linux/arch/arm/mm/fault.c
<<
>>
Prefs
   1/*
   2 *  linux/arch/arm/mm/fault.c
   3 *
   4 *  Copyright (C) 1995  Linus Torvalds
   5 *  Modifications for ARM processor (c) 1995-2004 Russell King
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/module.h>
  12#include <linux/signal.h>
  13#include <linux/mm.h>
  14#include <linux/hardirq.h>
  15#include <linux/init.h>
  16#include <linux/kprobes.h>
  17#include <linux/uaccess.h>
  18#include <linux/page-flags.h>
  19#include <linux/sched.h>
  20#include <linux/highmem.h>
  21#include <linux/perf_event.h>
  22
  23#include <asm/exception.h>
  24#include <asm/system.h>
  25#include <asm/pgtable.h>
  26#include <asm/tlbflush.h>
  27
  28#include "fault.h"
  29
  30#ifdef CONFIG_MMU
  31
  32#ifdef CONFIG_KPROBES
  33static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
  34{
  35        int ret = 0;
  36
  37        if (!user_mode(regs)) {
  38                /* kprobe_running() needs smp_processor_id() */
  39                preempt_disable();
  40                if (kprobe_running() && kprobe_fault_handler(regs, fsr))
  41                        ret = 1;
  42                preempt_enable();
  43        }
  44
  45        return ret;
  46}
  47#else
  48static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
  49{
  50        return 0;
  51}
  52#endif
  53
  54/*
  55 * This is useful to dump out the page tables associated with
  56 * 'addr' in mm 'mm'.
  57 */
  58void show_pte(struct mm_struct *mm, unsigned long addr)
  59{
  60        pgd_t *pgd;
  61
  62        if (!mm)
  63                mm = &init_mm;
  64
  65        printk(KERN_ALERT "pgd = %p\n", mm->pgd);
  66        pgd = pgd_offset(mm, addr);
  67        printk(KERN_ALERT "[%08lx] *pgd=%08llx",
  68                        addr, (long long)pgd_val(*pgd));
  69
  70        do {
  71                pud_t *pud;
  72                pmd_t *pmd;
  73                pte_t *pte;
  74
  75                if (pgd_none(*pgd))
  76                        break;
  77
  78                if (pgd_bad(*pgd)) {
  79                        printk("(bad)");
  80                        break;
  81                }
  82
  83                pud = pud_offset(pgd, addr);
  84                if (PTRS_PER_PUD != 1)
  85                        printk(", *pud=%08llx", (long long)pud_val(*pud));
  86
  87                if (pud_none(*pud))
  88                        break;
  89
  90                if (pud_bad(*pud)) {
  91                        printk("(bad)");
  92                        break;
  93                }
  94
  95                pmd = pmd_offset(pud, addr);
  96                if (PTRS_PER_PMD != 1)
  97                        printk(", *pmd=%08llx", (long long)pmd_val(*pmd));
  98
  99                if (pmd_none(*pmd))
 100                        break;
 101
 102                if (pmd_bad(*pmd)) {
 103                        printk("(bad)");
 104                        break;
 105                }
 106
 107                /* We must not map this if we have highmem enabled */
 108                if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT)))
 109                        break;
 110
 111                pte = pte_offset_map(pmd, addr);
 112                printk(", *pte=%08llx", (long long)pte_val(*pte));
 113#ifndef CONFIG_ARM_LPAE
 114                printk(", *ppte=%08llx",
 115                       (long long)pte_val(pte[PTE_HWTABLE_PTRS]));
 116#endif
 117                pte_unmap(pte);
 118        } while(0);
 119
 120        printk("\n");
 121}
 122#else                                   /* CONFIG_MMU */
 123void show_pte(struct mm_struct *mm, unsigned long addr)
 124{ }
 125#endif                                  /* CONFIG_MMU */
 126
 127/*
 128 * Oops.  The kernel tried to access some page that wasn't present.
 129 */
 130static void
 131__do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
 132                  struct pt_regs *regs)
 133{
 134        /*
 135         * Are we prepared to handle this kernel fault?
 136         */
 137        if (fixup_exception(regs))
 138                return;
 139
 140        /*
 141         * No handler, we'll have to terminate things with extreme prejudice.
 142         */
 143        bust_spinlocks(1);
 144        printk(KERN_ALERT
 145                "Unable to handle kernel %s at virtual address %08lx\n",
 146                (addr < PAGE_SIZE) ? "NULL pointer dereference" :
 147                "paging request", addr);
 148
 149        show_pte(mm, addr);
 150        die("Oops", regs, fsr);
 151        bust_spinlocks(0);
 152        do_exit(SIGKILL);
 153}
 154
 155/*
 156 * Something tried to access memory that isn't in our memory map..
 157 * User mode accesses just cause a SIGSEGV
 158 */
 159static void
 160__do_user_fault(struct task_struct *tsk, unsigned long addr,
 161                unsigned int fsr, unsigned int sig, int code,
 162                struct pt_regs *regs)
 163{
 164        struct siginfo si;
 165
 166#ifdef CONFIG_DEBUG_USER
 167        if (user_debug & UDBG_SEGV) {
 168                printk(KERN_DEBUG "%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n",
 169                       tsk->comm, sig, addr, fsr);
 170                show_pte(tsk->mm, addr);
 171                show_regs(regs);
 172        }
 173#endif
 174
 175        tsk->thread.address = addr;
 176        tsk->thread.error_code = fsr;
 177        tsk->thread.trap_no = 14;
 178        si.si_signo = sig;
 179        si.si_errno = 0;
 180        si.si_code = code;
 181        si.si_addr = (void __user *)addr;
 182        force_sig_info(sig, &si, tsk);
 183}
 184
 185void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
 186{
 187        struct task_struct *tsk = current;
 188        struct mm_struct *mm = tsk->active_mm;
 189
 190        /*
 191         * If we are in kernel mode at this point, we
 192         * have no context to handle this fault with.
 193         */
 194        if (user_mode(regs))
 195                __do_user_fault(tsk, addr, fsr, SIGSEGV, SEGV_MAPERR, regs);
 196        else
 197                __do_kernel_fault(mm, addr, fsr, regs);
 198}
 199
 200#ifdef CONFIG_MMU
 201#define VM_FAULT_BADMAP         0x010000
 202#define VM_FAULT_BADACCESS      0x020000
 203
 204/*
 205 * Check that the permissions on the VMA allow for the fault which occurred.
 206 * If we encountered a write fault, we must have write permission, otherwise
 207 * we allow any permission.
 208 */
 209static inline bool access_error(unsigned int fsr, struct vm_area_struct *vma)
 210{
 211        unsigned int mask = VM_READ | VM_WRITE | VM_EXEC;
 212
 213        if (fsr & FSR_WRITE)
 214                mask = VM_WRITE;
 215        if (fsr & FSR_LNX_PF)
 216                mask = VM_EXEC;
 217
 218        return vma->vm_flags & mask ? false : true;
 219}
 220
 221static int __kprobes
 222__do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
 223                unsigned int flags, struct task_struct *tsk)
 224{
 225        struct vm_area_struct *vma;
 226        int fault;
 227
 228        vma = find_vma(mm, addr);
 229        fault = VM_FAULT_BADMAP;
 230        if (unlikely(!vma))
 231                goto out;
 232        if (unlikely(vma->vm_start > addr))
 233                goto check_stack;
 234
 235        /*
 236         * Ok, we have a good vm_area for this
 237         * memory access, so we can handle it.
 238         */
 239good_area:
 240        if (access_error(fsr, vma)) {
 241                fault = VM_FAULT_BADACCESS;
 242                goto out;
 243        }
 244
 245        return handle_mm_fault(mm, vma, addr & PAGE_MASK, flags);
 246
 247check_stack:
 248        if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr))
 249                goto good_area;
 250out:
 251        return fault;
 252}
 253
 254static int __kprobes
 255do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
 256{
 257        struct task_struct *tsk;
 258        struct mm_struct *mm;
 259        int fault, sig, code;
 260        int write = fsr & FSR_WRITE;
 261        unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE |
 262                                (write ? FAULT_FLAG_WRITE : 0);
 263
 264        if (notify_page_fault(regs, fsr))
 265                return 0;
 266
 267        tsk = current;
 268        mm  = tsk->mm;
 269
 270        /* Enable interrupts if they were enabled in the parent context. */
 271        if (interrupts_enabled(regs))
 272                local_irq_enable();
 273
 274        /*
 275         * If we're in an interrupt or have no user
 276         * context, we must not take the fault..
 277         */
 278        if (in_atomic() || !mm)
 279                goto no_context;
 280
 281        /*
 282         * As per x86, we may deadlock here.  However, since the kernel only
 283         * validly references user space from well defined areas of the code,
 284         * we can bug out early if this is from code which shouldn't.
 285         */
 286        if (!down_read_trylock(&mm->mmap_sem)) {
 287                if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc))
 288                        goto no_context;
 289retry:
 290                down_read(&mm->mmap_sem);
 291        } else {
 292                /*
 293                 * The above down_read_trylock() might have succeeded in
 294                 * which case, we'll have missed the might_sleep() from
 295                 * down_read()
 296                 */
 297                might_sleep();
 298#ifdef CONFIG_DEBUG_VM
 299                if (!user_mode(regs) &&
 300                    !search_exception_tables(regs->ARM_pc))
 301                        goto no_context;
 302#endif
 303        }
 304
 305        fault = __do_page_fault(mm, addr, fsr, flags, tsk);
 306
 307        /* If we need to retry but a fatal signal is pending, handle the
 308         * signal first. We do not need to release the mmap_sem because
 309         * it would already be released in __lock_page_or_retry in
 310         * mm/filemap.c. */
 311        if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
 312                return 0;
 313
 314        /*
 315         * Major/minor page fault accounting is only done on the
 316         * initial attempt. If we go through a retry, it is extremely
 317         * likely that the page will be found in page cache at that point.
 318         */
 319
 320        perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
 321        if (flags & FAULT_FLAG_ALLOW_RETRY) {
 322                if (fault & VM_FAULT_MAJOR) {
 323                        tsk->maj_flt++;
 324                        perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
 325                                        regs, addr);
 326                } else {
 327                        tsk->min_flt++;
 328                        perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
 329                                        regs, addr);
 330                }
 331                if (fault & VM_FAULT_RETRY) {
 332                        /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
 333                        * of starvation. */
 334                        flags &= ~FAULT_FLAG_ALLOW_RETRY;
 335                        goto retry;
 336                }
 337        }
 338
 339        up_read(&mm->mmap_sem);
 340
 341        /*
 342         * Handle the "normal" case first - VM_FAULT_MAJOR / VM_FAULT_MINOR
 343         */
 344        if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS))))
 345                return 0;
 346
 347        if (fault & VM_FAULT_OOM) {
 348                /*
 349                 * We ran out of memory, call the OOM killer, and return to
 350                 * userspace (which will retry the fault, or kill us if we
 351                 * got oom-killed)
 352                 */
 353                pagefault_out_of_memory();
 354                return 0;
 355        }
 356
 357        /*
 358         * If we are in kernel mode at this point, we
 359         * have no context to handle this fault with.
 360         */
 361        if (!user_mode(regs))
 362                goto no_context;
 363
 364        if (fault & VM_FAULT_SIGBUS) {
 365                /*
 366                 * We had some memory, but were unable to
 367                 * successfully fix up this page fault.
 368                 */
 369                sig = SIGBUS;
 370                code = BUS_ADRERR;
 371        } else {
 372                /*
 373                 * Something tried to access memory that
 374                 * isn't in our memory map..
 375                 */
 376                sig = SIGSEGV;
 377                code = fault == VM_FAULT_BADACCESS ?
 378                        SEGV_ACCERR : SEGV_MAPERR;
 379        }
 380
 381        __do_user_fault(tsk, addr, fsr, sig, code, regs);
 382        return 0;
 383
 384no_context:
 385        __do_kernel_fault(mm, addr, fsr, regs);
 386        return 0;
 387}
 388#else                                   /* CONFIG_MMU */
 389static int
 390do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
 391{
 392        return 0;
 393}
 394#endif                                  /* CONFIG_MMU */
 395
 396/*
 397 * First Level Translation Fault Handler
 398 *
 399 * We enter here because the first level page table doesn't contain
 400 * a valid entry for the address.
 401 *
 402 * If the address is in kernel space (>= TASK_SIZE), then we are
 403 * probably faulting in the vmalloc() area.
 404 *
 405 * If the init_task's first level page tables contains the relevant
 406 * entry, we copy the it to this task.  If not, we send the process
 407 * a signal, fixup the exception, or oops the kernel.
 408 *
 409 * NOTE! We MUST NOT take any locks for this case. We may be in an
 410 * interrupt or a critical region, and should only copy the information
 411 * from the master page table, nothing more.
 412 */
 413#ifdef CONFIG_MMU
 414static int __kprobes
 415do_translation_fault(unsigned long addr, unsigned int fsr,
 416                     struct pt_regs *regs)
 417{
 418        unsigned int index;
 419        pgd_t *pgd, *pgd_k;
 420        pud_t *pud, *pud_k;
 421        pmd_t *pmd, *pmd_k;
 422
 423        if (addr < TASK_SIZE)
 424                return do_page_fault(addr, fsr, regs);
 425
 426        if (user_mode(regs))
 427                goto bad_area;
 428
 429        index = pgd_index(addr);
 430
 431        /*
 432         * FIXME: CP15 C1 is write only on ARMv3 architectures.
 433         */
 434        pgd = cpu_get_pgd() + index;
 435        pgd_k = init_mm.pgd + index;
 436
 437        if (pgd_none(*pgd_k))
 438                goto bad_area;
 439        if (!pgd_present(*pgd))
 440                set_pgd(pgd, *pgd_k);
 441
 442        pud = pud_offset(pgd, addr);
 443        pud_k = pud_offset(pgd_k, addr);
 444
 445        if (pud_none(*pud_k))
 446                goto bad_area;
 447        if (!pud_present(*pud))
 448                set_pud(pud, *pud_k);
 449
 450        pmd = pmd_offset(pud, addr);
 451        pmd_k = pmd_offset(pud_k, addr);
 452
 453#ifdef CONFIG_ARM_LPAE
 454        /*
 455         * Only one hardware entry per PMD with LPAE.
 456         */
 457        index = 0;
 458#else
 459        /*
 460         * On ARM one Linux PGD entry contains two hardware entries (see page
 461         * tables layout in pgtable.h). We normally guarantee that we always
 462         * fill both L1 entries. But create_mapping() doesn't follow the rule.
 463         * It can create inidividual L1 entries, so here we have to call
 464         * pmd_none() check for the entry really corresponded to address, not
 465         * for the first of pair.
 466         */
 467        index = (addr >> SECTION_SHIFT) & 1;
 468#endif
 469        if (pmd_none(pmd_k[index]))
 470                goto bad_area;
 471
 472        copy_pmd(pmd, pmd_k);
 473        return 0;
 474
 475bad_area:
 476        do_bad_area(addr, fsr, regs);
 477        return 0;
 478}
 479#else                                   /* CONFIG_MMU */
 480static int
 481do_translation_fault(unsigned long addr, unsigned int fsr,
 482                     struct pt_regs *regs)
 483{
 484        return 0;
 485}
 486#endif                                  /* CONFIG_MMU */
 487
 488/*
 489 * Some section permission faults need to be handled gracefully.
 490 * They can happen due to a __{get,put}_user during an oops.
 491 */
 492static int
 493do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
 494{
 495        do_bad_area(addr, fsr, regs);
 496        return 0;
 497}
 498
 499/*
 500 * This abort handler always returns "fault".
 501 */
 502static int
 503do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
 504{
 505        return 1;
 506}
 507
 508struct fsr_info {
 509        int     (*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs);
 510        int     sig;
 511        int     code;
 512        const char *name;
 513};
 514
 515/* FSR definition */
 516#ifdef CONFIG_ARM_LPAE
 517#include "fsr-3level.c"
 518#else
 519#include "fsr-2level.c"
 520#endif
 521
 522void __init
 523hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
 524                int sig, int code, const char *name)
 525{
 526        if (nr < 0 || nr >= ARRAY_SIZE(fsr_info))
 527                BUG();
 528
 529        fsr_info[nr].fn   = fn;
 530        fsr_info[nr].sig  = sig;
 531        fsr_info[nr].code = code;
 532        fsr_info[nr].name = name;
 533}
 534
 535/*
 536 * Dispatch a data abort to the relevant handler.
 537 */
 538asmlinkage void __exception
 539do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
 540{
 541        const struct fsr_info *inf = fsr_info + fsr_fs(fsr);
 542        struct siginfo info;
 543
 544        if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs))
 545                return;
 546
 547        printk(KERN_ALERT "Unhandled fault: %s (0x%03x) at 0x%08lx\n",
 548                inf->name, fsr, addr);
 549
 550        info.si_signo = inf->sig;
 551        info.si_errno = 0;
 552        info.si_code  = inf->code;
 553        info.si_addr  = (void __user *)addr;
 554        arm_notify_die("", regs, &info, fsr, 0);
 555}
 556
 557void __init
 558hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
 559                 int sig, int code, const char *name)
 560{
 561        if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info))
 562                BUG();
 563
 564        ifsr_info[nr].fn   = fn;
 565        ifsr_info[nr].sig  = sig;
 566        ifsr_info[nr].code = code;
 567        ifsr_info[nr].name = name;
 568}
 569
 570asmlinkage void __exception
 571do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs)
 572{
 573        const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr);
 574        struct siginfo info;
 575
 576        if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs))
 577                return;
 578
 579        printk(KERN_ALERT "Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n",
 580                inf->name, ifsr, addr);
 581
 582        info.si_signo = inf->sig;
 583        info.si_errno = 0;
 584        info.si_code  = inf->code;
 585        info.si_addr  = (void __user *)addr;
 586        arm_notify_die("", regs, &info, ifsr, 0);
 587}
 588
 589#ifndef CONFIG_ARM_LPAE
 590static int __init exceptions_init(void)
 591{
 592        if (cpu_architecture() >= CPU_ARCH_ARMv6) {
 593                hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR,
 594                                "I-cache maintenance fault");
 595        }
 596
 597        if (cpu_architecture() >= CPU_ARCH_ARMv7) {
 598                /*
 599                 * TODO: Access flag faults introduced in ARMv6K.
 600                 * Runtime check for 'K' extension is needed
 601                 */
 602                hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR,
 603                                "section access flag fault");
 604                hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR,
 605                                "section access flag fault");
 606        }
 607
 608        return 0;
 609}
 610
 611arch_initcall(exceptions_init);
 612#endif
 613