linux/arch/mips/pci/pci-octeon.c
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 2005-2009 Cavium Networks
   7 */
   8#include <linux/kernel.h>
   9#include <linux/init.h>
  10#include <linux/pci.h>
  11#include <linux/interrupt.h>
  12#include <linux/time.h>
  13#include <linux/delay.h>
  14#include <linux/swiotlb.h>
  15
  16#include <asm/time.h>
  17
  18#include <asm/octeon/octeon.h>
  19#include <asm/octeon/cvmx-npi-defs.h>
  20#include <asm/octeon/cvmx-pci-defs.h>
  21#include <asm/octeon/pci-octeon.h>
  22
  23#include <dma-coherence.h>
  24
  25#define USE_OCTEON_INTERNAL_ARBITER
  26
  27/*
  28 * Octeon's PCI controller uses did=3, subdid=2 for PCI IO
  29 * addresses. Use PCI endian swapping 1 so no address swapping is
  30 * necessary. The Linux io routines will endian swap the data.
  31 */
  32#define OCTEON_PCI_IOSPACE_BASE     0x80011a0400000000ull
  33#define OCTEON_PCI_IOSPACE_SIZE     (1ull<<32)
  34
  35/* Octeon't PCI controller uses did=3, subdid=3 for PCI memory. */
  36#define OCTEON_PCI_MEMSPACE_OFFSET  (0x00011b0000000000ull)
  37
  38u64 octeon_bar1_pci_phys;
  39
  40/**
  41 * This is the bit decoding used for the Octeon PCI controller addresses
  42 */
  43union octeon_pci_address {
  44        uint64_t u64;
  45        struct {
  46                uint64_t upper:2;
  47                uint64_t reserved:13;
  48                uint64_t io:1;
  49                uint64_t did:5;
  50                uint64_t subdid:3;
  51                uint64_t reserved2:4;
  52                uint64_t endian_swap:2;
  53                uint64_t reserved3:10;
  54                uint64_t bus:8;
  55                uint64_t dev:5;
  56                uint64_t func:3;
  57                uint64_t reg:8;
  58        } s;
  59};
  60
  61int __initdata (*octeon_pcibios_map_irq)(const struct pci_dev *dev,
  62                                         u8 slot, u8 pin);
  63enum octeon_dma_bar_type octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_INVALID;
  64
  65/**
  66 * Map a PCI device to the appropriate interrupt line
  67 *
  68 * @dev:    The Linux PCI device structure for the device to map
  69 * @slot:   The slot number for this device on __BUS 0__. Linux
  70 *               enumerates through all the bridges and figures out the
  71 *               slot on Bus 0 where this device eventually hooks to.
  72 * @pin:    The PCI interrupt pin read from the device, then swizzled
  73 *               as it goes through each bridge.
  74 * Returns Interrupt number for the device
  75 */
  76int __init pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin)
  77{
  78        if (octeon_pcibios_map_irq)
  79                return octeon_pcibios_map_irq(dev, slot, pin);
  80        else
  81                panic("octeon_pcibios_map_irq not set.");
  82}
  83
  84
  85/*
  86 * Called to perform platform specific PCI setup
  87 */
  88int pcibios_plat_dev_init(struct pci_dev *dev)
  89{
  90        uint16_t config;
  91        uint32_t dconfig;
  92        int pos;
  93        /*
  94         * Force the Cache line setting to 64 bytes. The standard
  95         * Linux bus scan doesn't seem to set it. Octeon really has
  96         * 128 byte lines, but Intel bridges get really upset if you
  97         * try and set values above 64 bytes. Value is specified in
  98         * 32bit words.
  99         */
 100        pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, 64 / 4);
 101        /* Set latency timers for all devices */
 102        pci_write_config_byte(dev, PCI_LATENCY_TIMER, 64);
 103
 104        /* Enable reporting System errors and parity errors on all devices */
 105        /* Enable parity checking and error reporting */
 106        pci_read_config_word(dev, PCI_COMMAND, &config);
 107        config |= PCI_COMMAND_PARITY | PCI_COMMAND_SERR;
 108        pci_write_config_word(dev, PCI_COMMAND, config);
 109
 110        if (dev->subordinate) {
 111                /* Set latency timers on sub bridges */
 112                pci_write_config_byte(dev, PCI_SEC_LATENCY_TIMER, 64);
 113                /* More bridge error detection */
 114                pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &config);
 115                config |= PCI_BRIDGE_CTL_PARITY | PCI_BRIDGE_CTL_SERR;
 116                pci_write_config_word(dev, PCI_BRIDGE_CONTROL, config);
 117        }
 118
 119        /* Enable the PCIe normal error reporting */
 120        pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
 121        if (pos) {
 122                /* Update Device Control */
 123                pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &config);
 124                config |= PCI_EXP_DEVCTL_CERE; /* Correctable Error Reporting */
 125                config |= PCI_EXP_DEVCTL_NFERE; /* Non-Fatal Error Reporting */
 126                config |= PCI_EXP_DEVCTL_FERE;  /* Fatal Error Reporting */
 127                config |= PCI_EXP_DEVCTL_URRE;  /* Unsupported Request */
 128                pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, config);
 129        }
 130
 131        /* Find the Advanced Error Reporting capability */
 132        pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR);
 133        if (pos) {
 134                /* Clear Uncorrectable Error Status */
 135                pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS,
 136                                      &dconfig);
 137                pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS,
 138                                       dconfig);
 139                /* Enable reporting of all uncorrectable errors */
 140                /* Uncorrectable Error Mask - turned on bits disable errors */
 141                pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_MASK, 0);
 142                /*
 143                 * Leave severity at HW default. This only controls if
 144                 * errors are reported as uncorrectable or
 145                 * correctable, not if the error is reported.
 146                 */
 147                /* PCI_ERR_UNCOR_SEVER - Uncorrectable Error Severity */
 148                /* Clear Correctable Error Status */
 149                pci_read_config_dword(dev, pos + PCI_ERR_COR_STATUS, &dconfig);
 150                pci_write_config_dword(dev, pos + PCI_ERR_COR_STATUS, dconfig);
 151                /* Enable reporting of all correctable errors */
 152                /* Correctable Error Mask - turned on bits disable errors */
 153                pci_write_config_dword(dev, pos + PCI_ERR_COR_MASK, 0);
 154                /* Advanced Error Capabilities */
 155                pci_read_config_dword(dev, pos + PCI_ERR_CAP, &dconfig);
 156                /* ECRC Generation Enable */
 157                if (config & PCI_ERR_CAP_ECRC_GENC)
 158                        config |= PCI_ERR_CAP_ECRC_GENE;
 159                /* ECRC Check Enable */
 160                if (config & PCI_ERR_CAP_ECRC_CHKC)
 161                        config |= PCI_ERR_CAP_ECRC_CHKE;
 162                pci_write_config_dword(dev, pos + PCI_ERR_CAP, dconfig);
 163                /* PCI_ERR_HEADER_LOG - Header Log Register (16 bytes) */
 164                /* Report all errors to the root complex */
 165                pci_write_config_dword(dev, pos + PCI_ERR_ROOT_COMMAND,
 166                                       PCI_ERR_ROOT_CMD_COR_EN |
 167                                       PCI_ERR_ROOT_CMD_NONFATAL_EN |
 168                                       PCI_ERR_ROOT_CMD_FATAL_EN);
 169                /* Clear the Root status register */
 170                pci_read_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, &dconfig);
 171                pci_write_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, dconfig);
 172        }
 173
 174        dev->dev.archdata.dma_ops = octeon_pci_dma_map_ops;
 175
 176        return 0;
 177}
 178
 179/**
 180 * Return the mapping of PCI device number to IRQ line. Each
 181 * character in the return string represents the interrupt
 182 * line for the device at that position. Device 1 maps to the
 183 * first character, etc. The characters A-D are used for PCI
 184 * interrupts.
 185 *
 186 * Returns PCI interrupt mapping
 187 */
 188const char *octeon_get_pci_interrupts(void)
 189{
 190        /*
 191         * Returning an empty string causes the interrupts to be
 192         * routed based on the PCI specification. From the PCI spec:
 193         *
 194         * INTA# of Device Number 0 is connected to IRQW on the system
 195         * board.  (Device Number has no significance regarding being
 196         * located on the system board or in a connector.) INTA# of
 197         * Device Number 1 is connected to IRQX on the system
 198         * board. INTA# of Device Number 2 is connected to IRQY on the
 199         * system board. INTA# of Device Number 3 is connected to IRQZ
 200         * on the system board. The table below describes how each
 201         * agent's INTx# lines are connected to the system board
 202         * interrupt lines. The following equation can be used to
 203         * determine to which INTx# signal on the system board a given
 204         * device's INTx# line(s) is connected.
 205         *
 206         * MB = (D + I) MOD 4 MB = System board Interrupt (IRQW = 0,
 207         * IRQX = 1, IRQY = 2, and IRQZ = 3) D = Device Number I =
 208         * Interrupt Number (INTA# = 0, INTB# = 1, INTC# = 2, and
 209         * INTD# = 3)
 210         */
 211        switch (octeon_bootinfo->board_type) {
 212        case CVMX_BOARD_TYPE_NAO38:
 213                /* This is really the NAC38 */
 214                return "AAAAADABAAAAAAAAAAAAAAAAAAAAAAAA";
 215        case CVMX_BOARD_TYPE_EBH3100:
 216        case CVMX_BOARD_TYPE_CN3010_EVB_HS5:
 217        case CVMX_BOARD_TYPE_CN3005_EVB_HS5:
 218                return "AAABAAAAAAAAAAAAAAAAAAAAAAAAAAAA";
 219        case CVMX_BOARD_TYPE_BBGW_REF:
 220                return "AABCD";
 221        case CVMX_BOARD_TYPE_THUNDER:
 222        case CVMX_BOARD_TYPE_EBH3000:
 223        default:
 224                return "";
 225        }
 226}
 227
 228/**
 229 * Map a PCI device to the appropriate interrupt line
 230 *
 231 * @dev:    The Linux PCI device structure for the device to map
 232 * @slot:   The slot number for this device on __BUS 0__. Linux
 233 *               enumerates through all the bridges and figures out the
 234 *               slot on Bus 0 where this device eventually hooks to.
 235 * @pin:    The PCI interrupt pin read from the device, then swizzled
 236 *               as it goes through each bridge.
 237 * Returns Interrupt number for the device
 238 */
 239int __init octeon_pci_pcibios_map_irq(const struct pci_dev *dev,
 240                                      u8 slot, u8 pin)
 241{
 242        int irq_num;
 243        const char *interrupts;
 244        int dev_num;
 245
 246        /* Get the board specific interrupt mapping */
 247        interrupts = octeon_get_pci_interrupts();
 248
 249        dev_num = dev->devfn >> 3;
 250        if (dev_num < strlen(interrupts))
 251                irq_num = ((interrupts[dev_num] - 'A' + pin - 1) & 3) +
 252                        OCTEON_IRQ_PCI_INT0;
 253        else
 254                irq_num = ((slot + pin - 3) & 3) + OCTEON_IRQ_PCI_INT0;
 255        return irq_num;
 256}
 257
 258
 259/*
 260 * Read a value from configuration space
 261 */
 262static int octeon_read_config(struct pci_bus *bus, unsigned int devfn,
 263                              int reg, int size, u32 *val)
 264{
 265        union octeon_pci_address pci_addr;
 266
 267        pci_addr.u64 = 0;
 268        pci_addr.s.upper = 2;
 269        pci_addr.s.io = 1;
 270        pci_addr.s.did = 3;
 271        pci_addr.s.subdid = 1;
 272        pci_addr.s.endian_swap = 1;
 273        pci_addr.s.bus = bus->number;
 274        pci_addr.s.dev = devfn >> 3;
 275        pci_addr.s.func = devfn & 0x7;
 276        pci_addr.s.reg = reg;
 277
 278#if PCI_CONFIG_SPACE_DELAY
 279        udelay(PCI_CONFIG_SPACE_DELAY);
 280#endif
 281        switch (size) {
 282        case 4:
 283                *val = le32_to_cpu(cvmx_read64_uint32(pci_addr.u64));
 284                return PCIBIOS_SUCCESSFUL;
 285        case 2:
 286                *val = le16_to_cpu(cvmx_read64_uint16(pci_addr.u64));
 287                return PCIBIOS_SUCCESSFUL;
 288        case 1:
 289                *val = cvmx_read64_uint8(pci_addr.u64);
 290                return PCIBIOS_SUCCESSFUL;
 291        }
 292        return PCIBIOS_FUNC_NOT_SUPPORTED;
 293}
 294
 295
 296/*
 297 * Write a value to PCI configuration space
 298 */
 299static int octeon_write_config(struct pci_bus *bus, unsigned int devfn,
 300                               int reg, int size, u32 val)
 301{
 302        union octeon_pci_address pci_addr;
 303
 304        pci_addr.u64 = 0;
 305        pci_addr.s.upper = 2;
 306        pci_addr.s.io = 1;
 307        pci_addr.s.did = 3;
 308        pci_addr.s.subdid = 1;
 309        pci_addr.s.endian_swap = 1;
 310        pci_addr.s.bus = bus->number;
 311        pci_addr.s.dev = devfn >> 3;
 312        pci_addr.s.func = devfn & 0x7;
 313        pci_addr.s.reg = reg;
 314
 315#if PCI_CONFIG_SPACE_DELAY
 316        udelay(PCI_CONFIG_SPACE_DELAY);
 317#endif
 318        switch (size) {
 319        case 4:
 320                cvmx_write64_uint32(pci_addr.u64, cpu_to_le32(val));
 321                return PCIBIOS_SUCCESSFUL;
 322        case 2:
 323                cvmx_write64_uint16(pci_addr.u64, cpu_to_le16(val));
 324                return PCIBIOS_SUCCESSFUL;
 325        case 1:
 326                cvmx_write64_uint8(pci_addr.u64, val);
 327                return PCIBIOS_SUCCESSFUL;
 328        }
 329        return PCIBIOS_FUNC_NOT_SUPPORTED;
 330}
 331
 332
 333static struct pci_ops octeon_pci_ops = {
 334        octeon_read_config,
 335        octeon_write_config,
 336};
 337
 338static struct resource octeon_pci_mem_resource = {
 339        .start = 0,
 340        .end = 0,
 341        .name = "Octeon PCI MEM",
 342        .flags = IORESOURCE_MEM,
 343};
 344
 345/*
 346 * PCI ports must be above 16KB so the ISA bus filtering in the PCI-X to PCI
 347 * bridge
 348 */
 349static struct resource octeon_pci_io_resource = {
 350        .start = 0x4000,
 351        .end = OCTEON_PCI_IOSPACE_SIZE - 1,
 352        .name = "Octeon PCI IO",
 353        .flags = IORESOURCE_IO,
 354};
 355
 356static struct pci_controller octeon_pci_controller = {
 357        .pci_ops = &octeon_pci_ops,
 358        .mem_resource = &octeon_pci_mem_resource,
 359        .mem_offset = OCTEON_PCI_MEMSPACE_OFFSET,
 360        .io_resource = &octeon_pci_io_resource,
 361        .io_offset = 0,
 362        .io_map_base = OCTEON_PCI_IOSPACE_BASE,
 363};
 364
 365
 366/*
 367 * Low level initialize the Octeon PCI controller
 368 */
 369static void octeon_pci_initialize(void)
 370{
 371        union cvmx_pci_cfg01 cfg01;
 372        union cvmx_npi_ctl_status ctl_status;
 373        union cvmx_pci_ctl_status_2 ctl_status_2;
 374        union cvmx_pci_cfg19 cfg19;
 375        union cvmx_pci_cfg16 cfg16;
 376        union cvmx_pci_cfg22 cfg22;
 377        union cvmx_pci_cfg56 cfg56;
 378
 379        /* Reset the PCI Bus */
 380        cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x1);
 381        cvmx_read_csr(CVMX_CIU_SOFT_PRST);
 382
 383        udelay(2000);           /* Hold PCI reset for 2 ms */
 384
 385        ctl_status.u64 = 0;     /* cvmx_read_csr(CVMX_NPI_CTL_STATUS); */
 386        ctl_status.s.max_word = 1;
 387        ctl_status.s.timer = 1;
 388        cvmx_write_csr(CVMX_NPI_CTL_STATUS, ctl_status.u64);
 389
 390        /* Deassert PCI reset and advertize PCX Host Mode Device Capability
 391           (64b) */
 392        cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x4);
 393        cvmx_read_csr(CVMX_CIU_SOFT_PRST);
 394
 395        udelay(2000);           /* Wait 2 ms after deasserting PCI reset */
 396
 397        ctl_status_2.u32 = 0;
 398        ctl_status_2.s.tsr_hwm = 1;     /* Initializes to 0.  Must be set
 399                                           before any PCI reads. */
 400        ctl_status_2.s.bar2pres = 1;    /* Enable BAR2 */
 401        ctl_status_2.s.bar2_enb = 1;
 402        ctl_status_2.s.bar2_cax = 1;    /* Don't use L2 */
 403        ctl_status_2.s.bar2_esx = 1;
 404        ctl_status_2.s.pmo_amod = 1;    /* Round robin priority */
 405        if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) {
 406                /* BAR1 hole */
 407                ctl_status_2.s.bb1_hole = OCTEON_PCI_BAR1_HOLE_BITS;
 408                ctl_status_2.s.bb1_siz = 1;  /* BAR1 is 2GB */
 409                ctl_status_2.s.bb_ca = 1;    /* Don't use L2 with big bars */
 410                ctl_status_2.s.bb_es = 1;    /* Big bar in byte swap mode */
 411                ctl_status_2.s.bb1 = 1;      /* BAR1 is big */
 412                ctl_status_2.s.bb0 = 1;      /* BAR0 is big */
 413        }
 414
 415        octeon_npi_write32(CVMX_NPI_PCI_CTL_STATUS_2, ctl_status_2.u32);
 416        udelay(2000);           /* Wait 2 ms before doing PCI reads */
 417
 418        ctl_status_2.u32 = octeon_npi_read32(CVMX_NPI_PCI_CTL_STATUS_2);
 419        pr_notice("PCI Status: %s %s-bit\n",
 420                  ctl_status_2.s.ap_pcix ? "PCI-X" : "PCI",
 421                  ctl_status_2.s.ap_64ad ? "64" : "32");
 422
 423        if (OCTEON_IS_MODEL(OCTEON_CN58XX) || OCTEON_IS_MODEL(OCTEON_CN50XX)) {
 424                union cvmx_pci_cnt_reg cnt_reg_start;
 425                union cvmx_pci_cnt_reg cnt_reg_end;
 426                unsigned long cycles, pci_clock;
 427
 428                cnt_reg_start.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
 429                cycles = read_c0_cvmcount();
 430                udelay(1000);
 431                cnt_reg_end.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
 432                cycles = read_c0_cvmcount() - cycles;
 433                pci_clock = (cnt_reg_end.s.pcicnt - cnt_reg_start.s.pcicnt) /
 434                            (cycles / (mips_hpt_frequency / 1000000));
 435                pr_notice("PCI Clock: %lu MHz\n", pci_clock);
 436        }
 437
 438        /*
 439         * TDOMC must be set to one in PCI mode. TDOMC should be set to 4
 440         * in PCI-X mode to allow four outstanding splits. Otherwise,
 441         * should not change from its reset value. Don't write PCI_CFG19
 442         * in PCI mode (0x82000001 reset value), write it to 0x82000004
 443         * after PCI-X mode is known. MRBCI,MDWE,MDRE -> must be zero.
 444         * MRBCM -> must be one.
 445         */
 446        if (ctl_status_2.s.ap_pcix) {
 447                cfg19.u32 = 0;
 448                /*
 449                 * Target Delayed/Split request outstanding maximum
 450                 * count. [1..31] and 0=32.  NOTE: If the user
 451                 * programs these bits beyond the Designed Maximum
 452                 * outstanding count, then the designed maximum table
 453                 * depth will be used instead.  No additional
 454                 * Deferred/Split transactions will be accepted if
 455                 * this outstanding maximum count is
 456                 * reached. Furthermore, no additional deferred/split
 457                 * transactions will be accepted if the I/O delay/ I/O
 458                 * Split Request outstanding maximum is reached.
 459                 */
 460                cfg19.s.tdomc = 4;
 461                /*
 462                 * Master Deferred Read Request Outstanding Max Count
 463                 * (PCI only).  CR4C[26:24] Max SAC cycles MAX DAC
 464                 * cycles 000 8 4 001 1 0 010 2 1 011 3 1 100 4 2 101
 465                 * 5 2 110 6 3 111 7 3 For example, if these bits are
 466                 * programmed to 100, the core can support 2 DAC
 467                 * cycles, 4 SAC cycles or a combination of 1 DAC and
 468                 * 2 SAC cycles. NOTE: For the PCI-X maximum
 469                 * outstanding split transactions, refer to
 470                 * CRE0[22:20].
 471                 */
 472                cfg19.s.mdrrmc = 2;
 473                /*
 474                 * Master Request (Memory Read) Byte Count/Byte Enable
 475                 * select. 0 = Byte Enables valid. In PCI mode, a
 476                 * burst transaction cannot be performed using Memory
 477                 * Read command=4?h6. 1 = DWORD Byte Count valid
 478                 * (default). In PCI Mode, the memory read byte
 479                 * enables are automatically generated by the
 480                 * core. Note: N3 Master Request transaction sizes are
 481                 * always determined through the
 482                 * am_attr[<35:32>|<7:0>] field.
 483                 */
 484                cfg19.s.mrbcm = 1;
 485                octeon_npi_write32(CVMX_NPI_PCI_CFG19, cfg19.u32);
 486        }
 487
 488
 489        cfg01.u32 = 0;
 490        cfg01.s.msae = 1;       /* Memory Space Access Enable */
 491        cfg01.s.me = 1;         /* Master Enable */
 492        cfg01.s.pee = 1;        /* PERR# Enable */
 493        cfg01.s.see = 1;        /* System Error Enable */
 494        cfg01.s.fbbe = 1;       /* Fast Back to Back Transaction Enable */
 495
 496        octeon_npi_write32(CVMX_NPI_PCI_CFG01, cfg01.u32);
 497
 498#ifdef USE_OCTEON_INTERNAL_ARBITER
 499        /*
 500         * When OCTEON is a PCI host, most systems will use OCTEON's
 501         * internal arbiter, so must enable it before any PCI/PCI-X
 502         * traffic can occur.
 503         */
 504        {
 505                union cvmx_npi_pci_int_arb_cfg pci_int_arb_cfg;
 506
 507                pci_int_arb_cfg.u64 = 0;
 508                pci_int_arb_cfg.s.en = 1;       /* Internal arbiter enable */
 509                cvmx_write_csr(CVMX_NPI_PCI_INT_ARB_CFG, pci_int_arb_cfg.u64);
 510        }
 511#endif  /* USE_OCTEON_INTERNAL_ARBITER */
 512
 513        /*
 514         * Preferably written to 1 to set MLTD. [RDSATI,TRTAE,
 515         * TWTAE,TMAE,DPPMR -> must be zero. TILT -> must not be set to
 516         * 1..7.
 517         */
 518        cfg16.u32 = 0;
 519        cfg16.s.mltd = 1;       /* Master Latency Timer Disable */
 520        octeon_npi_write32(CVMX_NPI_PCI_CFG16, cfg16.u32);
 521
 522        /*
 523         * Should be written to 0x4ff00. MTTV -> must be zero.
 524         * FLUSH -> must be 1. MRV -> should be 0xFF.
 525         */
 526        cfg22.u32 = 0;
 527        /* Master Retry Value [1..255] and 0=infinite */
 528        cfg22.s.mrv = 0xff;
 529        /*
 530         * AM_DO_FLUSH_I control NOTE: This bit MUST BE ONE for proper
 531         * N3K operation.
 532         */
 533        cfg22.s.flush = 1;
 534        octeon_npi_write32(CVMX_NPI_PCI_CFG22, cfg22.u32);
 535
 536        /*
 537         * MOST Indicates the maximum number of outstanding splits (in -1
 538         * notation) when OCTEON is in PCI-X mode.  PCI-X performance is
 539         * affected by the MOST selection.  Should generally be written
 540         * with one of 0x3be807, 0x2be807, 0x1be807, or 0x0be807,
 541         * depending on the desired MOST of 3, 2, 1, or 0, respectively.
 542         */
 543        cfg56.u32 = 0;
 544        cfg56.s.pxcid = 7;      /* RO - PCI-X Capability ID */
 545        cfg56.s.ncp = 0xe8;     /* RO - Next Capability Pointer */
 546        cfg56.s.dpere = 1;      /* Data Parity Error Recovery Enable */
 547        cfg56.s.roe = 1;        /* Relaxed Ordering Enable */
 548        cfg56.s.mmbc = 1;       /* Maximum Memory Byte Count
 549                                   [0=512B,1=1024B,2=2048B,3=4096B] */
 550        cfg56.s.most = 3;       /* Maximum outstanding Split transactions [0=1
 551                                   .. 7=32] */
 552
 553        octeon_npi_write32(CVMX_NPI_PCI_CFG56, cfg56.u32);
 554
 555        /*
 556         * Affects PCI performance when OCTEON services reads to its
 557         * BAR1/BAR2. Refer to Section 10.6.1.  The recommended values are
 558         * 0x22, 0x33, and 0x33 for PCI_READ_CMD_6, PCI_READ_CMD_C, and
 559         * PCI_READ_CMD_E, respectively. Unfortunately due to errata DDR-700,
 560         * these values need to be changed so they won't possibly prefetch off
 561         * of the end of memory if PCI is DMAing a buffer at the end of
 562         * memory. Note that these values differ from their reset values.
 563         */
 564        octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_6, 0x21);
 565        octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_C, 0x31);
 566        octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_E, 0x31);
 567}
 568
 569
 570/*
 571 * Initialize the Octeon PCI controller
 572 */
 573static int __init octeon_pci_setup(void)
 574{
 575        union cvmx_npi_mem_access_subidx mem_access;
 576        int index;
 577
 578        /* Only these chips have PCI */
 579        if (octeon_has_feature(OCTEON_FEATURE_PCIE))
 580                return 0;
 581
 582        /* Point pcibios_map_irq() to the PCI version of it */
 583        octeon_pcibios_map_irq = octeon_pci_pcibios_map_irq;
 584
 585        /* Only use the big bars on chips that support it */
 586        if (OCTEON_IS_MODEL(OCTEON_CN31XX) ||
 587            OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
 588            OCTEON_IS_MODEL(OCTEON_CN38XX_PASS1))
 589                octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_SMALL;
 590        else
 591                octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_BIG;
 592
 593        /* PCI I/O and PCI MEM values */
 594        set_io_port_base(OCTEON_PCI_IOSPACE_BASE);
 595        ioport_resource.start = 0;
 596        ioport_resource.end = OCTEON_PCI_IOSPACE_SIZE - 1;
 597        if (!octeon_is_pci_host()) {
 598                pr_notice("Not in host mode, PCI Controller not initialized\n");
 599                return 0;
 600        }
 601
 602        pr_notice("%s Octeon big bar support\n",
 603                  (octeon_dma_bar_type ==
 604                  OCTEON_DMA_BAR_TYPE_BIG) ? "Enabling" : "Disabling");
 605
 606        octeon_pci_initialize();
 607
 608        mem_access.u64 = 0;
 609        mem_access.s.esr = 1;   /* Endian-Swap on read. */
 610        mem_access.s.esw = 1;   /* Endian-Swap on write. */
 611        mem_access.s.nsr = 0;   /* No-Snoop on read. */
 612        mem_access.s.nsw = 0;   /* No-Snoop on write. */
 613        mem_access.s.ror = 0;   /* Relax Read on read. */
 614        mem_access.s.row = 0;   /* Relax Order on write. */
 615        mem_access.s.ba = 0;    /* PCI Address bits [63:36]. */
 616        cvmx_write_csr(CVMX_NPI_MEM_ACCESS_SUBID3, mem_access.u64);
 617
 618        /*
 619         * Remap the Octeon BAR 2 above all 32 bit devices
 620         * (0x8000000000ul).  This is done here so it is remapped
 621         * before the readl()'s below. We don't want BAR2 overlapping
 622         * with BAR0/BAR1 during these reads.
 623         */
 624        octeon_npi_write32(CVMX_NPI_PCI_CFG08,
 625                           (u32)(OCTEON_BAR2_PCI_ADDRESS & 0xffffffffull));
 626        octeon_npi_write32(CVMX_NPI_PCI_CFG09,
 627                           (u32)(OCTEON_BAR2_PCI_ADDRESS >> 32));
 628
 629        if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) {
 630                /* Remap the Octeon BAR 0 to 0-2GB */
 631                octeon_npi_write32(CVMX_NPI_PCI_CFG04, 0);
 632                octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
 633
 634                /*
 635                 * Remap the Octeon BAR 1 to map 2GB-4GB (minus the
 636                 * BAR 1 hole).
 637                 */
 638                octeon_npi_write32(CVMX_NPI_PCI_CFG06, 2ul << 30);
 639                octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
 640
 641                /* BAR1 movable mappings set for identity mapping */
 642                octeon_bar1_pci_phys = 0x80000000ull;
 643                for (index = 0; index < 32; index++) {
 644                        union cvmx_pci_bar1_indexx bar1_index;
 645
 646                        bar1_index.u32 = 0;
 647                        /* Address bits[35:22] sent to L2C */
 648                        bar1_index.s.addr_idx =
 649                                (octeon_bar1_pci_phys >> 22) + index;
 650                        /* Don't put PCI accesses in L2. */
 651                        bar1_index.s.ca = 1;
 652                        /* Endian Swap Mode */
 653                        bar1_index.s.end_swp = 1;
 654                        /* Set '1' when the selected address range is valid. */
 655                        bar1_index.s.addr_v = 1;
 656                        octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index),
 657                                           bar1_index.u32);
 658                }
 659
 660                /* Devices go after BAR1 */
 661                octeon_pci_mem_resource.start =
 662                        OCTEON_PCI_MEMSPACE_OFFSET + (4ul << 30) -
 663                        (OCTEON_PCI_BAR1_HOLE_SIZE << 20);
 664                octeon_pci_mem_resource.end =
 665                        octeon_pci_mem_resource.start + (1ul << 30);
 666        } else {
 667                /* Remap the Octeon BAR 0 to map 128MB-(128MB+4KB) */
 668                octeon_npi_write32(CVMX_NPI_PCI_CFG04, 128ul << 20);
 669                octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
 670
 671                /* Remap the Octeon BAR 1 to map 0-128MB */
 672                octeon_npi_write32(CVMX_NPI_PCI_CFG06, 0);
 673                octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
 674
 675                /* BAR1 movable regions contiguous to cover the swiotlb */
 676                octeon_bar1_pci_phys =
 677                        virt_to_phys(octeon_swiotlb) & ~((1ull << 22) - 1);
 678
 679                for (index = 0; index < 32; index++) {
 680                        union cvmx_pci_bar1_indexx bar1_index;
 681
 682                        bar1_index.u32 = 0;
 683                        /* Address bits[35:22] sent to L2C */
 684                        bar1_index.s.addr_idx =
 685                                (octeon_bar1_pci_phys >> 22) + index;
 686                        /* Don't put PCI accesses in L2. */
 687                        bar1_index.s.ca = 1;
 688                        /* Endian Swap Mode */
 689                        bar1_index.s.end_swp = 1;
 690                        /* Set '1' when the selected address range is valid. */
 691                        bar1_index.s.addr_v = 1;
 692                        octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index),
 693                                           bar1_index.u32);
 694                }
 695
 696                /* Devices go after BAR0 */
 697                octeon_pci_mem_resource.start =
 698                        OCTEON_PCI_MEMSPACE_OFFSET + (128ul << 20) +
 699                        (4ul << 10);
 700                octeon_pci_mem_resource.end =
 701                        octeon_pci_mem_resource.start + (1ul << 30);
 702        }
 703
 704        register_pci_controller(&octeon_pci_controller);
 705
 706        /*
 707         * Clear any errors that might be pending from before the bus
 708         * was setup properly.
 709         */
 710        cvmx_write_csr(CVMX_NPI_PCI_INT_SUM2, -1);
 711
 712        octeon_pci_dma_init();
 713
 714        return 0;
 715}
 716
 717arch_initcall(octeon_pci_setup);
 718