linux/arch/x86/include/asm/uv/uv_hub.h
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * SGI UV architectural definitions
   7 *
   8 * Copyright (C) 2007-2010 Silicon Graphics, Inc. All rights reserved.
   9 */
  10
  11#ifndef _ASM_X86_UV_UV_HUB_H
  12#define _ASM_X86_UV_UV_HUB_H
  13
  14#ifdef CONFIG_X86_64
  15#include <linux/numa.h>
  16#include <linux/percpu.h>
  17#include <linux/timer.h>
  18#include <linux/io.h>
  19#include <asm/types.h>
  20#include <asm/percpu.h>
  21#include <asm/uv/uv_mmrs.h>
  22#include <asm/irq_vectors.h>
  23#include <asm/io_apic.h>
  24
  25
  26/*
  27 * Addressing Terminology
  28 *
  29 *      M       - The low M bits of a physical address represent the offset
  30 *                into the blade local memory. RAM memory on a blade is physically
  31 *                contiguous (although various IO spaces may punch holes in
  32 *                it)..
  33 *
  34 *      N       - Number of bits in the node portion of a socket physical
  35 *                address.
  36 *
  37 *      NASID   - network ID of a router, Mbrick or Cbrick. Nasid values of
  38 *                routers always have low bit of 1, C/MBricks have low bit
  39 *                equal to 0. Most addressing macros that target UV hub chips
  40 *                right shift the NASID by 1 to exclude the always-zero bit.
  41 *                NASIDs contain up to 15 bits.
  42 *
  43 *      GNODE   - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
  44 *                of nasids.
  45 *
  46 *      PNODE   - the low N bits of the GNODE. The PNODE is the most useful variant
  47 *                of the nasid for socket usage.
  48 *
  49 *      GPA     - (global physical address) a socket physical address converted
  50 *                so that it can be used by the GRU as a global address. Socket
  51 *                physical addresses 1) need additional NASID (node) bits added
  52 *                to the high end of the address, and 2) unaliased if the
  53 *                partition does not have a physical address 0. In addition, on
  54 *                UV2 rev 1, GPAs need the gnode left shifted to bits 39 or 40.
  55 *
  56 *
  57 *  NumaLink Global Physical Address Format:
  58 *  +--------------------------------+---------------------+
  59 *  |00..000|      GNODE             |      NodeOffset     |
  60 *  +--------------------------------+---------------------+
  61 *          |<-------53 - M bits --->|<--------M bits ----->
  62 *
  63 *      M - number of node offset bits (35 .. 40)
  64 *
  65 *
  66 *  Memory/UV-HUB Processor Socket Address Format:
  67 *  +----------------+---------------+---------------------+
  68 *  |00..000000000000|   PNODE       |      NodeOffset     |
  69 *  +----------------+---------------+---------------------+
  70 *                   <--- N bits --->|<--------M bits ----->
  71 *
  72 *      M - number of node offset bits (35 .. 40)
  73 *      N - number of PNODE bits (0 .. 10)
  74 *
  75 *              Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
  76 *              The actual values are configuration dependent and are set at
  77 *              boot time. M & N values are set by the hardware/BIOS at boot.
  78 *
  79 *
  80 * APICID format
  81 *      NOTE!!!!!! This is the current format of the APICID. However, code
  82 *      should assume that this will change in the future. Use functions
  83 *      in this file for all APICID bit manipulations and conversion.
  84 *
  85 *              1111110000000000
  86 *              5432109876543210
  87 *              pppppppppplc0cch        Nehalem-EX (12 bits in hdw reg)
  88 *              ppppppppplcc0cch        Westmere-EX (12 bits in hdw reg)
  89 *              pppppppppppcccch        SandyBridge (15 bits in hdw reg)
  90 *              sssssssssss
  91 *
  92 *                      p  = pnode bits
  93 *                      l =  socket number on board
  94 *                      c  = core
  95 *                      h  = hyperthread
  96 *                      s  = bits that are in the SOCKET_ID CSR
  97 *
  98 *      Note: Processor may support fewer bits in the APICID register. The ACPI
  99 *            tables hold all 16 bits. Software needs to be aware of this.
 100 *
 101 *            Unless otherwise specified, all references to APICID refer to
 102 *            the FULL value contained in ACPI tables, not the subset in the
 103 *            processor APICID register.
 104 */
 105
 106
 107/*
 108 * Maximum number of bricks in all partitions and in all coherency domains.
 109 * This is the total number of bricks accessible in the numalink fabric. It
 110 * includes all C & M bricks. Routers are NOT included.
 111 *
 112 * This value is also the value of the maximum number of non-router NASIDs
 113 * in the numalink fabric.
 114 *
 115 * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
 116 */
 117#define UV_MAX_NUMALINK_BLADES  16384
 118
 119/*
 120 * Maximum number of C/Mbricks within a software SSI (hardware may support
 121 * more).
 122 */
 123#define UV_MAX_SSI_BLADES       256
 124
 125/*
 126 * The largest possible NASID of a C or M brick (+ 2)
 127 */
 128#define UV_MAX_NASID_VALUE      (UV_MAX_NUMALINK_BLADES * 2)
 129
 130struct uv_scir_s {
 131        struct timer_list timer;
 132        unsigned long   offset;
 133        unsigned long   last;
 134        unsigned long   idle_on;
 135        unsigned long   idle_off;
 136        unsigned char   state;
 137        unsigned char   enabled;
 138};
 139
 140/*
 141 * The following defines attributes of the HUB chip. These attributes are
 142 * frequently referenced and are kept in the per-cpu data areas of each cpu.
 143 * They are kept together in a struct to minimize cache misses.
 144 */
 145struct uv_hub_info_s {
 146        unsigned long           global_mmr_base;
 147        unsigned long           gpa_mask;
 148        unsigned int            gnode_extra;
 149        unsigned char           hub_revision;
 150        unsigned char           apic_pnode_shift;
 151        unsigned char           m_shift;
 152        unsigned char           n_lshift;
 153        unsigned long           gnode_upper;
 154        unsigned long           lowmem_remap_top;
 155        unsigned long           lowmem_remap_base;
 156        unsigned short          pnode;
 157        unsigned short          pnode_mask;
 158        unsigned short          coherency_domain_number;
 159        unsigned short          numa_blade_id;
 160        unsigned char           blade_processor_id;
 161        unsigned char           m_val;
 162        unsigned char           n_val;
 163        struct uv_scir_s        scir;
 164};
 165
 166DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
 167#define uv_hub_info             (&__get_cpu_var(__uv_hub_info))
 168#define uv_cpu_hub_info(cpu)    (&per_cpu(__uv_hub_info, cpu))
 169
 170/*
 171 * Hub revisions less than UV2_HUB_REVISION_BASE are UV1 hubs. All UV2
 172 * hubs have revision numbers greater than or equal to UV2_HUB_REVISION_BASE.
 173 * This is a software convention - NOT the hardware revision numbers in
 174 * the hub chip.
 175 */
 176#define UV1_HUB_REVISION_BASE           1
 177#define UV2_HUB_REVISION_BASE           3
 178
 179static inline int is_uv1_hub(void)
 180{
 181        return uv_hub_info->hub_revision < UV2_HUB_REVISION_BASE;
 182}
 183
 184static inline int is_uv2_hub(void)
 185{
 186        return uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE;
 187}
 188
 189static inline int is_uv2_1_hub(void)
 190{
 191        return uv_hub_info->hub_revision == UV2_HUB_REVISION_BASE;
 192}
 193
 194static inline int is_uv2_2_hub(void)
 195{
 196        return uv_hub_info->hub_revision == UV2_HUB_REVISION_BASE + 1;
 197}
 198
 199union uvh_apicid {
 200    unsigned long       v;
 201    struct uvh_apicid_s {
 202        unsigned long   local_apic_mask  : 24;
 203        unsigned long   local_apic_shift :  5;
 204        unsigned long   unused1          :  3;
 205        unsigned long   pnode_mask       : 24;
 206        unsigned long   pnode_shift      :  5;
 207        unsigned long   unused2          :  3;
 208    } s;
 209};
 210
 211/*
 212 * Local & Global MMR space macros.
 213 *      Note: macros are intended to be used ONLY by inline functions
 214 *      in this file - not by other kernel code.
 215 *              n -  NASID (full 15-bit global nasid)
 216 *              g -  GNODE (full 15-bit global nasid, right shifted 1)
 217 *              p -  PNODE (local part of nsids, right shifted 1)
 218 */
 219#define UV_NASID_TO_PNODE(n)            (((n) >> 1) & uv_hub_info->pnode_mask)
 220#define UV_PNODE_TO_GNODE(p)            ((p) |uv_hub_info->gnode_extra)
 221#define UV_PNODE_TO_NASID(p)            (UV_PNODE_TO_GNODE(p) << 1)
 222
 223#define UV1_LOCAL_MMR_BASE              0xf4000000UL
 224#define UV1_GLOBAL_MMR32_BASE           0xf8000000UL
 225#define UV1_LOCAL_MMR_SIZE              (64UL * 1024 * 1024)
 226#define UV1_GLOBAL_MMR32_SIZE           (64UL * 1024 * 1024)
 227
 228#define UV2_LOCAL_MMR_BASE              0xfa000000UL
 229#define UV2_GLOBAL_MMR32_BASE           0xfc000000UL
 230#define UV2_LOCAL_MMR_SIZE              (32UL * 1024 * 1024)
 231#define UV2_GLOBAL_MMR32_SIZE           (32UL * 1024 * 1024)
 232
 233#define UV_LOCAL_MMR_BASE               (is_uv1_hub() ? UV1_LOCAL_MMR_BASE     \
 234                                                : UV2_LOCAL_MMR_BASE)
 235#define UV_GLOBAL_MMR32_BASE            (is_uv1_hub() ? UV1_GLOBAL_MMR32_BASE  \
 236                                                : UV2_GLOBAL_MMR32_BASE)
 237#define UV_LOCAL_MMR_SIZE               (is_uv1_hub() ? UV1_LOCAL_MMR_SIZE :   \
 238                                                UV2_LOCAL_MMR_SIZE)
 239#define UV_GLOBAL_MMR32_SIZE            (is_uv1_hub() ? UV1_GLOBAL_MMR32_SIZE :\
 240                                                UV2_GLOBAL_MMR32_SIZE)
 241#define UV_GLOBAL_MMR64_BASE            (uv_hub_info->global_mmr_base)
 242
 243#define UV_GLOBAL_GRU_MMR_BASE          0x4000000
 244
 245#define UV_GLOBAL_MMR32_PNODE_SHIFT     15
 246#define UV_GLOBAL_MMR64_PNODE_SHIFT     26
 247
 248#define UV_GLOBAL_MMR32_PNODE_BITS(p)   ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
 249
 250#define UV_GLOBAL_MMR64_PNODE_BITS(p)                                   \
 251        (((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT)
 252
 253#define UVH_APICID              0x002D0E00L
 254#define UV_APIC_PNODE_SHIFT     6
 255
 256#define UV_APICID_HIBIT_MASK    0xffff0000
 257
 258/* Local Bus from cpu's perspective */
 259#define LOCAL_BUS_BASE          0x1c00000
 260#define LOCAL_BUS_SIZE          (4 * 1024 * 1024)
 261
 262/*
 263 * System Controller Interface Reg
 264 *
 265 * Note there are NO leds on a UV system.  This register is only
 266 * used by the system controller to monitor system-wide operation.
 267 * There are 64 regs per node.  With Nahelem cpus (2 cores per node,
 268 * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
 269 * a node.
 270 *
 271 * The window is located at top of ACPI MMR space
 272 */
 273#define SCIR_WINDOW_COUNT       64
 274#define SCIR_LOCAL_MMR_BASE     (LOCAL_BUS_BASE + \
 275                                 LOCAL_BUS_SIZE - \
 276                                 SCIR_WINDOW_COUNT)
 277
 278#define SCIR_CPU_HEARTBEAT      0x01    /* timer interrupt */
 279#define SCIR_CPU_ACTIVITY       0x02    /* not idle */
 280#define SCIR_CPU_HB_INTERVAL    (HZ)    /* once per second */
 281
 282/* Loop through all installed blades */
 283#define for_each_possible_blade(bid)            \
 284        for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)
 285
 286/*
 287 * Macros for converting between kernel virtual addresses, socket local physical
 288 * addresses, and UV global physical addresses.
 289 *      Note: use the standard __pa() & __va() macros for converting
 290 *            between socket virtual and socket physical addresses.
 291 */
 292
 293/* socket phys RAM --> UV global physical address */
 294static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
 295{
 296        if (paddr < uv_hub_info->lowmem_remap_top)
 297                paddr |= uv_hub_info->lowmem_remap_base;
 298        paddr |= uv_hub_info->gnode_upper;
 299        paddr = ((paddr << uv_hub_info->m_shift) >> uv_hub_info->m_shift) |
 300                ((paddr >> uv_hub_info->m_val) << uv_hub_info->n_lshift);
 301        return paddr;
 302}
 303
 304
 305/* socket virtual --> UV global physical address */
 306static inline unsigned long uv_gpa(void *v)
 307{
 308        return uv_soc_phys_ram_to_gpa(__pa(v));
 309}
 310
 311/* Top two bits indicate the requested address is in MMR space.  */
 312static inline int
 313uv_gpa_in_mmr_space(unsigned long gpa)
 314{
 315        return (gpa >> 62) == 0x3UL;
 316}
 317
 318/* UV global physical address --> socket phys RAM */
 319static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa)
 320{
 321        unsigned long paddr;
 322        unsigned long remap_base = uv_hub_info->lowmem_remap_base;
 323        unsigned long remap_top =  uv_hub_info->lowmem_remap_top;
 324
 325        gpa = ((gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift) |
 326                ((gpa >> uv_hub_info->n_lshift) << uv_hub_info->m_val);
 327        paddr = gpa & uv_hub_info->gpa_mask;
 328        if (paddr >= remap_base && paddr < remap_base + remap_top)
 329                paddr -= remap_base;
 330        return paddr;
 331}
 332
 333
 334/* gpa -> pnode */
 335static inline unsigned long uv_gpa_to_gnode(unsigned long gpa)
 336{
 337        return gpa >> uv_hub_info->n_lshift;
 338}
 339
 340/* gpa -> pnode */
 341static inline int uv_gpa_to_pnode(unsigned long gpa)
 342{
 343        unsigned long n_mask = (1UL << uv_hub_info->n_val) - 1;
 344
 345        return uv_gpa_to_gnode(gpa) & n_mask;
 346}
 347
 348/* gpa -> node offset*/
 349static inline unsigned long uv_gpa_to_offset(unsigned long gpa)
 350{
 351        return (gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift;
 352}
 353
 354/* pnode, offset --> socket virtual */
 355static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
 356{
 357        return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset);
 358}
 359
 360
 361/*
 362 * Extract a PNODE from an APICID (full apicid, not processor subset)
 363 */
 364static inline int uv_apicid_to_pnode(int apicid)
 365{
 366        return (apicid >> uv_hub_info->apic_pnode_shift);
 367}
 368
 369/*
 370 * Convert an apicid to the socket number on the blade
 371 */
 372static inline int uv_apicid_to_socket(int apicid)
 373{
 374        if (is_uv1_hub())
 375                return (apicid >> (uv_hub_info->apic_pnode_shift - 1)) & 1;
 376        else
 377                return 0;
 378}
 379
 380/*
 381 * Access global MMRs using the low memory MMR32 space. This region supports
 382 * faster MMR access but not all MMRs are accessible in this space.
 383 */
 384static inline unsigned long *uv_global_mmr32_address(int pnode, unsigned long offset)
 385{
 386        return __va(UV_GLOBAL_MMR32_BASE |
 387                       UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
 388}
 389
 390static inline void uv_write_global_mmr32(int pnode, unsigned long offset, unsigned long val)
 391{
 392        writeq(val, uv_global_mmr32_address(pnode, offset));
 393}
 394
 395static inline unsigned long uv_read_global_mmr32(int pnode, unsigned long offset)
 396{
 397        return readq(uv_global_mmr32_address(pnode, offset));
 398}
 399
 400/*
 401 * Access Global MMR space using the MMR space located at the top of physical
 402 * memory.
 403 */
 404static inline volatile void __iomem *uv_global_mmr64_address(int pnode, unsigned long offset)
 405{
 406        return __va(UV_GLOBAL_MMR64_BASE |
 407                    UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
 408}
 409
 410static inline void uv_write_global_mmr64(int pnode, unsigned long offset, unsigned long val)
 411{
 412        writeq(val, uv_global_mmr64_address(pnode, offset));
 413}
 414
 415static inline unsigned long uv_read_global_mmr64(int pnode, unsigned long offset)
 416{
 417        return readq(uv_global_mmr64_address(pnode, offset));
 418}
 419
 420/*
 421 * Global MMR space addresses when referenced by the GRU. (GRU does
 422 * NOT use socket addressing).
 423 */
 424static inline unsigned long uv_global_gru_mmr_address(int pnode, unsigned long offset)
 425{
 426        return UV_GLOBAL_GRU_MMR_BASE | offset |
 427                ((unsigned long)pnode << uv_hub_info->m_val);
 428}
 429
 430static inline void uv_write_global_mmr8(int pnode, unsigned long offset, unsigned char val)
 431{
 432        writeb(val, uv_global_mmr64_address(pnode, offset));
 433}
 434
 435static inline unsigned char uv_read_global_mmr8(int pnode, unsigned long offset)
 436{
 437        return readb(uv_global_mmr64_address(pnode, offset));
 438}
 439
 440/*
 441 * Access hub local MMRs. Faster than using global space but only local MMRs
 442 * are accessible.
 443 */
 444static inline unsigned long *uv_local_mmr_address(unsigned long offset)
 445{
 446        return __va(UV_LOCAL_MMR_BASE | offset);
 447}
 448
 449static inline unsigned long uv_read_local_mmr(unsigned long offset)
 450{
 451        return readq(uv_local_mmr_address(offset));
 452}
 453
 454static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
 455{
 456        writeq(val, uv_local_mmr_address(offset));
 457}
 458
 459static inline unsigned char uv_read_local_mmr8(unsigned long offset)
 460{
 461        return readb(uv_local_mmr_address(offset));
 462}
 463
 464static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
 465{
 466        writeb(val, uv_local_mmr_address(offset));
 467}
 468
 469/*
 470 * Structures and definitions for converting between cpu, node, pnode, and blade
 471 * numbers.
 472 */
 473struct uv_blade_info {
 474        unsigned short  nr_possible_cpus;
 475        unsigned short  nr_online_cpus;
 476        unsigned short  pnode;
 477        short           memory_nid;
 478        spinlock_t      nmi_lock;
 479        unsigned long   nmi_count;
 480};
 481extern struct uv_blade_info *uv_blade_info;
 482extern short *uv_node_to_blade;
 483extern short *uv_cpu_to_blade;
 484extern short uv_possible_blades;
 485
 486/* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
 487static inline int uv_blade_processor_id(void)
 488{
 489        return uv_hub_info->blade_processor_id;
 490}
 491
 492/* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
 493static inline int uv_numa_blade_id(void)
 494{
 495        return uv_hub_info->numa_blade_id;
 496}
 497
 498/* Convert a cpu number to the the UV blade number */
 499static inline int uv_cpu_to_blade_id(int cpu)
 500{
 501        return uv_cpu_to_blade[cpu];
 502}
 503
 504/* Convert linux node number to the UV blade number */
 505static inline int uv_node_to_blade_id(int nid)
 506{
 507        return uv_node_to_blade[nid];
 508}
 509
 510/* Convert a blade id to the PNODE of the blade */
 511static inline int uv_blade_to_pnode(int bid)
 512{
 513        return uv_blade_info[bid].pnode;
 514}
 515
 516/* Nid of memory node on blade. -1 if no blade-local memory */
 517static inline int uv_blade_to_memory_nid(int bid)
 518{
 519        return uv_blade_info[bid].memory_nid;
 520}
 521
 522/* Determine the number of possible cpus on a blade */
 523static inline int uv_blade_nr_possible_cpus(int bid)
 524{
 525        return uv_blade_info[bid].nr_possible_cpus;
 526}
 527
 528/* Determine the number of online cpus on a blade */
 529static inline int uv_blade_nr_online_cpus(int bid)
 530{
 531        return uv_blade_info[bid].nr_online_cpus;
 532}
 533
 534/* Convert a cpu id to the PNODE of the blade containing the cpu */
 535static inline int uv_cpu_to_pnode(int cpu)
 536{
 537        return uv_blade_info[uv_cpu_to_blade_id(cpu)].pnode;
 538}
 539
 540/* Convert a linux node number to the PNODE of the blade */
 541static inline int uv_node_to_pnode(int nid)
 542{
 543        return uv_blade_info[uv_node_to_blade_id(nid)].pnode;
 544}
 545
 546/* Maximum possible number of blades */
 547static inline int uv_num_possible_blades(void)
 548{
 549        return uv_possible_blades;
 550}
 551
 552/* Update SCIR state */
 553static inline void uv_set_scir_bits(unsigned char value)
 554{
 555        if (uv_hub_info->scir.state != value) {
 556                uv_hub_info->scir.state = value;
 557                uv_write_local_mmr8(uv_hub_info->scir.offset, value);
 558        }
 559}
 560
 561static inline unsigned long uv_scir_offset(int apicid)
 562{
 563        return SCIR_LOCAL_MMR_BASE | (apicid & 0x3f);
 564}
 565
 566static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value)
 567{
 568        if (uv_cpu_hub_info(cpu)->scir.state != value) {
 569                uv_write_global_mmr8(uv_cpu_to_pnode(cpu),
 570                                uv_cpu_hub_info(cpu)->scir.offset, value);
 571                uv_cpu_hub_info(cpu)->scir.state = value;
 572        }
 573}
 574
 575extern unsigned int uv_apicid_hibits;
 576static unsigned long uv_hub_ipi_value(int apicid, int vector, int mode)
 577{
 578        apicid |= uv_apicid_hibits;
 579        return (1UL << UVH_IPI_INT_SEND_SHFT) |
 580                        ((apicid) << UVH_IPI_INT_APIC_ID_SHFT) |
 581                        (mode << UVH_IPI_INT_DELIVERY_MODE_SHFT) |
 582                        (vector << UVH_IPI_INT_VECTOR_SHFT);
 583}
 584
 585static inline void uv_hub_send_ipi(int pnode, int apicid, int vector)
 586{
 587        unsigned long val;
 588        unsigned long dmode = dest_Fixed;
 589
 590        if (vector == NMI_VECTOR)
 591                dmode = dest_NMI;
 592
 593        val = uv_hub_ipi_value(apicid, vector, dmode);
 594        uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
 595}
 596
 597/*
 598 * Get the minimum revision number of the hub chips within the partition.
 599 *     1 - UV1 rev 1.0 initial silicon
 600 *     2 - UV1 rev 2.0 production silicon
 601 *     3 - UV2 rev 1.0 initial silicon
 602 */
 603static inline int uv_get_min_hub_revision_id(void)
 604{
 605        return uv_hub_info->hub_revision;
 606}
 607
 608#endif /* CONFIG_X86_64 */
 609#endif /* _ASM_X86_UV_UV_HUB_H */
 610