linux/mm/shmem.c
<<
>>
Prefs
   1/*
   2 * Resizable virtual memory filesystem for Linux.
   3 *
   4 * Copyright (C) 2000 Linus Torvalds.
   5 *               2000 Transmeta Corp.
   6 *               2000-2001 Christoph Rohland
   7 *               2000-2001 SAP AG
   8 *               2002 Red Hat Inc.
   9 * Copyright (C) 2002-2011 Hugh Dickins.
  10 * Copyright (C) 2011 Google Inc.
  11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
  12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
  13 *
  14 * Extended attribute support for tmpfs:
  15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
  16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
  17 *
  18 * tiny-shmem:
  19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
  20 *
  21 * This file is released under the GPL.
  22 */
  23
  24#include <linux/fs.h>
  25#include <linux/init.h>
  26#include <linux/vfs.h>
  27#include <linux/mount.h>
  28#include <linux/pagemap.h>
  29#include <linux/file.h>
  30#include <linux/mm.h>
  31#include <linux/export.h>
  32#include <linux/swap.h>
  33
  34static struct vfsmount *shm_mnt;
  35
  36#ifdef CONFIG_SHMEM
  37/*
  38 * This virtual memory filesystem is heavily based on the ramfs. It
  39 * extends ramfs by the ability to use swap and honor resource limits
  40 * which makes it a completely usable filesystem.
  41 */
  42
  43#include <linux/xattr.h>
  44#include <linux/exportfs.h>
  45#include <linux/posix_acl.h>
  46#include <linux/generic_acl.h>
  47#include <linux/mman.h>
  48#include <linux/string.h>
  49#include <linux/slab.h>
  50#include <linux/backing-dev.h>
  51#include <linux/shmem_fs.h>
  52#include <linux/writeback.h>
  53#include <linux/blkdev.h>
  54#include <linux/pagevec.h>
  55#include <linux/percpu_counter.h>
  56#include <linux/splice.h>
  57#include <linux/security.h>
  58#include <linux/swapops.h>
  59#include <linux/mempolicy.h>
  60#include <linux/namei.h>
  61#include <linux/ctype.h>
  62#include <linux/migrate.h>
  63#include <linux/highmem.h>
  64#include <linux/seq_file.h>
  65#include <linux/magic.h>
  66
  67#include <asm/uaccess.h>
  68#include <asm/pgtable.h>
  69
  70#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
  71#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
  72
  73/* Pretend that each entry is of this size in directory's i_size */
  74#define BOGO_DIRENT_SIZE 20
  75
  76/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
  77#define SHORT_SYMLINK_LEN 128
  78
  79struct shmem_xattr {
  80        struct list_head list;  /* anchored by shmem_inode_info->xattr_list */
  81        char *name;             /* xattr name */
  82        size_t size;
  83        char value[0];
  84};
  85
  86/* Flag allocation requirements to shmem_getpage */
  87enum sgp_type {
  88        SGP_READ,       /* don't exceed i_size, don't allocate page */
  89        SGP_CACHE,      /* don't exceed i_size, may allocate page */
  90        SGP_DIRTY,      /* like SGP_CACHE, but set new page dirty */
  91        SGP_WRITE,      /* may exceed i_size, may allocate page */
  92};
  93
  94#ifdef CONFIG_TMPFS
  95static unsigned long shmem_default_max_blocks(void)
  96{
  97        return totalram_pages / 2;
  98}
  99
 100static unsigned long shmem_default_max_inodes(void)
 101{
 102        return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
 103}
 104#endif
 105
 106static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
 107        struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
 108
 109static inline int shmem_getpage(struct inode *inode, pgoff_t index,
 110        struct page **pagep, enum sgp_type sgp, int *fault_type)
 111{
 112        return shmem_getpage_gfp(inode, index, pagep, sgp,
 113                        mapping_gfp_mask(inode->i_mapping), fault_type);
 114}
 115
 116static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
 117{
 118        return sb->s_fs_info;
 119}
 120
 121/*
 122 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
 123 * for shared memory and for shared anonymous (/dev/zero) mappings
 124 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
 125 * consistent with the pre-accounting of private mappings ...
 126 */
 127static inline int shmem_acct_size(unsigned long flags, loff_t size)
 128{
 129        return (flags & VM_NORESERVE) ?
 130                0 : security_vm_enough_memory_kern(VM_ACCT(size));
 131}
 132
 133static inline void shmem_unacct_size(unsigned long flags, loff_t size)
 134{
 135        if (!(flags & VM_NORESERVE))
 136                vm_unacct_memory(VM_ACCT(size));
 137}
 138
 139/*
 140 * ... whereas tmpfs objects are accounted incrementally as
 141 * pages are allocated, in order to allow huge sparse files.
 142 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
 143 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
 144 */
 145static inline int shmem_acct_block(unsigned long flags)
 146{
 147        return (flags & VM_NORESERVE) ?
 148                security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
 149}
 150
 151static inline void shmem_unacct_blocks(unsigned long flags, long pages)
 152{
 153        if (flags & VM_NORESERVE)
 154                vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
 155}
 156
 157static const struct super_operations shmem_ops;
 158static const struct address_space_operations shmem_aops;
 159static const struct file_operations shmem_file_operations;
 160static const struct inode_operations shmem_inode_operations;
 161static const struct inode_operations shmem_dir_inode_operations;
 162static const struct inode_operations shmem_special_inode_operations;
 163static const struct vm_operations_struct shmem_vm_ops;
 164
 165static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
 166        .ra_pages       = 0,    /* No readahead */
 167        .capabilities   = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
 168};
 169
 170static LIST_HEAD(shmem_swaplist);
 171static DEFINE_MUTEX(shmem_swaplist_mutex);
 172
 173static int shmem_reserve_inode(struct super_block *sb)
 174{
 175        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 176        if (sbinfo->max_inodes) {
 177                spin_lock(&sbinfo->stat_lock);
 178                if (!sbinfo->free_inodes) {
 179                        spin_unlock(&sbinfo->stat_lock);
 180                        return -ENOSPC;
 181                }
 182                sbinfo->free_inodes--;
 183                spin_unlock(&sbinfo->stat_lock);
 184        }
 185        return 0;
 186}
 187
 188static void shmem_free_inode(struct super_block *sb)
 189{
 190        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 191        if (sbinfo->max_inodes) {
 192                spin_lock(&sbinfo->stat_lock);
 193                sbinfo->free_inodes++;
 194                spin_unlock(&sbinfo->stat_lock);
 195        }
 196}
 197
 198/**
 199 * shmem_recalc_inode - recalculate the block usage of an inode
 200 * @inode: inode to recalc
 201 *
 202 * We have to calculate the free blocks since the mm can drop
 203 * undirtied hole pages behind our back.
 204 *
 205 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
 206 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
 207 *
 208 * It has to be called with the spinlock held.
 209 */
 210static void shmem_recalc_inode(struct inode *inode)
 211{
 212        struct shmem_inode_info *info = SHMEM_I(inode);
 213        long freed;
 214
 215        freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
 216        if (freed > 0) {
 217                struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 218                if (sbinfo->max_blocks)
 219                        percpu_counter_add(&sbinfo->used_blocks, -freed);
 220                info->alloced -= freed;
 221                inode->i_blocks -= freed * BLOCKS_PER_PAGE;
 222                shmem_unacct_blocks(info->flags, freed);
 223        }
 224}
 225
 226/*
 227 * Replace item expected in radix tree by a new item, while holding tree lock.
 228 */
 229static int shmem_radix_tree_replace(struct address_space *mapping,
 230                        pgoff_t index, void *expected, void *replacement)
 231{
 232        void **pslot;
 233        void *item = NULL;
 234
 235        VM_BUG_ON(!expected);
 236        pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
 237        if (pslot)
 238                item = radix_tree_deref_slot_protected(pslot,
 239                                                        &mapping->tree_lock);
 240        if (item != expected)
 241                return -ENOENT;
 242        if (replacement)
 243                radix_tree_replace_slot(pslot, replacement);
 244        else
 245                radix_tree_delete(&mapping->page_tree, index);
 246        return 0;
 247}
 248
 249/*
 250 * Like add_to_page_cache_locked, but error if expected item has gone.
 251 */
 252static int shmem_add_to_page_cache(struct page *page,
 253                                   struct address_space *mapping,
 254                                   pgoff_t index, gfp_t gfp, void *expected)
 255{
 256        int error = 0;
 257
 258        VM_BUG_ON(!PageLocked(page));
 259        VM_BUG_ON(!PageSwapBacked(page));
 260
 261        if (!expected)
 262                error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
 263        if (!error) {
 264                page_cache_get(page);
 265                page->mapping = mapping;
 266                page->index = index;
 267
 268                spin_lock_irq(&mapping->tree_lock);
 269                if (!expected)
 270                        error = radix_tree_insert(&mapping->page_tree,
 271                                                        index, page);
 272                else
 273                        error = shmem_radix_tree_replace(mapping, index,
 274                                                        expected, page);
 275                if (!error) {
 276                        mapping->nrpages++;
 277                        __inc_zone_page_state(page, NR_FILE_PAGES);
 278                        __inc_zone_page_state(page, NR_SHMEM);
 279                        spin_unlock_irq(&mapping->tree_lock);
 280                } else {
 281                        page->mapping = NULL;
 282                        spin_unlock_irq(&mapping->tree_lock);
 283                        page_cache_release(page);
 284                }
 285                if (!expected)
 286                        radix_tree_preload_end();
 287        }
 288        if (error)
 289                mem_cgroup_uncharge_cache_page(page);
 290        return error;
 291}
 292
 293/*
 294 * Like delete_from_page_cache, but substitutes swap for page.
 295 */
 296static void shmem_delete_from_page_cache(struct page *page, void *radswap)
 297{
 298        struct address_space *mapping = page->mapping;
 299        int error;
 300
 301        spin_lock_irq(&mapping->tree_lock);
 302        error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
 303        page->mapping = NULL;
 304        mapping->nrpages--;
 305        __dec_zone_page_state(page, NR_FILE_PAGES);
 306        __dec_zone_page_state(page, NR_SHMEM);
 307        spin_unlock_irq(&mapping->tree_lock);
 308        page_cache_release(page);
 309        BUG_ON(error);
 310}
 311
 312/*
 313 * Like find_get_pages, but collecting swap entries as well as pages.
 314 */
 315static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
 316                                        pgoff_t start, unsigned int nr_pages,
 317                                        struct page **pages, pgoff_t *indices)
 318{
 319        unsigned int i;
 320        unsigned int ret;
 321        unsigned int nr_found;
 322
 323        rcu_read_lock();
 324restart:
 325        nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
 326                                (void ***)pages, indices, start, nr_pages);
 327        ret = 0;
 328        for (i = 0; i < nr_found; i++) {
 329                struct page *page;
 330repeat:
 331                page = radix_tree_deref_slot((void **)pages[i]);
 332                if (unlikely(!page))
 333                        continue;
 334                if (radix_tree_exception(page)) {
 335                        if (radix_tree_deref_retry(page))
 336                                goto restart;
 337                        /*
 338                         * Otherwise, we must be storing a swap entry
 339                         * here as an exceptional entry: so return it
 340                         * without attempting to raise page count.
 341                         */
 342                        goto export;
 343                }
 344                if (!page_cache_get_speculative(page))
 345                        goto repeat;
 346
 347                /* Has the page moved? */
 348                if (unlikely(page != *((void **)pages[i]))) {
 349                        page_cache_release(page);
 350                        goto repeat;
 351                }
 352export:
 353                indices[ret] = indices[i];
 354                pages[ret] = page;
 355                ret++;
 356        }
 357        if (unlikely(!ret && nr_found))
 358                goto restart;
 359        rcu_read_unlock();
 360        return ret;
 361}
 362
 363/*
 364 * Remove swap entry from radix tree, free the swap and its page cache.
 365 */
 366static int shmem_free_swap(struct address_space *mapping,
 367                           pgoff_t index, void *radswap)
 368{
 369        int error;
 370
 371        spin_lock_irq(&mapping->tree_lock);
 372        error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
 373        spin_unlock_irq(&mapping->tree_lock);
 374        if (!error)
 375                free_swap_and_cache(radix_to_swp_entry(radswap));
 376        return error;
 377}
 378
 379/*
 380 * Pagevec may contain swap entries, so shuffle up pages before releasing.
 381 */
 382static void shmem_pagevec_release(struct pagevec *pvec)
 383{
 384        int i, j;
 385
 386        for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
 387                struct page *page = pvec->pages[i];
 388                if (!radix_tree_exceptional_entry(page))
 389                        pvec->pages[j++] = page;
 390        }
 391        pvec->nr = j;
 392        pagevec_release(pvec);
 393}
 394
 395/*
 396 * Remove range of pages and swap entries from radix tree, and free them.
 397 */
 398void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
 399{
 400        struct address_space *mapping = inode->i_mapping;
 401        struct shmem_inode_info *info = SHMEM_I(inode);
 402        pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
 403        unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
 404        pgoff_t end = (lend >> PAGE_CACHE_SHIFT);
 405        struct pagevec pvec;
 406        pgoff_t indices[PAGEVEC_SIZE];
 407        long nr_swaps_freed = 0;
 408        pgoff_t index;
 409        int i;
 410
 411        BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
 412
 413        pagevec_init(&pvec, 0);
 414        index = start;
 415        while (index <= end) {
 416                pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
 417                        min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
 418                                                        pvec.pages, indices);
 419                if (!pvec.nr)
 420                        break;
 421                mem_cgroup_uncharge_start();
 422                for (i = 0; i < pagevec_count(&pvec); i++) {
 423                        struct page *page = pvec.pages[i];
 424
 425                        index = indices[i];
 426                        if (index > end)
 427                                break;
 428
 429                        if (radix_tree_exceptional_entry(page)) {
 430                                nr_swaps_freed += !shmem_free_swap(mapping,
 431                                                                index, page);
 432                                continue;
 433                        }
 434
 435                        if (!trylock_page(page))
 436                                continue;
 437                        if (page->mapping == mapping) {
 438                                VM_BUG_ON(PageWriteback(page));
 439                                truncate_inode_page(mapping, page);
 440                        }
 441                        unlock_page(page);
 442                }
 443                shmem_pagevec_release(&pvec);
 444                mem_cgroup_uncharge_end();
 445                cond_resched();
 446                index++;
 447        }
 448
 449        if (partial) {
 450                struct page *page = NULL;
 451                shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
 452                if (page) {
 453                        zero_user_segment(page, partial, PAGE_CACHE_SIZE);
 454                        set_page_dirty(page);
 455                        unlock_page(page);
 456                        page_cache_release(page);
 457                }
 458        }
 459
 460        index = start;
 461        for ( ; ; ) {
 462                cond_resched();
 463                pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
 464                        min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
 465                                                        pvec.pages, indices);
 466                if (!pvec.nr) {
 467                        if (index == start)
 468                                break;
 469                        index = start;
 470                        continue;
 471                }
 472                if (index == start && indices[0] > end) {
 473                        shmem_pagevec_release(&pvec);
 474                        break;
 475                }
 476                mem_cgroup_uncharge_start();
 477                for (i = 0; i < pagevec_count(&pvec); i++) {
 478                        struct page *page = pvec.pages[i];
 479
 480                        index = indices[i];
 481                        if (index > end)
 482                                break;
 483
 484                        if (radix_tree_exceptional_entry(page)) {
 485                                nr_swaps_freed += !shmem_free_swap(mapping,
 486                                                                index, page);
 487                                continue;
 488                        }
 489
 490                        lock_page(page);
 491                        if (page->mapping == mapping) {
 492                                VM_BUG_ON(PageWriteback(page));
 493                                truncate_inode_page(mapping, page);
 494                        }
 495                        unlock_page(page);
 496                }
 497                shmem_pagevec_release(&pvec);
 498                mem_cgroup_uncharge_end();
 499                index++;
 500        }
 501
 502        spin_lock(&info->lock);
 503        info->swapped -= nr_swaps_freed;
 504        shmem_recalc_inode(inode);
 505        spin_unlock(&info->lock);
 506
 507        inode->i_ctime = inode->i_mtime = CURRENT_TIME;
 508}
 509EXPORT_SYMBOL_GPL(shmem_truncate_range);
 510
 511static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
 512{
 513        struct inode *inode = dentry->d_inode;
 514        int error;
 515
 516        error = inode_change_ok(inode, attr);
 517        if (error)
 518                return error;
 519
 520        if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
 521                loff_t oldsize = inode->i_size;
 522                loff_t newsize = attr->ia_size;
 523
 524                if (newsize != oldsize) {
 525                        i_size_write(inode, newsize);
 526                        inode->i_ctime = inode->i_mtime = CURRENT_TIME;
 527                }
 528                if (newsize < oldsize) {
 529                        loff_t holebegin = round_up(newsize, PAGE_SIZE);
 530                        unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
 531                        shmem_truncate_range(inode, newsize, (loff_t)-1);
 532                        /* unmap again to remove racily COWed private pages */
 533                        unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
 534                }
 535        }
 536
 537        setattr_copy(inode, attr);
 538#ifdef CONFIG_TMPFS_POSIX_ACL
 539        if (attr->ia_valid & ATTR_MODE)
 540                error = generic_acl_chmod(inode);
 541#endif
 542        return error;
 543}
 544
 545static void shmem_evict_inode(struct inode *inode)
 546{
 547        struct shmem_inode_info *info = SHMEM_I(inode);
 548        struct shmem_xattr *xattr, *nxattr;
 549
 550        if (inode->i_mapping->a_ops == &shmem_aops) {
 551                shmem_unacct_size(info->flags, inode->i_size);
 552                inode->i_size = 0;
 553                shmem_truncate_range(inode, 0, (loff_t)-1);
 554                if (!list_empty(&info->swaplist)) {
 555                        mutex_lock(&shmem_swaplist_mutex);
 556                        list_del_init(&info->swaplist);
 557                        mutex_unlock(&shmem_swaplist_mutex);
 558                }
 559        } else
 560                kfree(info->symlink);
 561
 562        list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) {
 563                kfree(xattr->name);
 564                kfree(xattr);
 565        }
 566        BUG_ON(inode->i_blocks);
 567        shmem_free_inode(inode->i_sb);
 568        end_writeback(inode);
 569}
 570
 571/*
 572 * If swap found in inode, free it and move page from swapcache to filecache.
 573 */
 574static int shmem_unuse_inode(struct shmem_inode_info *info,
 575                             swp_entry_t swap, struct page *page)
 576{
 577        struct address_space *mapping = info->vfs_inode.i_mapping;
 578        void *radswap;
 579        pgoff_t index;
 580        int error;
 581
 582        radswap = swp_to_radix_entry(swap);
 583        index = radix_tree_locate_item(&mapping->page_tree, radswap);
 584        if (index == -1)
 585                return 0;
 586
 587        /*
 588         * Move _head_ to start search for next from here.
 589         * But be careful: shmem_evict_inode checks list_empty without taking
 590         * mutex, and there's an instant in list_move_tail when info->swaplist
 591         * would appear empty, if it were the only one on shmem_swaplist.
 592         */
 593        if (shmem_swaplist.next != &info->swaplist)
 594                list_move_tail(&shmem_swaplist, &info->swaplist);
 595
 596        /*
 597         * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
 598         * but also to hold up shmem_evict_inode(): so inode cannot be freed
 599         * beneath us (pagelock doesn't help until the page is in pagecache).
 600         */
 601        error = shmem_add_to_page_cache(page, mapping, index,
 602                                                GFP_NOWAIT, radswap);
 603        /* which does mem_cgroup_uncharge_cache_page on error */
 604
 605        if (error != -ENOMEM) {
 606                /*
 607                 * Truncation and eviction use free_swap_and_cache(), which
 608                 * only does trylock page: if we raced, best clean up here.
 609                 */
 610                delete_from_swap_cache(page);
 611                set_page_dirty(page);
 612                if (!error) {
 613                        spin_lock(&info->lock);
 614                        info->swapped--;
 615                        spin_unlock(&info->lock);
 616                        swap_free(swap);
 617                }
 618                error = 1;      /* not an error, but entry was found */
 619        }
 620        return error;
 621}
 622
 623/*
 624 * Search through swapped inodes to find and replace swap by page.
 625 */
 626int shmem_unuse(swp_entry_t swap, struct page *page)
 627{
 628        struct list_head *this, *next;
 629        struct shmem_inode_info *info;
 630        int found = 0;
 631        int error;
 632
 633        /*
 634         * Charge page using GFP_KERNEL while we can wait, before taking
 635         * the shmem_swaplist_mutex which might hold up shmem_writepage().
 636         * Charged back to the user (not to caller) when swap account is used.
 637         */
 638        error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
 639        if (error)
 640                goto out;
 641        /* No radix_tree_preload: swap entry keeps a place for page in tree */
 642
 643        mutex_lock(&shmem_swaplist_mutex);
 644        list_for_each_safe(this, next, &shmem_swaplist) {
 645                info = list_entry(this, struct shmem_inode_info, swaplist);
 646                if (info->swapped)
 647                        found = shmem_unuse_inode(info, swap, page);
 648                else
 649                        list_del_init(&info->swaplist);
 650                cond_resched();
 651                if (found)
 652                        break;
 653        }
 654        mutex_unlock(&shmem_swaplist_mutex);
 655
 656        if (!found)
 657                mem_cgroup_uncharge_cache_page(page);
 658        if (found < 0)
 659                error = found;
 660out:
 661        unlock_page(page);
 662        page_cache_release(page);
 663        return error;
 664}
 665
 666/*
 667 * Move the page from the page cache to the swap cache.
 668 */
 669static int shmem_writepage(struct page *page, struct writeback_control *wbc)
 670{
 671        struct shmem_inode_info *info;
 672        struct address_space *mapping;
 673        struct inode *inode;
 674        swp_entry_t swap;
 675        pgoff_t index;
 676
 677        BUG_ON(!PageLocked(page));
 678        mapping = page->mapping;
 679        index = page->index;
 680        inode = mapping->host;
 681        info = SHMEM_I(inode);
 682        if (info->flags & VM_LOCKED)
 683                goto redirty;
 684        if (!total_swap_pages)
 685                goto redirty;
 686
 687        /*
 688         * shmem_backing_dev_info's capabilities prevent regular writeback or
 689         * sync from ever calling shmem_writepage; but a stacking filesystem
 690         * might use ->writepage of its underlying filesystem, in which case
 691         * tmpfs should write out to swap only in response to memory pressure,
 692         * and not for the writeback threads or sync.
 693         */
 694        if (!wbc->for_reclaim) {
 695                WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
 696                goto redirty;
 697        }
 698        swap = get_swap_page();
 699        if (!swap.val)
 700                goto redirty;
 701
 702        /*
 703         * Add inode to shmem_unuse()'s list of swapped-out inodes,
 704         * if it's not already there.  Do it now before the page is
 705         * moved to swap cache, when its pagelock no longer protects
 706         * the inode from eviction.  But don't unlock the mutex until
 707         * we've incremented swapped, because shmem_unuse_inode() will
 708         * prune a !swapped inode from the swaplist under this mutex.
 709         */
 710        mutex_lock(&shmem_swaplist_mutex);
 711        if (list_empty(&info->swaplist))
 712                list_add_tail(&info->swaplist, &shmem_swaplist);
 713
 714        if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
 715                swap_shmem_alloc(swap);
 716                shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
 717
 718                spin_lock(&info->lock);
 719                info->swapped++;
 720                shmem_recalc_inode(inode);
 721                spin_unlock(&info->lock);
 722
 723                mutex_unlock(&shmem_swaplist_mutex);
 724                BUG_ON(page_mapped(page));
 725                swap_writepage(page, wbc);
 726                return 0;
 727        }
 728
 729        mutex_unlock(&shmem_swaplist_mutex);
 730        swapcache_free(swap, NULL);
 731redirty:
 732        set_page_dirty(page);
 733        if (wbc->for_reclaim)
 734                return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
 735        unlock_page(page);
 736        return 0;
 737}
 738
 739#ifdef CONFIG_NUMA
 740#ifdef CONFIG_TMPFS
 741static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
 742{
 743        char buffer[64];
 744
 745        if (!mpol || mpol->mode == MPOL_DEFAULT)
 746                return;         /* show nothing */
 747
 748        mpol_to_str(buffer, sizeof(buffer), mpol, 1);
 749
 750        seq_printf(seq, ",mpol=%s", buffer);
 751}
 752
 753static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
 754{
 755        struct mempolicy *mpol = NULL;
 756        if (sbinfo->mpol) {
 757                spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
 758                mpol = sbinfo->mpol;
 759                mpol_get(mpol);
 760                spin_unlock(&sbinfo->stat_lock);
 761        }
 762        return mpol;
 763}
 764#endif /* CONFIG_TMPFS */
 765
 766static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
 767                        struct shmem_inode_info *info, pgoff_t index)
 768{
 769        struct mempolicy mpol, *spol;
 770        struct vm_area_struct pvma;
 771
 772        spol = mpol_cond_copy(&mpol,
 773                        mpol_shared_policy_lookup(&info->policy, index));
 774
 775        /* Create a pseudo vma that just contains the policy */
 776        pvma.vm_start = 0;
 777        pvma.vm_pgoff = index;
 778        pvma.vm_ops = NULL;
 779        pvma.vm_policy = spol;
 780        return swapin_readahead(swap, gfp, &pvma, 0);
 781}
 782
 783static struct page *shmem_alloc_page(gfp_t gfp,
 784                        struct shmem_inode_info *info, pgoff_t index)
 785{
 786        struct vm_area_struct pvma;
 787
 788        /* Create a pseudo vma that just contains the policy */
 789        pvma.vm_start = 0;
 790        pvma.vm_pgoff = index;
 791        pvma.vm_ops = NULL;
 792        pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
 793
 794        /*
 795         * alloc_page_vma() will drop the shared policy reference
 796         */
 797        return alloc_page_vma(gfp, &pvma, 0);
 798}
 799#else /* !CONFIG_NUMA */
 800#ifdef CONFIG_TMPFS
 801static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
 802{
 803}
 804#endif /* CONFIG_TMPFS */
 805
 806static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
 807                        struct shmem_inode_info *info, pgoff_t index)
 808{
 809        return swapin_readahead(swap, gfp, NULL, 0);
 810}
 811
 812static inline struct page *shmem_alloc_page(gfp_t gfp,
 813                        struct shmem_inode_info *info, pgoff_t index)
 814{
 815        return alloc_page(gfp);
 816}
 817#endif /* CONFIG_NUMA */
 818
 819#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
 820static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
 821{
 822        return NULL;
 823}
 824#endif
 825
 826/*
 827 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
 828 *
 829 * If we allocate a new one we do not mark it dirty. That's up to the
 830 * vm. If we swap it in we mark it dirty since we also free the swap
 831 * entry since a page cannot live in both the swap and page cache
 832 */
 833static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
 834        struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
 835{
 836        struct address_space *mapping = inode->i_mapping;
 837        struct shmem_inode_info *info;
 838        struct shmem_sb_info *sbinfo;
 839        struct page *page;
 840        swp_entry_t swap;
 841        int error;
 842        int once = 0;
 843
 844        if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
 845                return -EFBIG;
 846repeat:
 847        swap.val = 0;
 848        page = find_lock_page(mapping, index);
 849        if (radix_tree_exceptional_entry(page)) {
 850                swap = radix_to_swp_entry(page);
 851                page = NULL;
 852        }
 853
 854        if (sgp != SGP_WRITE &&
 855            ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
 856                error = -EINVAL;
 857                goto failed;
 858        }
 859
 860        if (page || (sgp == SGP_READ && !swap.val)) {
 861                /*
 862                 * Once we can get the page lock, it must be uptodate:
 863                 * if there were an error in reading back from swap,
 864                 * the page would not be inserted into the filecache.
 865                 */
 866                BUG_ON(page && !PageUptodate(page));
 867                *pagep = page;
 868                return 0;
 869        }
 870
 871        /*
 872         * Fast cache lookup did not find it:
 873         * bring it back from swap or allocate.
 874         */
 875        info = SHMEM_I(inode);
 876        sbinfo = SHMEM_SB(inode->i_sb);
 877
 878        if (swap.val) {
 879                /* Look it up and read it in.. */
 880                page = lookup_swap_cache(swap);
 881                if (!page) {
 882                        /* here we actually do the io */
 883                        if (fault_type)
 884                                *fault_type |= VM_FAULT_MAJOR;
 885                        page = shmem_swapin(swap, gfp, info, index);
 886                        if (!page) {
 887                                error = -ENOMEM;
 888                                goto failed;
 889                        }
 890                }
 891
 892                /* We have to do this with page locked to prevent races */
 893                lock_page(page);
 894                if (!PageUptodate(page)) {
 895                        error = -EIO;
 896                        goto failed;
 897                }
 898                wait_on_page_writeback(page);
 899
 900                /* Someone may have already done it for us */
 901                if (page->mapping) {
 902                        if (page->mapping == mapping &&
 903                            page->index == index)
 904                                goto done;
 905                        error = -EEXIST;
 906                        goto failed;
 907                }
 908
 909                error = mem_cgroup_cache_charge(page, current->mm,
 910                                                gfp & GFP_RECLAIM_MASK);
 911                if (!error)
 912                        error = shmem_add_to_page_cache(page, mapping, index,
 913                                                gfp, swp_to_radix_entry(swap));
 914                if (error)
 915                        goto failed;
 916
 917                spin_lock(&info->lock);
 918                info->swapped--;
 919                shmem_recalc_inode(inode);
 920                spin_unlock(&info->lock);
 921
 922                delete_from_swap_cache(page);
 923                set_page_dirty(page);
 924                swap_free(swap);
 925
 926        } else {
 927                if (shmem_acct_block(info->flags)) {
 928                        error = -ENOSPC;
 929                        goto failed;
 930                }
 931                if (sbinfo->max_blocks) {
 932                        if (percpu_counter_compare(&sbinfo->used_blocks,
 933                                                sbinfo->max_blocks) >= 0) {
 934                                error = -ENOSPC;
 935                                goto unacct;
 936                        }
 937                        percpu_counter_inc(&sbinfo->used_blocks);
 938                }
 939
 940                page = shmem_alloc_page(gfp, info, index);
 941                if (!page) {
 942                        error = -ENOMEM;
 943                        goto decused;
 944                }
 945
 946                SetPageSwapBacked(page);
 947                __set_page_locked(page);
 948                error = mem_cgroup_cache_charge(page, current->mm,
 949                                                gfp & GFP_RECLAIM_MASK);
 950                if (!error)
 951                        error = shmem_add_to_page_cache(page, mapping, index,
 952                                                gfp, NULL);
 953                if (error)
 954                        goto decused;
 955                lru_cache_add_anon(page);
 956
 957                spin_lock(&info->lock);
 958                info->alloced++;
 959                inode->i_blocks += BLOCKS_PER_PAGE;
 960                shmem_recalc_inode(inode);
 961                spin_unlock(&info->lock);
 962
 963                clear_highpage(page);
 964                flush_dcache_page(page);
 965                SetPageUptodate(page);
 966                if (sgp == SGP_DIRTY)
 967                        set_page_dirty(page);
 968        }
 969done:
 970        /* Perhaps the file has been truncated since we checked */
 971        if (sgp != SGP_WRITE &&
 972            ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
 973                error = -EINVAL;
 974                goto trunc;
 975        }
 976        *pagep = page;
 977        return 0;
 978
 979        /*
 980         * Error recovery.
 981         */
 982trunc:
 983        ClearPageDirty(page);
 984        delete_from_page_cache(page);
 985        spin_lock(&info->lock);
 986        info->alloced--;
 987        inode->i_blocks -= BLOCKS_PER_PAGE;
 988        spin_unlock(&info->lock);
 989decused:
 990        if (sbinfo->max_blocks)
 991                percpu_counter_add(&sbinfo->used_blocks, -1);
 992unacct:
 993        shmem_unacct_blocks(info->flags, 1);
 994failed:
 995        if (swap.val && error != -EINVAL) {
 996                struct page *test = find_get_page(mapping, index);
 997                if (test && !radix_tree_exceptional_entry(test))
 998                        page_cache_release(test);
 999                /* Have another try if the entry has changed */
1000                if (test != swp_to_radix_entry(swap))
1001                        error = -EEXIST;
1002        }
1003        if (page) {
1004                unlock_page(page);
1005                page_cache_release(page);
1006        }
1007        if (error == -ENOSPC && !once++) {
1008                info = SHMEM_I(inode);
1009                spin_lock(&info->lock);
1010                shmem_recalc_inode(inode);
1011                spin_unlock(&info->lock);
1012                goto repeat;
1013        }
1014        if (error == -EEXIST)
1015                goto repeat;
1016        return error;
1017}
1018
1019static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1020{
1021        struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1022        int error;
1023        int ret = VM_FAULT_LOCKED;
1024
1025        error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1026        if (error)
1027                return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1028
1029        if (ret & VM_FAULT_MAJOR) {
1030                count_vm_event(PGMAJFAULT);
1031                mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1032        }
1033        return ret;
1034}
1035
1036#ifdef CONFIG_NUMA
1037static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1038{
1039        struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1040        return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1041}
1042
1043static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1044                                          unsigned long addr)
1045{
1046        struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1047        pgoff_t index;
1048
1049        index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1050        return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1051}
1052#endif
1053
1054int shmem_lock(struct file *file, int lock, struct user_struct *user)
1055{
1056        struct inode *inode = file->f_path.dentry->d_inode;
1057        struct shmem_inode_info *info = SHMEM_I(inode);
1058        int retval = -ENOMEM;
1059
1060        spin_lock(&info->lock);
1061        if (lock && !(info->flags & VM_LOCKED)) {
1062                if (!user_shm_lock(inode->i_size, user))
1063                        goto out_nomem;
1064                info->flags |= VM_LOCKED;
1065                mapping_set_unevictable(file->f_mapping);
1066        }
1067        if (!lock && (info->flags & VM_LOCKED) && user) {
1068                user_shm_unlock(inode->i_size, user);
1069                info->flags &= ~VM_LOCKED;
1070                mapping_clear_unevictable(file->f_mapping);
1071                /*
1072                 * Ensure that a racing putback_lru_page() can see
1073                 * the pages of this mapping are evictable when we
1074                 * skip them due to !PageLRU during the scan.
1075                 */
1076                smp_mb__after_clear_bit();
1077                scan_mapping_unevictable_pages(file->f_mapping);
1078        }
1079        retval = 0;
1080
1081out_nomem:
1082        spin_unlock(&info->lock);
1083        return retval;
1084}
1085
1086static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1087{
1088        file_accessed(file);
1089        vma->vm_ops = &shmem_vm_ops;
1090        vma->vm_flags |= VM_CAN_NONLINEAR;
1091        return 0;
1092}
1093
1094static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1095                                     int mode, dev_t dev, unsigned long flags)
1096{
1097        struct inode *inode;
1098        struct shmem_inode_info *info;
1099        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1100
1101        if (shmem_reserve_inode(sb))
1102                return NULL;
1103
1104        inode = new_inode(sb);
1105        if (inode) {
1106                inode->i_ino = get_next_ino();
1107                inode_init_owner(inode, dir, mode);
1108                inode->i_blocks = 0;
1109                inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1110                inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1111                inode->i_generation = get_seconds();
1112                info = SHMEM_I(inode);
1113                memset(info, 0, (char *)inode - (char *)info);
1114                spin_lock_init(&info->lock);
1115                info->flags = flags & VM_NORESERVE;
1116                INIT_LIST_HEAD(&info->swaplist);
1117                INIT_LIST_HEAD(&info->xattr_list);
1118                cache_no_acl(inode);
1119
1120                switch (mode & S_IFMT) {
1121                default:
1122                        inode->i_op = &shmem_special_inode_operations;
1123                        init_special_inode(inode, mode, dev);
1124                        break;
1125                case S_IFREG:
1126                        inode->i_mapping->a_ops = &shmem_aops;
1127                        inode->i_op = &shmem_inode_operations;
1128                        inode->i_fop = &shmem_file_operations;
1129                        mpol_shared_policy_init(&info->policy,
1130                                                 shmem_get_sbmpol(sbinfo));
1131                        break;
1132                case S_IFDIR:
1133                        inc_nlink(inode);
1134                        /* Some things misbehave if size == 0 on a directory */
1135                        inode->i_size = 2 * BOGO_DIRENT_SIZE;
1136                        inode->i_op = &shmem_dir_inode_operations;
1137                        inode->i_fop = &simple_dir_operations;
1138                        break;
1139                case S_IFLNK:
1140                        /*
1141                         * Must not load anything in the rbtree,
1142                         * mpol_free_shared_policy will not be called.
1143                         */
1144                        mpol_shared_policy_init(&info->policy, NULL);
1145                        break;
1146                }
1147        } else
1148                shmem_free_inode(sb);
1149        return inode;
1150}
1151
1152#ifdef CONFIG_TMPFS
1153static const struct inode_operations shmem_symlink_inode_operations;
1154static const struct inode_operations shmem_short_symlink_operations;
1155
1156static int
1157shmem_write_begin(struct file *file, struct address_space *mapping,
1158                        loff_t pos, unsigned len, unsigned flags,
1159                        struct page **pagep, void **fsdata)
1160{
1161        struct inode *inode = mapping->host;
1162        pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1163        return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1164}
1165
1166static int
1167shmem_write_end(struct file *file, struct address_space *mapping,
1168                        loff_t pos, unsigned len, unsigned copied,
1169                        struct page *page, void *fsdata)
1170{
1171        struct inode *inode = mapping->host;
1172
1173        if (pos + copied > inode->i_size)
1174                i_size_write(inode, pos + copied);
1175
1176        set_page_dirty(page);
1177        unlock_page(page);
1178        page_cache_release(page);
1179
1180        return copied;
1181}
1182
1183static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1184{
1185        struct inode *inode = filp->f_path.dentry->d_inode;
1186        struct address_space *mapping = inode->i_mapping;
1187        pgoff_t index;
1188        unsigned long offset;
1189        enum sgp_type sgp = SGP_READ;
1190
1191        /*
1192         * Might this read be for a stacking filesystem?  Then when reading
1193         * holes of a sparse file, we actually need to allocate those pages,
1194         * and even mark them dirty, so it cannot exceed the max_blocks limit.
1195         */
1196        if (segment_eq(get_fs(), KERNEL_DS))
1197                sgp = SGP_DIRTY;
1198
1199        index = *ppos >> PAGE_CACHE_SHIFT;
1200        offset = *ppos & ~PAGE_CACHE_MASK;
1201
1202        for (;;) {
1203                struct page *page = NULL;
1204                pgoff_t end_index;
1205                unsigned long nr, ret;
1206                loff_t i_size = i_size_read(inode);
1207
1208                end_index = i_size >> PAGE_CACHE_SHIFT;
1209                if (index > end_index)
1210                        break;
1211                if (index == end_index) {
1212                        nr = i_size & ~PAGE_CACHE_MASK;
1213                        if (nr <= offset)
1214                                break;
1215                }
1216
1217                desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1218                if (desc->error) {
1219                        if (desc->error == -EINVAL)
1220                                desc->error = 0;
1221                        break;
1222                }
1223                if (page)
1224                        unlock_page(page);
1225
1226                /*
1227                 * We must evaluate after, since reads (unlike writes)
1228                 * are called without i_mutex protection against truncate
1229                 */
1230                nr = PAGE_CACHE_SIZE;
1231                i_size = i_size_read(inode);
1232                end_index = i_size >> PAGE_CACHE_SHIFT;
1233                if (index == end_index) {
1234                        nr = i_size & ~PAGE_CACHE_MASK;
1235                        if (nr <= offset) {
1236                                if (page)
1237                                        page_cache_release(page);
1238                                break;
1239                        }
1240                }
1241                nr -= offset;
1242
1243                if (page) {
1244                        /*
1245                         * If users can be writing to this page using arbitrary
1246                         * virtual addresses, take care about potential aliasing
1247                         * before reading the page on the kernel side.
1248                         */
1249                        if (mapping_writably_mapped(mapping))
1250                                flush_dcache_page(page);
1251                        /*
1252                         * Mark the page accessed if we read the beginning.
1253                         */
1254                        if (!offset)
1255                                mark_page_accessed(page);
1256                } else {
1257                        page = ZERO_PAGE(0);
1258                        page_cache_get(page);
1259                }
1260
1261                /*
1262                 * Ok, we have the page, and it's up-to-date, so
1263                 * now we can copy it to user space...
1264                 *
1265                 * The actor routine returns how many bytes were actually used..
1266                 * NOTE! This may not be the same as how much of a user buffer
1267                 * we filled up (we may be padding etc), so we can only update
1268                 * "pos" here (the actor routine has to update the user buffer
1269                 * pointers and the remaining count).
1270                 */
1271                ret = actor(desc, page, offset, nr);
1272                offset += ret;
1273                index += offset >> PAGE_CACHE_SHIFT;
1274                offset &= ~PAGE_CACHE_MASK;
1275
1276                page_cache_release(page);
1277                if (ret != nr || !desc->count)
1278                        break;
1279
1280                cond_resched();
1281        }
1282
1283        *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1284        file_accessed(filp);
1285}
1286
1287static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1288                const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1289{
1290        struct file *filp = iocb->ki_filp;
1291        ssize_t retval;
1292        unsigned long seg;
1293        size_t count;
1294        loff_t *ppos = &iocb->ki_pos;
1295
1296        retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1297        if (retval)
1298                return retval;
1299
1300        for (seg = 0; seg < nr_segs; seg++) {
1301                read_descriptor_t desc;
1302
1303                desc.written = 0;
1304                desc.arg.buf = iov[seg].iov_base;
1305                desc.count = iov[seg].iov_len;
1306                if (desc.count == 0)
1307                        continue;
1308                desc.error = 0;
1309                do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1310                retval += desc.written;
1311                if (desc.error) {
1312                        retval = retval ?: desc.error;
1313                        break;
1314                }
1315                if (desc.count > 0)
1316                        break;
1317        }
1318        return retval;
1319}
1320
1321static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1322                                struct pipe_inode_info *pipe, size_t len,
1323                                unsigned int flags)
1324{
1325        struct address_space *mapping = in->f_mapping;
1326        struct inode *inode = mapping->host;
1327        unsigned int loff, nr_pages, req_pages;
1328        struct page *pages[PIPE_DEF_BUFFERS];
1329        struct partial_page partial[PIPE_DEF_BUFFERS];
1330        struct page *page;
1331        pgoff_t index, end_index;
1332        loff_t isize, left;
1333        int error, page_nr;
1334        struct splice_pipe_desc spd = {
1335                .pages = pages,
1336                .partial = partial,
1337                .flags = flags,
1338                .ops = &page_cache_pipe_buf_ops,
1339                .spd_release = spd_release_page,
1340        };
1341
1342        isize = i_size_read(inode);
1343        if (unlikely(*ppos >= isize))
1344                return 0;
1345
1346        left = isize - *ppos;
1347        if (unlikely(left < len))
1348                len = left;
1349
1350        if (splice_grow_spd(pipe, &spd))
1351                return -ENOMEM;
1352
1353        index = *ppos >> PAGE_CACHE_SHIFT;
1354        loff = *ppos & ~PAGE_CACHE_MASK;
1355        req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1356        nr_pages = min(req_pages, pipe->buffers);
1357
1358        spd.nr_pages = find_get_pages_contig(mapping, index,
1359                                                nr_pages, spd.pages);
1360        index += spd.nr_pages;
1361        error = 0;
1362
1363        while (spd.nr_pages < nr_pages) {
1364                error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1365                if (error)
1366                        break;
1367                unlock_page(page);
1368                spd.pages[spd.nr_pages++] = page;
1369                index++;
1370        }
1371
1372        index = *ppos >> PAGE_CACHE_SHIFT;
1373        nr_pages = spd.nr_pages;
1374        spd.nr_pages = 0;
1375
1376        for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1377                unsigned int this_len;
1378
1379                if (!len)
1380                        break;
1381
1382                this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1383                page = spd.pages[page_nr];
1384
1385                if (!PageUptodate(page) || page->mapping != mapping) {
1386                        error = shmem_getpage(inode, index, &page,
1387                                                        SGP_CACHE, NULL);
1388                        if (error)
1389                                break;
1390                        unlock_page(page);
1391                        page_cache_release(spd.pages[page_nr]);
1392                        spd.pages[page_nr] = page;
1393                }
1394
1395                isize = i_size_read(inode);
1396                end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1397                if (unlikely(!isize || index > end_index))
1398                        break;
1399
1400                if (end_index == index) {
1401                        unsigned int plen;
1402
1403                        plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1404                        if (plen <= loff)
1405                                break;
1406
1407                        this_len = min(this_len, plen - loff);
1408                        len = this_len;
1409                }
1410
1411                spd.partial[page_nr].offset = loff;
1412                spd.partial[page_nr].len = this_len;
1413                len -= this_len;
1414                loff = 0;
1415                spd.nr_pages++;
1416                index++;
1417        }
1418
1419        while (page_nr < nr_pages)
1420                page_cache_release(spd.pages[page_nr++]);
1421
1422        if (spd.nr_pages)
1423                error = splice_to_pipe(pipe, &spd);
1424
1425        splice_shrink_spd(pipe, &spd);
1426
1427        if (error > 0) {
1428                *ppos += error;
1429                file_accessed(in);
1430        }
1431        return error;
1432}
1433
1434static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1435{
1436        struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1437
1438        buf->f_type = TMPFS_MAGIC;
1439        buf->f_bsize = PAGE_CACHE_SIZE;
1440        buf->f_namelen = NAME_MAX;
1441        if (sbinfo->max_blocks) {
1442                buf->f_blocks = sbinfo->max_blocks;
1443                buf->f_bavail =
1444                buf->f_bfree  = sbinfo->max_blocks -
1445                                percpu_counter_sum(&sbinfo->used_blocks);
1446        }
1447        if (sbinfo->max_inodes) {
1448                buf->f_files = sbinfo->max_inodes;
1449                buf->f_ffree = sbinfo->free_inodes;
1450        }
1451        /* else leave those fields 0 like simple_statfs */
1452        return 0;
1453}
1454
1455/*
1456 * File creation. Allocate an inode, and we're done..
1457 */
1458static int
1459shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1460{
1461        struct inode *inode;
1462        int error = -ENOSPC;
1463
1464        inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1465        if (inode) {
1466                error = security_inode_init_security(inode, dir,
1467                                                     &dentry->d_name,
1468                                                     NULL, NULL);
1469                if (error) {
1470                        if (error != -EOPNOTSUPP) {
1471                                iput(inode);
1472                                return error;
1473                        }
1474                }
1475#ifdef CONFIG_TMPFS_POSIX_ACL
1476                error = generic_acl_init(inode, dir);
1477                if (error) {
1478                        iput(inode);
1479                        return error;
1480                }
1481#else
1482                error = 0;
1483#endif
1484                dir->i_size += BOGO_DIRENT_SIZE;
1485                dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1486                d_instantiate(dentry, inode);
1487                dget(dentry); /* Extra count - pin the dentry in core */
1488        }
1489        return error;
1490}
1491
1492static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1493{
1494        int error;
1495
1496        if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1497                return error;
1498        inc_nlink(dir);
1499        return 0;
1500}
1501
1502static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1503                struct nameidata *nd)
1504{
1505        return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1506}
1507
1508/*
1509 * Link a file..
1510 */
1511static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1512{
1513        struct inode *inode = old_dentry->d_inode;
1514        int ret;
1515
1516        /*
1517         * No ordinary (disk based) filesystem counts links as inodes;
1518         * but each new link needs a new dentry, pinning lowmem, and
1519         * tmpfs dentries cannot be pruned until they are unlinked.
1520         */
1521        ret = shmem_reserve_inode(inode->i_sb);
1522        if (ret)
1523                goto out;
1524
1525        dir->i_size += BOGO_DIRENT_SIZE;
1526        inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1527        inc_nlink(inode);
1528        ihold(inode);   /* New dentry reference */
1529        dget(dentry);           /* Extra pinning count for the created dentry */
1530        d_instantiate(dentry, inode);
1531out:
1532        return ret;
1533}
1534
1535static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1536{
1537        struct inode *inode = dentry->d_inode;
1538
1539        if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1540                shmem_free_inode(inode->i_sb);
1541
1542        dir->i_size -= BOGO_DIRENT_SIZE;
1543        inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1544        drop_nlink(inode);
1545        dput(dentry);   /* Undo the count from "create" - this does all the work */
1546        return 0;
1547}
1548
1549static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1550{
1551        if (!simple_empty(dentry))
1552                return -ENOTEMPTY;
1553
1554        drop_nlink(dentry->d_inode);
1555        drop_nlink(dir);
1556        return shmem_unlink(dir, dentry);
1557}
1558
1559/*
1560 * The VFS layer already does all the dentry stuff for rename,
1561 * we just have to decrement the usage count for the target if
1562 * it exists so that the VFS layer correctly free's it when it
1563 * gets overwritten.
1564 */
1565static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1566{
1567        struct inode *inode = old_dentry->d_inode;
1568        int they_are_dirs = S_ISDIR(inode->i_mode);
1569
1570        if (!simple_empty(new_dentry))
1571                return -ENOTEMPTY;
1572
1573        if (new_dentry->d_inode) {
1574                (void) shmem_unlink(new_dir, new_dentry);
1575                if (they_are_dirs)
1576                        drop_nlink(old_dir);
1577        } else if (they_are_dirs) {
1578                drop_nlink(old_dir);
1579                inc_nlink(new_dir);
1580        }
1581
1582        old_dir->i_size -= BOGO_DIRENT_SIZE;
1583        new_dir->i_size += BOGO_DIRENT_SIZE;
1584        old_dir->i_ctime = old_dir->i_mtime =
1585        new_dir->i_ctime = new_dir->i_mtime =
1586        inode->i_ctime = CURRENT_TIME;
1587        return 0;
1588}
1589
1590static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1591{
1592        int error;
1593        int len;
1594        struct inode *inode;
1595        struct page *page;
1596        char *kaddr;
1597        struct shmem_inode_info *info;
1598
1599        len = strlen(symname) + 1;
1600        if (len > PAGE_CACHE_SIZE)
1601                return -ENAMETOOLONG;
1602
1603        inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1604        if (!inode)
1605                return -ENOSPC;
1606
1607        error = security_inode_init_security(inode, dir, &dentry->d_name,
1608                                             NULL, NULL);
1609        if (error) {
1610                if (error != -EOPNOTSUPP) {
1611                        iput(inode);
1612                        return error;
1613                }
1614                error = 0;
1615        }
1616
1617        info = SHMEM_I(inode);
1618        inode->i_size = len-1;
1619        if (len <= SHORT_SYMLINK_LEN) {
1620                info->symlink = kmemdup(symname, len, GFP_KERNEL);
1621                if (!info->symlink) {
1622                        iput(inode);
1623                        return -ENOMEM;
1624                }
1625                inode->i_op = &shmem_short_symlink_operations;
1626        } else {
1627                error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1628                if (error) {
1629                        iput(inode);
1630                        return error;
1631                }
1632                inode->i_mapping->a_ops = &shmem_aops;
1633                inode->i_op = &shmem_symlink_inode_operations;
1634                kaddr = kmap_atomic(page, KM_USER0);
1635                memcpy(kaddr, symname, len);
1636                kunmap_atomic(kaddr, KM_USER0);
1637                set_page_dirty(page);
1638                unlock_page(page);
1639                page_cache_release(page);
1640        }
1641        dir->i_size += BOGO_DIRENT_SIZE;
1642        dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1643        d_instantiate(dentry, inode);
1644        dget(dentry);
1645        return 0;
1646}
1647
1648static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
1649{
1650        nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
1651        return NULL;
1652}
1653
1654static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1655{
1656        struct page *page = NULL;
1657        int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1658        nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
1659        if (page)
1660                unlock_page(page);
1661        return page;
1662}
1663
1664static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1665{
1666        if (!IS_ERR(nd_get_link(nd))) {
1667                struct page *page = cookie;
1668                kunmap(page);
1669                mark_page_accessed(page);
1670                page_cache_release(page);
1671        }
1672}
1673
1674#ifdef CONFIG_TMPFS_XATTR
1675/*
1676 * Superblocks without xattr inode operations may get some security.* xattr
1677 * support from the LSM "for free". As soon as we have any other xattrs
1678 * like ACLs, we also need to implement the security.* handlers at
1679 * filesystem level, though.
1680 */
1681
1682static int shmem_xattr_get(struct dentry *dentry, const char *name,
1683                           void *buffer, size_t size)
1684{
1685        struct shmem_inode_info *info;
1686        struct shmem_xattr *xattr;
1687        int ret = -ENODATA;
1688
1689        info = SHMEM_I(dentry->d_inode);
1690
1691        spin_lock(&info->lock);
1692        list_for_each_entry(xattr, &info->xattr_list, list) {
1693                if (strcmp(name, xattr->name))
1694                        continue;
1695
1696                ret = xattr->size;
1697                if (buffer) {
1698                        if (size < xattr->size)
1699                                ret = -ERANGE;
1700                        else
1701                                memcpy(buffer, xattr->value, xattr->size);
1702                }
1703                break;
1704        }
1705        spin_unlock(&info->lock);
1706        return ret;
1707}
1708
1709static int shmem_xattr_set(struct dentry *dentry, const char *name,
1710                           const void *value, size_t size, int flags)
1711{
1712        struct inode *inode = dentry->d_inode;
1713        struct shmem_inode_info *info = SHMEM_I(inode);
1714        struct shmem_xattr *xattr;
1715        struct shmem_xattr *new_xattr = NULL;
1716        size_t len;
1717        int err = 0;
1718
1719        /* value == NULL means remove */
1720        if (value) {
1721                /* wrap around? */
1722                len = sizeof(*new_xattr) + size;
1723                if (len <= sizeof(*new_xattr))
1724                        return -ENOMEM;
1725
1726                new_xattr = kmalloc(len, GFP_KERNEL);
1727                if (!new_xattr)
1728                        return -ENOMEM;
1729
1730                new_xattr->name = kstrdup(name, GFP_KERNEL);
1731                if (!new_xattr->name) {
1732                        kfree(new_xattr);
1733                        return -ENOMEM;
1734                }
1735
1736                new_xattr->size = size;
1737                memcpy(new_xattr->value, value, size);
1738        }
1739
1740        spin_lock(&info->lock);
1741        list_for_each_entry(xattr, &info->xattr_list, list) {
1742                if (!strcmp(name, xattr->name)) {
1743                        if (flags & XATTR_CREATE) {
1744                                xattr = new_xattr;
1745                                err = -EEXIST;
1746                        } else if (new_xattr) {
1747                                list_replace(&xattr->list, &new_xattr->list);
1748                        } else {
1749                                list_del(&xattr->list);
1750                        }
1751                        goto out;
1752                }
1753        }
1754        if (flags & XATTR_REPLACE) {
1755                xattr = new_xattr;
1756                err = -ENODATA;
1757        } else {
1758                list_add(&new_xattr->list, &info->xattr_list);
1759                xattr = NULL;
1760        }
1761out:
1762        spin_unlock(&info->lock);
1763        if (xattr)
1764                kfree(xattr->name);
1765        kfree(xattr);
1766        return err;
1767}
1768
1769static const struct xattr_handler *shmem_xattr_handlers[] = {
1770#ifdef CONFIG_TMPFS_POSIX_ACL
1771        &generic_acl_access_handler,
1772        &generic_acl_default_handler,
1773#endif
1774        NULL
1775};
1776
1777static int shmem_xattr_validate(const char *name)
1778{
1779        struct { const char *prefix; size_t len; } arr[] = {
1780                { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
1781                { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
1782        };
1783        int i;
1784
1785        for (i = 0; i < ARRAY_SIZE(arr); i++) {
1786                size_t preflen = arr[i].len;
1787                if (strncmp(name, arr[i].prefix, preflen) == 0) {
1788                        if (!name[preflen])
1789                                return -EINVAL;
1790                        return 0;
1791                }
1792        }
1793        return -EOPNOTSUPP;
1794}
1795
1796static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
1797                              void *buffer, size_t size)
1798{
1799        int err;
1800
1801        /*
1802         * If this is a request for a synthetic attribute in the system.*
1803         * namespace use the generic infrastructure to resolve a handler
1804         * for it via sb->s_xattr.
1805         */
1806        if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
1807                return generic_getxattr(dentry, name, buffer, size);
1808
1809        err = shmem_xattr_validate(name);
1810        if (err)
1811                return err;
1812
1813        return shmem_xattr_get(dentry, name, buffer, size);
1814}
1815
1816static int shmem_setxattr(struct dentry *dentry, const char *name,
1817                          const void *value, size_t size, int flags)
1818{
1819        int err;
1820
1821        /*
1822         * If this is a request for a synthetic attribute in the system.*
1823         * namespace use the generic infrastructure to resolve a handler
1824         * for it via sb->s_xattr.
1825         */
1826        if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
1827                return generic_setxattr(dentry, name, value, size, flags);
1828
1829        err = shmem_xattr_validate(name);
1830        if (err)
1831                return err;
1832
1833        if (size == 0)
1834                value = "";  /* empty EA, do not remove */
1835
1836        return shmem_xattr_set(dentry, name, value, size, flags);
1837
1838}
1839
1840static int shmem_removexattr(struct dentry *dentry, const char *name)
1841{
1842        int err;
1843
1844        /*
1845         * If this is a request for a synthetic attribute in the system.*
1846         * namespace use the generic infrastructure to resolve a handler
1847         * for it via sb->s_xattr.
1848         */
1849        if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
1850                return generic_removexattr(dentry, name);
1851
1852        err = shmem_xattr_validate(name);
1853        if (err)
1854                return err;
1855
1856        return shmem_xattr_set(dentry, name, NULL, 0, XATTR_REPLACE);
1857}
1858
1859static bool xattr_is_trusted(const char *name)
1860{
1861        return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN);
1862}
1863
1864static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
1865{
1866        bool trusted = capable(CAP_SYS_ADMIN);
1867        struct shmem_xattr *xattr;
1868        struct shmem_inode_info *info;
1869        size_t used = 0;
1870
1871        info = SHMEM_I(dentry->d_inode);
1872
1873        spin_lock(&info->lock);
1874        list_for_each_entry(xattr, &info->xattr_list, list) {
1875                size_t len;
1876
1877                /* skip "trusted." attributes for unprivileged callers */
1878                if (!trusted && xattr_is_trusted(xattr->name))
1879                        continue;
1880
1881                len = strlen(xattr->name) + 1;
1882                used += len;
1883                if (buffer) {
1884                        if (size < used) {
1885                                used = -ERANGE;
1886                                break;
1887                        }
1888                        memcpy(buffer, xattr->name, len);
1889                        buffer += len;
1890                }
1891        }
1892        spin_unlock(&info->lock);
1893
1894        return used;
1895}
1896#endif /* CONFIG_TMPFS_XATTR */
1897
1898static const struct inode_operations shmem_short_symlink_operations = {
1899        .readlink       = generic_readlink,
1900        .follow_link    = shmem_follow_short_symlink,
1901#ifdef CONFIG_TMPFS_XATTR
1902        .setxattr       = shmem_setxattr,
1903        .getxattr       = shmem_getxattr,
1904        .listxattr      = shmem_listxattr,
1905        .removexattr    = shmem_removexattr,
1906#endif
1907};
1908
1909static const struct inode_operations shmem_symlink_inode_operations = {
1910        .readlink       = generic_readlink,
1911        .follow_link    = shmem_follow_link,
1912        .put_link       = shmem_put_link,
1913#ifdef CONFIG_TMPFS_XATTR
1914        .setxattr       = shmem_setxattr,
1915        .getxattr       = shmem_getxattr,
1916        .listxattr      = shmem_listxattr,
1917        .removexattr    = shmem_removexattr,
1918#endif
1919};
1920
1921static struct dentry *shmem_get_parent(struct dentry *child)
1922{
1923        return ERR_PTR(-ESTALE);
1924}
1925
1926static int shmem_match(struct inode *ino, void *vfh)
1927{
1928        __u32 *fh = vfh;
1929        __u64 inum = fh[2];
1930        inum = (inum << 32) | fh[1];
1931        return ino->i_ino == inum && fh[0] == ino->i_generation;
1932}
1933
1934static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
1935                struct fid *fid, int fh_len, int fh_type)
1936{
1937        struct inode *inode;
1938        struct dentry *dentry = NULL;
1939        u64 inum = fid->raw[2];
1940        inum = (inum << 32) | fid->raw[1];
1941
1942        if (fh_len < 3)
1943                return NULL;
1944
1945        inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
1946                        shmem_match, fid->raw);
1947        if (inode) {
1948                dentry = d_find_alias(inode);
1949                iput(inode);
1950        }
1951
1952        return dentry;
1953}
1954
1955static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
1956                                int connectable)
1957{
1958        struct inode *inode = dentry->d_inode;
1959
1960        if (*len < 3) {
1961                *len = 3;
1962                return 255;
1963        }
1964
1965        if (inode_unhashed(inode)) {
1966                /* Unfortunately insert_inode_hash is not idempotent,
1967                 * so as we hash inodes here rather than at creation
1968                 * time, we need a lock to ensure we only try
1969                 * to do it once
1970                 */
1971                static DEFINE_SPINLOCK(lock);
1972                spin_lock(&lock);
1973                if (inode_unhashed(inode))
1974                        __insert_inode_hash(inode,
1975                                            inode->i_ino + inode->i_generation);
1976                spin_unlock(&lock);
1977        }
1978
1979        fh[0] = inode->i_generation;
1980        fh[1] = inode->i_ino;
1981        fh[2] = ((__u64)inode->i_ino) >> 32;
1982
1983        *len = 3;
1984        return 1;
1985}
1986
1987static const struct export_operations shmem_export_ops = {
1988        .get_parent     = shmem_get_parent,
1989        .encode_fh      = shmem_encode_fh,
1990        .fh_to_dentry   = shmem_fh_to_dentry,
1991};
1992
1993static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
1994                               bool remount)
1995{
1996        char *this_char, *value, *rest;
1997
1998        while (options != NULL) {
1999                this_char = options;
2000                for (;;) {
2001                        /*
2002                         * NUL-terminate this option: unfortunately,
2003                         * mount options form a comma-separated list,
2004                         * but mpol's nodelist may also contain commas.
2005                         */
2006                        options = strchr(options, ',');
2007                        if (options == NULL)
2008                                break;
2009                        options++;
2010                        if (!isdigit(*options)) {
2011                                options[-1] = '\0';
2012                                break;
2013                        }
2014                }
2015                if (!*this_char)
2016                        continue;
2017                if ((value = strchr(this_char,'=')) != NULL) {
2018                        *value++ = 0;
2019                } else {
2020                        printk(KERN_ERR
2021                            "tmpfs: No value for mount option '%s'\n",
2022                            this_char);
2023                        return 1;
2024                }
2025
2026                if (!strcmp(this_char,"size")) {
2027                        unsigned long long size;
2028                        size = memparse(value,&rest);
2029                        if (*rest == '%') {
2030                                size <<= PAGE_SHIFT;
2031                                size *= totalram_pages;
2032                                do_div(size, 100);
2033                                rest++;
2034                        }
2035                        if (*rest)
2036                                goto bad_val;
2037                        sbinfo->max_blocks =
2038                                DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2039                } else if (!strcmp(this_char,"nr_blocks")) {
2040                        sbinfo->max_blocks = memparse(value, &rest);
2041                        if (*rest)
2042                                goto bad_val;
2043                } else if (!strcmp(this_char,"nr_inodes")) {
2044                        sbinfo->max_inodes = memparse(value, &rest);
2045                        if (*rest)
2046                                goto bad_val;
2047                } else if (!strcmp(this_char,"mode")) {
2048                        if (remount)
2049                                continue;
2050                        sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2051                        if (*rest)
2052                                goto bad_val;
2053                } else if (!strcmp(this_char,"uid")) {
2054                        if (remount)
2055                                continue;
2056                        sbinfo->uid = simple_strtoul(value, &rest, 0);
2057                        if (*rest)
2058                                goto bad_val;
2059                } else if (!strcmp(this_char,"gid")) {
2060                        if (remount)
2061                                continue;
2062                        sbinfo->gid = simple_strtoul(value, &rest, 0);
2063                        if (*rest)
2064                                goto bad_val;
2065                } else if (!strcmp(this_char,"mpol")) {
2066                        if (mpol_parse_str(value, &sbinfo->mpol, 1))
2067                                goto bad_val;
2068                } else {
2069                        printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2070                               this_char);
2071                        return 1;
2072                }
2073        }
2074        return 0;
2075
2076bad_val:
2077        printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2078               value, this_char);
2079        return 1;
2080
2081}
2082
2083static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2084{
2085        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2086        struct shmem_sb_info config = *sbinfo;
2087        unsigned long inodes;
2088        int error = -EINVAL;
2089
2090        if (shmem_parse_options(data, &config, true))
2091                return error;
2092
2093        spin_lock(&sbinfo->stat_lock);
2094        inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2095        if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2096                goto out;
2097        if (config.max_inodes < inodes)
2098                goto out;
2099        /*
2100         * Those tests disallow limited->unlimited while any are in use;
2101         * but we must separately disallow unlimited->limited, because
2102         * in that case we have no record of how much is already in use.
2103         */
2104        if (config.max_blocks && !sbinfo->max_blocks)
2105                goto out;
2106        if (config.max_inodes && !sbinfo->max_inodes)
2107                goto out;
2108
2109        error = 0;
2110        sbinfo->max_blocks  = config.max_blocks;
2111        sbinfo->max_inodes  = config.max_inodes;
2112        sbinfo->free_inodes = config.max_inodes - inodes;
2113
2114        mpol_put(sbinfo->mpol);
2115        sbinfo->mpol        = config.mpol;      /* transfers initial ref */
2116out:
2117        spin_unlock(&sbinfo->stat_lock);
2118        return error;
2119}
2120
2121static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2122{
2123        struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2124
2125        if (sbinfo->max_blocks != shmem_default_max_blocks())
2126                seq_printf(seq, ",size=%luk",
2127                        sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2128        if (sbinfo->max_inodes != shmem_default_max_inodes())
2129                seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2130        if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2131                seq_printf(seq, ",mode=%03o", sbinfo->mode);
2132        if (sbinfo->uid != 0)
2133                seq_printf(seq, ",uid=%u", sbinfo->uid);
2134        if (sbinfo->gid != 0)
2135                seq_printf(seq, ",gid=%u", sbinfo->gid);
2136        shmem_show_mpol(seq, sbinfo->mpol);
2137        return 0;
2138}
2139#endif /* CONFIG_TMPFS */
2140
2141static void shmem_put_super(struct super_block *sb)
2142{
2143        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2144
2145        percpu_counter_destroy(&sbinfo->used_blocks);
2146        kfree(sbinfo);
2147        sb->s_fs_info = NULL;
2148}
2149
2150int shmem_fill_super(struct super_block *sb, void *data, int silent)
2151{
2152        struct inode *inode;
2153        struct dentry *root;
2154        struct shmem_sb_info *sbinfo;
2155        int err = -ENOMEM;
2156
2157        /* Round up to L1_CACHE_BYTES to resist false sharing */
2158        sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2159                                L1_CACHE_BYTES), GFP_KERNEL);
2160        if (!sbinfo)
2161                return -ENOMEM;
2162
2163        sbinfo->mode = S_IRWXUGO | S_ISVTX;
2164        sbinfo->uid = current_fsuid();
2165        sbinfo->gid = current_fsgid();
2166        sb->s_fs_info = sbinfo;
2167
2168#ifdef CONFIG_TMPFS
2169        /*
2170         * Per default we only allow half of the physical ram per
2171         * tmpfs instance, limiting inodes to one per page of lowmem;
2172         * but the internal instance is left unlimited.
2173         */
2174        if (!(sb->s_flags & MS_NOUSER)) {
2175                sbinfo->max_blocks = shmem_default_max_blocks();
2176                sbinfo->max_inodes = shmem_default_max_inodes();
2177                if (shmem_parse_options(data, sbinfo, false)) {
2178                        err = -EINVAL;
2179                        goto failed;
2180                }
2181        }
2182        sb->s_export_op = &shmem_export_ops;
2183#else
2184        sb->s_flags |= MS_NOUSER;
2185#endif
2186
2187        spin_lock_init(&sbinfo->stat_lock);
2188        if (percpu_counter_init(&sbinfo->used_blocks, 0))
2189                goto failed;
2190        sbinfo->free_inodes = sbinfo->max_inodes;
2191
2192        sb->s_maxbytes = MAX_LFS_FILESIZE;
2193        sb->s_blocksize = PAGE_CACHE_SIZE;
2194        sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2195        sb->s_magic = TMPFS_MAGIC;
2196        sb->s_op = &shmem_ops;
2197        sb->s_time_gran = 1;
2198#ifdef CONFIG_TMPFS_XATTR
2199        sb->s_xattr = shmem_xattr_handlers;
2200#endif
2201#ifdef CONFIG_TMPFS_POSIX_ACL
2202        sb->s_flags |= MS_POSIXACL;
2203#endif
2204
2205        inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2206        if (!inode)
2207                goto failed;
2208        inode->i_uid = sbinfo->uid;
2209        inode->i_gid = sbinfo->gid;
2210        root = d_alloc_root(inode);
2211        if (!root)
2212                goto failed_iput;
2213        sb->s_root = root;
2214        return 0;
2215
2216failed_iput:
2217        iput(inode);
2218failed:
2219        shmem_put_super(sb);
2220        return err;
2221}
2222
2223static struct kmem_cache *shmem_inode_cachep;
2224
2225static struct inode *shmem_alloc_inode(struct super_block *sb)
2226{
2227        struct shmem_inode_info *info;
2228        info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2229        if (!info)
2230                return NULL;
2231        return &info->vfs_inode;
2232}
2233
2234static void shmem_destroy_callback(struct rcu_head *head)
2235{
2236        struct inode *inode = container_of(head, struct inode, i_rcu);
2237        INIT_LIST_HEAD(&inode->i_dentry);
2238        kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2239}
2240
2241static void shmem_destroy_inode(struct inode *inode)
2242{
2243        if ((inode->i_mode & S_IFMT) == S_IFREG)
2244                mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2245        call_rcu(&inode->i_rcu, shmem_destroy_callback);
2246}
2247
2248static void shmem_init_inode(void *foo)
2249{
2250        struct shmem_inode_info *info = foo;
2251        inode_init_once(&info->vfs_inode);
2252}
2253
2254static int shmem_init_inodecache(void)
2255{
2256        shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2257                                sizeof(struct shmem_inode_info),
2258                                0, SLAB_PANIC, shmem_init_inode);
2259        return 0;
2260}
2261
2262static void shmem_destroy_inodecache(void)
2263{
2264        kmem_cache_destroy(shmem_inode_cachep);
2265}
2266
2267static const struct address_space_operations shmem_aops = {
2268        .writepage      = shmem_writepage,
2269        .set_page_dirty = __set_page_dirty_no_writeback,
2270#ifdef CONFIG_TMPFS
2271        .write_begin    = shmem_write_begin,
2272        .write_end      = shmem_write_end,
2273#endif
2274        .migratepage    = migrate_page,
2275        .error_remove_page = generic_error_remove_page,
2276};
2277
2278static const struct file_operations shmem_file_operations = {
2279        .mmap           = shmem_mmap,
2280#ifdef CONFIG_TMPFS
2281        .llseek         = generic_file_llseek,
2282        .read           = do_sync_read,
2283        .write          = do_sync_write,
2284        .aio_read       = shmem_file_aio_read,
2285        .aio_write      = generic_file_aio_write,
2286        .fsync          = noop_fsync,
2287        .splice_read    = shmem_file_splice_read,
2288        .splice_write   = generic_file_splice_write,
2289#endif
2290};
2291
2292static const struct inode_operations shmem_inode_operations = {
2293        .setattr        = shmem_setattr,
2294        .truncate_range = shmem_truncate_range,
2295#ifdef CONFIG_TMPFS_XATTR
2296        .setxattr       = shmem_setxattr,
2297        .getxattr       = shmem_getxattr,
2298        .listxattr      = shmem_listxattr,
2299        .removexattr    = shmem_removexattr,
2300#endif
2301};
2302
2303static const struct inode_operations shmem_dir_inode_operations = {
2304#ifdef CONFIG_TMPFS
2305        .create         = shmem_create,
2306        .lookup         = simple_lookup,
2307        .link           = shmem_link,
2308        .unlink         = shmem_unlink,
2309        .symlink        = shmem_symlink,
2310        .mkdir          = shmem_mkdir,
2311        .rmdir          = shmem_rmdir,
2312        .mknod          = shmem_mknod,
2313        .rename         = shmem_rename,
2314#endif
2315#ifdef CONFIG_TMPFS_XATTR
2316        .setxattr       = shmem_setxattr,
2317        .getxattr       = shmem_getxattr,
2318        .listxattr      = shmem_listxattr,
2319        .removexattr    = shmem_removexattr,
2320#endif
2321#ifdef CONFIG_TMPFS_POSIX_ACL
2322        .setattr        = shmem_setattr,
2323#endif
2324};
2325
2326static const struct inode_operations shmem_special_inode_operations = {
2327#ifdef CONFIG_TMPFS_XATTR
2328        .setxattr       = shmem_setxattr,
2329        .getxattr       = shmem_getxattr,
2330        .listxattr      = shmem_listxattr,
2331        .removexattr    = shmem_removexattr,
2332#endif
2333#ifdef CONFIG_TMPFS_POSIX_ACL
2334        .setattr        = shmem_setattr,
2335#endif
2336};
2337
2338static const struct super_operations shmem_ops = {
2339        .alloc_inode    = shmem_alloc_inode,
2340        .destroy_inode  = shmem_destroy_inode,
2341#ifdef CONFIG_TMPFS
2342        .statfs         = shmem_statfs,
2343        .remount_fs     = shmem_remount_fs,
2344        .show_options   = shmem_show_options,
2345#endif
2346        .evict_inode    = shmem_evict_inode,
2347        .drop_inode     = generic_delete_inode,
2348        .put_super      = shmem_put_super,
2349};
2350
2351static const struct vm_operations_struct shmem_vm_ops = {
2352        .fault          = shmem_fault,
2353#ifdef CONFIG_NUMA
2354        .set_policy     = shmem_set_policy,
2355        .get_policy     = shmem_get_policy,
2356#endif
2357};
2358
2359static struct dentry *shmem_mount(struct file_system_type *fs_type,
2360        int flags, const char *dev_name, void *data)
2361{
2362        return mount_nodev(fs_type, flags, data, shmem_fill_super);
2363}
2364
2365static struct file_system_type shmem_fs_type = {
2366        .owner          = THIS_MODULE,
2367        .name           = "tmpfs",
2368        .mount          = shmem_mount,
2369        .kill_sb        = kill_litter_super,
2370};
2371
2372int __init shmem_init(void)
2373{
2374        int error;
2375
2376        error = bdi_init(&shmem_backing_dev_info);
2377        if (error)
2378                goto out4;
2379
2380        error = shmem_init_inodecache();
2381        if (error)
2382                goto out3;
2383
2384        error = register_filesystem(&shmem_fs_type);
2385        if (error) {
2386                printk(KERN_ERR "Could not register tmpfs\n");
2387                goto out2;
2388        }
2389
2390        shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2391                                 shmem_fs_type.name, NULL);
2392        if (IS_ERR(shm_mnt)) {
2393                error = PTR_ERR(shm_mnt);
2394                printk(KERN_ERR "Could not kern_mount tmpfs\n");
2395                goto out1;
2396        }
2397        return 0;
2398
2399out1:
2400        unregister_filesystem(&shmem_fs_type);
2401out2:
2402        shmem_destroy_inodecache();
2403out3:
2404        bdi_destroy(&shmem_backing_dev_info);
2405out4:
2406        shm_mnt = ERR_PTR(error);
2407        return error;
2408}
2409
2410#else /* !CONFIG_SHMEM */
2411
2412/*
2413 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2414 *
2415 * This is intended for small system where the benefits of the full
2416 * shmem code (swap-backed and resource-limited) are outweighed by
2417 * their complexity. On systems without swap this code should be
2418 * effectively equivalent, but much lighter weight.
2419 */
2420
2421#include <linux/ramfs.h>
2422
2423static struct file_system_type shmem_fs_type = {
2424        .name           = "tmpfs",
2425        .mount          = ramfs_mount,
2426        .kill_sb        = kill_litter_super,
2427};
2428
2429int __init shmem_init(void)
2430{
2431        BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2432
2433        shm_mnt = kern_mount(&shmem_fs_type);
2434        BUG_ON(IS_ERR(shm_mnt));
2435
2436        return 0;
2437}
2438
2439int shmem_unuse(swp_entry_t swap, struct page *page)
2440{
2441        return 0;
2442}
2443
2444int shmem_lock(struct file *file, int lock, struct user_struct *user)
2445{
2446        return 0;
2447}
2448
2449void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2450{
2451        truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2452}
2453EXPORT_SYMBOL_GPL(shmem_truncate_range);
2454
2455#define shmem_vm_ops                            generic_file_vm_ops
2456#define shmem_file_operations                   ramfs_file_operations
2457#define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
2458#define shmem_acct_size(flags, size)            0
2459#define shmem_unacct_size(flags, size)          do {} while (0)
2460
2461#endif /* CONFIG_SHMEM */
2462
2463/* common code */
2464
2465/**
2466 * shmem_file_setup - get an unlinked file living in tmpfs
2467 * @name: name for dentry (to be seen in /proc/<pid>/maps
2468 * @size: size to be set for the file
2469 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2470 */
2471struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2472{
2473        int error;
2474        struct file *file;
2475        struct inode *inode;
2476        struct path path;
2477        struct dentry *root;
2478        struct qstr this;
2479
2480        if (IS_ERR(shm_mnt))
2481                return (void *)shm_mnt;
2482
2483        if (size < 0 || size > MAX_LFS_FILESIZE)
2484                return ERR_PTR(-EINVAL);
2485
2486        if (shmem_acct_size(flags, size))
2487                return ERR_PTR(-ENOMEM);
2488
2489        error = -ENOMEM;
2490        this.name = name;
2491        this.len = strlen(name);
2492        this.hash = 0; /* will go */
2493        root = shm_mnt->mnt_root;
2494        path.dentry = d_alloc(root, &this);
2495        if (!path.dentry)
2496                goto put_memory;
2497        path.mnt = mntget(shm_mnt);
2498
2499        error = -ENOSPC;
2500        inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2501        if (!inode)
2502                goto put_dentry;
2503
2504        d_instantiate(path.dentry, inode);
2505        inode->i_size = size;
2506        clear_nlink(inode);     /* It is unlinked */
2507#ifndef CONFIG_MMU
2508        error = ramfs_nommu_expand_for_mapping(inode, size);
2509        if (error)
2510                goto put_dentry;
2511#endif
2512
2513        error = -ENFILE;
2514        file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2515                  &shmem_file_operations);
2516        if (!file)
2517                goto put_dentry;
2518
2519        return file;
2520
2521put_dentry:
2522        path_put(&path);
2523put_memory:
2524        shmem_unacct_size(flags, size);
2525        return ERR_PTR(error);
2526}
2527EXPORT_SYMBOL_GPL(shmem_file_setup);
2528
2529/**
2530 * shmem_zero_setup - setup a shared anonymous mapping
2531 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2532 */
2533int shmem_zero_setup(struct vm_area_struct *vma)
2534{
2535        struct file *file;
2536        loff_t size = vma->vm_end - vma->vm_start;
2537
2538        file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2539        if (IS_ERR(file))
2540                return PTR_ERR(file);
2541
2542        if (vma->vm_file)
2543                fput(vma->vm_file);
2544        vma->vm_file = file;
2545        vma->vm_ops = &shmem_vm_ops;
2546        vma->vm_flags |= VM_CAN_NONLINEAR;
2547        return 0;
2548}
2549
2550/**
2551 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2552 * @mapping:    the page's address_space
2553 * @index:      the page index
2554 * @gfp:        the page allocator flags to use if allocating
2555 *
2556 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2557 * with any new page allocations done using the specified allocation flags.
2558 * But read_cache_page_gfp() uses the ->readpage() method: which does not
2559 * suit tmpfs, since it may have pages in swapcache, and needs to find those
2560 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2561 *
2562 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2563 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
2564 */
2565struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
2566                                         pgoff_t index, gfp_t gfp)
2567{
2568#ifdef CONFIG_SHMEM
2569        struct inode *inode = mapping->host;
2570        struct page *page;
2571        int error;
2572
2573        BUG_ON(mapping->a_ops != &shmem_aops);
2574        error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
2575        if (error)
2576                page = ERR_PTR(error);
2577        else
2578                unlock_page(page);
2579        return page;
2580#else
2581        /*
2582         * The tiny !SHMEM case uses ramfs without swap
2583         */
2584        return read_cache_page_gfp(mapping, index, gfp);
2585#endif
2586}
2587EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
2588