linux/net/ipv4/tcp_cubic.c
<<
>>
Prefs
   1/*
   2 * TCP CUBIC: Binary Increase Congestion control for TCP v2.3
   3 * Home page:
   4 *      http://netsrv.csc.ncsu.edu/twiki/bin/view/Main/BIC
   5 * This is from the implementation of CUBIC TCP in
   6 * Sangtae Ha, Injong Rhee and Lisong Xu,
   7 *  "CUBIC: A New TCP-Friendly High-Speed TCP Variant"
   8 *  in ACM SIGOPS Operating System Review, July 2008.
   9 * Available from:
  10 *  http://netsrv.csc.ncsu.edu/export/cubic_a_new_tcp_2008.pdf
  11 *
  12 * CUBIC integrates a new slow start algorithm, called HyStart.
  13 * The details of HyStart are presented in
  14 *  Sangtae Ha and Injong Rhee,
  15 *  "Taming the Elephants: New TCP Slow Start", NCSU TechReport 2008.
  16 * Available from:
  17 *  http://netsrv.csc.ncsu.edu/export/hystart_techreport_2008.pdf
  18 *
  19 * All testing results are available from:
  20 * http://netsrv.csc.ncsu.edu/wiki/index.php/TCP_Testing
  21 *
  22 * Unless CUBIC is enabled and congestion window is large
  23 * this behaves the same as the original Reno.
  24 */
  25
  26#include <linux/mm.h>
  27#include <linux/module.h>
  28#include <linux/math64.h>
  29#include <net/tcp.h>
  30
  31#define BICTCP_BETA_SCALE    1024       /* Scale factor beta calculation
  32                                         * max_cwnd = snd_cwnd * beta
  33                                         */
  34#define BICTCP_HZ               10      /* BIC HZ 2^10 = 1024 */
  35
  36/* Two methods of hybrid slow start */
  37#define HYSTART_ACK_TRAIN       0x1
  38#define HYSTART_DELAY           0x2
  39
  40/* Number of delay samples for detecting the increase of delay */
  41#define HYSTART_MIN_SAMPLES     8
  42#define HYSTART_DELAY_MIN       (4U<<3)
  43#define HYSTART_DELAY_MAX       (16U<<3)
  44#define HYSTART_DELAY_THRESH(x) clamp(x, HYSTART_DELAY_MIN, HYSTART_DELAY_MAX)
  45
  46static int fast_convergence __read_mostly = 1;
  47static int beta __read_mostly = 717;    /* = 717/1024 (BICTCP_BETA_SCALE) */
  48static int initial_ssthresh __read_mostly;
  49static int bic_scale __read_mostly = 41;
  50static int tcp_friendliness __read_mostly = 1;
  51
  52static int hystart __read_mostly = 1;
  53static int hystart_detect __read_mostly = HYSTART_ACK_TRAIN | HYSTART_DELAY;
  54static int hystart_low_window __read_mostly = 16;
  55static int hystart_ack_delta __read_mostly = 2;
  56
  57static u32 cube_rtt_scale __read_mostly;
  58static u32 beta_scale __read_mostly;
  59static u64 cube_factor __read_mostly;
  60
  61/* Note parameters that are used for precomputing scale factors are read-only */
  62module_param(fast_convergence, int, 0644);
  63MODULE_PARM_DESC(fast_convergence, "turn on/off fast convergence");
  64module_param(beta, int, 0644);
  65MODULE_PARM_DESC(beta, "beta for multiplicative increase");
  66module_param(initial_ssthresh, int, 0644);
  67MODULE_PARM_DESC(initial_ssthresh, "initial value of slow start threshold");
  68module_param(bic_scale, int, 0444);
  69MODULE_PARM_DESC(bic_scale, "scale (scaled by 1024) value for bic function (bic_scale/1024)");
  70module_param(tcp_friendliness, int, 0644);
  71MODULE_PARM_DESC(tcp_friendliness, "turn on/off tcp friendliness");
  72module_param(hystart, int, 0644);
  73MODULE_PARM_DESC(hystart, "turn on/off hybrid slow start algorithm");
  74module_param(hystart_detect, int, 0644);
  75MODULE_PARM_DESC(hystart_detect, "hyrbrid slow start detection mechanisms"
  76                 " 1: packet-train 2: delay 3: both packet-train and delay");
  77module_param(hystart_low_window, int, 0644);
  78MODULE_PARM_DESC(hystart_low_window, "lower bound cwnd for hybrid slow start");
  79module_param(hystart_ack_delta, int, 0644);
  80MODULE_PARM_DESC(hystart_ack_delta, "spacing between ack's indicating train (msecs)");
  81
  82/* BIC TCP Parameters */
  83struct bictcp {
  84        u32     cnt;            /* increase cwnd by 1 after ACKs */
  85        u32     last_max_cwnd;  /* last maximum snd_cwnd */
  86        u32     loss_cwnd;      /* congestion window at last loss */
  87        u32     last_cwnd;      /* the last snd_cwnd */
  88        u32     last_time;      /* time when updated last_cwnd */
  89        u32     bic_origin_point;/* origin point of bic function */
  90        u32     bic_K;          /* time to origin point from the beginning of the current epoch */
  91        u32     delay_min;      /* min delay (msec << 3) */
  92        u32     epoch_start;    /* beginning of an epoch */
  93        u32     ack_cnt;        /* number of acks */
  94        u32     tcp_cwnd;       /* estimated tcp cwnd */
  95#define ACK_RATIO_SHIFT 4
  96#define ACK_RATIO_LIMIT (32u << ACK_RATIO_SHIFT)
  97        u16     delayed_ack;    /* estimate the ratio of Packets/ACKs << 4 */
  98        u8      sample_cnt;     /* number of samples to decide curr_rtt */
  99        u8      found;          /* the exit point is found? */
 100        u32     round_start;    /* beginning of each round */
 101        u32     end_seq;        /* end_seq of the round */
 102        u32     last_ack;       /* last time when the ACK spacing is close */
 103        u32     curr_rtt;       /* the minimum rtt of current round */
 104};
 105
 106static inline void bictcp_reset(struct bictcp *ca)
 107{
 108        ca->cnt = 0;
 109        ca->last_max_cwnd = 0;
 110        ca->loss_cwnd = 0;
 111        ca->last_cwnd = 0;
 112        ca->last_time = 0;
 113        ca->bic_origin_point = 0;
 114        ca->bic_K = 0;
 115        ca->delay_min = 0;
 116        ca->epoch_start = 0;
 117        ca->delayed_ack = 2 << ACK_RATIO_SHIFT;
 118        ca->ack_cnt = 0;
 119        ca->tcp_cwnd = 0;
 120        ca->found = 0;
 121}
 122
 123static inline u32 bictcp_clock(void)
 124{
 125#if HZ < 1000
 126        return ktime_to_ms(ktime_get_real());
 127#else
 128        return jiffies_to_msecs(jiffies);
 129#endif
 130}
 131
 132static inline void bictcp_hystart_reset(struct sock *sk)
 133{
 134        struct tcp_sock *tp = tcp_sk(sk);
 135        struct bictcp *ca = inet_csk_ca(sk);
 136
 137        ca->round_start = ca->last_ack = bictcp_clock();
 138        ca->end_seq = tp->snd_nxt;
 139        ca->curr_rtt = 0;
 140        ca->sample_cnt = 0;
 141}
 142
 143static void bictcp_init(struct sock *sk)
 144{
 145        bictcp_reset(inet_csk_ca(sk));
 146
 147        if (hystart)
 148                bictcp_hystart_reset(sk);
 149
 150        if (!hystart && initial_ssthresh)
 151                tcp_sk(sk)->snd_ssthresh = initial_ssthresh;
 152}
 153
 154/* calculate the cubic root of x using a table lookup followed by one
 155 * Newton-Raphson iteration.
 156 * Avg err ~= 0.195%
 157 */
 158static u32 cubic_root(u64 a)
 159{
 160        u32 x, b, shift;
 161        /*
 162         * cbrt(x) MSB values for x MSB values in [0..63].
 163         * Precomputed then refined by hand - Willy Tarreau
 164         *
 165         * For x in [0..63],
 166         *   v = cbrt(x << 18) - 1
 167         *   cbrt(x) = (v[x] + 10) >> 6
 168         */
 169        static const u8 v[] = {
 170                /* 0x00 */    0,   54,   54,   54,  118,  118,  118,  118,
 171                /* 0x08 */  123,  129,  134,  138,  143,  147,  151,  156,
 172                /* 0x10 */  157,  161,  164,  168,  170,  173,  176,  179,
 173                /* 0x18 */  181,  185,  187,  190,  192,  194,  197,  199,
 174                /* 0x20 */  200,  202,  204,  206,  209,  211,  213,  215,
 175                /* 0x28 */  217,  219,  221,  222,  224,  225,  227,  229,
 176                /* 0x30 */  231,  232,  234,  236,  237,  239,  240,  242,
 177                /* 0x38 */  244,  245,  246,  248,  250,  251,  252,  254,
 178        };
 179
 180        b = fls64(a);
 181        if (b < 7) {
 182                /* a in [0..63] */
 183                return ((u32)v[(u32)a] + 35) >> 6;
 184        }
 185
 186        b = ((b * 84) >> 8) - 1;
 187        shift = (a >> (b * 3));
 188
 189        x = ((u32)(((u32)v[shift] + 10) << b)) >> 6;
 190
 191        /*
 192         * Newton-Raphson iteration
 193         *                         2
 194         * x    = ( 2 * x  +  a / x  ) / 3
 195         *  k+1          k         k
 196         */
 197        x = (2 * x + (u32)div64_u64(a, (u64)x * (u64)(x - 1)));
 198        x = ((x * 341) >> 10);
 199        return x;
 200}
 201
 202/*
 203 * Compute congestion window to use.
 204 */
 205static inline void bictcp_update(struct bictcp *ca, u32 cwnd)
 206{
 207        u64 offs;
 208        u32 delta, t, bic_target, max_cnt;
 209
 210        ca->ack_cnt++;  /* count the number of ACKs */
 211
 212        if (ca->last_cwnd == cwnd &&
 213            (s32)(tcp_time_stamp - ca->last_time) <= HZ / 32)
 214                return;
 215
 216        ca->last_cwnd = cwnd;
 217        ca->last_time = tcp_time_stamp;
 218
 219        if (ca->epoch_start == 0) {
 220                ca->epoch_start = tcp_time_stamp;       /* record the beginning of an epoch */
 221                ca->ack_cnt = 1;                        /* start counting */
 222                ca->tcp_cwnd = cwnd;                    /* syn with cubic */
 223
 224                if (ca->last_max_cwnd <= cwnd) {
 225                        ca->bic_K = 0;
 226                        ca->bic_origin_point = cwnd;
 227                } else {
 228                        /* Compute new K based on
 229                         * (wmax-cwnd) * (srtt>>3 / HZ) / c * 2^(3*bictcp_HZ)
 230                         */
 231                        ca->bic_K = cubic_root(cube_factor
 232                                               * (ca->last_max_cwnd - cwnd));
 233                        ca->bic_origin_point = ca->last_max_cwnd;
 234                }
 235        }
 236
 237        /* cubic function - calc*/
 238        /* calculate c * time^3 / rtt,
 239         *  while considering overflow in calculation of time^3
 240         * (so time^3 is done by using 64 bit)
 241         * and without the support of division of 64bit numbers
 242         * (so all divisions are done by using 32 bit)
 243         *  also NOTE the unit of those veriables
 244         *        time  = (t - K) / 2^bictcp_HZ
 245         *        c = bic_scale >> 10
 246         * rtt  = (srtt >> 3) / HZ
 247         * !!! The following code does not have overflow problems,
 248         * if the cwnd < 1 million packets !!!
 249         */
 250
 251        /* change the unit from HZ to bictcp_HZ */
 252        t = ((tcp_time_stamp + msecs_to_jiffies(ca->delay_min>>3)
 253              - ca->epoch_start) << BICTCP_HZ) / HZ;
 254
 255        if (t < ca->bic_K)              /* t - K */
 256                offs = ca->bic_K - t;
 257        else
 258                offs = t - ca->bic_K;
 259
 260        /* c/rtt * (t-K)^3 */
 261        delta = (cube_rtt_scale * offs * offs * offs) >> (10+3*BICTCP_HZ);
 262        if (t < ca->bic_K)                                      /* below origin*/
 263                bic_target = ca->bic_origin_point - delta;
 264        else                                                    /* above origin*/
 265                bic_target = ca->bic_origin_point + delta;
 266
 267        /* cubic function - calc bictcp_cnt*/
 268        if (bic_target > cwnd) {
 269                ca->cnt = cwnd / (bic_target - cwnd);
 270        } else {
 271                ca->cnt = 100 * cwnd;              /* very small increment*/
 272        }
 273
 274        /*
 275         * The initial growth of cubic function may be too conservative
 276         * when the available bandwidth is still unknown.
 277         */
 278        if (ca->loss_cwnd == 0 && ca->cnt > 20)
 279                ca->cnt = 20;   /* increase cwnd 5% per RTT */
 280
 281        /* TCP Friendly */
 282        if (tcp_friendliness) {
 283                u32 scale = beta_scale;
 284                delta = (cwnd * scale) >> 3;
 285                while (ca->ack_cnt > delta) {           /* update tcp cwnd */
 286                        ca->ack_cnt -= delta;
 287                        ca->tcp_cwnd++;
 288                }
 289
 290                if (ca->tcp_cwnd > cwnd){       /* if bic is slower than tcp */
 291                        delta = ca->tcp_cwnd - cwnd;
 292                        max_cnt = cwnd / delta;
 293                        if (ca->cnt > max_cnt)
 294                                ca->cnt = max_cnt;
 295                }
 296        }
 297
 298        ca->cnt = (ca->cnt << ACK_RATIO_SHIFT) / ca->delayed_ack;
 299        if (ca->cnt == 0)                       /* cannot be zero */
 300                ca->cnt = 1;
 301}
 302
 303static void bictcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
 304{
 305        struct tcp_sock *tp = tcp_sk(sk);
 306        struct bictcp *ca = inet_csk_ca(sk);
 307
 308        if (!tcp_is_cwnd_limited(sk, in_flight))
 309                return;
 310
 311        if (tp->snd_cwnd <= tp->snd_ssthresh) {
 312                if (hystart && after(ack, ca->end_seq))
 313                        bictcp_hystart_reset(sk);
 314                tcp_slow_start(tp);
 315        } else {
 316                bictcp_update(ca, tp->snd_cwnd);
 317                tcp_cong_avoid_ai(tp, ca->cnt);
 318        }
 319
 320}
 321
 322static u32 bictcp_recalc_ssthresh(struct sock *sk)
 323{
 324        const struct tcp_sock *tp = tcp_sk(sk);
 325        struct bictcp *ca = inet_csk_ca(sk);
 326
 327        ca->epoch_start = 0;    /* end of epoch */
 328
 329        /* Wmax and fast convergence */
 330        if (tp->snd_cwnd < ca->last_max_cwnd && fast_convergence)
 331                ca->last_max_cwnd = (tp->snd_cwnd * (BICTCP_BETA_SCALE + beta))
 332                        / (2 * BICTCP_BETA_SCALE);
 333        else
 334                ca->last_max_cwnd = tp->snd_cwnd;
 335
 336        ca->loss_cwnd = tp->snd_cwnd;
 337
 338        return max((tp->snd_cwnd * beta) / BICTCP_BETA_SCALE, 2U);
 339}
 340
 341static u32 bictcp_undo_cwnd(struct sock *sk)
 342{
 343        struct bictcp *ca = inet_csk_ca(sk);
 344
 345        return max(tcp_sk(sk)->snd_cwnd, ca->last_max_cwnd);
 346}
 347
 348static void bictcp_state(struct sock *sk, u8 new_state)
 349{
 350        if (new_state == TCP_CA_Loss) {
 351                bictcp_reset(inet_csk_ca(sk));
 352                bictcp_hystart_reset(sk);
 353        }
 354}
 355
 356static void hystart_update(struct sock *sk, u32 delay)
 357{
 358        struct tcp_sock *tp = tcp_sk(sk);
 359        struct bictcp *ca = inet_csk_ca(sk);
 360
 361        if (!(ca->found & hystart_detect)) {
 362                u32 now = bictcp_clock();
 363
 364                /* first detection parameter - ack-train detection */
 365                if ((s32)(now - ca->last_ack) <= hystart_ack_delta) {
 366                        ca->last_ack = now;
 367                        if ((s32)(now - ca->round_start) > ca->delay_min >> 4)
 368                                ca->found |= HYSTART_ACK_TRAIN;
 369                }
 370
 371                /* obtain the minimum delay of more than sampling packets */
 372                if (ca->sample_cnt < HYSTART_MIN_SAMPLES) {
 373                        if (ca->curr_rtt == 0 || ca->curr_rtt > delay)
 374                                ca->curr_rtt = delay;
 375
 376                        ca->sample_cnt++;
 377                } else {
 378                        if (ca->curr_rtt > ca->delay_min +
 379                            HYSTART_DELAY_THRESH(ca->delay_min>>4))
 380                                ca->found |= HYSTART_DELAY;
 381                }
 382                /*
 383                 * Either one of two conditions are met,
 384                 * we exit from slow start immediately.
 385                 */
 386                if (ca->found & hystart_detect)
 387                        tp->snd_ssthresh = tp->snd_cwnd;
 388        }
 389}
 390
 391/* Track delayed acknowledgment ratio using sliding window
 392 * ratio = (15*ratio + sample) / 16
 393 */
 394static void bictcp_acked(struct sock *sk, u32 cnt, s32 rtt_us)
 395{
 396        const struct inet_connection_sock *icsk = inet_csk(sk);
 397        const struct tcp_sock *tp = tcp_sk(sk);
 398        struct bictcp *ca = inet_csk_ca(sk);
 399        u32 delay;
 400
 401        if (icsk->icsk_ca_state == TCP_CA_Open) {
 402                u32 ratio = ca->delayed_ack;
 403
 404                ratio -= ca->delayed_ack >> ACK_RATIO_SHIFT;
 405                ratio += cnt;
 406
 407                ca->delayed_ack = min(ratio, ACK_RATIO_LIMIT);
 408        }
 409
 410        /* Some calls are for duplicates without timetamps */
 411        if (rtt_us < 0)
 412                return;
 413
 414        /* Discard delay samples right after fast recovery */
 415        if ((s32)(tcp_time_stamp - ca->epoch_start) < HZ)
 416                return;
 417
 418        delay = (rtt_us << 3) / USEC_PER_MSEC;
 419        if (delay == 0)
 420                delay = 1;
 421
 422        /* first time call or link delay decreases */
 423        if (ca->delay_min == 0 || ca->delay_min > delay)
 424                ca->delay_min = delay;
 425
 426        /* hystart triggers when cwnd is larger than some threshold */
 427        if (hystart && tp->snd_cwnd <= tp->snd_ssthresh &&
 428            tp->snd_cwnd >= hystart_low_window)
 429                hystart_update(sk, delay);
 430}
 431
 432static struct tcp_congestion_ops cubictcp __read_mostly = {
 433        .init           = bictcp_init,
 434        .ssthresh       = bictcp_recalc_ssthresh,
 435        .cong_avoid     = bictcp_cong_avoid,
 436        .set_state      = bictcp_state,
 437        .undo_cwnd      = bictcp_undo_cwnd,
 438        .pkts_acked     = bictcp_acked,
 439        .owner          = THIS_MODULE,
 440        .name           = "cubic",
 441};
 442
 443static int __init cubictcp_register(void)
 444{
 445        BUILD_BUG_ON(sizeof(struct bictcp) > ICSK_CA_PRIV_SIZE);
 446
 447        /* Precompute a bunch of the scaling factors that are used per-packet
 448         * based on SRTT of 100ms
 449         */
 450
 451        beta_scale = 8*(BICTCP_BETA_SCALE+beta)/ 3 / (BICTCP_BETA_SCALE - beta);
 452
 453        cube_rtt_scale = (bic_scale * 10);      /* 1024*c/rtt */
 454
 455        /* calculate the "K" for (wmax-cwnd) = c/rtt * K^3
 456         *  so K = cubic_root( (wmax-cwnd)*rtt/c )
 457         * the unit of K is bictcp_HZ=2^10, not HZ
 458         *
 459         *  c = bic_scale >> 10
 460         *  rtt = 100ms
 461         *
 462         * the following code has been designed and tested for
 463         * cwnd < 1 million packets
 464         * RTT < 100 seconds
 465         * HZ < 1,000,00  (corresponding to 10 nano-second)
 466         */
 467
 468        /* 1/c * 2^2*bictcp_HZ * srtt */
 469        cube_factor = 1ull << (10+3*BICTCP_HZ); /* 2^40 */
 470
 471        /* divide by bic_scale and by constant Srtt (100ms) */
 472        do_div(cube_factor, bic_scale * 10);
 473
 474        /* hystart needs ms clock resolution */
 475        if (hystart && HZ < 1000)
 476                cubictcp.flags |= TCP_CONG_RTT_STAMP;
 477
 478        return tcp_register_congestion_control(&cubictcp);
 479}
 480
 481static void __exit cubictcp_unregister(void)
 482{
 483        tcp_unregister_congestion_control(&cubictcp);
 484}
 485
 486module_init(cubictcp_register);
 487module_exit(cubictcp_unregister);
 488
 489MODULE_AUTHOR("Sangtae Ha, Stephen Hemminger");
 490MODULE_LICENSE("GPL");
 491MODULE_DESCRIPTION("CUBIC TCP");
 492MODULE_VERSION("2.3");
 493