limit(thresh, dirty);
 740                update_time = now;
 741        }
 742        spin_unlock(&dirty_lock);
 743}
 744
 745/*
 746 * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
 747 *
 748 * Normal bdi tasks will be curbed at or below it in long term.
 749 * Obviously it should be around (write_bw / N) when there are N dd tasks.
 750 */
 751static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
 752                                       unsigned long thresh,
 753                                       unsigned long bg_thresh,
 754                                       unsigned long dirty,
 755                                       unsigned long bdi_thresh,
 756                                       unsigned long bdi_dirty,
 757                                       unsigned long dirtied,
 758                                       unsigned long elapsed)
 759{
 760        unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
 761        unsigned long limit = hard_dirty_limit(thresh);
 762        unsigned long setpoint = (freerun + limit) / 2;
 763        unsigned long write_bw = bdi->avg_write_bandwidth;
 764        unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
 765        unsigned long dirty_rate;
 766        unsigned long task_ratelimit;
 767        unsigned long balanced_dirty_ratelimit;
 768        unsigned long pos_ratio;
 769        unsigned long step;
 770        unsigned long x;
 771
 772        /*
 773         * The dirty rate will match the writeout rate in long term, except
 774         * when dirty pages are truncated by userspace or re-dirtied by FS.
 775         */
 776        dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
 777
 778        pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
 779                                       bdi_thresh, bdi_dirty);
 780        /*
 781         * task_ratelimit reflects each dd's dirty rate for the past 200ms.
 782         */
 783        task_ratelimit = (u64)dirty_ratelimit *
 784                                        pos_ratio >> RATELIMIT_CALC_SHIFT;
 785        task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
 786
 787        /*
 788         * A linear estimation of the "balanced" throttle rate. The theory is,
 789         * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
 790         * dirty_rate will be measured to be (N * task_ratelimit). So the below
 791         * formula will yield the balanced rate limit (write_bw / N).
 792         *
 793         * Note that the expanded form is not a pure rate feedback:
 794         *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate)              (1)
 795         * but also takes pos_ratio into account:
 796         *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
 797         *
 798         * (1) is not realistic because pos_ratio also takes part in balancing
 799         * the dirty rate.  Consider the state
 800         *      pos_ratio = 0.5                                              (3)
 801         *      rate = 2 * (write_bw / N)                                    (4)
 802         * If (1) is used, it will stuck in that state! Because each dd will
 803         * be throttled at
 804         *      task_ratelimit = pos_ratio * rate = (write_bw / N)           (5)
 805         * yielding
 806         *      dirty_rate = N * task_ratelimit = write_bw                   (6)
 807         * put (6) into (1) we get
 808         *      rate_(i+1) = rate_(i)                                        (7)
 809         *
 810         * So we end up using (2) to always keep
 811         *      rate_(i+1) ~= (write_bw / N)                                 (8)
 812         * regardless of the value of pos_ratio. As long as (8) is satisfied,
 813         * pos_ratio is able to drive itself to 1.0, which is not only where
 814         * the dirty count meet the setpoint, but also where the slope of
 815         * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
 816         */
 817        balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
 818                                           dirty_rate | 1);
 819
 820        /*
 821         * We could safely do this and return immediately:
 822         *
 823         *      bdi->dirty_ratelimit = balanced_dirty_ratelimit;
 824         *
 825         * However to get a more stable dirty_ratelimit, the below elaborated
 826         * code makes use of task_ratelimit to filter out sigular points and
 827         * limit the step size.
 828         *
 829         * The below code essentially only uses the relative value of
 830         *
 831         *      task_ratelimit - dirty_ratelimit
 832         *      = (pos_ratio - 1) * dirty_ratelimit
 833         *
 834         * which reflects the direction and size of dirty position error.
 835         */
 836
 837        /*
 838         * dirty_ratelimit will follow balanced_dirty_ratelimit iff
 839         * task_ratelimit is on the same side of dirty_ratelimit, too.
 840         * For example, when
 841         * - dirty_ratelimit > balanced_dirty_ratelimit
 842         * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
 843         * lowering dirty_ratelimit will help meet both the position and rate
 844         * control targets. Otherwise, don't update dirty_ratelimit if it will
 845         * only help meet the rate target. After all, what the users ultimately
 846         * feel and care are stable dirty rate and small position error.
 847         *
 848         * |task_ratelimit - dirty_ratelimit| is used to limit the step size
 849         * and filter out the sigular points of balanced_dirty_ratelimit. Which
 850         * keeps jumping around randomly and can even leap far away at times
 851         * due to the small 200ms estimation period of dirty_rate (we want to
 852         * keep that period small to reduce time lags).
 853         */
 854        step = 0;
 855        if (dirty < setpoint) {
 856                x = min(bdi->balanced_dirty_ratelimit,
 857                         min(balanced_dirty_ratelimit, task_ratelimit));
 858                if (dirty_ratelimit < x)
 859                        step = x - dirty_ratelimit;
 860        } else {
 861                x = max(bdi->balanced_dirty_ratelimit,
 862                         max(balanced_dirty_ratelimit, task_ratelimit));
 863                if (dirty_ratelimit > x)
 864                        step = dirty_ratelimit - x;
 865        }
 866
 867        /*
 868         * Don't pursue 100% rate matching. It's impossible since the balanced
 869         * rate itself is constantly fluctuating. So decrease the track speed
 870         * when it gets close to the target. Helps eliminate pointless tremors.
 871         */
 872        step >>= dirty_ratelimit / (2 * step + 1);
 873        /*
 874         * Limit the tracking speed to avoid overshooting.
 875         */
 876        step = (step + 7) / 8;
 877
 878        if (dirty_ratelimit < balanced_dirty_ratelimit)
 879                dirty_ratelimit += step;
 880        else
 881                dirty_ratelimit -= step;
 882
 883        bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
 884        bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
 885
 886        trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
 887}
 888
 889void __bdi_update_bandwidth(struct backing_dev_info *bdi,
 890                            unsigned long thresh,
 891                            unsigned long bg_thresh,
 892                            unsigned long dirty,
 893                            unsigned long bdi_thresh,
 894                            unsigned long bdi_dirty,
 895                            unsigned long start_time)
 896{
 897        unsigned long now = jiffies;
 898        unsigned long elapsed = now - bdi->bw_time_stamp;
 899        unsigned long dirtied;
 900        unsigned long written;
 901
 902        /*
 903         * rate-limit, only update once every 200ms.
 904         */
 905        if (elapsed < BANDWIDTH_INTERVAL)
 906                return;
 907
 908        dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
 909        written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
 910
 911        /*
 912         * Skip quiet periods when disk bandwidth is under-utilized.
 913         * (at least 1s idle time between two flusher runs)
 914         */
 915        if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
 916                goto snapshot;
 917
 918        if (thresh) {
 919                global_update_bandwidth(thresh, dirty, now);
 920                bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
 921                                           bdi_thresh, bdi_dirty,
 922                                           dirtied, elapsed);
 923        }
 924        bdi_update_write_bandwidth(bdi, elapsed, written);
 925
 926snapshot:
 927        bdi->dirtied_stamp = dirtied;
 928        bdi->written_stamp = written;
 929        bdi->bw_time_stamp = now;
 930}
 931
 932static void bdi_update_bandwidth(struct backing_dev_info *bdi,
 933                                 unsigned long thresh,
 934                                 unsigned long bg_thresh,
 935                                 unsigned long dirty,
 936                                 unsigned long bdi_thresh,
 937                                 unsigned long bdi_dirty,
 938                                 unsigned long start_time)
 939{
 940        if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
 941                return;
 942        spin_lock(&bdi->wb.list_lock);
 943        __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
 944                               bdi_thresh, bdi_dirty, start_time);
 945        spin_unlock(&bdi->wb.list_lock);
 946}
 947
 948/*
 949 * After a task dirtied this many pages, balance_dirty_pages_ratelimited_nr()
 950 * will look to see if it needs to start dirty throttling.
 951 *
 952 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
 953 * global_page_state() too often. So scale it near-sqrt to the safety margin
 954 * (the number of pages we may dirty without exceeding the dirty limits).
 955 */
 956static unsigned long dirty_poll_interval(unsigned long dirty,
 957                                         unsigned long thresh)
 958{
 959        if (thresh > dirty)
 960                return 1UL << (ilog2(thresh - dirty) >> 1);
 961
 962        return 1;
 963}
 964
 965static unsigned long bdi_max_pause(struct backing_dev_info *bdi,
 966                                   unsigned long bdi_dirty)
 967{
 968        unsigned long bw = bdi->avg_write_bandwidth;
 969        unsigned long hi = ilog2(bw);
 970        unsigned long lo = ilog2(bdi->dirty_ratelimit);
 971        unsigned long t;
 972
 973        /* target for 20ms max pause on 1-dd case */
 974        t = HZ / 50;
 975
 976        /*
 977         * Scale up pause time for concurrent dirtiers in order to reduce CPU
 978         * overheads.
 979         *
 980         * (N * 20ms) on 2^N concurrent tasks.
 981         */
 982        if (hi > lo)
 983                t += (hi - lo) * (20 * HZ) / 1024;
 984
 985        /*
 986         * Limit pause time for small memory systems. If sleeping for too long
 987         * time, a small pool of dirty/writeback pages may go empty and disk go
 988         * idle.
 989         *
 990         * 8 serves as the safety ratio.
 991         */
 992        t = min(t, bdi_dirty * HZ / (8 * bw + 1));
 993
 994        /*
 995         * The pause time will be settled within range (max_pause/4, max_pause).
 996         * Apply a minimal value of 4 to get a non-zero max_pause/4.
 997         */
 998        return clamp_val(t, 4, MAX_PAUSE);
 999}
1000
1001/*
1002 * balance_dirty_pages() must be called by processes which are generating dirty
1003 * data.  It looks at the number of dirty pages in the machine and will force
1004 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1005 * If we're over `background_thresh' then the writeback threads are woken to
1006 * perform some writeout.
1007 */
1008static void balance_dirty_pages(struct address_space *mapping,
1009                                unsigned long pages_dirtied)
1010{
1011        unsigned long nr_reclaimable;   /* = file_dirty + unstable_nfs */
1012        unsigned long bdi_reclaimable;
1013        unsigned long nr_dirty;  /* = file_dirty + writeback + unstable_nfs */
1014        unsigned long bdi_dirty;
1015        unsigned long freerun;
1016        unsigned long background_thresh;
1017        unsigned long dirty_thresh;
1018        unsigned long bdi_thresh;
1019        long pause = 0;
1020        long uninitialized_var(max_pause);
1021        bool dirty_exceeded = false;
1022        unsigned long task_ratelimit;
1023        unsigned long uninitialized_var(dirty_ratelimit);
1024        unsigned long pos_ratio;
1025        struct backing_dev_info *bdi = mapping->backing_dev_info;
1026        unsigned long start_time = jiffies;
1027
1028        for (;;) {
1029                /*
1030                 * Unstable writes are a feature of certain networked
1031                 * filesystems (i.e. NFS) in which data may have been
1032                 * written to the server's write cache, but has not yet
1033                 * been flushed to permanent storage.
1034                 */
1035                nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1036                                        global_page_state(NR_UNSTABLE_NFS);
1037                nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1038
1039                global_dirty_limits(&background_thresh, &dirty_thresh);
1040
1041                /*
1042                 * Throttle it only when the background writeback cannot
1043                 * catch-up. This avoids (excessively) small writeouts
1044                 * when the bdi limits are ramping up.
1045                 */
1046                freerun = dirty_freerun_ceiling(dirty_thresh,
1047                                                background_thresh);
1048                if (nr_dirty <= freerun)
1049                        break;
1050
1051                if (unlikely(!writeback_in_progress(bdi)))
1052                        bdi_start_background_writeback(bdi);
1053
1054                /*
1055                 * bdi_thresh is not treated as some limiting factor as
1056                 * dirty_thresh, due to reasons
1057                 * - in JBOD setup, bdi_thresh can fluctuate a lot
1058                 * - in a system with HDD and USB key, the USB key may somehow
1059                 *   go into state (bdi_dirty >> bdi_thresh) either because
1060                 *   bdi_dirty starts high, or because bdi_thresh drops low.
1061                 *   In this case we don't want to hard throttle the USB key
1062                 *   dirtiers for 100 seconds until bdi_dirty drops under
1063                 *   bdi_thresh. Instead the auxiliary bdi control line in
1064                 *   bdi_position_ratio() will let the dirtier task progress
1065                 *   at some rate <= (write_bw / 2) for bringing down bdi_dirty.
1066                 */
1067                bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
1068
1069                /*
1070                 * In order to avoid the stacked BDI deadlock we need
1071                 * to ensure we accurately count the 'dirty' pages when
1072                 * the threshold is low.
1073                 *
1074                 * Otherwise it would be possible to get thresh+n pages
1075                 * reported dirty, even though there are thresh-m pages
1076                 * actually dirty; with m+n sitting in the percpu
1077                 * deltas.
1078                 */
1079                if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
1080                        bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
1081                        bdi_dirty = bdi_reclaimable +
1082                                    bdi_stat_sum(bdi, BDI_WRITEBACK);
1083                } else {
1084                        bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
1085                        bdi_dirty = bdi_reclaimable +
1086                                    bdi_stat(bdi, BDI_WRITEBACK);
1087                }
1088
1089                dirty_exceeded = (bdi_dirty > bdi_thresh) ||
1090                                  (nr_dirty > dirty_thresh);
1091                if (dirty_exceeded && !bdi->dirty_exceeded)
1092                        bdi->dirty_exceeded = 1;
1093
1094                bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
1095                                     nr_dirty, bdi_thresh, bdi_dirty,
1096                                     start_time);
1097
1098                max_pause = bdi_max_pause(bdi, bdi_dirty);
1099
1100                dirty_ratelimit = bdi->dirty_ratelimit;
1101                pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
1102                                               background_thresh, nr_dirty,
1103                                               bdi_thresh, bdi_dirty);
1104                task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
1105                                                        RATELIMIT_CALC_SHIFT;
1106                if (unlikely(task_ratelimit == 0)) {
1107                        pause = max_pause;
1108                        goto pause;
1109                }
1110                pause = HZ * pages_dirtied / task_ratelimit;
1111                if (unlikely(pause <= 0)) {
1112                        trace_balance_dirty_pages(bdi,
1113                                                  dirty_thresh,
1114                                                  background_thresh,
1115                                                  nr_dirty,
1116                                                  bdi_thresh,
1117                                                  bdi_dirty,
1118                                                  dirty_ratelimit,
1119                                                  task_ratelimit,
1120                                                  pages_dirtied,
1121                                                  pause,
1122                                                  start_time);
1123                        pause = 1; /* avoid resetting nr_dirtied_pause below */
1124                        break;
1125                }
1126                pause = min(pause, max_pause);
1127
1128pause:
1129                trace_balance_dirty_pages(bdi,
1130                                          dirty_thresh,
1131                                          background_thresh,
1132                                          nr_dirty,
1133                                          bdi_thresh,
1134                                          bdi_dirty,
1135                                          dirty_ratelimit,
1136                                          task_ratelimit,
1137                                          pages_dirtied,
1138                                          pause,
1139                                          start_time);
1140                __set_current_state(TASK_KILLABLE);
1141                io_schedule_timeout(pause);
1142
1143                /*
1144                 * This is typically equal to (nr_dirty < dirty_thresh) and can
1145                 * also keep "1000+ dd on a slow USB stick" under control.
1146                 */
1147                if (task_ratelimit)
1148                        break;
1149
1150                /*
1151                 * In the case of an unresponding NFS server and the NFS dirty
1152                 * pages exceeds dirty_thresh, give the other good bdi's a pipe
1153                 * to go through, so that tasks on them still remain responsive.
1154                 *
1155                 * In theory 1 page is enough to keep the comsumer-producer
1156                 * pipe going: the flusher cleans 1 page => the task dirties 1
1157                 * more page. However bdi_dirty has accounting errors.  So use
1158                 * the larger and more IO friendly bdi_stat_error.
1159                 */
1160                if (bdi_dirty <= bdi_stat_error(bdi))
1161                        break;
1162
1163                if (fatal_signal_pending(current))
1164                        break;
1165        }
1166
1167        if (!dirty_exceeded && bdi->dirty_exceeded)
1168                bdi->dirty_exceeded = 0;
1169
1170        current->nr_dirtied = 0;
1171        if (pause == 0) { /* in freerun area */
1172                current->nr_dirtied_pause =
1173                                dirty_poll_interval(nr_dirty, dirty_thresh);
1174        } else if (pause <= max_pause / 4 &&
1175                   pages_dirtied >= current->nr_dirtied_pause) {
1176                current->nr_dirtied_pause = clamp_val(
1177                                        dirty_ratelimit * (max_pause / 2) / HZ,
1178                                        pages_dirtied + pages_dirtied / 8,
1179                                        pages_dirtied * 4);
1180        } else if (pause >= max_pause) {
1181                current->nr_dirtied_pause = 1 | clamp_val(
1182                                        dirty_ratelimit * (max_pause / 2) / HZ,
1183                                        pages_dirtied / 4,
1184                                        pages_dirtied - pages_dirtied / 8);
1185        }
1186
1187        if (writeback_in_progress(bdi))
1188                return;
1189
1190        /*
1191         * In laptop mode, we wait until hitting the higher threshold before
1192         * starting background writeout, and then write out all the way down
1193         * to the lower threshold.  So slow writers cause minimal disk activity.
1194         *
1195         * In normal mode, we start background writeout at the lower
1196         * background_thresh, to keep the amount of dirty memory low.
1197         */
1198        if (laptop_mode)
1199                return;
1200
1201        if (nr_reclaimable > background_thresh)
1202                bdi_start_background_writeback(bdi);
1203}
1204
1205void set_page_dirty_balance(struct page *page, int page_mkwrite)
1206{
1207        if (set_page_dirty(page) || page_mkwrite) {
1208                struct address_space *mapping = page_mapping(page);
1209
1210                if (mapping)
1211                        balance_dirty_pages_ratelimited(mapping);
1212        }
1213}
1214
1215static DEFINE_PER_CPU(int, bdp_ratelimits);
1216
1217/**
1218 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
1219 * @mapping: address_space which was dirtied
1220 * @nr_pages_dirtied: number of pages which the caller has just dirtied
1221 *
1222 * Processes which are dirtying memory should call in here once for each page
1223 * which was newly dirtied.  The function will periodically check the system's
1224 * dirty state and will initiate writeback if needed.
1225 *
1226 * On really big machines, get_writeback_state is expensive, so try to avoid
1227 * calling it too often (ratelimiting).  But once we're over the dirty memory
1228 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1229 * from overshooting the limit by (ratelimit_pages) each.
1230 */
1231void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
1232                                        unsigned long nr_pages_dirtied)
1233{
1234        struct backing_dev_info *bdi = mapping->backing_dev_info;
1235        int ratelimit;
1236        int *p;
1237
1238        if (!bdi_cap_account_dirty(bdi))
1239                return;
1240
1241        ratelimit = current->nr_dirtied_pause;
1242        if (bdi->dirty_exceeded)
1243                ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1244
1245        current->nr_dirtied += nr_pages_dirtied;
1246
1247        preempt_disable();
1248        /*
1249         * This prevents one CPU to accumulate too many dirtied pages without
1250         * calling into balance_dirty_pages(), which can happen when there are
1251         * 1000+ tasks, all of them start dirtying pages at exactly the same
1252         * time, hence all honoured too large initial task->nr_dirtied_pause.
1253         */
1254        p =  &__get_cpu_var(bdp_ratelimits);
1255        if (unlikely(current->nr_dirtied >= ratelimit))
1256                *p = 0;
1257        else {
1258                *p += nr_pages_dirtied;
1259                if (unlikely(*p >= ratelimit_pages)) {
1260                        *p = 0;
1261                        ratelimit = 0;
1262                }
1263        }
1264        preempt_enable();
1265
1266        if (unlikely(current->nr_dirtied >= ratelimit))
1267                balance_dirty_pages(mapping, current->nr_dirtied);
1268}
1269EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
1270
1271void throttle_vm_writeout(gfp_t gfp_mask)
1272{
1273        unsigned long background_thresh;
1274        unsigned long dirty_thresh;
1275
1276        for ( ; ; ) {
1277                global_dirty_limits(&background_thresh, &dirty_thresh);
1278
1279                /*
1280                 * Boost the allowable dirty threshold a bit for page
1281                 * allocators so they don't get DoS'ed by heavy writers
1282                 */
1283                dirty_thresh += dirty_thresh / 10;      /* wheeee... */
1284
1285                if (global_page_state(NR_UNSTABLE_NFS) +
1286                        global_page_state(NR_WRITEBACK) <= dirty_thresh)
1287                                break;
1288                congestion_wait(BLK_RW_ASYNC, HZ/10);
1289
1290                /*
1291                 * The caller might hold locks which can prevent IO completion
1292                 * or progress in the filesystem.  So we cannot just sit here
1293                 * waiting for IO to complete.
1294                 */
1295                if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1296                        break;
1297        }
1298}
1299
1300/*
1301 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1302 */
1303int dirty_writeback_centisecs_handler(ctl_table *table, int write,
1304        void __user *buffer, size_t *length, loff_t *ppos)
1305{
1306        proc_dointvec(table, write, buffer, length, ppos);
1307        bdi_arm_supers_timer();
1308        return 0;
1309}
1310
1311#ifdef CONFIG_BLOCK
1312void laptop_mode_timer_fn(unsigned long data)
1313{
1314        struct request_queue *q = (struct request_queue *)data;
1315        int nr_pages = global_page_state(NR_FILE_DIRTY) +
1316                global_page_state(NR_UNSTABLE_NFS);
1317
1318        /*
1319         * We want to write everything out, not just down to the dirty
1320         * threshold
1321         */
1322        if (bdi_has_dirty_io(&q->backing_dev_info))
1323                bdi_start_writeback(&q->backing_dev_info, nr_pages,
1324                                        WB_REASON_LAPTOP_TIMER);
1325}
1326
1327/*
1328 * We've spun up the disk and we're in laptop mode: schedule writeback
1329 * of all dirty data a few seconds from now.  If the flush is already scheduled
1330 * then push it back - the user is still using the disk.
1331 */
1332void laptop_io_completion(struct backing_dev_info *info)
1333{
1334        mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1335}
1336
1337/*
1338 * We're in laptop mode and we've just synced. The sync's writes will have
1339 * caused another writeback to be scheduled by laptop_io_completion.
1340 * Nothing needs to be written back anymore, so we unschedule the writeback.
1341 */
1342void laptop_sync_completion(void)
1343{
1344        struct backing_dev_info *bdi;
1345
1346        rcu_read_lock();
1347
1348        list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1349                del_timer(&bdi->laptop_mode_wb_timer);
1350
1351        rcu_read_unlock();
1352}
1353#endif
1354
1355/*
1356 * If ratelimit_pages is too high then we can get into dirty-data overload
1357 * if a large number of processes all perform writes at the same time.
1358 * If it is too low then SMP machines will call the (expensive)
1359 * get_writeback_state too often.
1360 *
1361 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1362 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1363 * thresholds.
1364 */
1365
1366void writeback_set_ratelimit(void)
1367{
1368        unsigned long background_thresh;
1369        unsigned long dirty_thresh;
1370        global_dirty_limits(&background_thresh, &dirty_thresh);
1371        ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1372        if (ratelimit_pages < 16)
1373                ratelimit_pages = 16;
1374}
1375
1376static int __cpuinit
1377ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
1378{
1379        writeback_set_ratelimit();
1380        return NOTIFY_DONE;
1381}
1382
1383static struct notifier_block __cpuinitdata ratelimit_nb = {
1384        .notifier_call  = ratelimit_handler,
1385        .next           = NULL,
1386};
1387
1388/*
1389 * Called early on to tune the page writeback dirty limits.
1390 *
1391 * We used to scale dirty pages according to how total memory
1392 * related to pages that could be allocated for buffers (by
1393 * comparing nr_free_buffer_pages() to vm_total_pages.
1394 *
1395 * However, that was when we used "dirty_ratio" to scale with
1396 * all memory, and we don't do that any more. "dirty_ratio"
1397 * is now applied to total non-HIGHPAGE memory (by subtracting
1398 * totalhigh_pages from vm_total_pages), and as such we can't
1399 * get into the old insane situation any more where we had
1400 * large amounts of dirty pages compared to a small amount of
1401 * non-HIGHMEM memory.
1402 *
1403 * But we might still want to scale the dirty_ratio by how
1404 * much memory the box has..
1405 */
1406void __init page_writeback_init(void)
1407{
1408        int shift;
1409
1410        writeback_set_ratelimit();
1411        register_cpu_notifier(&ratelimit_nb);
1412
1413        shift = calc_period_shift();
1414        prop_descriptor_init(&vm_completions, shift);
1415}
1416
1417/**
1418 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1419 * @mapping: address space structure to write
1420 * @start: starting page index
1421 * @end: ending page index (inclusive)
1422 *
1423 * This function scans the page range from @start to @end (inclusive) and tags
1424 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1425 * that write_cache_pages (or whoever calls this function) will then use
1426 * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
1427 * used to avoid livelocking of writeback by a process steadily creating new
1428 * dirty pages in the file (thus it is important for this function to be quick
1429 * so that it can tag pages faster than a dirtying process can create them).
1430 */
1431/*
1432 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1433 */
1434void tag_pages_for_writeback(struct address_space *mapping,
1435                             pgoff_t start, pgoff_t end)
1436{
1437#define WRITEBACK_TAG_BATCH 4096
1438        unsigned long tagged;
1439
1440        do {
1441                spin_lock_irq(&mapping->tree_lock);
1442                tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1443                                &start, end, WRITEBACK_TAG_BATCH,
1444                                PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1445                spin_unlock_irq(&mapping->tree_lock);
1446                WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1447                cond_resched();
1448                /* We check 'start' to handle wrapping when end == ~0UL */
1449        } while (tagged >= WRITEBACK_TAG_BATCH && start);
1450}
1451EXPORT_SYMBOL(tag_pages_for_writeback);
1452
1453/**
1454 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1455 * @mapping: address space structure to write
1456 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1457 * @writepage: function called for each page
1458 * @data: data passed to writepage function
1459 *
1460 * If a page is already under I/O, write_cache_pages() skips it, even
1461 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
1462 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
1463 * and msync() need to guarantee that all the data which was dirty at the time
1464 * the call was made get new I/O started against them.  If wbc->sync_mode is
1465 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1466 * existing IO to complete.
1467 *
1468 * To avoid livelocks (when other process dirties new pages), we first tag
1469 * pages which should be written back with TOWRITE tag and only then start
1470 * writing them. For data-integrity sync we have to be careful so that we do
1471 * not miss some pages (e.g., because some other process has cleared TOWRITE
1472 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1473 * by the process clearing the DIRTY tag (and submitting the page for IO).
1474 */
1475int write_cache_pages(struct address_space *mapping,
1476                      struct writeback_control *wbc, writepage_t writepage,
1477                      void *data)
1478{
1479        int ret = 0;
1480        int done = 0;
1481        struct pagevec pvec;
1482        int nr_pages;
1483        pgoff_t uninitialized_var(writeback_index);
1484        pgoff_t index;
1485        pgoff_t end;            /* Inclusive */
1486        pgoff_t done_index;
1487        int cycled;
1488        int range_whole = 0;
1489        int tag;
1490
1491        pagevec_init(&pvec, 0);
1492        if (wbc->range_cyclic) {
1493                writeback_index = mapping->writeback_index; /* prev offset */
1494                index = writeback_index;
1495                if (index == 0)
1496                        cycled = 1;
1497                else
1498                        cycled = 0;
1499                end = -1;
1500        } else {
1501                index = wbc->range_start >> PAGE_CACHE_SHIFT;
1502                end = wbc->range_end >> PAGE_CACHE_SHIFT;
1503                if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1504                        range_whole = 1;
1505                cycled = 1; /* ignore range_cyclic tests */
1506        }
1507        if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1508                tag = PAGECACHE_TAG_TOWRITE;
1509        else
1510                tag = PAGECACHE_TAG_DIRTY;
1511retry:
1512        if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1513                tag_pages_for_writeback(mapping, index, end);
1514        done_index = index;
1515        while (!done && (index <= end)) {
1516                int i;
1517
1518                nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1519                              min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1520                if (nr_pages == 0)
1521                        break;
1522
1523                for (i = 0; i < nr_pages; i++) {
1524                        struct page *page = pvec.pages[i];
1525
1526                        /*
1527                         * At this point, the page may be truncated or
1528                         * invalidated (changing page->mapping to NULL), or
1529                         * even swizzled back from swapper_space to tmpfs file
1530                         * mapping. However, page->index will not change
1531                         * because we have a reference on the page.
1532                         */
1533                        if (page->index > end) {
1534                                /*
1535                                 * can't be range_cyclic (1st pass) because
1536                                 * end == -1 in that case.
1537                                 */
1538                                done = 1;
1539                                break;
1540                        }
1541
1542                        done_index = page->index;
1543
1544                        lock_page(page);
1545
1546                        /*
1547                         * Page truncated or invalidated. We can freely skip it
1548                         * then, even for data integrity operations: the page
1549                         * has disappeared concurrently, so there could be no
1550                         * real expectation of this data interity operation
1551                         * even if there is now a new, dirty page at the same
1552                         * pagecache address.
1553                         */
1554                        if (unlikely(page->mapping != mapping)) {
1555continue_unlock:
1556                                unlock_page(page);
1557                                continue;
1558                        }
1559
1560                        if (!PageDirty(page)) {
1561                                /* someone wrote it for us */
1562                                goto continue_unlock;
1563                        }
1564
1565                        if (PageWriteback(page)) {
1566                                if (wbc->sync_mode != WB_SYNC_NONE)
1567                                        wait_on_page_writeback(page);
1568                                else
1569                                        goto continue_unlock;
1570                        }
1571
1572                        BUG_ON(PageWriteback(page));
1573                        if (!clear_page_dirty_for_io(page))
1574                                goto continue_unlock;
1575
1576                        trace_wbc_writepage(wbc, mapping->backing_dev_info);
1577                        ret = (*writepage)(page, wbc, data);
1578                        if (unlikely(ret)) {
1579                                if (ret == AOP_WRITEPAGE_ACTIVATE) {
1580                                        unlock_page(page);
1581                                        ret = 0;
1582                                } else {
1583                                        /*
1584                                         * done_index is set past this page,
1585                                         * so media errors will not choke
1586                                         * background writeout for the entire
1587                                         * file. This has consequences for
1588                                         * range_cyclic semantics (ie. it may
1589                                         * not be suitable for data integrity
1590                                         * writeout).
1591                                         */
1592                                        done_index = page->index + 1;
1593                                        done = 1;
1594                                        break;
1595                                }
1596                        }
1597
1598                        /*
1599                         * We stop writing back only if we are not doing
1600                         * integrity sync. In case of integrity sync we have to
1601                         * keep going until we have written all the pages
1602                         * we tagged for writeback prior to entering this loop.
1603                         */
1604                        if (--wbc->nr_to_write <= 0 &&
1605                            wbc->sync_mode == WB_SYNC_NONE) {
1606                                done = 1;
1607                                break;
1608                        }
1609                }
1610                pagevec_release(&pvec);
1611                cond_resched();
1612        }
1613        if (!cycled && !done) {
1614                /*
1615                 * range_cyclic:
1616                 * We hit the last page and there is more work to be done: wrap
1617                 * back to the start of the file
1618                 */
1619                cycled = 1;
1620                index = 0;
1621                end = writeback_index - 1;
1622                goto retry;
1623        }
1624        if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1625                mapping->writeback_index = done_index;
1626
1627        return ret;
1628}
1629EXPORT_SYMBOL(write_cache_pages);
1630
1631/*
1632 * Function used by generic_writepages to call the real writepage
1633 * function and set the mapping flags on error
1634 */
1635static int __writepage(struct page *page, struct writeback_control *wbc,
1636                       void *data)
1637{
1638        struct address_space *mapping = data;
1639        int ret = mapping->a_ops->writepage(page, wbc);
1640        mapping_set_error(mapping, ret);
1641        return ret;
1642}
1643
1644/**
1645 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1646 * @mapping: address space structure to write
1647 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1648 *
1649 * This is a library function, which implements the writepages()
1650 * address_space_operation.
1651 */
1652int generic_writepages(struct address_space *mapping,
1653                       struct writeback_control *wbc)
1654{
1655        struct blk_plug plug;
1656        int ret;
1657
1658        /* deal with chardevs and other special file */
1659        if (!mapping->a_ops->writepage)
1660                return 0;
1661
1662        blk_start_plug(&plug);
1663        ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1664        blk_finish_plug(&plug);
1665        return ret;
1666}
1667
1668EXPORT_SYMBOL(generic_writepages);
1669
1670int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1671{
1672        int ret;
1673
1674        if (wbc->nr_to_write <= 0)
1675                return 0;
1676        if (mapping->a_ops->writepages)
1677                ret = mapping->a_ops->writepages(mapping, wbc);
1678        else
1679                ret = generic_writepages(mapping, wbc);
1680        return ret;
1681}
1682
1683/**
1684 * write_one_page - write out a single page and optionally wait on I/O
1685 * @page: the page to write
1686 * @wait: if true, wait on writeout
1687 *
1688 * The page must be locked by the caller and will be unlocked upon return.
1689 *
1690 * write_one_page() returns a negative error code if I/O failed.
1691 */
1692int write_one_page(struct page *page, int wait)
1693{
1694        struct address_space *mapping = page->mapping;
1695        int ret = 0;
1696        struct writeback_control wbc = {
1697                .sync_mode = WB_SYNC_ALL,
1698                .nr_to_write = 1,
1699        };
1700
1701        BUG_ON(!PageLocked(page));
1702
1703        if (wait)
1704                wait_on_page_writeback(page);
1705
1706        if (clear_page_dirty_for_io(page)) {
1707                page_cache_get(page);
1708                ret = mapping->a_ops->writepage(page, &wbc);
1709                if (ret == 0 && wait) {
1710                        wait_on_page_writeback(page);
1711                        if (PageError(page))
1712                                ret = -EIO;
1713                }
1714                page_cache_release(page);
1715        } else {
1716                unlock_page(page);
1717        }
1718        return ret;
1719}
1720EXPORT_SYMBOL(write_one_page);
1721
1722/*
1723 * For address_spaces which do not use buffers nor write back.
1724 */
1725int __set_page_dirty_no_writeback(struct page *page)
1726{
1727        if (!PageDirty(page))
1728                return !TestSetPageDirty(page);
1729        return 0;
1730}
1731
1732/*
1733 * Helper function for set_page_dirty family.
1734 * NOTE: This relies on being atomic wrt interrupts.
1735 */
1736void account_page_dirtied(struct page *page, struct address_space *mapping)
1737{
1738        if (mapping_cap_account_dirty(mapping)) {
1739                __inc_zone_page_state(page, NR_FILE_DIRTY);
1740                __inc_zone_page_state(page, NR_DIRTIED);
1741                __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1742                __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
1743                task_io_account_write(PAGE_CACHE_SIZE);
1744        }
1745}
1746EXPORT_SYMBOL(account_page_dirtied);
1747
1748/*
1749 * Helper function for set_page_writeback family.
1750 * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1751 * wrt interrupts.
1752 */
1753void account_page_writeback(struct page *page)
1754{
1755        inc_zone_page_state(page, NR_WRITEBACK);
1756}
1757EXPORT_SYMBOL(account_page_writeback);
1758
1759/*
1760 * For address_spaces which do not use buffers.  Just tag the page as dirty in
1761 * its radix tree.
1762 *
1763 * This is also used when a single buffer is being dirtied: we want to set the
1764 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
1765 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1766 *
1767 * Most callers have locked the page, which pins the address_space in memory.
1768 * But zap_pte_range() does not lock the page, however in that case the
1769 * mapping is pinned by the vma's ->vm_file reference.
1770 *
1771 * We take care to handle the case where the page was truncated from the
1772 * mapping by re-checking page_mapping() inside tree_lock.
1773 */
1774int __set_page_dirty_nobuffers(struct page *page)
1775{
1776        if (!TestSetPageDirty(page)) {
1777                struct address_space *mapping = page_mapping(page);
1778                struct address_space *mapping2;
1779
1780                if (!mapping)
1781                        return 1;
1782
1783                spin_lock_irq(&mapping->tree_lock);
1784                mapping2 = page_mapping(page);
1785                if (mapping2) { /* Race with truncate? */
1786                        BUG_ON(mapping2 != mapping);
1787                        WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1788                        account_page_dirtied(page, mapping);
1789                        radix_tree_tag_set(&mapping->page_tree,
1790                                page_index(page), PAGECACHE_TAG_DIRTY);
1791                }
1792                spin_unlock_irq(&mapping->tree_lock);
1793                if (mapping->host) {
1794                        /* !PageAnon && !swapper_space */
1795                        __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1796                }
1797                return 1;
1798        }
1799        return 0;
1800}
1801EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1802
1803/*
1804 * When a writepage implementation decides that it doesn't want to write this
1805 * page for some reason, it should redirty the locked page via
1806 * redirty_page_for_writepage() and it should then unlock the page and return 0
1807 */
1808int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1809{
1810        wbc->pages_skipped++;
1811        return __set_page_dirty_nobuffers(page);
1812}
1813EXPORT_SYMBOL(redirty_page_for_writepage);
1814
1815/*
1816 * Dirty a page.
1817 *
1818 * For pages with a mapping this should be done under the page lock
1819 * for the benefit of asynchronous memory errors who prefer a consistent
1820 * dirty state. This rule can be broken in some special cases,
1821 * but should be better not to.
1822 *
1823 * If the mapping doesn't provide a set_page_dirty a_op, then
1824 * just fall through and assume that it wants buffer_heads.
1825 */
1826int set_page_dirty(struct page *page)
1827{
1828        struct address_space *mapping = page_mapping(page);
1829
1830        if (likely(mapping)) {
1831                int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1832                /*
1833                 * readahead/lru_deactivate_page could remain
1834                 * PG_readahead/PG_reclaim due to race with end_page_writeback
1835                 * About readahead, if the page is written, the flags would be
1836                 * reset. So no problem.
1837                 * About lru_deactivate_page, if the page is redirty, the flag
1838                 * will be reset. So no problem. but if the page is used by readahead
1839                 * it will confuse readahead and make it restart the size rampup
1840                 * process. But it's a trivial problem.
1841                 */
1842                ClearPageReclaim(page);
1843#ifdef CONFIG_BLOCK
1844                if (!spd)
1845                        spd = __set_page_dirty_buffers;
1846#endif
1847                return (*spd)(page);
1848        }
1849        if (!PageDirty(page)) {
1850                if (!TestSetPageDirty(page))
1851                        return 1;
1852        }
1853        return 0;
1854}
1855EXPORT_SYMBOL(set_page_dirty);
1856
1857/*
1858 * set_page_dirty() is racy if the caller has no reference against
1859 * page->mapping->host, and if the page is unlocked.  This is because another
1860 * CPU could truncate the page off the mapping and then free the mapping.
1861 *
1862 * Usually, the page _is_ locked, or the caller is a user-space process which
1863 * holds a reference on the inode by having an open file.
1864 *
1865 * In other cases, the page should be locked before running set_page_dirty().
1866 */
1867int set_page_dirty_lock(struct page *page)
1868{
1869        int ret;
1870
1871        lock_page(page);
1872        ret = set_page_dirty(page);
1873        unlock_page(page);
1874        return ret;
1875}
1876EXPORT_SYMBOL(set_page_dirty_lock);
1877
1878/*
1879 * Clear a page's dirty flag, while caring for dirty memory accounting.
1880 * Returns true if the page was previously dirty.
1881 *
1882 * This is for preparing to put the page under writeout.  We leave the page
1883 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1884 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
1885 * implementation will run either set_page_writeback() or set_page_dirty(),
1886 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1887 * back into sync.
1888 *
1889 * This incoherency between the page's dirty flag and radix-tree tag is
1890 * unfortunate, but it only exists while the page is locked.
1891 */
1892int clear_page_dirty_for_io(struct page *page)
1893{
1894        struct address_space *mapping = page_mapping(page);
1895
1896        BUG_ON(!PageLocked(page));
1897
1898        if (mapping && mapping_cap_account_dirty(mapping)) {
1899                /*
1900                 * Yes, Virginia, this is indeed insane.
1901                 *
1902                 * We use this sequence to make sure that
1903                 *  (a) we account for dirty stats properly
1904                 *  (b) we tell the low-level filesystem to
1905                 *      mark the whole page dirty if it was
1906                 *      dirty in a pagetable. Only to then
1907                 *  (c) clean the page again and return 1 to
1908                 *      cause the writeback.
1909                 *
1910                 * This way we avoid all nasty races with the
1911                 * dirty bit in multiple places and clearing
1912                 * them concurrently from different threads.
1913                 *
1914                 * Note! Normally the "set_page_dirty(page)"
1915                 * has no effect on the actual dirty bit - since
1916                 * that will already usually be set. But we
1917                 * need the side effects, and it can help us
1918                 * avoid races.
1919                 *
1920                 * We basically use the page "master dirty bit"
1921                 * as a serialization point for all the different
1922                 * threads doing their things.
1923                 */
1924                if (page_mkclean(page))
1925                        set_page_dirty(page);
1926                /*
1927                 * We carefully synchronise fault handlers against
1928                 * installing a dirty pte and marking the page dirty
1929                 * at this point. We do this by having them hold the
1930                 * page lock at some point after installing their
1931                 * pte, but before marking the page dirty.
1932                 * Pages are always locked coming in here, so we get
1933                 * the desired exclusion. See mm/memory.c:do_wp_page()
1934                 * for more comments.
1935                 */
1936                if (TestClearPageDirty(page)) {
1937                        dec_zone_page_state(page, NR_FILE_DIRTY);
1938                        dec_bdi_stat(mapping->backing_dev_info,
1939                                        BDI_RECLAIMABLE);
1940                        return 1;
1941                }
1942                return 0;
1943        }
1944        return TestClearPageDirty(page);
1945}
1946EXPORT_SYMBOL(clear_page_dirty_for_io);
1947
1948int test_clear_page_writeback(struct page *page)
1949{
1950        struct address_space *mapping = page_mapping(page);
1951        int ret;
1952
1953        if (mapping) {
1954                struct backing_dev_info *bdi = mapping->backing_dev_info;
1955                unsigned long flags;
1956
1957                spin_lock_irqsave(&mapping->tree_lock, flags);
1958                ret = TestClearPageWriteback(page);
1959                if (ret) {
1960                        radix_tree_tag_clear(&mapping->page_tree,
1961                                                page_index(page),
1962                                                PAGECACHE_TAG_WRITEBACK);
1963                        if (bdi_cap_account_writeback(bdi)) {
1964                                __dec_bdi_stat(bdi, BDI_WRITEBACK);
1965                                __bdi_writeout_inc(bdi);
1966                        }
1967                }
1968                spin_unlock_irqrestore(&mapping->tree_lock, flags);
1969        } else {
1970                ret = TestClearPageWriteback(page);
1971        }
1972        if (ret) {
1973                dec_zone_page_state(page, NR_WRITEBACK);
1974                inc_zone_page_state(page, NR_WRITTEN);
1975        }
1976        return ret;
1977}
1978
1979int test_set_page_writeback(struct page *page)
1980{
1981        struct address_space *mapping = page_mapping(page);
1982        int ret;
1983
1984        if (mapping) {
1985                struct backing_dev_info *bdi = mapping->backing_dev_info;
1986                unsigned long flags;
1987
1988                spin_lock_irqsave(&mapping->tree_lock, flags);
1989                ret = TestSetPageWriteback(page);
1990                if (!ret) {
1991                        radix_tree_tag_set(&mapping->page_tree,
1992                                                page_index(page),
1993                                                PAGECACHE_TAG_WRITEBACK);
1994                        if (bdi_cap_account_writeback(bdi))
1995                                __inc_bdi_stat(bdi, BDI_WRITEBACK);
1996                }
1997                if (!PageDirty(page))
1998                        radix_tree_tag_clear(&mapping->page_tree,
1999                                                page_index(page),
2000                                                PAGECACHE_TAG_DIRTY);
2001                radix_tree_tag_clear(&mapping->page_tree,
2002                                     page_index(page),
2003                                     PAGECACHE_TAG_TOWRITE);
2004                spin_unlock_irqrestore(&mapping->tree_lock, flags);
2005        } else {
2006                ret = TestSetPageWriteback(page);
2007        }
2008        if (!ret)
2009                account_page_writeback(page);
2010        return ret;
2011
2012}
2013EXPORT_SYMBOL(test_set_page_writeback);
2014
2015/*
2016 * Return true if any of the pages in the mapping are marked with the
2017 * passed tag.
2018 */
2019int mapping_tagged(struct address_space *mapping, int tag)
2020{
2021        return radix_tree_tagged(&mapping->page_tree, tag);
2022}
2023EXPORT_SYMBOL(mapping_tagged);
2024