linux/drivers/ata/libata-core.c
<<
>>
Prefs
   1/*
   2 *  libata-core.c - helper library for ATA
   3 *
   4 *  Maintained by:  Jeff Garzik <jgarzik@pobox.com>
   5 *                  Please ALWAYS copy linux-ide@vger.kernel.org
   6 *                  on emails.
   7 *
   8 *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
   9 *  Copyright 2003-2004 Jeff Garzik
  10 *
  11 *
  12 *  This program is free software; you can redistribute it and/or modify
  13 *  it under the terms of the GNU General Public License as published by
  14 *  the Free Software Foundation; either version 2, or (at your option)
  15 *  any later version.
  16 *
  17 *  This program is distributed in the hope that it will be useful,
  18 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20 *  GNU General Public License for more details.
  21 *
  22 *  You should have received a copy of the GNU General Public License
  23 *  along with this program; see the file COPYING.  If not, write to
  24 *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
  25 *
  26 *
  27 *  libata documentation is available via 'make {ps|pdf}docs',
  28 *  as Documentation/DocBook/libata.*
  29 *
  30 *  Hardware documentation available from http://www.t13.org/ and
  31 *  http://www.sata-io.org/
  32 *
  33 *  Standards documents from:
  34 *      http://www.t13.org (ATA standards, PCI DMA IDE spec)
  35 *      http://www.t10.org (SCSI MMC - for ATAPI MMC)
  36 *      http://www.sata-io.org (SATA)
  37 *      http://www.compactflash.org (CF)
  38 *      http://www.qic.org (QIC157 - Tape and DSC)
  39 *      http://www.ce-ata.org (CE-ATA: not supported)
  40 *
  41 */
  42
  43#include <linux/kernel.h>
  44#include <linux/module.h>
  45#include <linux/pci.h>
  46#include <linux/init.h>
  47#include <linux/list.h>
  48#include <linux/mm.h>
  49#include <linux/spinlock.h>
  50#include <linux/blkdev.h>
  51#include <linux/delay.h>
  52#include <linux/timer.h>
  53#include <linux/interrupt.h>
  54#include <linux/completion.h>
  55#include <linux/suspend.h>
  56#include <linux/workqueue.h>
  57#include <linux/scatterlist.h>
  58#include <linux/io.h>
  59#include <linux/async.h>
  60#include <linux/log2.h>
  61#include <linux/slab.h>
  62#include <scsi/scsi.h>
  63#include <scsi/scsi_cmnd.h>
  64#include <scsi/scsi_host.h>
  65#include <linux/libata.h>
  66#include <asm/byteorder.h>
  67#include <linux/cdrom.h>
  68#include <linux/ratelimit.h>
  69#include <linux/pm_runtime.h>
  70
  71#include "libata.h"
  72#include "libata-transport.h"
  73
  74/* debounce timing parameters in msecs { interval, duration, timeout } */
  75const unsigned long sata_deb_timing_normal[]            = {   5,  100, 2000 };
  76const unsigned long sata_deb_timing_hotplug[]           = {  25,  500, 2000 };
  77const unsigned long sata_deb_timing_long[]              = { 100, 2000, 5000 };
  78
  79const struct ata_port_operations ata_base_port_ops = {
  80        .prereset               = ata_std_prereset,
  81        .postreset              = ata_std_postreset,
  82        .error_handler          = ata_std_error_handler,
  83};
  84
  85const struct ata_port_operations sata_port_ops = {
  86        .inherits               = &ata_base_port_ops,
  87
  88        .qc_defer               = ata_std_qc_defer,
  89        .hardreset              = sata_std_hardreset,
  90};
  91
  92static unsigned int ata_dev_init_params(struct ata_device *dev,
  93                                        u16 heads, u16 sectors);
  94static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
  95static void ata_dev_xfermask(struct ata_device *dev);
  96static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
  97
  98unsigned int ata_print_id = 1;
  99
 100struct ata_force_param {
 101        const char      *name;
 102        unsigned int    cbl;
 103        int             spd_limit;
 104        unsigned long   xfer_mask;
 105        unsigned int    horkage_on;
 106        unsigned int    horkage_off;
 107        unsigned int    lflags;
 108};
 109
 110struct ata_force_ent {
 111        int                     port;
 112        int                     device;
 113        struct ata_force_param  param;
 114};
 115
 116static struct ata_force_ent *ata_force_tbl;
 117static int ata_force_tbl_size;
 118
 119static char ata_force_param_buf[PAGE_SIZE] __initdata;
 120/* param_buf is thrown away after initialization, disallow read */
 121module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
 122MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
 123
 124static int atapi_enabled = 1;
 125module_param(atapi_enabled, int, 0444);
 126MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
 127
 128static int atapi_dmadir = 0;
 129module_param(atapi_dmadir, int, 0444);
 130MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
 131
 132int atapi_passthru16 = 1;
 133module_param(atapi_passthru16, int, 0444);
 134MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
 135
 136int libata_fua = 0;
 137module_param_named(fua, libata_fua, int, 0444);
 138MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
 139
 140static int ata_ignore_hpa;
 141module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
 142MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
 143
 144static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
 145module_param_named(dma, libata_dma_mask, int, 0444);
 146MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
 147
 148static int ata_probe_timeout;
 149module_param(ata_probe_timeout, int, 0444);
 150MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
 151
 152int libata_noacpi = 0;
 153module_param_named(noacpi, libata_noacpi, int, 0444);
 154MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
 155
 156int libata_allow_tpm = 0;
 157module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
 158MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
 159
 160static int atapi_an;
 161module_param(atapi_an, int, 0444);
 162MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
 163
 164MODULE_AUTHOR("Jeff Garzik");
 165MODULE_DESCRIPTION("Library module for ATA devices");
 166MODULE_LICENSE("GPL");
 167MODULE_VERSION(DRV_VERSION);
 168
 169
 170static bool ata_sstatus_online(u32 sstatus)
 171{
 172        return (sstatus & 0xf) == 0x3;
 173}
 174
 175/**
 176 *      ata_link_next - link iteration helper
 177 *      @link: the previous link, NULL to start
 178 *      @ap: ATA port containing links to iterate
 179 *      @mode: iteration mode, one of ATA_LITER_*
 180 *
 181 *      LOCKING:
 182 *      Host lock or EH context.
 183 *
 184 *      RETURNS:
 185 *      Pointer to the next link.
 186 */
 187struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
 188                               enum ata_link_iter_mode mode)
 189{
 190        BUG_ON(mode != ATA_LITER_EDGE &&
 191               mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
 192
 193        /* NULL link indicates start of iteration */
 194        if (!link)
 195                switch (mode) {
 196                case ATA_LITER_EDGE:
 197                case ATA_LITER_PMP_FIRST:
 198                        if (sata_pmp_attached(ap))
 199                                return ap->pmp_link;
 200                        /* fall through */
 201                case ATA_LITER_HOST_FIRST:
 202                        return &ap->link;
 203                }
 204
 205        /* we just iterated over the host link, what's next? */
 206        if (link == &ap->link)
 207                switch (mode) {
 208                case ATA_LITER_HOST_FIRST:
 209                        if (sata_pmp_attached(ap))
 210                                return ap->pmp_link;
 211                        /* fall through */
 212                case ATA_LITER_PMP_FIRST:
 213                        if (unlikely(ap->slave_link))
 214                                return ap->slave_link;
 215                        /* fall through */
 216                case ATA_LITER_EDGE:
 217                        return NULL;
 218                }
 219
 220        /* slave_link excludes PMP */
 221        if (unlikely(link == ap->slave_link))
 222                return NULL;
 223
 224        /* we were over a PMP link */
 225        if (++link < ap->pmp_link + ap->nr_pmp_links)
 226                return link;
 227
 228        if (mode == ATA_LITER_PMP_FIRST)
 229                return &ap->link;
 230
 231        return NULL;
 232}
 233
 234/**
 235 *      ata_dev_next - device iteration helper
 236 *      @dev: the previous device, NULL to start
 237 *      @link: ATA link containing devices to iterate
 238 *      @mode: iteration mode, one of ATA_DITER_*
 239 *
 240 *      LOCKING:
 241 *      Host lock or EH context.
 242 *
 243 *      RETURNS:
 244 *      Pointer to the next device.
 245 */
 246struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
 247                                enum ata_dev_iter_mode mode)
 248{
 249        BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
 250               mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
 251
 252        /* NULL dev indicates start of iteration */
 253        if (!dev)
 254                switch (mode) {
 255                case ATA_DITER_ENABLED:
 256                case ATA_DITER_ALL:
 257                        dev = link->device;
 258                        goto check;
 259                case ATA_DITER_ENABLED_REVERSE:
 260                case ATA_DITER_ALL_REVERSE:
 261                        dev = link->device + ata_link_max_devices(link) - 1;
 262                        goto check;
 263                }
 264
 265 next:
 266        /* move to the next one */
 267        switch (mode) {
 268        case ATA_DITER_ENABLED:
 269        case ATA_DITER_ALL:
 270                if (++dev < link->device + ata_link_max_devices(link))
 271                        goto check;
 272                return NULL;
 273        case ATA_DITER_ENABLED_REVERSE:
 274        case ATA_DITER_ALL_REVERSE:
 275                if (--dev >= link->device)
 276                        goto check;
 277                return NULL;
 278        }
 279
 280 check:
 281        if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
 282            !ata_dev_enabled(dev))
 283                goto next;
 284        return dev;
 285}
 286
 287/**
 288 *      ata_dev_phys_link - find physical link for a device
 289 *      @dev: ATA device to look up physical link for
 290 *
 291 *      Look up physical link which @dev is attached to.  Note that
 292 *      this is different from @dev->link only when @dev is on slave
 293 *      link.  For all other cases, it's the same as @dev->link.
 294 *
 295 *      LOCKING:
 296 *      Don't care.
 297 *
 298 *      RETURNS:
 299 *      Pointer to the found physical link.
 300 */
 301struct ata_link *ata_dev_phys_link(struct ata_device *dev)
 302{
 303        struct ata_port *ap = dev->link->ap;
 304
 305        if (!ap->slave_link)
 306                return dev->link;
 307        if (!dev->devno)
 308                return &ap->link;
 309        return ap->slave_link;
 310}
 311
 312/**
 313 *      ata_force_cbl - force cable type according to libata.force
 314 *      @ap: ATA port of interest
 315 *
 316 *      Force cable type according to libata.force and whine about it.
 317 *      The last entry which has matching port number is used, so it
 318 *      can be specified as part of device force parameters.  For
 319 *      example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
 320 *      same effect.
 321 *
 322 *      LOCKING:
 323 *      EH context.
 324 */
 325void ata_force_cbl(struct ata_port *ap)
 326{
 327        int i;
 328
 329        for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 330                const struct ata_force_ent *fe = &ata_force_tbl[i];
 331
 332                if (fe->port != -1 && fe->port != ap->print_id)
 333                        continue;
 334
 335                if (fe->param.cbl == ATA_CBL_NONE)
 336                        continue;
 337
 338                ap->cbl = fe->param.cbl;
 339                ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
 340                return;
 341        }
 342}
 343
 344/**
 345 *      ata_force_link_limits - force link limits according to libata.force
 346 *      @link: ATA link of interest
 347 *
 348 *      Force link flags and SATA spd limit according to libata.force
 349 *      and whine about it.  When only the port part is specified
 350 *      (e.g. 1:), the limit applies to all links connected to both
 351 *      the host link and all fan-out ports connected via PMP.  If the
 352 *      device part is specified as 0 (e.g. 1.00:), it specifies the
 353 *      first fan-out link not the host link.  Device number 15 always
 354 *      points to the host link whether PMP is attached or not.  If the
 355 *      controller has slave link, device number 16 points to it.
 356 *
 357 *      LOCKING:
 358 *      EH context.
 359 */
 360static void ata_force_link_limits(struct ata_link *link)
 361{
 362        bool did_spd = false;
 363        int linkno = link->pmp;
 364        int i;
 365
 366        if (ata_is_host_link(link))
 367                linkno += 15;
 368
 369        for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 370                const struct ata_force_ent *fe = &ata_force_tbl[i];
 371
 372                if (fe->port != -1 && fe->port != link->ap->print_id)
 373                        continue;
 374
 375                if (fe->device != -1 && fe->device != linkno)
 376                        continue;
 377
 378                /* only honor the first spd limit */
 379                if (!did_spd && fe->param.spd_limit) {
 380                        link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
 381                        ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
 382                                        fe->param.name);
 383                        did_spd = true;
 384                }
 385
 386                /* let lflags stack */
 387                if (fe->param.lflags) {
 388                        link->flags |= fe->param.lflags;
 389                        ata_link_notice(link,
 390                                        "FORCE: link flag 0x%x forced -> 0x%x\n",
 391                                        fe->param.lflags, link->flags);
 392                }
 393        }
 394}
 395
 396/**
 397 *      ata_force_xfermask - force xfermask according to libata.force
 398 *      @dev: ATA device of interest
 399 *
 400 *      Force xfer_mask according to libata.force and whine about it.
 401 *      For consistency with link selection, device number 15 selects
 402 *      the first device connected to the host link.
 403 *
 404 *      LOCKING:
 405 *      EH context.
 406 */
 407static void ata_force_xfermask(struct ata_device *dev)
 408{
 409        int devno = dev->link->pmp + dev->devno;
 410        int alt_devno = devno;
 411        int i;
 412
 413        /* allow n.15/16 for devices attached to host port */
 414        if (ata_is_host_link(dev->link))
 415                alt_devno += 15;
 416
 417        for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 418                const struct ata_force_ent *fe = &ata_force_tbl[i];
 419                unsigned long pio_mask, mwdma_mask, udma_mask;
 420
 421                if (fe->port != -1 && fe->port != dev->link->ap->print_id)
 422                        continue;
 423
 424                if (fe->device != -1 && fe->device != devno &&
 425                    fe->device != alt_devno)
 426                        continue;
 427
 428                if (!fe->param.xfer_mask)
 429                        continue;
 430
 431                ata_unpack_xfermask(fe->param.xfer_mask,
 432                                    &pio_mask, &mwdma_mask, &udma_mask);
 433                if (udma_mask)
 434                        dev->udma_mask = udma_mask;
 435                else if (mwdma_mask) {
 436                        dev->udma_mask = 0;
 437                        dev->mwdma_mask = mwdma_mask;
 438                } else {
 439                        dev->udma_mask = 0;
 440                        dev->mwdma_mask = 0;
 441                        dev->pio_mask = pio_mask;
 442                }
 443
 444                ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
 445                               fe->param.name);
 446                return;
 447        }
 448}
 449
 450/**
 451 *      ata_force_horkage - force horkage according to libata.force
 452 *      @dev: ATA device of interest
 453 *
 454 *      Force horkage according to libata.force and whine about it.
 455 *      For consistency with link selection, device number 15 selects
 456 *      the first device connected to the host link.
 457 *
 458 *      LOCKING:
 459 *      EH context.
 460 */
 461static void ata_force_horkage(struct ata_device *dev)
 462{
 463        int devno = dev->link->pmp + dev->devno;
 464        int alt_devno = devno;
 465        int i;
 466
 467        /* allow n.15/16 for devices attached to host port */
 468        if (ata_is_host_link(dev->link))
 469                alt_devno += 15;
 470
 471        for (i = 0; i < ata_force_tbl_size; i++) {
 472                const struct ata_force_ent *fe = &ata_force_tbl[i];
 473
 474                if (fe->port != -1 && fe->port != dev->link->ap->print_id)
 475                        continue;
 476
 477                if (fe->device != -1 && fe->device != devno &&
 478                    fe->device != alt_devno)
 479                        continue;
 480
 481                if (!(~dev->horkage & fe->param.horkage_on) &&
 482                    !(dev->horkage & fe->param.horkage_off))
 483                        continue;
 484
 485                dev->horkage |= fe->param.horkage_on;
 486                dev->horkage &= ~fe->param.horkage_off;
 487
 488                ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
 489                               fe->param.name);
 490        }
 491}
 492
 493/**
 494 *      atapi_cmd_type - Determine ATAPI command type from SCSI opcode
 495 *      @opcode: SCSI opcode
 496 *
 497 *      Determine ATAPI command type from @opcode.
 498 *
 499 *      LOCKING:
 500 *      None.
 501 *
 502 *      RETURNS:
 503 *      ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
 504 */
 505int atapi_cmd_type(u8 opcode)
 506{
 507        switch (opcode) {
 508        case GPCMD_READ_10:
 509        case GPCMD_READ_12:
 510                return ATAPI_READ;
 511
 512        case GPCMD_WRITE_10:
 513        case GPCMD_WRITE_12:
 514        case GPCMD_WRITE_AND_VERIFY_10:
 515                return ATAPI_WRITE;
 516
 517        case GPCMD_READ_CD:
 518        case GPCMD_READ_CD_MSF:
 519                return ATAPI_READ_CD;
 520
 521        case ATA_16:
 522        case ATA_12:
 523                if (atapi_passthru16)
 524                        return ATAPI_PASS_THRU;
 525                /* fall thru */
 526        default:
 527                return ATAPI_MISC;
 528        }
 529}
 530
 531/**
 532 *      ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
 533 *      @tf: Taskfile to convert
 534 *      @pmp: Port multiplier port
 535 *      @is_cmd: This FIS is for command
 536 *      @fis: Buffer into which data will output
 537 *
 538 *      Converts a standard ATA taskfile to a Serial ATA
 539 *      FIS structure (Register - Host to Device).
 540 *
 541 *      LOCKING:
 542 *      Inherited from caller.
 543 */
 544void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
 545{
 546        fis[0] = 0x27;                  /* Register - Host to Device FIS */
 547        fis[1] = pmp & 0xf;             /* Port multiplier number*/
 548        if (is_cmd)
 549                fis[1] |= (1 << 7);     /* bit 7 indicates Command FIS */
 550
 551        fis[2] = tf->command;
 552        fis[3] = tf->feature;
 553
 554        fis[4] = tf->lbal;
 555        fis[5] = tf->lbam;
 556        fis[6] = tf->lbah;
 557        fis[7] = tf->device;
 558
 559        fis[8] = tf->hob_lbal;
 560        fis[9] = tf->hob_lbam;
 561        fis[10] = tf->hob_lbah;
 562        fis[11] = tf->hob_feature;
 563
 564        fis[12] = tf->nsect;
 565        fis[13] = tf->hob_nsect;
 566        fis[14] = 0;
 567        fis[15] = tf->ctl;
 568
 569        fis[16] = 0;
 570        fis[17] = 0;
 571        fis[18] = 0;
 572        fis[19] = 0;
 573}
 574
 575/**
 576 *      ata_tf_from_fis - Convert SATA FIS to ATA taskfile
 577 *      @fis: Buffer from which data will be input
 578 *      @tf: Taskfile to output
 579 *
 580 *      Converts a serial ATA FIS structure to a standard ATA taskfile.
 581 *
 582 *      LOCKING:
 583 *      Inherited from caller.
 584 */
 585
 586void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
 587{
 588        tf->command     = fis[2];       /* status */
 589        tf->feature     = fis[3];       /* error */
 590
 591        tf->lbal        = fis[4];
 592        tf->lbam        = fis[5];
 593        tf->lbah        = fis[6];
 594        tf->device      = fis[7];
 595
 596        tf->hob_lbal    = fis[8];
 597        tf->hob_lbam    = fis[9];
 598        tf->hob_lbah    = fis[10];
 599
 600        tf->nsect       = fis[12];
 601        tf->hob_nsect   = fis[13];
 602}
 603
 604static const u8 ata_rw_cmds[] = {
 605        /* pio multi */
 606        ATA_CMD_READ_MULTI,
 607        ATA_CMD_WRITE_MULTI,
 608        ATA_CMD_READ_MULTI_EXT,
 609        ATA_CMD_WRITE_MULTI_EXT,
 610        0,
 611        0,
 612        0,
 613        ATA_CMD_WRITE_MULTI_FUA_EXT,
 614        /* pio */
 615        ATA_CMD_PIO_READ,
 616        ATA_CMD_PIO_WRITE,
 617        ATA_CMD_PIO_READ_EXT,
 618        ATA_CMD_PIO_WRITE_EXT,
 619        0,
 620        0,
 621        0,
 622        0,
 623        /* dma */
 624        ATA_CMD_READ,
 625        ATA_CMD_WRITE,
 626        ATA_CMD_READ_EXT,
 627        ATA_CMD_WRITE_EXT,
 628        0,
 629        0,
 630        0,
 631        ATA_CMD_WRITE_FUA_EXT
 632};
 633
 634/**
 635 *      ata_rwcmd_protocol - set taskfile r/w commands and protocol
 636 *      @tf: command to examine and configure
 637 *      @dev: device tf belongs to
 638 *
 639 *      Examine the device configuration and tf->flags to calculate
 640 *      the proper read/write commands and protocol to use.
 641 *
 642 *      LOCKING:
 643 *      caller.
 644 */
 645static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
 646{
 647        u8 cmd;
 648
 649        int index, fua, lba48, write;
 650
 651        fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
 652        lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
 653        write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
 654
 655        if (dev->flags & ATA_DFLAG_PIO) {
 656                tf->protocol = ATA_PROT_PIO;
 657                index = dev->multi_count ? 0 : 8;
 658        } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
 659                /* Unable to use DMA due to host limitation */
 660                tf->protocol = ATA_PROT_PIO;
 661                index = dev->multi_count ? 0 : 8;
 662        } else {
 663                tf->protocol = ATA_PROT_DMA;
 664                index = 16;
 665        }
 666
 667        cmd = ata_rw_cmds[index + fua + lba48 + write];
 668        if (cmd) {
 669                tf->command = cmd;
 670                return 0;
 671        }
 672        return -1;
 673}
 674
 675/**
 676 *      ata_tf_read_block - Read block address from ATA taskfile
 677 *      @tf: ATA taskfile of interest
 678 *      @dev: ATA device @tf belongs to
 679 *
 680 *      LOCKING:
 681 *      None.
 682 *
 683 *      Read block address from @tf.  This function can handle all
 684 *      three address formats - LBA, LBA48 and CHS.  tf->protocol and
 685 *      flags select the address format to use.
 686 *
 687 *      RETURNS:
 688 *      Block address read from @tf.
 689 */
 690u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
 691{
 692        u64 block = 0;
 693
 694        if (tf->flags & ATA_TFLAG_LBA) {
 695                if (tf->flags & ATA_TFLAG_LBA48) {
 696                        block |= (u64)tf->hob_lbah << 40;
 697                        block |= (u64)tf->hob_lbam << 32;
 698                        block |= (u64)tf->hob_lbal << 24;
 699                } else
 700                        block |= (tf->device & 0xf) << 24;
 701
 702                block |= tf->lbah << 16;
 703                block |= tf->lbam << 8;
 704                block |= tf->lbal;
 705        } else {
 706                u32 cyl, head, sect;
 707
 708                cyl = tf->lbam | (tf->lbah << 8);
 709                head = tf->device & 0xf;
 710                sect = tf->lbal;
 711
 712                if (!sect) {
 713                        ata_dev_warn(dev,
 714                                     "device reported invalid CHS sector 0\n");
 715                        sect = 1; /* oh well */
 716                }
 717
 718                block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
 719        }
 720
 721        return block;
 722}
 723
 724/**
 725 *      ata_build_rw_tf - Build ATA taskfile for given read/write request
 726 *      @tf: Target ATA taskfile
 727 *      @dev: ATA device @tf belongs to
 728 *      @block: Block address
 729 *      @n_block: Number of blocks
 730 *      @tf_flags: RW/FUA etc...
 731 *      @tag: tag
 732 *
 733 *      LOCKING:
 734 *      None.
 735 *
 736 *      Build ATA taskfile @tf for read/write request described by
 737 *      @block, @n_block, @tf_flags and @tag on @dev.
 738 *
 739 *      RETURNS:
 740 *
 741 *      0 on success, -ERANGE if the request is too large for @dev,
 742 *      -EINVAL if the request is invalid.
 743 */
 744int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
 745                    u64 block, u32 n_block, unsigned int tf_flags,
 746                    unsigned int tag)
 747{
 748        tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
 749        tf->flags |= tf_flags;
 750
 751        if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
 752                /* yay, NCQ */
 753                if (!lba_48_ok(block, n_block))
 754                        return -ERANGE;
 755
 756                tf->protocol = ATA_PROT_NCQ;
 757                tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
 758
 759                if (tf->flags & ATA_TFLAG_WRITE)
 760                        tf->command = ATA_CMD_FPDMA_WRITE;
 761                else
 762                        tf->command = ATA_CMD_FPDMA_READ;
 763
 764                tf->nsect = tag << 3;
 765                tf->hob_feature = (n_block >> 8) & 0xff;
 766                tf->feature = n_block & 0xff;
 767
 768                tf->hob_lbah = (block >> 40) & 0xff;
 769                tf->hob_lbam = (block >> 32) & 0xff;
 770                tf->hob_lbal = (block >> 24) & 0xff;
 771                tf->lbah = (block >> 16) & 0xff;
 772                tf->lbam = (block >> 8) & 0xff;
 773                tf->lbal = block & 0xff;
 774
 775                tf->device = 1 << 6;
 776                if (tf->flags & ATA_TFLAG_FUA)
 777                        tf->device |= 1 << 7;
 778        } else if (dev->flags & ATA_DFLAG_LBA) {
 779                tf->flags |= ATA_TFLAG_LBA;
 780
 781                if (lba_28_ok(block, n_block)) {
 782                        /* use LBA28 */
 783                        tf->device |= (block >> 24) & 0xf;
 784                } else if (lba_48_ok(block, n_block)) {
 785                        if (!(dev->flags & ATA_DFLAG_LBA48))
 786                                return -ERANGE;
 787
 788                        /* use LBA48 */
 789                        tf->flags |= ATA_TFLAG_LBA48;
 790
 791                        tf->hob_nsect = (n_block >> 8) & 0xff;
 792
 793                        tf->hob_lbah = (block >> 40) & 0xff;
 794                        tf->hob_lbam = (block >> 32) & 0xff;
 795                        tf->hob_lbal = (block >> 24) & 0xff;
 796                } else
 797                        /* request too large even for LBA48 */
 798                        return -ERANGE;
 799
 800                if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
 801                        return -EINVAL;
 802
 803                tf->nsect = n_block & 0xff;
 804
 805                tf->lbah = (block >> 16) & 0xff;
 806                tf->lbam = (block >> 8) & 0xff;
 807                tf->lbal = block & 0xff;
 808
 809                tf->device |= ATA_LBA;
 810        } else {
 811                /* CHS */
 812                u32 sect, head, cyl, track;
 813
 814                /* The request -may- be too large for CHS addressing. */
 815                if (!lba_28_ok(block, n_block))
 816                        return -ERANGE;
 817
 818                if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
 819                        return -EINVAL;
 820
 821                /* Convert LBA to CHS */
 822                track = (u32)block / dev->sectors;
 823                cyl   = track / dev->heads;
 824                head  = track % dev->heads;
 825                sect  = (u32)block % dev->sectors + 1;
 826
 827                DPRINTK("block %u track %u cyl %u head %u sect %u\n",
 828                        (u32)block, track, cyl, head, sect);
 829
 830                /* Check whether the converted CHS can fit.
 831                   Cylinder: 0-65535
 832                   Head: 0-15
 833                   Sector: 1-255*/
 834                if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
 835                        return -ERANGE;
 836
 837                tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
 838                tf->lbal = sect;
 839                tf->lbam = cyl;
 840                tf->lbah = cyl >> 8;
 841                tf->device |= head;
 842        }
 843
 844        return 0;
 845}
 846
 847/**
 848 *      ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
 849 *      @pio_mask: pio_mask
 850 *      @mwdma_mask: mwdma_mask
 851 *      @udma_mask: udma_mask
 852 *
 853 *      Pack @pio_mask, @mwdma_mask and @udma_mask into a single
 854 *      unsigned int xfer_mask.
 855 *
 856 *      LOCKING:
 857 *      None.
 858 *
 859 *      RETURNS:
 860 *      Packed xfer_mask.
 861 */
 862unsigned long ata_pack_xfermask(unsigned long pio_mask,
 863                                unsigned long mwdma_mask,
 864                                unsigned long udma_mask)
 865{
 866        return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
 867                ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
 868                ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
 869}
 870
 871/**
 872 *      ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
 873 *      @xfer_mask: xfer_mask to unpack
 874 *      @pio_mask: resulting pio_mask
 875 *      @mwdma_mask: resulting mwdma_mask
 876 *      @udma_mask: resulting udma_mask
 877 *
 878 *      Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
 879 *      Any NULL distination masks will be ignored.
 880 */
 881void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
 882                         unsigned long *mwdma_mask, unsigned long *udma_mask)
 883{
 884        if (pio_mask)
 885                *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
 886        if (mwdma_mask)
 887                *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
 888        if (udma_mask)
 889                *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
 890}
 891
 892static const struct ata_xfer_ent {
 893        int shift, bits;
 894        u8 base;
 895} ata_xfer_tbl[] = {
 896        { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
 897        { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
 898        { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
 899        { -1, },
 900};
 901
 902/**
 903 *      ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
 904 *      @xfer_mask: xfer_mask of interest
 905 *
 906 *      Return matching XFER_* value for @xfer_mask.  Only the highest
 907 *      bit of @xfer_mask is considered.
 908 *
 909 *      LOCKING:
 910 *      None.
 911 *
 912 *      RETURNS:
 913 *      Matching XFER_* value, 0xff if no match found.
 914 */
 915u8 ata_xfer_mask2mode(unsigned long xfer_mask)
 916{
 917        int highbit = fls(xfer_mask) - 1;
 918        const struct ata_xfer_ent *ent;
 919
 920        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 921                if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
 922                        return ent->base + highbit - ent->shift;
 923        return 0xff;
 924}
 925
 926/**
 927 *      ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
 928 *      @xfer_mode: XFER_* of interest
 929 *
 930 *      Return matching xfer_mask for @xfer_mode.
 931 *
 932 *      LOCKING:
 933 *      None.
 934 *
 935 *      RETURNS:
 936 *      Matching xfer_mask, 0 if no match found.
 937 */
 938unsigned long ata_xfer_mode2mask(u8 xfer_mode)
 939{
 940        const struct ata_xfer_ent *ent;
 941
 942        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 943                if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
 944                        return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
 945                                & ~((1 << ent->shift) - 1);
 946        return 0;
 947}
 948
 949/**
 950 *      ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
 951 *      @xfer_mode: XFER_* of interest
 952 *
 953 *      Return matching xfer_shift for @xfer_mode.
 954 *
 955 *      LOCKING:
 956 *      None.
 957 *
 958 *      RETURNS:
 959 *      Matching xfer_shift, -1 if no match found.
 960 */
 961int ata_xfer_mode2shift(unsigned long xfer_mode)
 962{
 963        const struct ata_xfer_ent *ent;
 964
 965        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 966                if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
 967                        return ent->shift;
 968        return -1;
 969}
 970
 971/**
 972 *      ata_mode_string - convert xfer_mask to string
 973 *      @xfer_mask: mask of bits supported; only highest bit counts.
 974 *
 975 *      Determine string which represents the highest speed
 976 *      (highest bit in @modemask).
 977 *
 978 *      LOCKING:
 979 *      None.
 980 *
 981 *      RETURNS:
 982 *      Constant C string representing highest speed listed in
 983 *      @mode_mask, or the constant C string "<n/a>".
 984 */
 985const char *ata_mode_string(unsigned long xfer_mask)
 986{
 987        static const char * const xfer_mode_str[] = {
 988                "PIO0",
 989                "PIO1",
 990                "PIO2",
 991                "PIO3",
 992                "PIO4",
 993                "PIO5",
 994                "PIO6",
 995                "MWDMA0",
 996                "MWDMA1",
 997                "MWDMA2",
 998                "MWDMA3",
 999                "MWDMA4",
1000                "UDMA/16",
1001                "UDMA/25",
1002                "UDMA/33",
1003                "UDMA/44",
1004                "UDMA/66",
1005                "UDMA/100",
1006                "UDMA/133",
1007                "UDMA7",
1008        };
1009        int highbit;
1010
1011        highbit = fls(xfer_mask) - 1;
1012        if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1013                return xfer_mode_str[highbit];
1014        return "<n/a>";
1015}
1016
1017const char *sata_spd_string(unsigned int spd)
1018{
1019        static const char * const spd_str[] = {
1020                "1.5 Gbps",
1021                "3.0 Gbps",
1022                "6.0 Gbps",
1023        };
1024
1025        if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1026                return "<unknown>";
1027        return spd_str[spd - 1];
1028}
1029
1030/**
1031 *      ata_dev_classify - determine device type based on ATA-spec signature
1032 *      @tf: ATA taskfile register set for device to be identified
1033 *
1034 *      Determine from taskfile register contents whether a device is
1035 *      ATA or ATAPI, as per "Signature and persistence" section
1036 *      of ATA/PI spec (volume 1, sect 5.14).
1037 *
1038 *      LOCKING:
1039 *      None.
1040 *
1041 *      RETURNS:
1042 *      Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1043 *      %ATA_DEV_UNKNOWN the event of failure.
1044 */
1045unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1046{
1047        /* Apple's open source Darwin code hints that some devices only
1048         * put a proper signature into the LBA mid/high registers,
1049         * So, we only check those.  It's sufficient for uniqueness.
1050         *
1051         * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1052         * signatures for ATA and ATAPI devices attached on SerialATA,
1053         * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1054         * spec has never mentioned about using different signatures
1055         * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1056         * Multiplier specification began to use 0x69/0x96 to identify
1057         * port multpliers and 0x3c/0xc3 to identify SEMB device.
1058         * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1059         * 0x69/0x96 shortly and described them as reserved for
1060         * SerialATA.
1061         *
1062         * We follow the current spec and consider that 0x69/0x96
1063         * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1064         * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1065         * SEMB signature.  This is worked around in
1066         * ata_dev_read_id().
1067         */
1068        if ((tf->lbam == 0) && (tf->lbah == 0)) {
1069                DPRINTK("found ATA device by sig\n");
1070                return ATA_DEV_ATA;
1071        }
1072
1073        if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1074                DPRINTK("found ATAPI device by sig\n");
1075                return ATA_DEV_ATAPI;
1076        }
1077
1078        if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1079                DPRINTK("found PMP device by sig\n");
1080                return ATA_DEV_PMP;
1081        }
1082
1083        if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1084                DPRINTK("found SEMB device by sig (could be ATA device)\n");
1085                return ATA_DEV_SEMB;
1086        }
1087
1088        DPRINTK("unknown device\n");
1089        return ATA_DEV_UNKNOWN;
1090}
1091
1092/**
1093 *      ata_id_string - Convert IDENTIFY DEVICE page into string
1094 *      @id: IDENTIFY DEVICE results we will examine
1095 *      @s: string into which data is output
1096 *      @ofs: offset into identify device page
1097 *      @len: length of string to return. must be an even number.
1098 *
1099 *      The strings in the IDENTIFY DEVICE page are broken up into
1100 *      16-bit chunks.  Run through the string, and output each
1101 *      8-bit chunk linearly, regardless of platform.
1102 *
1103 *      LOCKING:
1104 *      caller.
1105 */
1106
1107void ata_id_string(const u16 *id, unsigned char *s,
1108                   unsigned int ofs, unsigned int len)
1109{
1110        unsigned int c;
1111
1112        BUG_ON(len & 1);
1113
1114        while (len > 0) {
1115                c = id[ofs] >> 8;
1116                *s = c;
1117                s++;
1118
1119                c = id[ofs] & 0xff;
1120                *s = c;
1121                s++;
1122
1123                ofs++;
1124                len -= 2;
1125        }
1126}
1127
1128/**
1129 *      ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1130 *      @id: IDENTIFY DEVICE results we will examine
1131 *      @s: string into which data is output
1132 *      @ofs: offset into identify device page
1133 *      @len: length of string to return. must be an odd number.
1134 *
1135 *      This function is identical to ata_id_string except that it
1136 *      trims trailing spaces and terminates the resulting string with
1137 *      null.  @len must be actual maximum length (even number) + 1.
1138 *
1139 *      LOCKING:
1140 *      caller.
1141 */
1142void ata_id_c_string(const u16 *id, unsigned char *s,
1143                     unsigned int ofs, unsigned int len)
1144{
1145        unsigned char *p;
1146
1147        ata_id_string(id, s, ofs, len - 1);
1148
1149        p = s + strnlen(s, len - 1);
1150        while (p > s && p[-1] == ' ')
1151                p--;
1152        *p = '\0';
1153}
1154
1155static u64 ata_id_n_sectors(const u16 *id)
1156{
1157        if (ata_id_has_lba(id)) {
1158                if (ata_id_has_lba48(id))
1159                        return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1160                else
1161                        return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1162        } else {
1163                if (ata_id_current_chs_valid(id))
1164                        return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1165                               id[ATA_ID_CUR_SECTORS];
1166                else
1167                        return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1168                               id[ATA_ID_SECTORS];
1169        }
1170}
1171
1172u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1173{
1174        u64 sectors = 0;
1175
1176        sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1177        sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1178        sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1179        sectors |= (tf->lbah & 0xff) << 16;
1180        sectors |= (tf->lbam & 0xff) << 8;
1181        sectors |= (tf->lbal & 0xff);
1182
1183        return sectors;
1184}
1185
1186u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1187{
1188        u64 sectors = 0;
1189
1190        sectors |= (tf->device & 0x0f) << 24;
1191        sectors |= (tf->lbah & 0xff) << 16;
1192        sectors |= (tf->lbam & 0xff) << 8;
1193        sectors |= (tf->lbal & 0xff);
1194
1195        return sectors;
1196}
1197
1198/**
1199 *      ata_read_native_max_address - Read native max address
1200 *      @dev: target device
1201 *      @max_sectors: out parameter for the result native max address
1202 *
1203 *      Perform an LBA48 or LBA28 native size query upon the device in
1204 *      question.
1205 *
1206 *      RETURNS:
1207 *      0 on success, -EACCES if command is aborted by the drive.
1208 *      -EIO on other errors.
1209 */
1210static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1211{
1212        unsigned int err_mask;
1213        struct ata_taskfile tf;
1214        int lba48 = ata_id_has_lba48(dev->id);
1215
1216        ata_tf_init(dev, &tf);
1217
1218        /* always clear all address registers */
1219        tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1220
1221        if (lba48) {
1222                tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1223                tf.flags |= ATA_TFLAG_LBA48;
1224        } else
1225                tf.command = ATA_CMD_READ_NATIVE_MAX;
1226
1227        tf.protocol |= ATA_PROT_NODATA;
1228        tf.device |= ATA_LBA;
1229
1230        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1231        if (err_mask) {
1232                ata_dev_warn(dev,
1233                             "failed to read native max address (err_mask=0x%x)\n",
1234                             err_mask);
1235                if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1236                        return -EACCES;
1237                return -EIO;
1238        }
1239
1240        if (lba48)
1241                *max_sectors = ata_tf_to_lba48(&tf) + 1;
1242        else
1243                *max_sectors = ata_tf_to_lba(&tf) + 1;
1244        if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1245                (*max_sectors)--;
1246        return 0;
1247}
1248
1249/**
1250 *      ata_set_max_sectors - Set max sectors
1251 *      @dev: target device
1252 *      @new_sectors: new max sectors value to set for the device
1253 *
1254 *      Set max sectors of @dev to @new_sectors.
1255 *
1256 *      RETURNS:
1257 *      0 on success, -EACCES if command is aborted or denied (due to
1258 *      previous non-volatile SET_MAX) by the drive.  -EIO on other
1259 *      errors.
1260 */
1261static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1262{
1263        unsigned int err_mask;
1264        struct ata_taskfile tf;
1265        int lba48 = ata_id_has_lba48(dev->id);
1266
1267        new_sectors--;
1268
1269        ata_tf_init(dev, &tf);
1270
1271        tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1272
1273        if (lba48) {
1274                tf.command = ATA_CMD_SET_MAX_EXT;
1275                tf.flags |= ATA_TFLAG_LBA48;
1276
1277                tf.hob_lbal = (new_sectors >> 24) & 0xff;
1278                tf.hob_lbam = (new_sectors >> 32) & 0xff;
1279                tf.hob_lbah = (new_sectors >> 40) & 0xff;
1280        } else {
1281                tf.command = ATA_CMD_SET_MAX;
1282
1283                tf.device |= (new_sectors >> 24) & 0xf;
1284        }
1285
1286        tf.protocol |= ATA_PROT_NODATA;
1287        tf.device |= ATA_LBA;
1288
1289        tf.lbal = (new_sectors >> 0) & 0xff;
1290        tf.lbam = (new_sectors >> 8) & 0xff;
1291        tf.lbah = (new_sectors >> 16) & 0xff;
1292
1293        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1294        if (err_mask) {
1295                ata_dev_warn(dev,
1296                             "failed to set max address (err_mask=0x%x)\n",
1297                             err_mask);
1298                if (err_mask == AC_ERR_DEV &&
1299                    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1300                        return -EACCES;
1301                return -EIO;
1302        }
1303
1304        return 0;
1305}
1306
1307/**
1308 *      ata_hpa_resize          -       Resize a device with an HPA set
1309 *      @dev: Device to resize
1310 *
1311 *      Read the size of an LBA28 or LBA48 disk with HPA features and resize
1312 *      it if required to the full size of the media. The caller must check
1313 *      the drive has the HPA feature set enabled.
1314 *
1315 *      RETURNS:
1316 *      0 on success, -errno on failure.
1317 */
1318static int ata_hpa_resize(struct ata_device *dev)
1319{
1320        struct ata_eh_context *ehc = &dev->link->eh_context;
1321        int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1322        bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1323        u64 sectors = ata_id_n_sectors(dev->id);
1324        u64 native_sectors;
1325        int rc;
1326
1327        /* do we need to do it? */
1328        if (dev->class != ATA_DEV_ATA ||
1329            !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1330            (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1331                return 0;
1332
1333        /* read native max address */
1334        rc = ata_read_native_max_address(dev, &native_sectors);
1335        if (rc) {
1336                /* If device aborted the command or HPA isn't going to
1337                 * be unlocked, skip HPA resizing.
1338                 */
1339                if (rc == -EACCES || !unlock_hpa) {
1340                        ata_dev_warn(dev,
1341                                     "HPA support seems broken, skipping HPA handling\n");
1342                        dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1343
1344                        /* we can continue if device aborted the command */
1345                        if (rc == -EACCES)
1346                                rc = 0;
1347                }
1348
1349                return rc;
1350        }
1351        dev->n_native_sectors = native_sectors;
1352
1353        /* nothing to do? */
1354        if (native_sectors <= sectors || !unlock_hpa) {
1355                if (!print_info || native_sectors == sectors)
1356                        return 0;
1357
1358                if (native_sectors > sectors)
1359                        ata_dev_info(dev,
1360                                "HPA detected: current %llu, native %llu\n",
1361                                (unsigned long long)sectors,
1362                                (unsigned long long)native_sectors);
1363                else if (native_sectors < sectors)
1364                        ata_dev_warn(dev,
1365                                "native sectors (%llu) is smaller than sectors (%llu)\n",
1366                                (unsigned long long)native_sectors,
1367                                (unsigned long long)sectors);
1368                return 0;
1369        }
1370
1371        /* let's unlock HPA */
1372        rc = ata_set_max_sectors(dev, native_sectors);
1373        if (rc == -EACCES) {
1374                /* if device aborted the command, skip HPA resizing */
1375                ata_dev_warn(dev,
1376                             "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1377                             (unsigned long long)sectors,
1378                             (unsigned long long)native_sectors);
1379                dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1380                return 0;
1381        } else if (rc)
1382                return rc;
1383
1384        /* re-read IDENTIFY data */
1385        rc = ata_dev_reread_id(dev, 0);
1386        if (rc) {
1387                ata_dev_err(dev,
1388                            "failed to re-read IDENTIFY data after HPA resizing\n");
1389                return rc;
1390        }
1391
1392        if (print_info) {
1393                u64 new_sectors = ata_id_n_sectors(dev->id);
1394                ata_dev_info(dev,
1395                        "HPA unlocked: %llu -> %llu, native %llu\n",
1396                        (unsigned long long)sectors,
1397                        (unsigned long long)new_sectors,
1398                        (unsigned long long)native_sectors);
1399        }
1400
1401        return 0;
1402}
1403
1404/**
1405 *      ata_dump_id - IDENTIFY DEVICE info debugging output
1406 *      @id: IDENTIFY DEVICE page to dump
1407 *
1408 *      Dump selected 16-bit words from the given IDENTIFY DEVICE
1409 *      page.
1410 *
1411 *      LOCKING:
1412 *      caller.
1413 */
1414
1415static inline void ata_dump_id(const u16 *id)
1416{
1417        DPRINTK("49==0x%04x  "
1418                "53==0x%04x  "
1419                "63==0x%04x  "
1420                "64==0x%04x  "
1421                "75==0x%04x  \n",
1422                id[49],
1423                id[53],
1424                id[63],
1425                id[64],
1426                id[75]);
1427        DPRINTK("80==0x%04x  "
1428                "81==0x%04x  "
1429                "82==0x%04x  "
1430                "83==0x%04x  "
1431                "84==0x%04x  \n",
1432                id[80],
1433                id[81],
1434                id[82],
1435                id[83],
1436                id[84]);
1437        DPRINTK("88==0x%04x  "
1438                "93==0x%04x\n",
1439                id[88],
1440                id[93]);
1441}
1442
1443/**
1444 *      ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1445 *      @id: IDENTIFY data to compute xfer mask from
1446 *
1447 *      Compute the xfermask for this device. This is not as trivial
1448 *      as it seems if we must consider early devices correctly.
1449 *
1450 *      FIXME: pre IDE drive timing (do we care ?).
1451 *
1452 *      LOCKING:
1453 *      None.
1454 *
1455 *      RETURNS:
1456 *      Computed xfermask
1457 */
1458unsigned long ata_id_xfermask(const u16 *id)
1459{
1460        unsigned long pio_mask, mwdma_mask, udma_mask;
1461
1462        /* Usual case. Word 53 indicates word 64 is valid */
1463        if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1464                pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1465                pio_mask <<= 3;
1466                pio_mask |= 0x7;
1467        } else {
1468                /* If word 64 isn't valid then Word 51 high byte holds
1469                 * the PIO timing number for the maximum. Turn it into
1470                 * a mask.
1471                 */
1472                u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1473                if (mode < 5)   /* Valid PIO range */
1474                        pio_mask = (2 << mode) - 1;
1475                else
1476                        pio_mask = 1;
1477
1478                /* But wait.. there's more. Design your standards by
1479                 * committee and you too can get a free iordy field to
1480                 * process. However its the speeds not the modes that
1481                 * are supported... Note drivers using the timing API
1482                 * will get this right anyway
1483                 */
1484        }
1485
1486        mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1487
1488        if (ata_id_is_cfa(id)) {
1489                /*
1490                 *      Process compact flash extended modes
1491                 */
1492                int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1493                int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1494
1495                if (pio)
1496                        pio_mask |= (1 << 5);
1497                if (pio > 1)
1498                        pio_mask |= (1 << 6);
1499                if (dma)
1500                        mwdma_mask |= (1 << 3);
1501                if (dma > 1)
1502                        mwdma_mask |= (1 << 4);
1503        }
1504
1505        udma_mask = 0;
1506        if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1507                udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1508
1509        return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1510}
1511
1512static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1513{
1514        struct completion *waiting = qc->private_data;
1515
1516        complete(waiting);
1517}
1518
1519/**
1520 *      ata_exec_internal_sg - execute libata internal command
1521 *      @dev: Device to which the command is sent
1522 *      @tf: Taskfile registers for the command and the result
1523 *      @cdb: CDB for packet command
1524 *      @dma_dir: Data tranfer direction of the command
1525 *      @sgl: sg list for the data buffer of the command
1526 *      @n_elem: Number of sg entries
1527 *      @timeout: Timeout in msecs (0 for default)
1528 *
1529 *      Executes libata internal command with timeout.  @tf contains
1530 *      command on entry and result on return.  Timeout and error
1531 *      conditions are reported via return value.  No recovery action
1532 *      is taken after a command times out.  It's caller's duty to
1533 *      clean up after timeout.
1534 *
1535 *      LOCKING:
1536 *      None.  Should be called with kernel context, might sleep.
1537 *
1538 *      RETURNS:
1539 *      Zero on success, AC_ERR_* mask on failure
1540 */
1541unsigned ata_exec_internal_sg(struct ata_device *dev,
1542                              struct ata_taskfile *tf, const u8 *cdb,
1543                              int dma_dir, struct scatterlist *sgl,
1544                              unsigned int n_elem, unsigned long timeout)
1545{
1546        struct ata_link *link = dev->link;
1547        struct ata_port *ap = link->ap;
1548        u8 command = tf->command;
1549        int auto_timeout = 0;
1550        struct ata_queued_cmd *qc;
1551        unsigned int tag, preempted_tag;
1552        u32 preempted_sactive, preempted_qc_active;
1553        int preempted_nr_active_links;
1554        DECLARE_COMPLETION_ONSTACK(wait);
1555        unsigned long flags;
1556        unsigned int err_mask;
1557        int rc;
1558
1559        spin_lock_irqsave(ap->lock, flags);
1560
1561        /* no internal command while frozen */
1562        if (ap->pflags & ATA_PFLAG_FROZEN) {
1563                spin_unlock_irqrestore(ap->lock, flags);
1564                return AC_ERR_SYSTEM;
1565        }
1566
1567        /* initialize internal qc */
1568
1569        /* XXX: Tag 0 is used for drivers with legacy EH as some
1570         * drivers choke if any other tag is given.  This breaks
1571         * ata_tag_internal() test for those drivers.  Don't use new
1572         * EH stuff without converting to it.
1573         */
1574        if (ap->ops->error_handler)
1575                tag = ATA_TAG_INTERNAL;
1576        else
1577                tag = 0;
1578
1579        if (test_and_set_bit(tag, &ap->qc_allocated))
1580                BUG();
1581        qc = __ata_qc_from_tag(ap, tag);
1582
1583        qc->tag = tag;
1584        qc->scsicmd = NULL;
1585        qc->ap = ap;
1586        qc->dev = dev;
1587        ata_qc_reinit(qc);
1588
1589        preempted_tag = link->active_tag;
1590        preempted_sactive = link->sactive;
1591        preempted_qc_active = ap->qc_active;
1592        preempted_nr_active_links = ap->nr_active_links;
1593        link->active_tag = ATA_TAG_POISON;
1594        link->sactive = 0;
1595        ap->qc_active = 0;
1596        ap->nr_active_links = 0;
1597
1598        /* prepare & issue qc */
1599        qc->tf = *tf;
1600        if (cdb)
1601                memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1602        qc->flags |= ATA_QCFLAG_RESULT_TF;
1603        qc->dma_dir = dma_dir;
1604        if (dma_dir != DMA_NONE) {
1605                unsigned int i, buflen = 0;
1606                struct scatterlist *sg;
1607
1608                for_each_sg(sgl, sg, n_elem, i)
1609                        buflen += sg->length;
1610
1611                ata_sg_init(qc, sgl, n_elem);
1612                qc->nbytes = buflen;
1613        }
1614
1615        qc->private_data = &wait;
1616        qc->complete_fn = ata_qc_complete_internal;
1617
1618        ata_qc_issue(qc);
1619
1620        spin_unlock_irqrestore(ap->lock, flags);
1621
1622        if (!timeout) {
1623                if (ata_probe_timeout)
1624                        timeout = ata_probe_timeout * 1000;
1625                else {
1626                        timeout = ata_internal_cmd_timeout(dev, command);
1627                        auto_timeout = 1;
1628                }
1629        }
1630
1631        if (ap->ops->error_handler)
1632                ata_eh_release(ap);
1633
1634        rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1635
1636        if (ap->ops->error_handler)
1637                ata_eh_acquire(ap);
1638
1639        ata_sff_flush_pio_task(ap);
1640
1641        if (!rc) {
1642                spin_lock_irqsave(ap->lock, flags);
1643
1644                /* We're racing with irq here.  If we lose, the
1645                 * following test prevents us from completing the qc
1646                 * twice.  If we win, the port is frozen and will be
1647                 * cleaned up by ->post_internal_cmd().
1648                 */
1649                if (qc->flags & ATA_QCFLAG_ACTIVE) {
1650                        qc->err_mask |= AC_ERR_TIMEOUT;
1651
1652                        if (ap->ops->error_handler)
1653                                ata_port_freeze(ap);
1654                        else
1655                                ata_qc_complete(qc);
1656
1657                        if (ata_msg_warn(ap))
1658                                ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1659                                             command);
1660                }
1661
1662                spin_unlock_irqrestore(ap->lock, flags);
1663        }
1664
1665        /* do post_internal_cmd */
1666        if (ap->ops->post_internal_cmd)
1667                ap->ops->post_internal_cmd(qc);
1668
1669        /* perform minimal error analysis */
1670        if (qc->flags & ATA_QCFLAG_FAILED) {
1671                if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1672                        qc->err_mask |= AC_ERR_DEV;
1673
1674                if (!qc->err_mask)
1675                        qc->err_mask |= AC_ERR_OTHER;
1676
1677                if (qc->err_mask & ~AC_ERR_OTHER)
1678                        qc->err_mask &= ~AC_ERR_OTHER;
1679        }
1680
1681        /* finish up */
1682        spin_lock_irqsave(ap->lock, flags);
1683
1684        *tf = qc->result_tf;
1685        err_mask = qc->err_mask;
1686
1687        ata_qc_free(qc);
1688        link->active_tag = preempted_tag;
1689        link->sactive = preempted_sactive;
1690        ap->qc_active = preempted_qc_active;
1691        ap->nr_active_links = preempted_nr_active_links;
1692
1693        spin_unlock_irqrestore(ap->lock, flags);
1694
1695        if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1696                ata_internal_cmd_timed_out(dev, command);
1697
1698        return err_mask;
1699}
1700
1701/**
1702 *      ata_exec_internal - execute libata internal command
1703 *      @dev: Device to which the command is sent
1704 *      @tf: Taskfile registers for the command and the result
1705 *      @cdb: CDB for packet command
1706 *      @dma_dir: Data tranfer direction of the command
1707 *      @buf: Data buffer of the command
1708 *      @buflen: Length of data buffer
1709 *      @timeout: Timeout in msecs (0 for default)
1710 *
1711 *      Wrapper around ata_exec_internal_sg() which takes simple
1712 *      buffer instead of sg list.
1713 *
1714 *      LOCKING:
1715 *      None.  Should be called with kernel context, might sleep.
1716 *
1717 *      RETURNS:
1718 *      Zero on success, AC_ERR_* mask on failure
1719 */
1720unsigned ata_exec_internal(struct ata_device *dev,
1721                           struct ata_taskfile *tf, const u8 *cdb,
1722                           int dma_dir, void *buf, unsigned int buflen,
1723                           unsigned long timeout)
1724{
1725        struct scatterlist *psg = NULL, sg;
1726        unsigned int n_elem = 0;
1727
1728        if (dma_dir != DMA_NONE) {
1729                WARN_ON(!buf);
1730                sg_init_one(&sg, buf, buflen);
1731                psg = &sg;
1732                n_elem++;
1733        }
1734
1735        return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1736                                    timeout);
1737}
1738
1739/**
1740 *      ata_do_simple_cmd - execute simple internal command
1741 *      @dev: Device to which the command is sent
1742 *      @cmd: Opcode to execute
1743 *
1744 *      Execute a 'simple' command, that only consists of the opcode
1745 *      'cmd' itself, without filling any other registers
1746 *
1747 *      LOCKING:
1748 *      Kernel thread context (may sleep).
1749 *
1750 *      RETURNS:
1751 *      Zero on success, AC_ERR_* mask on failure
1752 */
1753unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1754{
1755        struct ata_taskfile tf;
1756
1757        ata_tf_init(dev, &tf);
1758
1759        tf.command = cmd;
1760        tf.flags |= ATA_TFLAG_DEVICE;
1761        tf.protocol = ATA_PROT_NODATA;
1762
1763        return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1764}
1765
1766/**
1767 *      ata_pio_need_iordy      -       check if iordy needed
1768 *      @adev: ATA device
1769 *
1770 *      Check if the current speed of the device requires IORDY. Used
1771 *      by various controllers for chip configuration.
1772 */
1773unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1774{
1775        /* Don't set IORDY if we're preparing for reset.  IORDY may
1776         * lead to controller lock up on certain controllers if the
1777         * port is not occupied.  See bko#11703 for details.
1778         */
1779        if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1780                return 0;
1781        /* Controller doesn't support IORDY.  Probably a pointless
1782         * check as the caller should know this.
1783         */
1784        if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1785                return 0;
1786        /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1787        if (ata_id_is_cfa(adev->id)
1788            && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1789                return 0;
1790        /* PIO3 and higher it is mandatory */
1791        if (adev->pio_mode > XFER_PIO_2)
1792                return 1;
1793        /* We turn it on when possible */
1794        if (ata_id_has_iordy(adev->id))
1795                return 1;
1796        return 0;
1797}
1798
1799/**
1800 *      ata_pio_mask_no_iordy   -       Return the non IORDY mask
1801 *      @adev: ATA device
1802 *
1803 *      Compute the highest mode possible if we are not using iordy. Return
1804 *      -1 if no iordy mode is available.
1805 */
1806static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1807{
1808        /* If we have no drive specific rule, then PIO 2 is non IORDY */
1809        if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1810                u16 pio = adev->id[ATA_ID_EIDE_PIO];
1811                /* Is the speed faster than the drive allows non IORDY ? */
1812                if (pio) {
1813                        /* This is cycle times not frequency - watch the logic! */
1814                        if (pio > 240)  /* PIO2 is 240nS per cycle */
1815                                return 3 << ATA_SHIFT_PIO;
1816                        return 7 << ATA_SHIFT_PIO;
1817                }
1818        }
1819        return 3 << ATA_SHIFT_PIO;
1820}
1821
1822/**
1823 *      ata_do_dev_read_id              -       default ID read method
1824 *      @dev: device
1825 *      @tf: proposed taskfile
1826 *      @id: data buffer
1827 *
1828 *      Issue the identify taskfile and hand back the buffer containing
1829 *      identify data. For some RAID controllers and for pre ATA devices
1830 *      this function is wrapped or replaced by the driver
1831 */
1832unsigned int ata_do_dev_read_id(struct ata_device *dev,
1833                                        struct ata_taskfile *tf, u16 *id)
1834{
1835        return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1836                                     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1837}
1838
1839/**
1840 *      ata_dev_read_id - Read ID data from the specified device
1841 *      @dev: target device
1842 *      @p_class: pointer to class of the target device (may be changed)
1843 *      @flags: ATA_READID_* flags
1844 *      @id: buffer to read IDENTIFY data into
1845 *
1846 *      Read ID data from the specified device.  ATA_CMD_ID_ATA is
1847 *      performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1848 *      devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1849 *      for pre-ATA4 drives.
1850 *
1851 *      FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1852 *      now we abort if we hit that case.
1853 *
1854 *      LOCKING:
1855 *      Kernel thread context (may sleep)
1856 *
1857 *      RETURNS:
1858 *      0 on success, -errno otherwise.
1859 */
1860int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1861                    unsigned int flags, u16 *id)
1862{
1863        struct ata_port *ap = dev->link->ap;
1864        unsigned int class = *p_class;
1865        struct ata_taskfile tf;
1866        unsigned int err_mask = 0;
1867        const char *reason;
1868        bool is_semb = class == ATA_DEV_SEMB;
1869        int may_fallback = 1, tried_spinup = 0;
1870        int rc;
1871
1872        if (ata_msg_ctl(ap))
1873                ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1874
1875retry:
1876        ata_tf_init(dev, &tf);
1877
1878        switch (class) {
1879        case ATA_DEV_SEMB:
1880                class = ATA_DEV_ATA;    /* some hard drives report SEMB sig */
1881        case ATA_DEV_ATA:
1882                tf.command = ATA_CMD_ID_ATA;
1883                break;
1884        case ATA_DEV_ATAPI:
1885                tf.command = ATA_CMD_ID_ATAPI;
1886                break;
1887        default:
1888                rc = -ENODEV;
1889                reason = "unsupported class";
1890                goto err_out;
1891        }
1892
1893        tf.protocol = ATA_PROT_PIO;
1894
1895        /* Some devices choke if TF registers contain garbage.  Make
1896         * sure those are properly initialized.
1897         */
1898        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1899
1900        /* Device presence detection is unreliable on some
1901         * controllers.  Always poll IDENTIFY if available.
1902         */
1903        tf.flags |= ATA_TFLAG_POLLING;
1904
1905        if (ap->ops->read_id)
1906                err_mask = ap->ops->read_id(dev, &tf, id);
1907        else
1908                err_mask = ata_do_dev_read_id(dev, &tf, id);
1909
1910        if (err_mask) {
1911                if (err_mask & AC_ERR_NODEV_HINT) {
1912                        ata_dev_dbg(dev, "NODEV after polling detection\n");
1913                        return -ENOENT;
1914                }
1915
1916                if (is_semb) {
1917                        ata_dev_info(dev,
1918                     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1919                        /* SEMB is not supported yet */
1920                        *p_class = ATA_DEV_SEMB_UNSUP;
1921                        return 0;
1922                }
1923
1924                if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1925                        /* Device or controller might have reported
1926                         * the wrong device class.  Give a shot at the
1927                         * other IDENTIFY if the current one is
1928                         * aborted by the device.
1929                         */
1930                        if (may_fallback) {
1931                                may_fallback = 0;
1932
1933                                if (class == ATA_DEV_ATA)
1934                                        class = ATA_DEV_ATAPI;
1935                                else
1936                                        class = ATA_DEV_ATA;
1937                                goto retry;
1938                        }
1939
1940                        /* Control reaches here iff the device aborted
1941                         * both flavors of IDENTIFYs which happens
1942                         * sometimes with phantom devices.
1943                         */
1944                        ata_dev_dbg(dev,
1945                                    "both IDENTIFYs aborted, assuming NODEV\n");
1946                        return -ENOENT;
1947                }
1948
1949                rc = -EIO;
1950                reason = "I/O error";
1951                goto err_out;
1952        }
1953
1954        if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1955                ata_dev_dbg(dev, "dumping IDENTIFY data, "
1956                            "class=%d may_fallback=%d tried_spinup=%d\n",
1957                            class, may_fallback, tried_spinup);
1958                print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1959                               16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1960        }
1961
1962        /* Falling back doesn't make sense if ID data was read
1963         * successfully at least once.
1964         */
1965        may_fallback = 0;
1966
1967        swap_buf_le16(id, ATA_ID_WORDS);
1968
1969        /* sanity check */
1970        rc = -EINVAL;
1971        reason = "device reports invalid type";
1972
1973        if (class == ATA_DEV_ATA) {
1974                if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1975                        goto err_out;
1976        } else {
1977                if (ata_id_is_ata(id))
1978                        goto err_out;
1979        }
1980
1981        if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1982                tried_spinup = 1;
1983                /*
1984                 * Drive powered-up in standby mode, and requires a specific
1985                 * SET_FEATURES spin-up subcommand before it will accept
1986                 * anything other than the original IDENTIFY command.
1987                 */
1988                err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1989                if (err_mask && id[2] != 0x738c) {
1990                        rc = -EIO;
1991                        reason = "SPINUP failed";
1992                        goto err_out;
1993                }
1994                /*
1995                 * If the drive initially returned incomplete IDENTIFY info,
1996                 * we now must reissue the IDENTIFY command.
1997                 */
1998                if (id[2] == 0x37c8)
1999                        goto retry;
2000        }
2001
2002        if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2003                /*
2004                 * The exact sequence expected by certain pre-ATA4 drives is:
2005                 * SRST RESET
2006                 * IDENTIFY (optional in early ATA)
2007                 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2008                 * anything else..
2009                 * Some drives were very specific about that exact sequence.
2010                 *
2011                 * Note that ATA4 says lba is mandatory so the second check
2012                 * should never trigger.
2013                 */
2014                if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2015                        err_mask = ata_dev_init_params(dev, id[3], id[6]);
2016                        if (err_mask) {
2017                                rc = -EIO;
2018                                reason = "INIT_DEV_PARAMS failed";
2019                                goto err_out;
2020                        }
2021
2022                        /* current CHS translation info (id[53-58]) might be
2023                         * changed. reread the identify device info.
2024                         */
2025                        flags &= ~ATA_READID_POSTRESET;
2026                        goto retry;
2027                }
2028        }
2029
2030        *p_class = class;
2031
2032        return 0;
2033
2034 err_out:
2035        if (ata_msg_warn(ap))
2036                ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2037                             reason, err_mask);
2038        return rc;
2039}
2040
2041static int ata_do_link_spd_horkage(struct ata_device *dev)
2042{
2043        struct ata_link *plink = ata_dev_phys_link(dev);
2044        u32 target, target_limit;
2045
2046        if (!sata_scr_valid(plink))
2047                return 0;
2048
2049        if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2050                target = 1;
2051        else
2052                return 0;
2053
2054        target_limit = (1 << target) - 1;
2055
2056        /* if already on stricter limit, no need to push further */
2057        if (plink->sata_spd_limit <= target_limit)
2058                return 0;
2059
2060        plink->sata_spd_limit = target_limit;
2061
2062        /* Request another EH round by returning -EAGAIN if link is
2063         * going faster than the target speed.  Forward progress is
2064         * guaranteed by setting sata_spd_limit to target_limit above.
2065         */
2066        if (plink->sata_spd > target) {
2067                ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2068                             sata_spd_string(target));
2069                return -EAGAIN;
2070        }
2071        return 0;
2072}
2073
2074static inline u8 ata_dev_knobble(struct ata_device *dev)
2075{
2076        struct ata_port *ap = dev->link->ap;
2077
2078        if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2079                return 0;
2080
2081        return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2082}
2083
2084static int ata_dev_config_ncq(struct ata_device *dev,
2085                               char *desc, size_t desc_sz)
2086{
2087        struct ata_port *ap = dev->link->ap;
2088        int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2089        unsigned int err_mask;
2090        char *aa_desc = "";
2091
2092        if (!ata_id_has_ncq(dev->id)) {
2093                desc[0] = '\0';
2094                return 0;
2095        }
2096        if (dev->horkage & ATA_HORKAGE_NONCQ) {
2097                snprintf(desc, desc_sz, "NCQ (not used)");
2098                return 0;
2099        }
2100        if (ap->flags & ATA_FLAG_NCQ) {
2101                hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2102                dev->flags |= ATA_DFLAG_NCQ;
2103        }
2104
2105        if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2106                (ap->flags & ATA_FLAG_FPDMA_AA) &&
2107                ata_id_has_fpdma_aa(dev->id)) {
2108                err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2109                        SATA_FPDMA_AA);
2110                if (err_mask) {
2111                        ata_dev_err(dev,
2112                                    "failed to enable AA (error_mask=0x%x)\n",
2113                                    err_mask);
2114                        if (err_mask != AC_ERR_DEV) {
2115                                dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2116                                return -EIO;
2117                        }
2118                } else
2119                        aa_desc = ", AA";
2120        }
2121
2122        if (hdepth >= ddepth)
2123                snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2124        else
2125                snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2126                        ddepth, aa_desc);
2127        return 0;
2128}
2129
2130/**
2131 *      ata_dev_configure - Configure the specified ATA/ATAPI device
2132 *      @dev: Target device to configure
2133 *
2134 *      Configure @dev according to @dev->id.  Generic and low-level
2135 *      driver specific fixups are also applied.
2136 *
2137 *      LOCKING:
2138 *      Kernel thread context (may sleep)
2139 *
2140 *      RETURNS:
2141 *      0 on success, -errno otherwise
2142 */
2143int ata_dev_configure(struct ata_device *dev)
2144{
2145        struct ata_port *ap = dev->link->ap;
2146        struct ata_eh_context *ehc = &dev->link->eh_context;
2147        int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2148        const u16 *id = dev->id;
2149        unsigned long xfer_mask;
2150        char revbuf[7];         /* XYZ-99\0 */
2151        char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2152        char modelbuf[ATA_ID_PROD_LEN+1];
2153        int rc;
2154
2155        if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2156                ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2157                return 0;
2158        }
2159
2160        if (ata_msg_probe(ap))
2161                ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2162
2163        /* set horkage */
2164        dev->horkage |= ata_dev_blacklisted(dev);
2165        ata_force_horkage(dev);
2166
2167        if (dev->horkage & ATA_HORKAGE_DISABLE) {
2168                ata_dev_info(dev, "unsupported device, disabling\n");
2169                ata_dev_disable(dev);
2170                return 0;
2171        }
2172
2173        if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2174            dev->class == ATA_DEV_ATAPI) {
2175                ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2176                             atapi_enabled ? "not supported with this driver"
2177                             : "disabled");
2178                ata_dev_disable(dev);
2179                return 0;
2180        }
2181
2182        rc = ata_do_link_spd_horkage(dev);
2183        if (rc)
2184                return rc;
2185
2186        /* let ACPI work its magic */
2187        rc = ata_acpi_on_devcfg(dev);
2188        if (rc)
2189                return rc;
2190
2191        /* massage HPA, do it early as it might change IDENTIFY data */
2192        rc = ata_hpa_resize(dev);
2193        if (rc)
2194                return rc;
2195
2196        /* print device capabilities */
2197        if (ata_msg_probe(ap))
2198                ata_dev_dbg(dev,
2199                            "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2200                            "85:%04x 86:%04x 87:%04x 88:%04x\n",
2201                            __func__,
2202                            id[49], id[82], id[83], id[84],
2203                            id[85], id[86], id[87], id[88]);
2204
2205        /* initialize to-be-configured parameters */
2206        dev->flags &= ~ATA_DFLAG_CFG_MASK;
2207        dev->max_sectors = 0;
2208        dev->cdb_len = 0;
2209        dev->n_sectors = 0;
2210        dev->cylinders = 0;
2211        dev->heads = 0;
2212        dev->sectors = 0;
2213        dev->multi_count = 0;
2214
2215        /*
2216         * common ATA, ATAPI feature tests
2217         */
2218
2219        /* find max transfer mode; for printk only */
2220        xfer_mask = ata_id_xfermask(id);
2221
2222        if (ata_msg_probe(ap))
2223                ata_dump_id(id);
2224
2225        /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2226        ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2227                        sizeof(fwrevbuf));
2228
2229        ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2230                        sizeof(modelbuf));
2231
2232        /* ATA-specific feature tests */
2233        if (dev->class == ATA_DEV_ATA) {
2234                if (ata_id_is_cfa(id)) {
2235                        /* CPRM may make this media unusable */
2236                        if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2237                                ata_dev_warn(dev,
2238        "supports DRM functions and may not be fully accessible\n");
2239                        snprintf(revbuf, 7, "CFA");
2240                } else {
2241                        snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2242                        /* Warn the user if the device has TPM extensions */
2243                        if (ata_id_has_tpm(id))
2244                                ata_dev_warn(dev,
2245        "supports DRM functions and may not be fully accessible\n");
2246                }
2247
2248                dev->n_sectors = ata_id_n_sectors(id);
2249
2250                /* get current R/W Multiple count setting */
2251                if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2252                        unsigned int max = dev->id[47] & 0xff;
2253                        unsigned int cnt = dev->id[59] & 0xff;
2254                        /* only recognize/allow powers of two here */
2255                        if (is_power_of_2(max) && is_power_of_2(cnt))
2256                                if (cnt <= max)
2257                                        dev->multi_count = cnt;
2258                }
2259
2260                if (ata_id_has_lba(id)) {
2261                        const char *lba_desc;
2262                        char ncq_desc[24];
2263
2264                        lba_desc = "LBA";
2265                        dev->flags |= ATA_DFLAG_LBA;
2266                        if (ata_id_has_lba48(id)) {
2267                                dev->flags |= ATA_DFLAG_LBA48;
2268                                lba_desc = "LBA48";
2269
2270                                if (dev->n_sectors >= (1UL << 28) &&
2271                                    ata_id_has_flush_ext(id))
2272                                        dev->flags |= ATA_DFLAG_FLUSH_EXT;
2273                        }
2274
2275                        /* config NCQ */
2276                        rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2277                        if (rc)
2278                                return rc;
2279
2280                        /* print device info to dmesg */
2281                        if (ata_msg_drv(ap) && print_info) {
2282                                ata_dev_info(dev, "%s: %s, %s, max %s\n",
2283                                             revbuf, modelbuf, fwrevbuf,
2284                                             ata_mode_string(xfer_mask));
2285                                ata_dev_info(dev,
2286                                             "%llu sectors, multi %u: %s %s\n",
2287                                        (unsigned long long)dev->n_sectors,
2288                                        dev->multi_count, lba_desc, ncq_desc);
2289                        }
2290                } else {
2291                        /* CHS */
2292
2293                        /* Default translation */
2294                        dev->cylinders  = id[1];
2295                        dev->heads      = id[3];
2296                        dev->sectors    = id[6];
2297
2298                        if (ata_id_current_chs_valid(id)) {
2299                                /* Current CHS translation is valid. */
2300                                dev->cylinders = id[54];
2301                                dev->heads     = id[55];
2302                                dev->sectors   = id[56];
2303                        }
2304
2305                        /* print device info to dmesg */
2306                        if (ata_msg_drv(ap) && print_info) {
2307                                ata_dev_info(dev, "%s: %s, %s, max %s\n",
2308                                             revbuf,    modelbuf, fwrevbuf,
2309                                             ata_mode_string(xfer_mask));
2310                                ata_dev_info(dev,
2311                                             "%llu sectors, multi %u, CHS %u/%u/%u\n",
2312                                             (unsigned long long)dev->n_sectors,
2313                                             dev->multi_count, dev->cylinders,
2314                                             dev->heads, dev->sectors);
2315                        }
2316                }
2317
2318                dev->cdb_len = 16;
2319        }
2320
2321        /* ATAPI-specific feature tests */
2322        else if (dev->class == ATA_DEV_ATAPI) {
2323                const char *cdb_intr_string = "";
2324                const char *atapi_an_string = "";
2325                const char *dma_dir_string = "";
2326                u32 sntf;
2327
2328                rc = atapi_cdb_len(id);
2329                if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2330                        if (ata_msg_warn(ap))
2331                                ata_dev_warn(dev, "unsupported CDB len\n");
2332                        rc = -EINVAL;
2333                        goto err_out_nosup;
2334                }
2335                dev->cdb_len = (unsigned int) rc;
2336
2337                /* Enable ATAPI AN if both the host and device have
2338                 * the support.  If PMP is attached, SNTF is required
2339                 * to enable ATAPI AN to discern between PHY status
2340                 * changed notifications and ATAPI ANs.
2341                 */
2342                if (atapi_an &&
2343                    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2344                    (!sata_pmp_attached(ap) ||
2345                     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2346                        unsigned int err_mask;
2347
2348                        /* issue SET feature command to turn this on */
2349                        err_mask = ata_dev_set_feature(dev,
2350                                        SETFEATURES_SATA_ENABLE, SATA_AN);
2351                        if (err_mask)
2352                                ata_dev_err(dev,
2353                                            "failed to enable ATAPI AN (err_mask=0x%x)\n",
2354                                            err_mask);
2355                        else {
2356                                dev->flags |= ATA_DFLAG_AN;
2357                                atapi_an_string = ", ATAPI AN";
2358                        }
2359                }
2360
2361                if (ata_id_cdb_intr(dev->id)) {
2362                        dev->flags |= ATA_DFLAG_CDB_INTR;
2363                        cdb_intr_string = ", CDB intr";
2364                }
2365
2366                if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2367                        dev->flags |= ATA_DFLAG_DMADIR;
2368                        dma_dir_string = ", DMADIR";
2369                }
2370
2371                /* print device info to dmesg */
2372                if (ata_msg_drv(ap) && print_info)
2373                        ata_dev_info(dev,
2374                                     "ATAPI: %s, %s, max %s%s%s%s\n",
2375                                     modelbuf, fwrevbuf,
2376                                     ata_mode_string(xfer_mask),
2377                                     cdb_intr_string, atapi_an_string,
2378                                     dma_dir_string);
2379        }
2380
2381        /* determine max_sectors */
2382        dev->max_sectors = ATA_MAX_SECTORS;
2383        if (dev->flags & ATA_DFLAG_LBA48)
2384                dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2385
2386        /* Limit PATA drive on SATA cable bridge transfers to udma5,
2387           200 sectors */
2388        if (ata_dev_knobble(dev)) {
2389                if (ata_msg_drv(ap) && print_info)
2390                        ata_dev_info(dev, "applying bridge limits\n");
2391                dev->udma_mask &= ATA_UDMA5;
2392                dev->max_sectors = ATA_MAX_SECTORS;
2393        }
2394
2395        if ((dev->class == ATA_DEV_ATAPI) &&
2396            (atapi_command_packet_set(id) == TYPE_TAPE)) {
2397                dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2398                dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2399        }
2400
2401        if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2402                dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2403                                         dev->max_sectors);
2404
2405        if (ap->ops->dev_config)
2406                ap->ops->dev_config(dev);
2407
2408        if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2409                /* Let the user know. We don't want to disallow opens for
2410                   rescue purposes, or in case the vendor is just a blithering
2411                   idiot. Do this after the dev_config call as some controllers
2412                   with buggy firmware may want to avoid reporting false device
2413                   bugs */
2414
2415                if (print_info) {
2416                        ata_dev_warn(dev,
2417"Drive reports diagnostics failure. This may indicate a drive\n");
2418                        ata_dev_warn(dev,
2419"fault or invalid emulation. Contact drive vendor for information.\n");
2420                }
2421        }
2422
2423        if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2424                ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2425                ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
2426        }
2427
2428        return 0;
2429
2430err_out_nosup:
2431        if (ata_msg_probe(ap))
2432                ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2433        return rc;
2434}
2435
2436/**
2437 *      ata_cable_40wire        -       return 40 wire cable type
2438 *      @ap: port
2439 *
2440 *      Helper method for drivers which want to hardwire 40 wire cable
2441 *      detection.
2442 */
2443
2444int ata_cable_40wire(struct ata_port *ap)
2445{
2446        return ATA_CBL_PATA40;
2447}
2448
2449/**
2450 *      ata_cable_80wire        -       return 80 wire cable type
2451 *      @ap: port
2452 *
2453 *      Helper method for drivers which want to hardwire 80 wire cable
2454 *      detection.
2455 */
2456
2457int ata_cable_80wire(struct ata_port *ap)
2458{
2459        return ATA_CBL_PATA80;
2460}
2461
2462/**
2463 *      ata_cable_unknown       -       return unknown PATA cable.
2464 *      @ap: port
2465 *
2466 *      Helper method for drivers which have no PATA cable detection.
2467 */
2468
2469int ata_cable_unknown(struct ata_port *ap)
2470{
2471        return ATA_CBL_PATA_UNK;
2472}
2473
2474/**
2475 *      ata_cable_ignore        -       return ignored PATA cable.
2476 *      @ap: port
2477 *
2478 *      Helper method for drivers which don't use cable type to limit
2479 *      transfer mode.
2480 */
2481int ata_cable_ignore(struct ata_port *ap)
2482{
2483        return ATA_CBL_PATA_IGN;
2484}
2485
2486/**
2487 *      ata_cable_sata  -       return SATA cable type
2488 *      @ap: port
2489 *
2490 *      Helper method for drivers which have SATA cables
2491 */
2492
2493int ata_cable_sata(struct ata_port *ap)
2494{
2495        return ATA_CBL_SATA;
2496}
2497
2498/**
2499 *      ata_bus_probe - Reset and probe ATA bus
2500 *      @ap: Bus to probe
2501 *
2502 *      Master ATA bus probing function.  Initiates a hardware-dependent
2503 *      bus reset, then attempts to identify any devices found on
2504 *      the bus.
2505 *
2506 *      LOCKING:
2507 *      PCI/etc. bus probe sem.
2508 *
2509 *      RETURNS:
2510 *      Zero on success, negative errno otherwise.
2511 */
2512
2513int ata_bus_probe(struct ata_port *ap)
2514{
2515        unsigned int classes[ATA_MAX_DEVICES];
2516        int tries[ATA_MAX_DEVICES];
2517        int rc;
2518        struct ata_device *dev;
2519
2520        ata_for_each_dev(dev, &ap->link, ALL)
2521                tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2522
2523 retry:
2524        ata_for_each_dev(dev, &ap->link, ALL) {
2525                /* If we issue an SRST then an ATA drive (not ATAPI)
2526                 * may change configuration and be in PIO0 timing. If
2527                 * we do a hard reset (or are coming from power on)
2528                 * this is true for ATA or ATAPI. Until we've set a
2529                 * suitable controller mode we should not touch the
2530                 * bus as we may be talking too fast.
2531                 */
2532                dev->pio_mode = XFER_PIO_0;
2533
2534                /* If the controller has a pio mode setup function
2535                 * then use it to set the chipset to rights. Don't
2536                 * touch the DMA setup as that will be dealt with when
2537                 * configuring devices.
2538                 */
2539                if (ap->ops->set_piomode)
2540                        ap->ops->set_piomode(ap, dev);
2541        }
2542
2543        /* reset and determine device classes */
2544        ap->ops->phy_reset(ap);
2545
2546        ata_for_each_dev(dev, &ap->link, ALL) {
2547                if (dev->class != ATA_DEV_UNKNOWN)
2548                        classes[dev->devno] = dev->class;
2549                else
2550                        classes[dev->devno] = ATA_DEV_NONE;
2551
2552                dev->class = ATA_DEV_UNKNOWN;
2553        }
2554
2555        /* read IDENTIFY page and configure devices. We have to do the identify
2556           specific sequence bass-ackwards so that PDIAG- is released by
2557           the slave device */
2558
2559        ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2560                if (tries[dev->devno])
2561                        dev->class = classes[dev->devno];
2562
2563                if (!ata_dev_enabled(dev))
2564                        continue;
2565
2566                rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2567                                     dev->id);
2568                if (rc)
2569                        goto fail;
2570        }
2571
2572        /* Now ask for the cable type as PDIAG- should have been released */
2573        if (ap->ops->cable_detect)
2574                ap->cbl = ap->ops->cable_detect(ap);
2575
2576        /* We may have SATA bridge glue hiding here irrespective of
2577         * the reported cable types and sensed types.  When SATA
2578         * drives indicate we have a bridge, we don't know which end
2579         * of the link the bridge is which is a problem.
2580         */
2581        ata_for_each_dev(dev, &ap->link, ENABLED)
2582                if (ata_id_is_sata(dev->id))
2583                        ap->cbl = ATA_CBL_SATA;
2584
2585        /* After the identify sequence we can now set up the devices. We do
2586           this in the normal order so that the user doesn't get confused */
2587
2588        ata_for_each_dev(dev, &ap->link, ENABLED) {
2589                ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2590                rc = ata_dev_configure(dev);
2591                ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2592                if (rc)
2593                        goto fail;
2594        }
2595
2596        /* configure transfer mode */
2597        rc = ata_set_mode(&ap->link, &dev);
2598        if (rc)
2599                goto fail;
2600
2601        ata_for_each_dev(dev, &ap->link, ENABLED)
2602                return 0;
2603
2604        return -ENODEV;
2605
2606 fail:
2607        tries[dev->devno]--;
2608
2609        switch (rc) {
2610        case -EINVAL:
2611                /* eeek, something went very wrong, give up */
2612                tries[dev->devno] = 0;
2613                break;
2614
2615        case -ENODEV:
2616                /* give it just one more chance */
2617                tries[dev->devno] = min(tries[dev->devno], 1);
2618        case -EIO:
2619                if (tries[dev->devno] == 1) {
2620                        /* This is the last chance, better to slow
2621                         * down than lose it.
2622                         */
2623                        sata_down_spd_limit(&ap->link, 0);
2624                        ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2625                }
2626        }
2627
2628        if (!tries[dev->devno])
2629                ata_dev_disable(dev);
2630
2631        goto retry;
2632}
2633
2634/**
2635 *      sata_print_link_status - Print SATA link status
2636 *      @link: SATA link to printk link status about
2637 *
2638 *      This function prints link speed and status of a SATA link.
2639 *
2640 *      LOCKING:
2641 *      None.
2642 */
2643static void sata_print_link_status(struct ata_link *link)
2644{
2645        u32 sstatus, scontrol, tmp;
2646
2647        if (sata_scr_read(link, SCR_STATUS, &sstatus))
2648                return;
2649        sata_scr_read(link, SCR_CONTROL, &scontrol);
2650
2651        if (ata_phys_link_online(link)) {
2652                tmp = (sstatus >> 4) & 0xf;
2653                ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2654                              sata_spd_string(tmp), sstatus, scontrol);
2655        } else {
2656                ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2657                              sstatus, scontrol);
2658        }
2659}
2660
2661/**
2662 *      ata_dev_pair            -       return other device on cable
2663 *      @adev: device
2664 *
2665 *      Obtain the other device on the same cable, or if none is
2666 *      present NULL is returned
2667 */
2668
2669struct ata_device *ata_dev_pair(struct ata_device *adev)
2670{
2671        struct ata_link *link = adev->link;
2672        struct ata_device *pair = &link->device[1 - adev->devno];
2673        if (!ata_dev_enabled(pair))
2674                return NULL;
2675        return pair;
2676}
2677
2678/**
2679 *      sata_down_spd_limit - adjust SATA spd limit downward
2680 *      @link: Link to adjust SATA spd limit for
2681 *      @spd_limit: Additional limit
2682 *
2683 *      Adjust SATA spd limit of @link downward.  Note that this
2684 *      function only adjusts the limit.  The change must be applied
2685 *      using sata_set_spd().
2686 *
2687 *      If @spd_limit is non-zero, the speed is limited to equal to or
2688 *      lower than @spd_limit if such speed is supported.  If
2689 *      @spd_limit is slower than any supported speed, only the lowest
2690 *      supported speed is allowed.
2691 *
2692 *      LOCKING:
2693 *      Inherited from caller.
2694 *
2695 *      RETURNS:
2696 *      0 on success, negative errno on failure
2697 */
2698int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2699{
2700        u32 sstatus, spd, mask;
2701        int rc, bit;
2702
2703        if (!sata_scr_valid(link))
2704                return -EOPNOTSUPP;
2705
2706        /* If SCR can be read, use it to determine the current SPD.
2707         * If not, use cached value in link->sata_spd.
2708         */
2709        rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2710        if (rc == 0 && ata_sstatus_online(sstatus))
2711                spd = (sstatus >> 4) & 0xf;
2712        else
2713                spd = link->sata_spd;
2714
2715        mask = link->sata_spd_limit;
2716        if (mask <= 1)
2717                return -EINVAL;
2718
2719        /* unconditionally mask off the highest bit */
2720        bit = fls(mask) - 1;
2721        mask &= ~(1 << bit);
2722
2723        /* Mask off all speeds higher than or equal to the current
2724         * one.  Force 1.5Gbps if current SPD is not available.
2725         */
2726        if (spd > 1)
2727                mask &= (1 << (spd - 1)) - 1;
2728        else
2729                mask &= 1;
2730
2731        /* were we already at the bottom? */
2732        if (!mask)
2733                return -EINVAL;
2734
2735        if (spd_limit) {
2736                if (mask & ((1 << spd_limit) - 1))
2737                        mask &= (1 << spd_limit) - 1;
2738                else {
2739                        bit = ffs(mask) - 1;
2740                        mask = 1 << bit;
2741                }
2742        }
2743
2744        link->sata_spd_limit = mask;
2745
2746        ata_link_warn(link, "limiting SATA link speed to %s\n",
2747                      sata_spd_string(fls(mask)));
2748
2749        return 0;
2750}
2751
2752static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2753{
2754        struct ata_link *host_link = &link->ap->link;
2755        u32 limit, target, spd;
2756
2757        limit = link->sata_spd_limit;
2758
2759        /* Don't configure downstream link faster than upstream link.
2760         * It doesn't speed up anything and some PMPs choke on such
2761         * configuration.
2762         */
2763        if (!ata_is_host_link(link) && host_link->sata_spd)
2764                limit &= (1 << host_link->sata_spd) - 1;
2765
2766        if (limit == UINT_MAX)
2767                target = 0;
2768        else
2769                target = fls(limit);
2770
2771        spd = (*scontrol >> 4) & 0xf;
2772        *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2773
2774        return spd != target;
2775}
2776
2777/**
2778 *      sata_set_spd_needed - is SATA spd configuration needed
2779 *      @link: Link in question
2780 *
2781 *      Test whether the spd limit in SControl matches
2782 *      @link->sata_spd_limit.  This function is used to determine
2783 *      whether hardreset is necessary to apply SATA spd
2784 *      configuration.
2785 *
2786 *      LOCKING:
2787 *      Inherited from caller.
2788 *
2789 *      RETURNS:
2790 *      1 if SATA spd configuration is needed, 0 otherwise.
2791 */
2792static int sata_set_spd_needed(struct ata_link *link)
2793{
2794        u32 scontrol;
2795
2796        if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2797                return 1;
2798
2799        return __sata_set_spd_needed(link, &scontrol);
2800}
2801
2802/**
2803 *      sata_set_spd - set SATA spd according to spd limit
2804 *      @link: Link to set SATA spd for
2805 *
2806 *      Set SATA spd of @link according to sata_spd_limit.
2807 *
2808 *      LOCKING:
2809 *      Inherited from caller.
2810 *
2811 *      RETURNS:
2812 *      0 if spd doesn't need to be changed, 1 if spd has been
2813 *      changed.  Negative errno if SCR registers are inaccessible.
2814 */
2815int sata_set_spd(struct ata_link *link)
2816{
2817        u32 scontrol;
2818        int rc;
2819
2820        if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2821                return rc;
2822
2823        if (!__sata_set_spd_needed(link, &scontrol))
2824                return 0;
2825
2826        if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2827                return rc;
2828
2829        return 1;
2830}
2831
2832/*
2833 * This mode timing computation functionality is ported over from
2834 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2835 */
2836/*
2837 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2838 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2839 * for UDMA6, which is currently supported only by Maxtor drives.
2840 *
2841 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2842 */
2843
2844static const struct ata_timing ata_timing[] = {
2845/*      { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0,  960,   0 }, */
2846        { XFER_PIO_0,     70, 290, 240, 600, 165, 150, 0,  600,   0 },
2847        { XFER_PIO_1,     50, 290,  93, 383, 125, 100, 0,  383,   0 },
2848        { XFER_PIO_2,     30, 290,  40, 330, 100,  90, 0,  240,   0 },
2849        { XFER_PIO_3,     30,  80,  70, 180,  80,  70, 0,  180,   0 },
2850        { XFER_PIO_4,     25,  70,  25, 120,  70,  25, 0,  120,   0 },
2851        { XFER_PIO_5,     15,  65,  25, 100,  65,  25, 0,  100,   0 },
2852        { XFER_PIO_6,     10,  55,  20,  80,  55,  20, 0,   80,   0 },
2853
2854        { XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 50, 960,   0 },
2855        { XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 30, 480,   0 },
2856        { XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 20, 240,   0 },
2857
2858        { XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 20, 480,   0 },
2859        { XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 5,  150,   0 },
2860        { XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 5,  120,   0 },
2861        { XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 5,  100,   0 },
2862        { XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20, 5,   80,   0 },
2863
2864/*      { XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0, 0,    0, 150 }, */
2865        { XFER_UDMA_0,     0,   0,   0,   0,   0,   0, 0,    0, 120 },
2866        { XFER_UDMA_1,     0,   0,   0,   0,   0,   0, 0,    0,  80 },
2867        { XFER_UDMA_2,     0,   0,   0,   0,   0,   0, 0,    0,  60 },
2868        { XFER_UDMA_3,     0,   0,   0,   0,   0,   0, 0,    0,  45 },
2869        { XFER_UDMA_4,     0,   0,   0,   0,   0,   0, 0,    0,  30 },
2870        { XFER_UDMA_5,     0,   0,   0,   0,   0,   0, 0,    0,  20 },
2871        { XFER_UDMA_6,     0,   0,   0,   0,   0,   0, 0,    0,  15 },
2872
2873        { 0xFF }
2874};
2875
2876#define ENOUGH(v, unit)         (((v)-1)/(unit)+1)
2877#define EZ(v, unit)             ((v)?ENOUGH(v, unit):0)
2878
2879static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2880{
2881        q->setup        = EZ(t->setup      * 1000,  T);
2882        q->act8b        = EZ(t->act8b      * 1000,  T);
2883        q->rec8b        = EZ(t->rec8b      * 1000,  T);
2884        q->cyc8b        = EZ(t->cyc8b      * 1000,  T);
2885        q->active       = EZ(t->active     * 1000,  T);
2886        q->recover      = EZ(t->recover    * 1000,  T);
2887        q->dmack_hold   = EZ(t->dmack_hold * 1000,  T);
2888        q->cycle        = EZ(t->cycle      * 1000,  T);
2889        q->udma         = EZ(t->udma       * 1000, UT);
2890}
2891
2892void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2893                      struct ata_timing *m, unsigned int what)
2894{
2895        if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
2896        if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
2897        if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
2898        if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
2899        if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
2900        if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2901        if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
2902        if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
2903        if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
2904}
2905
2906const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2907{
2908        const struct ata_timing *t = ata_timing;
2909
2910        while (xfer_mode > t->mode)
2911                t++;
2912
2913        if (xfer_mode == t->mode)
2914                return t;
2915        return NULL;
2916}
2917
2918int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2919                       struct ata_timing *t, int T, int UT)
2920{
2921        const u16 *id = adev->id;
2922        const struct ata_timing *s;
2923        struct ata_timing p;
2924
2925        /*
2926         * Find the mode.
2927         */
2928
2929        if (!(s = ata_timing_find_mode(speed)))
2930                return -EINVAL;
2931
2932        memcpy(t, s, sizeof(*s));
2933
2934        /*
2935         * If the drive is an EIDE drive, it can tell us it needs extended
2936         * PIO/MW_DMA cycle timing.
2937         */
2938
2939        if (id[ATA_ID_FIELD_VALID] & 2) {       /* EIDE drive */
2940                memset(&p, 0, sizeof(p));
2941
2942                if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
2943                        if (speed <= XFER_PIO_2)
2944                                p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
2945                        else if ((speed <= XFER_PIO_4) ||
2946                                 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
2947                                p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
2948                } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
2949                        p.cycle = id[ATA_ID_EIDE_DMA_MIN];
2950
2951                ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2952        }
2953
2954        /*
2955         * Convert the timing to bus clock counts.
2956         */
2957
2958        ata_timing_quantize(t, t, T, UT);
2959
2960        /*
2961         * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2962         * S.M.A.R.T * and some other commands. We have to ensure that the
2963         * DMA cycle timing is slower/equal than the fastest PIO timing.
2964         */
2965
2966        if (speed > XFER_PIO_6) {
2967                ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2968                ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2969        }
2970
2971        /*
2972         * Lengthen active & recovery time so that cycle time is correct.
2973         */
2974
2975        if (t->act8b + t->rec8b < t->cyc8b) {
2976                t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2977                t->rec8b = t->cyc8b - t->act8b;
2978        }
2979
2980        if (t->active + t->recover < t->cycle) {
2981                t->active += (t->cycle - (t->active + t->recover)) / 2;
2982                t->recover = t->cycle - t->active;
2983        }
2984
2985        /* In a few cases quantisation may produce enough errors to
2986           leave t->cycle too low for the sum of active and recovery
2987           if so we must correct this */
2988        if (t->active + t->recover > t->cycle)
2989                t->cycle = t->active + t->recover;
2990
2991        return 0;
2992}
2993
2994/**
2995 *      ata_timing_cycle2mode - find xfer mode for the specified cycle duration
2996 *      @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
2997 *      @cycle: cycle duration in ns
2998 *
2999 *      Return matching xfer mode for @cycle.  The returned mode is of
3000 *      the transfer type specified by @xfer_shift.  If @cycle is too
3001 *      slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3002 *      than the fastest known mode, the fasted mode is returned.
3003 *
3004 *      LOCKING:
3005 *      None.
3006 *
3007 *      RETURNS:
3008 *      Matching xfer_mode, 0xff if no match found.
3009 */
3010u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3011{
3012        u8 base_mode = 0xff, last_mode = 0xff;
3013        const struct ata_xfer_ent *ent;
3014        const struct ata_timing *t;
3015
3016        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3017                if (ent->shift == xfer_shift)
3018                        base_mode = ent->base;
3019
3020        for (t = ata_timing_find_mode(base_mode);
3021             t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3022                unsigned short this_cycle;
3023
3024                switch (xfer_shift) {
3025                case ATA_SHIFT_PIO:
3026                case ATA_SHIFT_MWDMA:
3027                        this_cycle = t->cycle;
3028                        break;
3029                case ATA_SHIFT_UDMA:
3030                        this_cycle = t->udma;
3031                        break;
3032                default:
3033                        return 0xff;
3034                }
3035
3036                if (cycle > this_cycle)
3037                        break;
3038
3039                last_mode = t->mode;
3040        }
3041
3042        return last_mode;
3043}
3044
3045/**
3046 *      ata_down_xfermask_limit - adjust dev xfer masks downward
3047 *      @dev: Device to adjust xfer masks
3048 *      @sel: ATA_DNXFER_* selector
3049 *
3050 *      Adjust xfer masks of @dev downward.  Note that this function
3051 *      does not apply the change.  Invoking ata_set_mode() afterwards
3052 *      will apply the limit.
3053 *
3054 *      LOCKING:
3055 *      Inherited from caller.
3056 *
3057 *      RETURNS:
3058 *      0 on success, negative errno on failure
3059 */
3060int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3061{
3062        char buf[32];
3063        unsigned long orig_mask, xfer_mask;
3064        unsigned long pio_mask, mwdma_mask, udma_mask;
3065        int quiet, highbit;
3066
3067        quiet = !!(sel & ATA_DNXFER_QUIET);
3068        sel &= ~ATA_DNXFER_QUIET;
3069
3070        xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3071                                                  dev->mwdma_mask,
3072                                                  dev->udma_mask);
3073        ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3074
3075        switch (sel) {
3076        case ATA_DNXFER_PIO:
3077                highbit = fls(pio_mask) - 1;
3078                pio_mask &= ~(1 << highbit);
3079                break;
3080
3081        case ATA_DNXFER_DMA:
3082                if (udma_mask) {
3083                        highbit = fls(udma_mask) - 1;
3084                        udma_mask &= ~(1 << highbit);
3085                        if (!udma_mask)
3086                                return -ENOENT;
3087                } else if (mwdma_mask) {
3088                        highbit = fls(mwdma_mask) - 1;
3089                        mwdma_mask &= ~(1 << highbit);
3090                        if (!mwdma_mask)
3091                                return -ENOENT;
3092                }
3093                break;
3094
3095        case ATA_DNXFER_40C:
3096                udma_mask &= ATA_UDMA_MASK_40C;
3097                break;
3098
3099        case ATA_DNXFER_FORCE_PIO0:
3100                pio_mask &= 1;
3101        case ATA_DNXFER_FORCE_PIO:
3102                mwdma_mask = 0;
3103                udma_mask = 0;
3104                break;
3105
3106        default:
3107                BUG();
3108        }
3109
3110        xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3111
3112        if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3113                return -ENOENT;
3114
3115        if (!quiet) {
3116                if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3117                        snprintf(buf, sizeof(buf), "%s:%s",
3118                                 ata_mode_string(xfer_mask),
3119                                 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3120                else
3121                        snprintf(buf, sizeof(buf), "%s",
3122                                 ata_mode_string(xfer_mask));
3123
3124                ata_dev_warn(dev, "limiting speed to %s\n", buf);
3125        }
3126
3127        ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3128                            &dev->udma_mask);
3129
3130        return 0;
3131}
3132
3133static int ata_dev_set_mode(struct ata_device *dev)
3134{
3135        struct ata_port *ap = dev->link->ap;
3136        struct ata_eh_context *ehc = &dev->link->eh_context;
3137        const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3138        const char *dev_err_whine = "";
3139        int ign_dev_err = 0;
3140        unsigned int err_mask = 0;
3141        int rc;
3142
3143        dev->flags &= ~ATA_DFLAG_PIO;
3144        if (dev->xfer_shift == ATA_SHIFT_PIO)
3145                dev->flags |= ATA_DFLAG_PIO;
3146
3147        if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3148                dev_err_whine = " (SET_XFERMODE skipped)";
3149        else {
3150                if (nosetxfer)
3151                        ata_dev_warn(dev,
3152                                     "NOSETXFER but PATA detected - can't "
3153                                     "skip SETXFER, might malfunction\n");
3154                err_mask = ata_dev_set_xfermode(dev);
3155        }
3156
3157        if (err_mask & ~AC_ERR_DEV)
3158                goto fail;
3159
3160        /* revalidate */
3161        ehc->i.flags |= ATA_EHI_POST_SETMODE;
3162        rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3163        ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3164        if (rc)
3165                return rc;
3166
3167        if (dev->xfer_shift == ATA_SHIFT_PIO) {
3168                /* Old CFA may refuse this command, which is just fine */
3169                if (ata_id_is_cfa(dev->id))
3170                        ign_dev_err = 1;
3171                /* Catch several broken garbage emulations plus some pre
3172                   ATA devices */
3173                if (ata_id_major_version(dev->id) == 0 &&
3174                                        dev->pio_mode <= XFER_PIO_2)
3175                        ign_dev_err = 1;
3176                /* Some very old devices and some bad newer ones fail
3177                   any kind of SET_XFERMODE request but support PIO0-2
3178                   timings and no IORDY */
3179                if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3180                        ign_dev_err = 1;
3181        }
3182        /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3183           Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3184        if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3185            dev->dma_mode == XFER_MW_DMA_0 &&
3186            (dev->id[63] >> 8) & 1)
3187                ign_dev_err = 1;
3188
3189        /* if the device is actually configured correctly, ignore dev err */
3190        if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3191                ign_dev_err = 1;
3192
3193        if (err_mask & AC_ERR_DEV) {
3194                if (!ign_dev_err)
3195                        goto fail;
3196                else
3197                        dev_err_whine = " (device error ignored)";
3198        }
3199
3200        DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3201                dev->xfer_shift, (int)dev->xfer_mode);
3202
3203        ata_dev_info(dev, "configured for %s%s\n",
3204                     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3205                     dev_err_whine);
3206
3207        return 0;
3208
3209 fail:
3210        ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3211        return -EIO;
3212}
3213
3214/**
3215 *      ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3216 *      @link: link on which timings will be programmed
3217 *      @r_failed_dev: out parameter for failed device
3218 *
3219 *      Standard implementation of the function used to tune and set
3220 *      ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3221 *      ata_dev_set_mode() fails, pointer to the failing device is
3222 *      returned in @r_failed_dev.
3223 *
3224 *      LOCKING:
3225 *      PCI/etc. bus probe sem.
3226 *
3227 *      RETURNS:
3228 *      0 on success, negative errno otherwise
3229 */
3230
3231int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3232{
3233        struct ata_port *ap = link->ap;
3234        struct ata_device *dev;
3235        int rc = 0, used_dma = 0, found = 0;
3236
3237        /* step 1: calculate xfer_mask */
3238        ata_for_each_dev(dev, link, ENABLED) {
3239                unsigned long pio_mask, dma_mask;
3240                unsigned int mode_mask;
3241
3242                mode_mask = ATA_DMA_MASK_ATA;
3243                if (dev->class == ATA_DEV_ATAPI)
3244                        mode_mask = ATA_DMA_MASK_ATAPI;
3245                else if (ata_id_is_cfa(dev->id))
3246                        mode_mask = ATA_DMA_MASK_CFA;
3247
3248                ata_dev_xfermask(dev);
3249                ata_force_xfermask(dev);
3250
3251                pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3252
3253                if (libata_dma_mask & mode_mask)
3254                        dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3255                                                     dev->udma_mask);
3256                else
3257                        dma_mask = 0;
3258
3259                dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3260                dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3261
3262                found = 1;
3263                if (ata_dma_enabled(dev))
3264                        used_dma = 1;
3265        }
3266        if (!found)
3267                goto out;
3268
3269        /* step 2: always set host PIO timings */
3270        ata_for_each_dev(dev, link, ENABLED) {
3271                if (dev->pio_mode == 0xff) {
3272                        ata_dev_warn(dev, "no PIO support\n");
3273                        rc = -EINVAL;
3274                        goto out;
3275                }
3276
3277                dev->xfer_mode = dev->pio_mode;
3278                dev->xfer_shift = ATA_SHIFT_PIO;
3279                if (ap->ops->set_piomode)
3280                        ap->ops->set_piomode(ap, dev);
3281        }
3282
3283        /* step 3: set host DMA timings */
3284        ata_for_each_dev(dev, link, ENABLED) {
3285                if (!ata_dma_enabled(dev))
3286                        continue;
3287
3288                dev->xfer_mode = dev->dma_mode;
3289                dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3290                if (ap->ops->set_dmamode)
3291                        ap->ops->set_dmamode(ap, dev);
3292        }
3293
3294        /* step 4: update devices' xfer mode */
3295        ata_for_each_dev(dev, link, ENABLED) {
3296                rc = ata_dev_set_mode(dev);
3297                if (rc)
3298                        goto out;
3299        }
3300
3301        /* Record simplex status. If we selected DMA then the other
3302         * host channels are not permitted to do so.
3303         */
3304        if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3305                ap->host->simplex_claimed = ap;
3306
3307 out:
3308        if (rc)
3309                *r_failed_dev = dev;
3310        return rc;
3311}
3312
3313/**
3314 *      ata_wait_ready - wait for link to become ready
3315 *      @link: link to be waited on
3316 *      @deadline: deadline jiffies for the operation
3317 *      @check_ready: callback to check link readiness
3318 *
3319 *      Wait for @link to become ready.  @check_ready should return
3320 *      positive number if @link is ready, 0 if it isn't, -ENODEV if
3321 *      link doesn't seem to be occupied, other errno for other error
3322 *      conditions.
3323 *
3324 *      Transient -ENODEV conditions are allowed for
3325 *      ATA_TMOUT_FF_WAIT.
3326 *
3327 *      LOCKING:
3328 *      EH context.
3329 *
3330 *      RETURNS:
3331 *      0 if @linke is ready before @deadline; otherwise, -errno.
3332 */
3333int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3334                   int (*check_ready)(struct ata_link *link))
3335{
3336        unsigned long start = jiffies;
3337        unsigned long nodev_deadline;
3338        int warned = 0;
3339
3340        /* choose which 0xff timeout to use, read comment in libata.h */
3341        if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3342                nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3343        else
3344                nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3345
3346        /* Slave readiness can't be tested separately from master.  On
3347         * M/S emulation configuration, this function should be called
3348         * only on the master and it will handle both master and slave.
3349         */
3350        WARN_ON(link == link->ap->slave_link);
3351
3352        if (time_after(nodev_deadline, deadline))
3353                nodev_deadline = deadline;
3354
3355        while (1) {
3356                unsigned long now = jiffies;
3357                int ready, tmp;
3358
3359                ready = tmp = check_ready(link);
3360                if (ready > 0)
3361                        return 0;
3362
3363                /*
3364                 * -ENODEV could be transient.  Ignore -ENODEV if link
3365                 * is online.  Also, some SATA devices take a long
3366                 * time to clear 0xff after reset.  Wait for
3367                 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3368                 * offline.
3369                 *
3370                 * Note that some PATA controllers (pata_ali) explode
3371                 * if status register is read more than once when
3372                 * there's no device attached.
3373                 */
3374                if (ready == -ENODEV) {
3375                        if (ata_link_online(link))
3376                                ready = 0;
3377                        else if ((link->ap->flags & ATA_FLAG_SATA) &&
3378                                 !ata_link_offline(link) &&
3379                                 time_before(now, nodev_deadline))
3380                                ready = 0;
3381                }
3382
3383                if (ready)
3384                        return ready;
3385                if (time_after(now, deadline))
3386                        return -EBUSY;
3387
3388                if (!warned && time_after(now, start + 5 * HZ) &&
3389                    (deadline - now > 3 * HZ)) {
3390                        ata_link_warn(link,
3391                                "link is slow to respond, please be patient "
3392                                "(ready=%d)\n", tmp);
3393                        warned = 1;
3394                }
3395
3396                ata_msleep(link->ap, 50);
3397        }
3398}
3399
3400/**
3401 *      ata_wait_after_reset - wait for link to become ready after reset
3402 *      @link: link to be waited on
3403 *      @deadline: deadline jiffies for the operation
3404 *      @check_ready: callback to check link readiness
3405 *
3406 *      Wait for @link to become ready after reset.
3407 *
3408 *      LOCKING:
3409 *      EH context.
3410 *
3411 *      RETURNS:
3412 *      0 if @linke is ready before @deadline; otherwise, -errno.
3413 */
3414int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3415                                int (*check_ready)(struct ata_link *link))
3416{
3417        ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3418
3419        return ata_wait_ready(link, deadline, check_ready);
3420}
3421
3422/**
3423 *      sata_link_debounce - debounce SATA phy status
3424 *      @link: ATA link to debounce SATA phy status for
3425 *      @params: timing parameters { interval, duratinon, timeout } in msec
3426 *      @deadline: deadline jiffies for the operation
3427 *
3428 *      Make sure SStatus of @link reaches stable state, determined by
3429 *      holding the same value where DET is not 1 for @duration polled
3430 *      every @interval, before @timeout.  Timeout constraints the
3431 *      beginning of the stable state.  Because DET gets stuck at 1 on
3432 *      some controllers after hot unplugging, this functions waits
3433 *      until timeout then returns 0 if DET is stable at 1.
3434 *
3435 *      @timeout is further limited by @deadline.  The sooner of the
3436 *      two is used.
3437 *
3438 *      LOCKING:
3439 *      Kernel thread context (may sleep)
3440 *
3441 *      RETURNS:
3442 *      0 on success, -errno on failure.
3443 */
3444int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3445                       unsigned long deadline)
3446{
3447        unsigned long interval = params[0];
3448        unsigned long duration = params[1];
3449        unsigned long last_jiffies, t;
3450        u32 last, cur;
3451        int rc;
3452
3453        t = ata_deadline(jiffies, params[2]);
3454        if (time_before(t, deadline))
3455                deadline = t;
3456
3457        if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3458                return rc;
3459        cur &= 0xf;
3460
3461        last = cur;
3462        last_jiffies = jiffies;
3463
3464        while (1) {
3465                ata_msleep(link->ap, interval);
3466                if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3467                        return rc;
3468                cur &= 0xf;
3469
3470                /* DET stable? */
3471                if (cur == last) {
3472                        if (cur == 1 && time_before(jiffies, deadline))
3473                                continue;
3474                        if (time_after(jiffies,
3475                                       ata_deadline(last_jiffies, duration)))
3476                                return 0;
3477                        continue;
3478                }
3479
3480                /* unstable, start over */
3481                last = cur;
3482                last_jiffies = jiffies;
3483
3484                /* Check deadline.  If debouncing failed, return
3485                 * -EPIPE to tell upper layer to lower link speed.
3486                 */
3487                if (time_after(jiffies, deadline))
3488                        return -EPIPE;
3489        }
3490}
3491
3492/**
3493 *      sata_link_resume - resume SATA link
3494 *      @link: ATA link to resume SATA
3495 *      @params: timing parameters { interval, duratinon, timeout } in msec
3496 *      @deadline: deadline jiffies for the operation
3497 *
3498 *      Resume SATA phy @link and debounce it.
3499 *
3500 *      LOCKING:
3501 *      Kernel thread context (may sleep)
3502 *
3503 *      RETURNS:
3504 *      0 on success, -errno on failure.
3505 */
3506int sata_link_resume(struct ata_link *link, const unsigned long *params,
3507                     unsigned long deadline)
3508{
3509        int tries = ATA_LINK_RESUME_TRIES;
3510        u32 scontrol, serror;
3511        int rc;
3512
3513        if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3514                return rc;
3515
3516        /*
3517         * Writes to SControl sometimes get ignored under certain
3518         * controllers (ata_piix SIDPR).  Make sure DET actually is
3519         * cleared.
3520         */
3521        do {
3522                scontrol = (scontrol & 0x0f0) | 0x300;
3523                if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3524                        return rc;
3525                /*
3526                 * Some PHYs react badly if SStatus is pounded
3527                 * immediately after resuming.  Delay 200ms before
3528                 * debouncing.
3529                 */
3530                ata_msleep(link->ap, 200);
3531
3532                /* is SControl restored correctly? */
3533                if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3534                        return rc;
3535        } while ((scontrol & 0xf0f) != 0x300 && --tries);
3536
3537        if ((scontrol & 0xf0f) != 0x300) {
3538                ata_link_warn(link, "failed to resume link (SControl %X)\n",
3539                             scontrol);
3540                return 0;
3541        }
3542
3543        if (tries < ATA_LINK_RESUME_TRIES)
3544                ata_link_warn(link, "link resume succeeded after %d retries\n",
3545                              ATA_LINK_RESUME_TRIES - tries);
3546
3547        if ((rc = sata_link_debounce(link, params, deadline)))
3548                return rc;
3549
3550        /* clear SError, some PHYs require this even for SRST to work */
3551        if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3552                rc = sata_scr_write(link, SCR_ERROR, serror);
3553
3554        return rc != -EINVAL ? rc : 0;
3555}
3556
3557/**
3558 *      sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3559 *      @link: ATA link to manipulate SControl for
3560 *      @policy: LPM policy to configure
3561 *      @spm_wakeup: initiate LPM transition to active state
3562 *
3563 *      Manipulate the IPM field of the SControl register of @link
3564 *      according to @policy.  If @policy is ATA_LPM_MAX_POWER and
3565 *      @spm_wakeup is %true, the SPM field is manipulated to wake up
3566 *      the link.  This function also clears PHYRDY_CHG before
3567 *      returning.
3568 *
3569 *      LOCKING:
3570 *      EH context.
3571 *
3572 *      RETURNS:
3573 *      0 on succes, -errno otherwise.
3574 */
3575int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3576                      bool spm_wakeup)
3577{
3578        struct ata_eh_context *ehc = &link->eh_context;
3579        bool woken_up = false;
3580        u32 scontrol;
3581        int rc;
3582
3583        rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3584        if (rc)
3585                return rc;
3586
3587        switch (policy) {
3588        case ATA_LPM_MAX_POWER:
3589                /* disable all LPM transitions */
3590                scontrol |= (0x3 << 8);
3591                /* initiate transition to active state */
3592                if (spm_wakeup) {
3593                        scontrol |= (0x4 << 12);
3594                        woken_up = true;
3595                }
3596                break;
3597        case ATA_LPM_MED_POWER:
3598                /* allow LPM to PARTIAL */
3599                scontrol &= ~(0x1 << 8);
3600                scontrol |= (0x2 << 8);
3601                break;
3602        case ATA_LPM_MIN_POWER:
3603                if (ata_link_nr_enabled(link) > 0)
3604                        /* no restrictions on LPM transitions */
3605                        scontrol &= ~(0x3 << 8);
3606                else {
3607                        /* empty port, power off */
3608                        scontrol &= ~0xf;
3609                        scontrol |= (0x1 << 2);
3610                }
3611                break;
3612        default:
3613                WARN_ON(1);
3614        }
3615
3616        rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3617        if (rc)
3618                return rc;
3619
3620        /* give the link time to transit out of LPM state */
3621        if (woken_up)
3622                msleep(10);
3623
3624        /* clear PHYRDY_CHG from SError */
3625        ehc->i.serror &= ~SERR_PHYRDY_CHG;
3626        return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3627}
3628
3629/**
3630 *      ata_std_prereset - prepare for reset
3631 *      @link: ATA link to be reset
3632 *      @deadline: deadline jiffies for the operation
3633 *
3634 *      @link is about to be reset.  Initialize it.  Failure from
3635 *      prereset makes libata abort whole reset sequence and give up
3636 *      that port, so prereset should be best-effort.  It does its
3637 *      best to prepare for reset sequence but if things go wrong, it
3638 *      should just whine, not fail.
3639 *
3640 *      LOCKING:
3641 *      Kernel thread context (may sleep)
3642 *
3643 *      RETURNS:
3644 *      0 on success, -errno otherwise.
3645 */
3646int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3647{
3648        struct ata_port *ap = link->ap;
3649        struct ata_eh_context *ehc = &link->eh_context;
3650        const unsigned long *timing = sata_ehc_deb_timing(ehc);
3651        int rc;
3652
3653        /* if we're about to do hardreset, nothing more to do */
3654        if (ehc->i.action & ATA_EH_HARDRESET)
3655                return 0;
3656
3657        /* if SATA, resume link */
3658        if (ap->flags & ATA_FLAG_SATA) {
3659                rc = sata_link_resume(link, timing, deadline);
3660                /* whine about phy resume failure but proceed */
3661                if (rc && rc != -EOPNOTSUPP)
3662                        ata_link_warn(link,
3663                                      "failed to resume link for reset (errno=%d)\n",
3664                                      rc);
3665        }
3666
3667        /* no point in trying softreset on offline link */
3668        if (ata_phys_link_offline(link))
3669                ehc->i.action &= ~ATA_EH_SOFTRESET;
3670
3671        return 0;
3672}
3673
3674/**
3675 *      sata_link_hardreset - reset link via SATA phy reset
3676 *      @link: link to reset
3677 *      @timing: timing parameters { interval, duratinon, timeout } in msec
3678 *      @deadline: deadline jiffies for the operation
3679 *      @online: optional out parameter indicating link onlineness
3680 *      @check_ready: optional callback to check link readiness
3681 *
3682 *      SATA phy-reset @link using DET bits of SControl register.
3683 *      After hardreset, link readiness is waited upon using
3684 *      ata_wait_ready() if @check_ready is specified.  LLDs are
3685 *      allowed to not specify @check_ready and wait itself after this
3686 *      function returns.  Device classification is LLD's
3687 *      responsibility.
3688 *
3689 *      *@online is set to one iff reset succeeded and @link is online
3690 *      after reset.
3691 *
3692 *      LOCKING:
3693 *      Kernel thread context (may sleep)
3694 *
3695 *      RETURNS:
3696 *      0 on success, -errno otherwise.
3697 */
3698int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3699                        unsigned long deadline,
3700                        bool *online, int (*check_ready)(struct ata_link *))
3701{
3702        u32 scontrol;
3703        int rc;
3704
3705        DPRINTK("ENTER\n");
3706
3707        if (online)
3708                *online = false;
3709
3710        if (sata_set_spd_needed(link)) {
3711                /* SATA spec says nothing about how to reconfigure
3712                 * spd.  To be on the safe side, turn off phy during
3713                 * reconfiguration.  This works for at least ICH7 AHCI
3714                 * and Sil3124.
3715                 */
3716                if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3717                        goto out;
3718
3719                scontrol = (scontrol & 0x0f0) | 0x304;
3720
3721                if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3722                        goto out;
3723
3724                sata_set_spd(link);
3725        }
3726
3727        /* issue phy wake/reset */
3728        if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3729                goto out;
3730
3731        scontrol = (scontrol & 0x0f0) | 0x301;
3732
3733        if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3734                goto out;
3735
3736        /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3737         * 10.4.2 says at least 1 ms.
3738         */
3739        ata_msleep(link->ap, 1);
3740
3741        /* bring link back */
3742        rc = sata_link_resume(link, timing, deadline);
3743        if (rc)
3744                goto out;
3745        /* if link is offline nothing more to do */
3746        if (ata_phys_link_offline(link))
3747                goto out;
3748
3749        /* Link is online.  From this point, -ENODEV too is an error. */
3750        if (online)
3751                *online = true;
3752
3753        if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3754                /* If PMP is supported, we have to do follow-up SRST.
3755                 * Some PMPs don't send D2H Reg FIS after hardreset if
3756                 * the first port is empty.  Wait only for
3757                 * ATA_TMOUT_PMP_SRST_WAIT.
3758                 */
3759                if (check_ready) {
3760                        unsigned long pmp_deadline;
3761
3762                        pmp_deadline = ata_deadline(jiffies,
3763                                                    ATA_TMOUT_PMP_SRST_WAIT);
3764                        if (time_after(pmp_deadline, deadline))
3765                                pmp_deadline = deadline;
3766                        ata_wait_ready(link, pmp_deadline, check_ready);
3767                }
3768                rc = -EAGAIN;
3769                goto out;
3770        }
3771
3772        rc = 0;
3773        if (check_ready)
3774                rc = ata_wait_ready(link, deadline, check_ready);
3775 out:
3776        if (rc && rc != -EAGAIN) {
3777                /* online is set iff link is online && reset succeeded */
3778                if (online)
3779                        *online = false;
3780                ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
3781        }
3782        DPRINTK("EXIT, rc=%d\n", rc);
3783        return rc;
3784}
3785
3786/**
3787 *      sata_std_hardreset - COMRESET w/o waiting or classification
3788 *      @link: link to reset
3789 *      @class: resulting class of attached device
3790 *      @deadline: deadline jiffies for the operation
3791 *
3792 *      Standard SATA COMRESET w/o waiting or classification.
3793 *
3794 *      LOCKING:
3795 *      Kernel thread context (may sleep)
3796 *
3797 *      RETURNS:
3798 *      0 if link offline, -EAGAIN if link online, -errno on errors.
3799 */
3800int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3801                       unsigned long deadline)
3802{
3803        const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3804        bool online;
3805        int rc;
3806
3807        /* do hardreset */
3808        rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3809        return online ? -EAGAIN : rc;
3810}
3811
3812/**
3813 *      ata_std_postreset - standard postreset callback
3814 *      @link: the target ata_link
3815 *      @classes: classes of attached devices
3816 *
3817 *      This function is invoked after a successful reset.  Note that
3818 *      the device might have been reset more than once using
3819 *      different reset methods before postreset is invoked.
3820 *
3821 *      LOCKING:
3822 *      Kernel thread context (may sleep)
3823 */
3824void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3825{
3826        u32 serror;
3827
3828        DPRINTK("ENTER\n");
3829
3830        /* reset complete, clear SError */
3831        if (!sata_scr_read(link, SCR_ERROR, &serror))
3832                sata_scr_write(link, SCR_ERROR, serror);
3833
3834        /* print link status */
3835        sata_print_link_status(link);
3836
3837        DPRINTK("EXIT\n");
3838}
3839
3840/**
3841 *      ata_dev_same_device - Determine whether new ID matches configured device
3842 *      @dev: device to compare against
3843 *      @new_class: class of the new device
3844 *      @new_id: IDENTIFY page of the new device
3845 *
3846 *      Compare @new_class and @new_id against @dev and determine
3847 *      whether @dev is the device indicated by @new_class and
3848 *      @new_id.
3849 *
3850 *      LOCKING:
3851 *      None.
3852 *
3853 *      RETURNS:
3854 *      1 if @dev matches @new_class and @new_id, 0 otherwise.
3855 */
3856static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3857                               const u16 *new_id)
3858{
3859        const u16 *old_id = dev->id;
3860        unsigned char model[2][ATA_ID_PROD_LEN + 1];
3861        unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3862
3863        if (dev->class != new_class) {
3864                ata_dev_info(dev, "class mismatch %d != %d\n",
3865                             dev->class, new_class);
3866                return 0;
3867        }
3868
3869        ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3870        ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3871        ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3872        ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3873
3874        if (strcmp(model[0], model[1])) {
3875                ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3876                             model[0], model[1]);
3877                return 0;
3878        }
3879
3880        if (strcmp(serial[0], serial[1])) {
3881                ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3882                             serial[0], serial[1]);
3883                return 0;
3884        }
3885
3886        return 1;
3887}
3888
3889/**
3890 *      ata_dev_reread_id - Re-read IDENTIFY data
3891 *      @dev: target ATA device
3892 *      @readid_flags: read ID flags
3893 *
3894 *      Re-read IDENTIFY page and make sure @dev is still attached to
3895 *      the port.
3896 *
3897 *      LOCKING:
3898 *      Kernel thread context (may sleep)
3899 *
3900 *      RETURNS:
3901 *      0 on success, negative errno otherwise
3902 */
3903int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3904{
3905        unsigned int class = dev->class;
3906        u16 *id = (void *)dev->link->ap->sector_buf;
3907        int rc;
3908
3909        /* read ID data */
3910        rc = ata_dev_read_id(dev, &class, readid_flags, id);
3911        if (rc)
3912                return rc;
3913
3914        /* is the device still there? */
3915        if (!ata_dev_same_device(dev, class, id))
3916                return -ENODEV;
3917
3918        memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3919        return 0;
3920}
3921
3922/**
3923 *      ata_dev_revalidate - Revalidate ATA device
3924 *      @dev: device to revalidate
3925 *      @new_class: new class code
3926 *      @readid_flags: read ID flags
3927 *
3928 *      Re-read IDENTIFY page, make sure @dev is still attached to the
3929 *      port and reconfigure it according to the new IDENTIFY page.
3930 *
3931 *      LOCKING:
3932 *      Kernel thread context (may sleep)
3933 *
3934 *      RETURNS:
3935 *      0 on success, negative errno otherwise
3936 */
3937int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3938                       unsigned int readid_flags)
3939{
3940        u64 n_sectors = dev->n_sectors;
3941        u64 n_native_sectors = dev->n_native_sectors;
3942        int rc;
3943
3944        if (!ata_dev_enabled(dev))
3945                return -ENODEV;
3946
3947        /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3948        if (ata_class_enabled(new_class) &&
3949            new_class != ATA_DEV_ATA &&
3950            new_class != ATA_DEV_ATAPI &&
3951            new_class != ATA_DEV_SEMB) {
3952                ata_dev_info(dev, "class mismatch %u != %u\n",
3953                             dev->class, new_class);
3954                rc = -ENODEV;
3955                goto fail;
3956        }
3957
3958        /* re-read ID */
3959        rc = ata_dev_reread_id(dev, readid_flags);
3960        if (rc)
3961                goto fail;
3962
3963        /* configure device according to the new ID */
3964        rc = ata_dev_configure(dev);
3965        if (rc)
3966                goto fail;
3967
3968        /* verify n_sectors hasn't changed */
3969        if (dev->class != ATA_DEV_ATA || !n_sectors ||
3970            dev->n_sectors == n_sectors)
3971                return 0;
3972
3973        /* n_sectors has changed */
3974        ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3975                     (unsigned long long)n_sectors,
3976                     (unsigned long long)dev->n_sectors);
3977
3978        /*
3979         * Something could have caused HPA to be unlocked
3980         * involuntarily.  If n_native_sectors hasn't changed and the
3981         * new size matches it, keep the device.
3982         */
3983        if (dev->n_native_sectors == n_native_sectors &&
3984            dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3985                ata_dev_warn(dev,
3986                             "new n_sectors matches native, probably "
3987                             "late HPA unlock, n_sectors updated\n");
3988                /* use the larger n_sectors */
3989                return 0;
3990        }
3991
3992        /*
3993         * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
3994         * unlocking HPA in those cases.
3995         *
3996         * https://bugzilla.kernel.org/show_bug.cgi?id=15396
3997         */
3998        if (dev->n_native_sectors == n_native_sectors &&
3999            dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4000            !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4001                ata_dev_warn(dev,
4002                             "old n_sectors matches native, probably "
4003                             "late HPA lock, will try to unlock HPA\n");
4004                /* try unlocking HPA */
4005                dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4006                rc = -EIO;
4007        } else
4008                rc = -ENODEV;
4009
4010        /* restore original n_[native_]sectors and fail */
4011        dev->n_native_sectors = n_native_sectors;
4012        dev->n_sectors = n_sectors;
4013 fail:
4014        ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4015        return rc;
4016}
4017
4018struct ata_blacklist_entry {
4019        const char *model_num;
4020        const char *model_rev;
4021        unsigned long horkage;
4022};
4023
4024static const struct ata_blacklist_entry ata_device_blacklist [] = {
4025        /* Devices with DMA related problems under Linux */
4026        { "WDC AC11000H",       NULL,           ATA_HORKAGE_NODMA },
4027        { "WDC AC22100H",       NULL,           ATA_HORKAGE_NODMA },
4028        { "WDC AC32500H",       NULL,           ATA_HORKAGE_NODMA },
4029        { "WDC AC33100H",       NULL,           ATA_HORKAGE_NODMA },
4030        { "WDC AC31600H",       NULL,           ATA_HORKAGE_NODMA },
4031        { "WDC AC32100H",       "24.09P07",     ATA_HORKAGE_NODMA },
4032        { "WDC AC23200L",       "21.10N21",     ATA_HORKAGE_NODMA },
4033        { "Compaq CRD-8241B",   NULL,           ATA_HORKAGE_NODMA },
4034        { "CRD-8400B",          NULL,           ATA_HORKAGE_NODMA },
4035        { "CRD-848[02]B",       NULL,           ATA_HORKAGE_NODMA },
4036        { "CRD-84",             NULL,           ATA_HORKAGE_NODMA },
4037        { "SanDisk SDP3B",      NULL,           ATA_HORKAGE_NODMA },
4038        { "SanDisk SDP3B-64",   NULL,           ATA_HORKAGE_NODMA },
4039        { "SANYO CD-ROM CRD",   NULL,           ATA_HORKAGE_NODMA },
4040        { "HITACHI CDR-8",      NULL,           ATA_HORKAGE_NODMA },
4041        { "HITACHI CDR-8[34]35",NULL,           ATA_HORKAGE_NODMA },
4042        { "Toshiba CD-ROM XM-6202B", NULL,      ATA_HORKAGE_NODMA },
4043        { "TOSHIBA CD-ROM XM-1702BC", NULL,     ATA_HORKAGE_NODMA },
4044        { "CD-532E-A",          NULL,           ATA_HORKAGE_NODMA },
4045        { "E-IDE CD-ROM CR-840",NULL,           ATA_HORKAGE_NODMA },
4046        { "CD-ROM Drive/F5A",   NULL,           ATA_HORKAGE_NODMA },
4047        { "WPI CDD-820",        NULL,           ATA_HORKAGE_NODMA },
4048        { "SAMSUNG CD-ROM SC-148C", NULL,       ATA_HORKAGE_NODMA },
4049        { "SAMSUNG CD-ROM SC",  NULL,           ATA_HORKAGE_NODMA },
4050        { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4051        { "_NEC DV5800A",       NULL,           ATA_HORKAGE_NODMA },
4052        { "SAMSUNG CD-ROM SN-124", "N001",      ATA_HORKAGE_NODMA },
4053        { "Seagate STT20000A", NULL,            ATA_HORKAGE_NODMA },
4054        /* Odd clown on sil3726/4726 PMPs */
4055        { "Config  Disk",       NULL,           ATA_HORKAGE_DISABLE },
4056
4057        /* Weird ATAPI devices */
4058        { "TORiSAN DVD-ROM DRD-N216", NULL,     ATA_HORKAGE_MAX_SEC_128 },
4059        { "QUANTUM DAT    DAT72-000", NULL,     ATA_HORKAGE_ATAPI_MOD16_DMA },
4060
4061        /* Devices we expect to fail diagnostics */
4062
4063        /* Devices where NCQ should be avoided */
4064        /* NCQ is slow */
4065        { "WDC WD740ADFD-00",   NULL,           ATA_HORKAGE_NONCQ },
4066        { "WDC WD740ADFD-00NLR1", NULL,         ATA_HORKAGE_NONCQ, },
4067        /* http://thread.gmane.org/gmane.linux.ide/14907 */
4068        { "FUJITSU MHT2060BH",  NULL,           ATA_HORKAGE_NONCQ },
4069        /* NCQ is broken */
4070        { "Maxtor *",           "BANC*",        ATA_HORKAGE_NONCQ },
4071        { "Maxtor 7V300F0",     "VA111630",     ATA_HORKAGE_NONCQ },
4072        { "ST380817AS",         "3.42",         ATA_HORKAGE_NONCQ },
4073        { "ST3160023AS",        "3.42",         ATA_HORKAGE_NONCQ },
4074        { "OCZ CORE_SSD",       "02.10104",     ATA_HORKAGE_NONCQ },
4075
4076        /* Seagate NCQ + FLUSH CACHE firmware bug */
4077        { "ST31500341AS",       "SD1[5-9]",     ATA_HORKAGE_NONCQ |
4078                                                ATA_HORKAGE_FIRMWARE_WARN },
4079
4080        { "ST31000333AS",       "SD1[5-9]",     ATA_HORKAGE_NONCQ |
4081                                                ATA_HORKAGE_FIRMWARE_WARN },
4082
4083        { "ST3640[36]23AS",     "SD1[5-9]",     ATA_HORKAGE_NONCQ |
4084                                                ATA_HORKAGE_FIRMWARE_WARN },
4085
4086        { "ST3320[68]13AS",     "SD1[5-9]",     ATA_HORKAGE_NONCQ |
4087                                                ATA_HORKAGE_FIRMWARE_WARN },
4088
4089        /* Blacklist entries taken from Silicon Image 3124/3132
4090           Windows driver .inf file - also several Linux problem reports */
4091        { "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
4092        { "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
4093        { "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
4094
4095        /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4096        { "C300-CTFDDAC128MAG", "0001",         ATA_HORKAGE_NONCQ, },
4097
4098        /* devices which puke on READ_NATIVE_MAX */
4099        { "HDS724040KLSA80",    "KFAOA20N",     ATA_HORKAGE_BROKEN_HPA, },
4100        { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4101        { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4102        { "MAXTOR 6L080L4",     "A93.0500",     ATA_HORKAGE_BROKEN_HPA },
4103
4104        /* this one allows HPA unlocking but fails IOs on the area */
4105        { "OCZ-VERTEX",             "1.30",     ATA_HORKAGE_BROKEN_HPA },
4106
4107        /* Devices which report 1 sector over size HPA */
4108        { "ST340823A",          NULL,           ATA_HORKAGE_HPA_SIZE, },
4109        { "ST320413A",          NULL,           ATA_HORKAGE_HPA_SIZE, },
4110        { "ST310211A",          NULL,           ATA_HORKAGE_HPA_SIZE, },
4111
4112        /* Devices which get the IVB wrong */
4113        { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4114        /* Maybe we should just blacklist TSSTcorp... */
4115        { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB, },
4116
4117        /* Devices that do not need bridging limits applied */
4118        { "MTRON MSP-SATA*",            NULL,   ATA_HORKAGE_BRIDGE_OK, },
4119
4120        /* Devices which aren't very happy with higher link speeds */
4121        { "WD My Book",                 NULL,   ATA_HORKAGE_1_5_GBPS, },
4122
4123        /*
4124         * Devices which choke on SETXFER.  Applies only if both the
4125         * device and controller are SATA.
4126         */
4127        { "PIONEER DVD-RW  DVRTD08",    NULL,   ATA_HORKAGE_NOSETXFER },
4128        { "PIONEER DVD-RW  DVRTD08A",   NULL,   ATA_HORKAGE_NOSETXFER },
4129        { "PIONEER DVD-RW  DVR-215",    NULL,   ATA_HORKAGE_NOSETXFER },
4130        { "PIONEER DVD-RW  DVR-212D",   NULL,   ATA_HORKAGE_NOSETXFER },
4131        { "PIONEER DVD-RW  DVR-216D",   NULL,   ATA_HORKAGE_NOSETXFER },
4132
4133        /* End Marker */
4134        { }
4135};
4136
4137/**
4138 *      glob_match - match a text string against a glob-style pattern
4139 *      @text: the string to be examined
4140 *      @pattern: the glob-style pattern to be matched against
4141 *
4142 *      Either/both of text and pattern can be empty strings.
4143 *
4144 *      Match text against a glob-style pattern, with wildcards and simple sets:
4145 *
4146 *              ?       matches any single character.
4147 *              *       matches any run of characters.
4148 *              [xyz]   matches a single character from the set: x, y, or z.
4149 *              [a-d]   matches a single character from the range: a, b, c, or d.
4150 *              [a-d0-9] matches a single character from either range.
4151 *
4152 *      The special characters ?, [, -, or *, can be matched using a set, eg. [*]
4153 *      Behaviour with malformed patterns is undefined, though generally reasonable.
4154 *
4155 *      Sample patterns:  "SD1?",  "SD1[0-5]",  "*R0",  "SD*1?[012]*xx"
4156 *
4157 *      This function uses one level of recursion per '*' in pattern.
4158 *      Since it calls _nothing_ else, and has _no_ explicit local variables,
4159 *      this will not cause stack problems for any reasonable use here.
4160 *
4161 *      RETURNS:
4162 *      0 on match, 1 otherwise.
4163 */
4164static int glob_match (const char *text, const char *pattern)
4165{
4166        do {
4167                /* Match single character or a '?' wildcard */
4168                if (*text == *pattern || *pattern == '?') {
4169                        if (!*pattern++)
4170                                return 0;  /* End of both strings: match */
4171                } else {
4172                        /* Match single char against a '[' bracketed ']' pattern set */
4173                        if (!*text || *pattern != '[')
4174                                break;  /* Not a pattern set */
4175                        while (*++pattern && *pattern != ']' && *text != *pattern) {
4176                                if (*pattern == '-' && *(pattern - 1) != '[')
4177                                        if (*text > *(pattern - 1) && *text < *(pattern + 1)) {
4178                                                ++pattern;
4179                                                break;
4180                                        }
4181                        }
4182                        if (!*pattern || *pattern == ']')
4183                                return 1;  /* No match */
4184                        while (*pattern && *pattern++ != ']');
4185                }
4186        } while (*++text && *pattern);
4187
4188        /* Match any run of chars against a '*' wildcard */
4189        if (*pattern == '*') {
4190                if (!*++pattern)
4191                        return 0;  /* Match: avoid recursion at end of pattern */
4192                /* Loop to handle additional pattern chars after the wildcard */
4193                while (*text) {
4194                        if (glob_match(text, pattern) == 0)
4195                                return 0;  /* Remainder matched */
4196                        ++text;  /* Absorb (match) this char and try again */
4197                }
4198        }
4199        if (!*text && !*pattern)
4200                return 0;  /* End of both strings: match */
4201        return 1;  /* No match */
4202}
4203
4204static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4205{
4206        unsigned char model_num[ATA_ID_PROD_LEN + 1];
4207        unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4208        const struct ata_blacklist_entry *ad = ata_device_blacklist;
4209
4210        ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4211        ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4212
4213        while (ad->model_num) {
4214                if (!glob_match(model_num, ad->model_num)) {
4215                        if (ad->model_rev == NULL)
4216                                return ad->horkage;
4217                        if (!glob_match(model_rev, ad->model_rev))
4218                                return ad->horkage;
4219                }
4220                ad++;
4221        }
4222        return 0;
4223}
4224
4225static int ata_dma_blacklisted(const struct ata_device *dev)
4226{
4227        /* We don't support polling DMA.
4228         * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4229         * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4230         */
4231        if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4232            (dev->flags & ATA_DFLAG_CDB_INTR))
4233                return 1;
4234        return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4235}
4236
4237/**
4238 *      ata_is_40wire           -       check drive side detection
4239 *      @dev: device
4240 *
4241 *      Perform drive side detection decoding, allowing for device vendors
4242 *      who can't follow the documentation.
4243 */
4244
4245static int ata_is_40wire(struct ata_device *dev)
4246{
4247        if (dev->horkage & ATA_HORKAGE_IVB)
4248                return ata_drive_40wire_relaxed(dev->id);
4249        return ata_drive_40wire(dev->id);
4250}
4251
4252/**
4253 *      cable_is_40wire         -       40/80/SATA decider
4254 *      @ap: port to consider
4255 *
4256 *      This function encapsulates the policy for speed management
4257 *      in one place. At the moment we don't cache the result but
4258 *      there is a good case for setting ap->cbl to the result when
4259 *      we are called with unknown cables (and figuring out if it
4260 *      impacts hotplug at all).
4261 *
4262 *      Return 1 if the cable appears to be 40 wire.
4263 */
4264
4265static int cable_is_40wire(struct ata_port *ap)
4266{
4267        struct ata_link *link;
4268        struct ata_device *dev;
4269
4270        /* If the controller thinks we are 40 wire, we are. */
4271        if (ap->cbl == ATA_CBL_PATA40)
4272                return 1;
4273
4274        /* If the controller thinks we are 80 wire, we are. */
4275        if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4276                return 0;
4277
4278        /* If the system is known to be 40 wire short cable (eg
4279         * laptop), then we allow 80 wire modes even if the drive
4280         * isn't sure.
4281         */
4282        if (ap->cbl == ATA_CBL_PATA40_SHORT)
4283                return 0;
4284
4285        /* If the controller doesn't know, we scan.
4286         *
4287         * Note: We look for all 40 wire detects at this point.  Any
4288         *       80 wire detect is taken to be 80 wire cable because
4289         * - in many setups only the one drive (slave if present) will
4290         *   give a valid detect
4291         * - if you have a non detect capable drive you don't want it
4292         *   to colour the choice
4293         */
4294        ata_for_each_link(link, ap, EDGE) {
4295                ata_for_each_dev(dev, link, ENABLED) {
4296                        if (!ata_is_40wire(dev))
4297                                return 0;
4298                }
4299        }
4300        return 1;
4301}
4302
4303/**
4304 *      ata_dev_xfermask - Compute supported xfermask of the given device
4305 *      @dev: Device to compute xfermask for
4306 *
4307 *      Compute supported xfermask of @dev and store it in
4308 *      dev->*_mask.  This function is responsible for applying all
4309 *      known limits including host controller limits, device
4310 *      blacklist, etc...
4311 *
4312 *      LOCKING:
4313 *      None.
4314 */
4315static void ata_dev_xfermask(struct ata_device *dev)
4316{
4317        struct ata_link *link = dev->link;
4318        struct ata_port *ap = link->ap;
4319        struct ata_host *host = ap->host;
4320        unsigned long xfer_mask;
4321
4322        /* controller modes available */
4323        xfer_mask = ata_pack_xfermask(ap->pio_mask,
4324                                      ap->mwdma_mask, ap->udma_mask);
4325
4326        /* drive modes available */
4327        xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4328                                       dev->mwdma_mask, dev->udma_mask);
4329        xfer_mask &= ata_id_xfermask(dev->id);
4330
4331        /*
4332         *      CFA Advanced TrueIDE timings are not allowed on a shared
4333         *      cable
4334         */
4335        if (ata_dev_pair(dev)) {
4336                /* No PIO5 or PIO6 */
4337                xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4338                /* No MWDMA3 or MWDMA 4 */
4339                xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4340        }
4341
4342        if (ata_dma_blacklisted(dev)) {
4343                xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4344                ata_dev_warn(dev,
4345                             "device is on DMA blacklist, disabling DMA\n");
4346        }
4347
4348        if ((host->flags & ATA_HOST_SIMPLEX) &&
4349            host->simplex_claimed && host->simplex_claimed != ap) {
4350                xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4351                ata_dev_warn(dev,
4352                             "simplex DMA is claimed by other device, disabling DMA\n");
4353        }
4354
4355        if (ap->flags & ATA_FLAG_NO_IORDY)
4356                xfer_mask &= ata_pio_mask_no_iordy(dev);
4357
4358        if (ap->ops->mode_filter)
4359                xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4360
4361        /* Apply cable rule here.  Don't apply it early because when
4362         * we handle hot plug the cable type can itself change.
4363         * Check this last so that we know if the transfer rate was
4364         * solely limited by the cable.
4365         * Unknown or 80 wire cables reported host side are checked
4366         * drive side as well. Cases where we know a 40wire cable
4367         * is used safely for 80 are not checked here.
4368         */
4369        if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4370                /* UDMA/44 or higher would be available */
4371                if (cable_is_40wire(ap)) {
4372                        ata_dev_warn(dev,
4373                                     "limited to UDMA/33 due to 40-wire cable\n");
4374                        xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4375                }
4376
4377        ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4378                            &dev->mwdma_mask, &dev->udma_mask);
4379}
4380
4381/**
4382 *      ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4383 *      @dev: Device to which command will be sent
4384 *
4385 *      Issue SET FEATURES - XFER MODE command to device @dev
4386 *      on port @ap.
4387 *
4388 *      LOCKING:
4389 *      PCI/etc. bus probe sem.
4390 *
4391 *      RETURNS:
4392 *      0 on success, AC_ERR_* mask otherwise.
4393 */
4394
4395static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4396{
4397        struct ata_taskfile tf;
4398        unsigned int err_mask;
4399
4400        /* set up set-features taskfile */
4401        DPRINTK("set features - xfer mode\n");
4402
4403        /* Some controllers and ATAPI devices show flaky interrupt
4404         * behavior after setting xfer mode.  Use polling instead.
4405         */
4406        ata_tf_init(dev, &tf);
4407        tf.command = ATA_CMD_SET_FEATURES;
4408        tf.feature = SETFEATURES_XFER;
4409        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4410        tf.protocol = ATA_PROT_NODATA;
4411        /* If we are using IORDY we must send the mode setting command */
4412        if (ata_pio_need_iordy(dev))
4413                tf.nsect = dev->xfer_mode;
4414        /* If the device has IORDY and the controller does not - turn it off */
4415        else if (ata_id_has_iordy(dev->id))
4416                tf.nsect = 0x01;
4417        else /* In the ancient relic department - skip all of this */
4418                return 0;
4419
4420        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4421
4422        DPRINTK("EXIT, err_mask=%x\n", err_mask);
4423        return err_mask;
4424}
4425
4426/**
4427 *      ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4428 *      @dev: Device to which command will be sent
4429 *      @enable: Whether to enable or disable the feature
4430 *      @feature: The sector count represents the feature to set
4431 *
4432 *      Issue SET FEATURES - SATA FEATURES command to device @dev
4433 *      on port @ap with sector count
4434 *
4435 *      LOCKING:
4436 *      PCI/etc. bus probe sem.
4437 *
4438 *      RETURNS:
4439 *      0 on success, AC_ERR_* mask otherwise.
4440 */
4441unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4442{
4443        struct ata_taskfile tf;
4444        unsigned int err_mask;
4445
4446        /* set up set-features taskfile */
4447        DPRINTK("set features - SATA features\n");
4448
4449        ata_tf_init(dev, &tf);
4450        tf.command = ATA_CMD_SET_FEATURES;
4451        tf.feature = enable;
4452        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4453        tf.protocol = ATA_PROT_NODATA;
4454        tf.nsect = feature;
4455
4456        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4457
4458        DPRINTK("EXIT, err_mask=%x\n", err_mask);
4459        return err_mask;
4460}
4461
4462/**
4463 *      ata_dev_init_params - Issue INIT DEV PARAMS command
4464 *      @dev: Device to which command will be sent
4465 *      @heads: Number of heads (taskfile parameter)
4466 *      @sectors: Number of sectors (taskfile parameter)
4467 *
4468 *      LOCKING:
4469 *      Kernel thread context (may sleep)
4470 *
4471 *      RETURNS:
4472 *      0 on success, AC_ERR_* mask otherwise.
4473 */
4474static unsigned int ata_dev_init_params(struct ata_device *dev,
4475                                        u16 heads, u16 sectors)
4476{
4477        struct ata_taskfile tf;
4478        unsigned int err_mask;
4479
4480        /* Number of sectors per track 1-255. Number of heads 1-16 */
4481        if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4482                return AC_ERR_INVALID;
4483
4484        /* set up init dev params taskfile */
4485        DPRINTK("init dev params \n");
4486
4487        ata_tf_init(dev, &tf);
4488        tf.command = ATA_CMD_INIT_DEV_PARAMS;
4489        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4490        tf.protocol = ATA_PROT_NODATA;
4491        tf.nsect = sectors;
4492        tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4493
4494        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4495        /* A clean abort indicates an original or just out of spec drive
4496           and we should continue as we issue the setup based on the
4497           drive reported working geometry */
4498        if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4499                err_mask = 0;
4500
4501        DPRINTK("EXIT, err_mask=%x\n", err_mask);
4502        return err_mask;
4503}
4504
4505/**
4506 *      ata_sg_clean - Unmap DMA memory associated with command
4507 *      @qc: Command containing DMA memory to be released
4508 *
4509 *      Unmap all mapped DMA memory associated with this command.
4510 *
4511 *      LOCKING:
4512 *      spin_lock_irqsave(host lock)
4513 */
4514void ata_sg_clean(struct ata_queued_cmd *qc)
4515{
4516        struct ata_port *ap = qc->ap;
4517        struct scatterlist *sg = qc->sg;
4518        int dir = qc->dma_dir;
4519
4520        WARN_ON_ONCE(sg == NULL);
4521
4522        VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4523
4524        if (qc->n_elem)
4525                dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4526
4527        qc->flags &= ~ATA_QCFLAG_DMAMAP;
4528        qc->sg = NULL;
4529}
4530
4531/**
4532 *      atapi_check_dma - Check whether ATAPI DMA can be supported
4533 *      @qc: Metadata associated with taskfile to check
4534 *
4535 *      Allow low-level driver to filter ATA PACKET commands, returning
4536 *      a status indicating whether or not it is OK to use DMA for the
4537 *      supplied PACKET command.
4538 *
4539 *      LOCKING:
4540 *      spin_lock_irqsave(host lock)
4541 *
4542 *      RETURNS: 0 when ATAPI DMA can be used
4543 *               nonzero otherwise
4544 */
4545int atapi_check_dma(struct ata_queued_cmd *qc)
4546{
4547        struct ata_port *ap = qc->ap;
4548
4549        /* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4550         * few ATAPI devices choke on such DMA requests.
4551         */
4552        if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4553            unlikely(qc->nbytes & 15))
4554                return 1;
4555
4556        if (ap->ops->check_atapi_dma)
4557                return ap->ops->check_atapi_dma(qc);
4558
4559        return 0;
4560}
4561
4562/**
4563 *      ata_std_qc_defer - Check whether a qc needs to be deferred
4564 *      @qc: ATA command in question
4565 *
4566 *      Non-NCQ commands cannot run with any other command, NCQ or
4567 *      not.  As upper layer only knows the queue depth, we are
4568 *      responsible for maintaining exclusion.  This function checks
4569 *      whether a new command @qc can be issued.
4570 *
4571 *      LOCKING:
4572 *      spin_lock_irqsave(host lock)
4573 *
4574 *      RETURNS:
4575 *      ATA_DEFER_* if deferring is needed, 0 otherwise.
4576 */
4577int ata_std_qc_defer(struct ata_queued_cmd *qc)
4578{
4579        struct ata_link *link = qc->dev->link;
4580
4581        if (qc->tf.protocol == ATA_PROT_NCQ) {
4582                if (!ata_tag_valid(link->active_tag))
4583                        return 0;
4584        } else {
4585                if (!ata_tag_valid(link->active_tag) && !link->sactive)
4586                        return 0;
4587        }
4588
4589        return ATA_DEFER_LINK;
4590}
4591
4592void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4593
4594/**
4595 *      ata_sg_init - Associate command with scatter-gather table.
4596 *      @qc: Command to be associated
4597 *      @sg: Scatter-gather table.
4598 *      @n_elem: Number of elements in s/g table.
4599 *
4600 *      Initialize the data-related elements of queued_cmd @qc
4601 *      to point to a scatter-gather table @sg, containing @n_elem
4602 *      elements.
4603 *
4604 *      LOCKING:
4605 *      spin_lock_irqsave(host lock)
4606 */
4607void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4608                 unsigned int n_elem)
4609{
4610        qc->sg = sg;
4611        qc->n_elem = n_elem;
4612        qc->cursg = qc->sg;
4613}
4614
4615/**
4616 *      ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4617 *      @qc: Command with scatter-gather table to be mapped.
4618 *
4619 *      DMA-map the scatter-gather table associated with queued_cmd @qc.
4620 *
4621 *      LOCKING:
4622 *      spin_lock_irqsave(host lock)
4623 *
4624 *      RETURNS:
4625 *      Zero on success, negative on error.
4626 *
4627 */
4628static int ata_sg_setup(struct ata_queued_cmd *qc)
4629{
4630        struct ata_port *ap = qc->ap;
4631        unsigned int n_elem;
4632
4633        VPRINTK("ENTER, ata%u\n", ap->print_id);
4634
4635        n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4636        if (n_elem < 1)
4637                return -1;
4638
4639        DPRINTK("%d sg elements mapped\n", n_elem);
4640        qc->orig_n_elem = qc->n_elem;
4641        qc->n_elem = n_elem;
4642        qc->flags |= ATA_QCFLAG_DMAMAP;
4643
4644        return 0;
4645}
4646
4647/**
4648 *      swap_buf_le16 - swap halves of 16-bit words in place
4649 *      @buf:  Buffer to swap
4650 *      @buf_words:  Number of 16-bit words in buffer.
4651 *
4652 *      Swap halves of 16-bit words if needed to convert from
4653 *      little-endian byte order to native cpu byte order, or
4654 *      vice-versa.
4655 *
4656 *      LOCKING:
4657 *      Inherited from caller.
4658 */
4659void swap_buf_le16(u16 *buf, unsigned int buf_words)
4660{
4661#ifdef __BIG_ENDIAN
4662        unsigned int i;
4663
4664        for (i = 0; i < buf_words; i++)
4665                buf[i] = le16_to_cpu(buf[i]);
4666#endif /* __BIG_ENDIAN */
4667}
4668
4669/**
4670 *      ata_qc_new - Request an available ATA command, for queueing
4671 *      @ap: target port
4672 *
4673 *      LOCKING:
4674 *      None.
4675 */
4676
4677static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4678{
4679        struct ata_queued_cmd *qc = NULL;
4680        unsigned int i;
4681
4682        /* no command while frozen */
4683        if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4684                return NULL;
4685
4686        /* the last tag is reserved for internal command. */
4687        for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4688                if (!test_and_set_bit(i, &ap->qc_allocated)) {
4689                        qc = __ata_qc_from_tag(ap, i);
4690                        break;
4691                }
4692
4693        if (qc)
4694                qc->tag = i;
4695
4696        return qc;
4697}
4698
4699/**
4700 *      ata_qc_new_init - Request an available ATA command, and initialize it
4701 *      @dev: Device from whom we request an available command structure
4702 *
4703 *      LOCKING:
4704 *      None.
4705 */
4706
4707struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4708{
4709        struct ata_port *ap = dev->link->ap;
4710        struct ata_queued_cmd *qc;
4711
4712        qc = ata_qc_new(ap);
4713        if (qc) {
4714                qc->scsicmd = NULL;
4715                qc->ap = ap;
4716                qc->dev = dev;
4717
4718                ata_qc_reinit(qc);
4719        }
4720
4721        return qc;
4722}
4723
4724/**
4725 *      ata_qc_free - free unused ata_queued_cmd
4726 *      @qc: Command to complete
4727 *
4728 *      Designed to free unused ata_queued_cmd object
4729 *      in case something prevents using it.
4730 *
4731 *      LOCKING:
4732 *      spin_lock_irqsave(host lock)
4733 */
4734void ata_qc_free(struct ata_queued_cmd *qc)
4735{
4736        struct ata_port *ap;
4737        unsigned int tag;
4738
4739        WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4740        ap = qc->ap;
4741
4742        qc->flags = 0;
4743        tag = qc->tag;
4744        if (likely(ata_tag_valid(tag))) {
4745                qc->tag = ATA_TAG_POISON;
4746                clear_bit(tag, &ap->qc_allocated);
4747        }
4748}
4749
4750void __ata_qc_complete(struct ata_queued_cmd *qc)
4751{
4752        struct ata_port *ap;
4753        struct ata_link *link;
4754
4755        WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4756        WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4757        ap = qc->ap;
4758        link = qc->dev->link;
4759
4760        if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4761                ata_sg_clean(qc);
4762
4763        /* command should be marked inactive atomically with qc completion */
4764        if (qc->tf.protocol == ATA_PROT_NCQ) {
4765                link->sactive &= ~(1 << qc->tag);
4766                if (!link->sactive)
4767                        ap->nr_active_links--;
4768        } else {
4769                link->active_tag = ATA_TAG_POISON;
4770                ap->nr_active_links--;
4771        }
4772
4773        /* clear exclusive status */
4774        if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4775                     ap->excl_link == link))
4776                ap->excl_link = NULL;
4777
4778        /* atapi: mark qc as inactive to prevent the interrupt handler
4779         * from completing the command twice later, before the error handler
4780         * is called. (when rc != 0 and atapi request sense is needed)
4781         */
4782        qc->flags &= ~ATA_QCFLAG_ACTIVE;
4783        ap->qc_active &= ~(1 << qc->tag);
4784
4785        /* call completion callback */
4786        qc->complete_fn(qc);
4787}
4788
4789static void fill_result_tf(struct ata_queued_cmd *qc)
4790{
4791        struct ata_port *ap = qc->ap;
4792
4793        qc->result_tf.flags = qc->tf.flags;
4794        ap->ops->qc_fill_rtf(qc);
4795}
4796
4797static void ata_verify_xfer(struct ata_queued_cmd *qc)
4798{
4799        struct ata_device *dev = qc->dev;
4800
4801        if (ata_is_nodata(qc->tf.protocol))
4802                return;
4803
4804        if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4805                return;
4806
4807        dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4808}
4809
4810/**
4811 *      ata_qc_complete - Complete an active ATA command
4812 *      @qc: Command to complete
4813 *
4814 *      Indicate to the mid and upper layers that an ATA command has
4815 *      completed, with either an ok or not-ok status.
4816 *
4817 *      Refrain from calling this function multiple times when
4818 *      successfully completing multiple NCQ commands.
4819 *      ata_qc_complete_multiple() should be used instead, which will
4820 *      properly update IRQ expect state.
4821 *
4822 *      LOCKING:
4823 *      spin_lock_irqsave(host lock)
4824 */
4825void ata_qc_complete(struct ata_queued_cmd *qc)
4826{
4827        struct ata_port *ap = qc->ap;
4828
4829        /* XXX: New EH and old EH use different mechanisms to
4830         * synchronize EH with regular execution path.
4831         *
4832         * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4833         * Normal execution path is responsible for not accessing a
4834         * failed qc.  libata core enforces the rule by returning NULL
4835         * from ata_qc_from_tag() for failed qcs.
4836         *
4837         * Old EH depends on ata_qc_complete() nullifying completion
4838         * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
4839         * not synchronize with interrupt handler.  Only PIO task is
4840         * taken care of.
4841         */
4842        if (ap->ops->error_handler) {
4843                struct ata_device *dev = qc->dev;
4844                struct ata_eh_info *ehi = &dev->link->eh_info;
4845
4846                if (unlikely(qc->err_mask))
4847                        qc->flags |= ATA_QCFLAG_FAILED;
4848
4849                /*
4850                 * Finish internal commands without any further processing
4851                 * and always with the result TF filled.
4852                 */
4853                if (unlikely(ata_tag_internal(qc->tag))) {
4854                        fill_result_tf(qc);
4855                        __ata_qc_complete(qc);
4856                        return;
4857                }
4858
4859                /*
4860                 * Non-internal qc has failed.  Fill the result TF and
4861                 * summon EH.
4862                 */
4863                if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4864                        fill_result_tf(qc);
4865                        ata_qc_schedule_eh(qc);
4866                        return;
4867                }
4868
4869                WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4870
4871                /* read result TF if requested */
4872                if (qc->flags & ATA_QCFLAG_RESULT_TF)
4873                        fill_result_tf(qc);
4874
4875                /* Some commands need post-processing after successful
4876                 * completion.
4877                 */
4878                switch (qc->tf.command) {
4879                case ATA_CMD_SET_FEATURES:
4880                        if (qc->tf.feature != SETFEATURES_WC_ON &&
4881                            qc->tf.feature != SETFEATURES_WC_OFF)
4882                                break;
4883                        /* fall through */
4884                case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4885                case ATA_CMD_SET_MULTI: /* multi_count changed */
4886                        /* revalidate device */
4887                        ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4888                        ata_port_schedule_eh(ap);
4889                        break;
4890
4891                case ATA_CMD_SLEEP:
4892                        dev->flags |= ATA_DFLAG_SLEEPING;
4893                        break;
4894                }
4895
4896                if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4897                        ata_verify_xfer(qc);
4898
4899                __ata_qc_complete(qc);
4900        } else {
4901                if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4902                        return;
4903
4904                /* read result TF if failed or requested */
4905                if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4906                        fill_result_tf(qc);
4907
4908                __ata_qc_complete(qc);
4909        }
4910}
4911
4912/**
4913 *      ata_qc_complete_multiple - Complete multiple qcs successfully
4914 *      @ap: port in question
4915 *      @qc_active: new qc_active mask
4916 *
4917 *      Complete in-flight commands.  This functions is meant to be
4918 *      called from low-level driver's interrupt routine to complete
4919 *      requests normally.  ap->qc_active and @qc_active is compared
4920 *      and commands are completed accordingly.
4921 *
4922 *      Always use this function when completing multiple NCQ commands
4923 *      from IRQ handlers instead of calling ata_qc_complete()
4924 *      multiple times to keep IRQ expect status properly in sync.
4925 *
4926 *      LOCKING:
4927 *      spin_lock_irqsave(host lock)
4928 *
4929 *      RETURNS:
4930 *      Number of completed commands on success, -errno otherwise.
4931 */
4932int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
4933{
4934        int nr_done = 0;
4935        u32 done_mask;
4936
4937        done_mask = ap->qc_active ^ qc_active;
4938
4939        if (unlikely(done_mask & qc_active)) {
4940                ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
4941                             ap->qc_active, qc_active);
4942                return -EINVAL;
4943        }
4944
4945        while (done_mask) {
4946                struct ata_queued_cmd *qc;
4947                unsigned int tag = __ffs(done_mask);
4948
4949                qc = ata_qc_from_tag(ap, tag);
4950                if (qc) {
4951                        ata_qc_complete(qc);
4952                        nr_done++;
4953                }
4954                done_mask &= ~(1 << tag);
4955        }
4956
4957        return nr_done;
4958}
4959
4960/**
4961 *      ata_qc_issue - issue taskfile to device
4962 *      @qc: command to issue to device
4963 *
4964 *      Prepare an ATA command to submission to device.
4965 *      This includes mapping the data into a DMA-able
4966 *      area, filling in the S/G table, and finally
4967 *      writing the taskfile to hardware, starting the command.
4968 *
4969 *      LOCKING:
4970 *      spin_lock_irqsave(host lock)
4971 */
4972void ata_qc_issue(struct ata_queued_cmd *qc)
4973{
4974        struct ata_port *ap = qc->ap;
4975        struct ata_link *link = qc->dev->link;
4976        u8 prot = qc->tf.protocol;
4977
4978        /* Make sure only one non-NCQ command is outstanding.  The
4979         * check is skipped for old EH because it reuses active qc to
4980         * request ATAPI sense.
4981         */
4982        WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
4983
4984        if (ata_is_ncq(prot)) {
4985                WARN_ON_ONCE(link->sactive & (1 << qc->tag));
4986
4987                if (!link->sactive)
4988                        ap->nr_active_links++;
4989                link->sactive |= 1 << qc->tag;
4990        } else {
4991                WARN_ON_ONCE(link->sactive);
4992
4993                ap->nr_active_links++;
4994                link->active_tag = qc->tag;
4995        }
4996
4997        qc->flags |= ATA_QCFLAG_ACTIVE;
4998        ap->qc_active |= 1 << qc->tag;
4999
5000        /*
5001         * We guarantee to LLDs that they will have at least one
5002         * non-zero sg if the command is a data command.
5003         */
5004        if (WARN_ON_ONCE(ata_is_data(prot) &&
5005                         (!qc->sg || !qc->n_elem || !qc->nbytes)))
5006                goto sys_err;
5007
5008        if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5009                                 (ap->flags & ATA_FLAG_PIO_DMA)))
5010                if (ata_sg_setup(qc))
5011                        goto sys_err;
5012
5013        /* if device is sleeping, schedule reset and abort the link */
5014        if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5015                link->eh_info.action |= ATA_EH_RESET;
5016                ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5017                ata_link_abort(link);
5018                return;
5019        }
5020
5021        ap->ops->qc_prep(qc);
5022
5023        qc->err_mask |= ap->ops->qc_issue(qc);
5024        if (unlikely(qc->err_mask))
5025                goto err;
5026        return;
5027
5028sys_err:
5029        qc->err_mask |= AC_ERR_SYSTEM;
5030err:
5031        ata_qc_complete(qc);
5032}
5033
5034/**
5035 *      sata_scr_valid - test whether SCRs are accessible
5036 *      @link: ATA link to test SCR accessibility for
5037 *
5038 *      Test whether SCRs are accessible for @link.
5039 *
5040 *      LOCKING:
5041 *      None.
5042 *
5043 *      RETURNS:
5044 *      1 if SCRs are accessible, 0 otherwise.
5045 */
5046int sata_scr_valid(struct ata_link *link)
5047{
5048        struct ata_port *ap = link->ap;
5049
5050        return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5051}
5052
5053/**
5054 *      sata_scr_read - read SCR register of the specified port
5055 *      @link: ATA link to read SCR for
5056 *      @reg: SCR to read
5057 *      @val: Place to store read value
5058 *
5059 *      Read SCR register @reg of @link into *@val.  This function is
5060 *      guaranteed to succeed if @link is ap->link, the cable type of
5061 *      the port is SATA and the port implements ->scr_read.
5062 *
5063 *      LOCKING:
5064 *      None if @link is ap->link.  Kernel thread context otherwise.
5065 *
5066 *      RETURNS:
5067 *      0 on success, negative errno on failure.
5068 */
5069int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5070{
5071        if (ata_is_host_link(link)) {
5072                if (sata_scr_valid(link))
5073                        return link->ap->ops->scr_read(link, reg, val);
5074                return -EOPNOTSUPP;
5075        }
5076
5077        return sata_pmp_scr_read(link, reg, val);
5078}
5079
5080/**
5081 *      sata_scr_write - write SCR register of the specified port
5082 *      @link: ATA link to write SCR for
5083 *      @reg: SCR to write
5084 *      @val: value to write
5085 *
5086 *      Write @val to SCR register @reg of @link.  This function is
5087 *      guaranteed to succeed if @link is ap->link, the cable type of
5088 *      the port is SATA and the port implements ->scr_read.
5089 *
5090 *      LOCKING:
5091 *      None if @link is ap->link.  Kernel thread context otherwise.
5092 *
5093 *      RETURNS:
5094 *      0 on success, negative errno on failure.
5095 */
5096int sata_scr_write(struct ata_link *link, int reg, u32 val)
5097{
5098        if (ata_is_host_link(link)) {
5099                if (sata_scr_valid(link))
5100                        return link->ap->ops->scr_write(link, reg, val);
5101                return -EOPNOTSUPP;
5102        }
5103
5104        return sata_pmp_scr_write(link, reg, val);
5105}
5106
5107/**
5108 *      sata_scr_write_flush - write SCR register of the specified port and flush
5109 *      @link: ATA link to write SCR for
5110 *      @reg: SCR to write
5111 *      @val: value to write
5112 *
5113 *      This function is identical to sata_scr_write() except that this
5114 *      function performs flush after writing to the register.
5115 *
5116 *      LOCKING:
5117 *      None if @link is ap->link.  Kernel thread context otherwise.
5118 *
5119 *      RETURNS:
5120 *      0 on success, negative errno on failure.
5121 */
5122int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5123{
5124        if (ata_is_host_link(link)) {
5125                int rc;
5126
5127                if (sata_scr_valid(link)) {
5128                        rc = link->ap->ops->scr_write(link, reg, val);
5129                        if (rc == 0)
5130                                rc = link->ap->ops->scr_read(link, reg, &val);
5131                        return rc;
5132                }
5133                return -EOPNOTSUPP;
5134        }
5135
5136        return sata_pmp_scr_write(link, reg, val);
5137}
5138
5139/**
5140 *      ata_phys_link_online - test whether the given link is online
5141 *      @link: ATA link to test
5142 *
5143 *      Test whether @link is online.  Note that this function returns
5144 *      0 if online status of @link cannot be obtained, so
5145 *      ata_link_online(link) != !ata_link_offline(link).
5146 *
5147 *      LOCKING:
5148 *      None.
5149 *
5150 *      RETURNS:
5151 *      True if the port online status is available and online.
5152 */
5153bool ata_phys_link_online(struct ata_link *link)
5154{
5155        u32 sstatus;
5156
5157        if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5158            ata_sstatus_online(sstatus))
5159                return true;
5160        return false;
5161}
5162
5163/**
5164 *      ata_phys_link_offline - test whether the given link is offline
5165 *      @link: ATA link to test
5166 *
5167 *      Test whether @link is offline.  Note that this function
5168 *      returns 0 if offline status of @link cannot be obtained, so
5169 *      ata_link_online(link) != !ata_link_offline(link).
5170 *
5171 *      LOCKING:
5172 *      None.
5173 *
5174 *      RETURNS:
5175 *      True if the port offline status is available and offline.
5176 */
5177bool ata_phys_link_offline(struct ata_link *link)
5178{
5179        u32 sstatus;
5180
5181        if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5182            !ata_sstatus_online(sstatus))
5183                return true;
5184        return false;
5185}
5186
5187/**
5188 *      ata_link_online - test whether the given link is online
5189 *      @link: ATA link to test
5190 *
5191 *      Test whether @link is online.  This is identical to
5192 *      ata_phys_link_online() when there's no slave link.  When
5193 *      there's a slave link, this function should only be called on
5194 *      the master link and will return true if any of M/S links is
5195 *      online.
5196 *
5197 *      LOCKING:
5198 *      None.
5199 *
5200 *      RETURNS:
5201 *      True if the port online status is available and online.
5202 */
5203bool ata_link_online(struct ata_link *link)
5204{
5205        struct ata_link *slave = link->ap->slave_link;
5206
5207        WARN_ON(link == slave); /* shouldn't be called on slave link */
5208
5209        return ata_phys_link_online(link) ||
5210                (slave && ata_phys_link_online(slave));
5211}
5212
5213/**
5214 *      ata_link_offline - test whether the given link is offline
5215 *      @link: ATA link to test
5216 *
5217 *      Test whether @link is offline.  This is identical to
5218 *      ata_phys_link_offline() when there's no slave link.  When
5219 *      there's a slave link, this function should only be called on
5220 *      the master link and will return true if both M/S links are
5221 *      offline.
5222 *
5223 *      LOCKING:
5224 *      None.
5225 *
5226 *      RETURNS:
5227 *      True if the port offline status is available and offline.
5228 */
5229bool ata_link_offline(struct ata_link *link)
5230{
5231        struct ata_link *slave = link->ap->slave_link;
5232
5233        WARN_ON(link == slave); /* shouldn't be called on slave link */
5234
5235        return ata_phys_link_offline(link) &&
5236                (!slave || ata_phys_link_offline(slave));
5237}
5238
5239#ifdef CONFIG_PM
5240static int ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5241                               unsigned int action, unsigned int ehi_flags,
5242                               int wait)
5243{
5244        struct ata_link *link;
5245        unsigned long flags;
5246        int rc;
5247
5248        /* Previous resume operation might still be in
5249         * progress.  Wait for PM_PENDING to clear.
5250         */
5251        if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5252                ata_port_wait_eh(ap);
5253                WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5254        }
5255
5256        /* request PM ops to EH */
5257        spin_lock_irqsave(ap->lock, flags);
5258
5259        ap->pm_mesg = mesg;
5260        if (wait) {
5261                rc = 0;
5262                ap->pm_result = &rc;
5263        }
5264
5265        ap->pflags |= ATA_PFLAG_PM_PENDING;
5266        ata_for_each_link(link, ap, HOST_FIRST) {
5267                link->eh_info.action |= action;
5268                link->eh_info.flags |= ehi_flags;
5269        }
5270
5271        ata_port_schedule_eh(ap);
5272
5273        spin_unlock_irqrestore(ap->lock, flags);
5274
5275        /* wait and check result */
5276        if (wait) {
5277                ata_port_wait_eh(ap);
5278                WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5279        }
5280
5281        return rc;
5282}
5283
5284#define to_ata_port(d) container_of(d, struct ata_port, tdev)
5285
5286static int ata_port_suspend_common(struct device *dev, pm_message_t mesg)
5287{
5288        struct ata_port *ap = to_ata_port(dev);
5289        unsigned int ehi_flags = ATA_EHI_QUIET;
5290        int rc;
5291
5292        /*
5293         * On some hardware, device fails to respond after spun down
5294         * for suspend.  As the device won't be used before being
5295         * resumed, we don't need to touch the device.  Ask EH to skip
5296         * the usual stuff and proceed directly to suspend.
5297         *
5298         * http://thread.gmane.org/gmane.linux.ide/46764
5299         */
5300        if (mesg.event == PM_EVENT_SUSPEND)
5301                ehi_flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_NO_RECOVERY;
5302
5303        rc = ata_port_request_pm(ap, mesg, 0, ehi_flags, 1);
5304        return rc;
5305}
5306
5307static int ata_port_suspend(struct device *dev)
5308{
5309        if (pm_runtime_suspended(dev))
5310                return 0;
5311
5312        return ata_port_suspend_common(dev, PMSG_SUSPEND);
5313}
5314
5315static int ata_port_do_freeze(struct device *dev)
5316{
5317        if (pm_runtime_suspended(dev))
5318                pm_runtime_resume(dev);
5319
5320        return ata_port_suspend_common(dev, PMSG_FREEZE);
5321}
5322
5323static int ata_port_poweroff(struct device *dev)
5324{
5325        if (pm_runtime_suspended(dev))
5326                return 0;
5327
5328        return ata_port_suspend_common(dev, PMSG_HIBERNATE);
5329}
5330
5331static int ata_port_resume_common(struct device *dev)
5332{
5333        struct ata_port *ap = to_ata_port(dev);
5334        int rc;
5335
5336        rc = ata_port_request_pm(ap, PMSG_ON, ATA_EH_RESET,
5337                ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 1);
5338        return rc;
5339}
5340
5341static int ata_port_resume(struct device *dev)
5342{
5343        int rc;
5344
5345        rc = ata_port_resume_common(dev);
5346        if (!rc) {
5347                pm_runtime_disable(dev);
5348                pm_runtime_set_active(dev);
5349                pm_runtime_enable(dev);
5350        }
5351
5352        return rc;
5353}
5354
5355static int ata_port_runtime_idle(struct device *dev)
5356{
5357        return pm_runtime_suspend(dev);
5358}
5359
5360static const struct dev_pm_ops ata_port_pm_ops = {
5361        .suspend = ata_port_suspend,
5362        .resume = ata_port_resume,
5363        .freeze = ata_port_do_freeze,
5364        .thaw = ata_port_resume,
5365        .poweroff = ata_port_poweroff,
5366        .restore = ata_port_resume,
5367
5368        .runtime_suspend = ata_port_suspend,
5369        .runtime_resume = ata_port_resume_common,
5370        .runtime_idle = ata_port_runtime_idle,
5371};
5372
5373/**
5374 *      ata_host_suspend - suspend host
5375 *      @host: host to suspend
5376 *      @mesg: PM message
5377 *
5378 *      Suspend @host.  Actual operation is performed by port suspend.
5379 */
5380int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5381{
5382        host->dev->power.power_state = mesg;
5383        return 0;
5384}
5385
5386/**
5387 *      ata_host_resume - resume host
5388 *      @host: host to resume
5389 *
5390 *      Resume @host.  Actual operation is performed by port resume.
5391 */
5392void ata_host_resume(struct ata_host *host)
5393{
5394        host->dev->power.power_state = PMSG_ON;
5395}
5396#endif
5397
5398struct device_type ata_port_type = {
5399        .name = "ata_port",
5400#ifdef CONFIG_PM
5401        .pm = &ata_port_pm_ops,
5402#endif
5403};
5404
5405/**
5406 *      ata_dev_init - Initialize an ata_device structure
5407 *      @dev: Device structure to initialize
5408 *
5409 *      Initialize @dev in preparation for probing.
5410 *
5411 *      LOCKING:
5412 *      Inherited from caller.
5413 */
5414void ata_dev_init(struct ata_device *dev)
5415{
5416        struct ata_link *link = ata_dev_phys_link(dev);
5417        struct ata_port *ap = link->ap;
5418        unsigned long flags;
5419
5420        /* SATA spd limit is bound to the attached device, reset together */
5421        link->sata_spd_limit = link->hw_sata_spd_limit;
5422        link->sata_spd = 0;
5423
5424        /* High bits of dev->flags are used to record warm plug
5425         * requests which occur asynchronously.  Synchronize using
5426         * host lock.
5427         */
5428        spin_lock_irqsave(ap->lock, flags);
5429        dev->flags &= ~ATA_DFLAG_INIT_MASK;
5430        dev->horkage = 0;
5431        spin_unlock_irqrestore(ap->lock, flags);
5432
5433        memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5434               ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5435        dev->pio_mask = UINT_MAX;
5436        dev->mwdma_mask = UINT_MAX;
5437        dev->udma_mask = UINT_MAX;
5438}
5439
5440/**
5441 *      ata_link_init - Initialize an ata_link structure
5442 *      @ap: ATA port link is attached to
5443 *      @link: Link structure to initialize
5444 *      @pmp: Port multiplier port number
5445 *
5446 *      Initialize @link.
5447 *
5448 *      LOCKING:
5449 *      Kernel thread context (may sleep)
5450 */
5451void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5452{
5453        int i;
5454
5455        /* clear everything except for devices */
5456        memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5457               ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5458
5459        link->ap = ap;
5460        link->pmp = pmp;
5461        link->active_tag = ATA_TAG_POISON;
5462        link->hw_sata_spd_limit = UINT_MAX;
5463
5464        /* can't use iterator, ap isn't initialized yet */
5465        for (i = 0; i < ATA_MAX_DEVICES; i++) {
5466                struct ata_device *dev = &link->device[i];
5467
5468                dev->link = link;
5469                dev->devno = dev - link->device;
5470#ifdef CONFIG_ATA_ACPI
5471                dev->gtf_filter = ata_acpi_gtf_filter;
5472#endif
5473                ata_dev_init(dev);
5474        }
5475}
5476
5477/**
5478 *      sata_link_init_spd - Initialize link->sata_spd_limit
5479 *      @link: Link to configure sata_spd_limit for
5480 *
5481 *      Initialize @link->[hw_]sata_spd_limit to the currently
5482 *      configured value.
5483 *
5484 *      LOCKING:
5485 *      Kernel thread context (may sleep).
5486 *
5487 *      RETURNS:
5488 *      0 on success, -errno on failure.
5489 */
5490int sata_link_init_spd(struct ata_link *link)
5491{
5492        u8 spd;
5493        int rc;
5494
5495        rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5496        if (rc)
5497                return rc;
5498
5499        spd = (link->saved_scontrol >> 4) & 0xf;
5500        if (spd)
5501                link->hw_sata_spd_limit &= (1 << spd) - 1;
5502
5503        ata_force_link_limits(link);
5504
5505        link->sata_spd_limit = link->hw_sata_spd_limit;
5506
5507        return 0;
5508}
5509
5510/**
5511 *      ata_port_alloc - allocate and initialize basic ATA port resources
5512 *      @host: ATA host this allocated port belongs to
5513 *
5514 *      Allocate and initialize basic ATA port resources.
5515 *
5516 *      RETURNS:
5517 *      Allocate ATA port on success, NULL on failure.
5518 *
5519 *      LOCKING:
5520 *      Inherited from calling layer (may sleep).
5521 */
5522struct ata_port *ata_port_alloc(struct ata_host *host)
5523{
5524        struct ata_port *ap;
5525
5526        DPRINTK("ENTER\n");
5527
5528        ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5529        if (!ap)
5530                return NULL;
5531
5532        ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5533        ap->lock = &host->lock;
5534        ap->print_id = -1;
5535        ap->host = host;
5536        ap->dev = host->dev;
5537
5538#if defined(ATA_VERBOSE_DEBUG)
5539        /* turn on all debugging levels */
5540        ap->msg_enable = 0x00FF;
5541#elif defined(ATA_DEBUG)
5542        ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5543#else
5544        ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5545#endif
5546
5547        mutex_init(&ap->scsi_scan_mutex);
5548        INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5549        INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5550        INIT_LIST_HEAD(&ap->eh_done_q);
5551        init_waitqueue_head(&ap->eh_wait_q);
5552        init_completion(&ap->park_req_pending);
5553        init_timer_deferrable(&ap->fastdrain_timer);
5554        ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5555        ap->fastdrain_timer.data = (unsigned long)ap;
5556
5557        ap->cbl = ATA_CBL_NONE;
5558
5559        ata_link_init(ap, &ap->link, 0);
5560
5561#ifdef ATA_IRQ_TRAP
5562        ap->stats.unhandled_irq = 1;
5563        ap->stats.idle_irq = 1;
5564#endif
5565        ata_sff_port_init(ap);
5566
5567        return ap;
5568}
5569
5570static void ata_host_release(struct device *gendev, void *res)
5571{
5572        struct ata_host *host = dev_get_drvdata(gendev);
5573        int i;
5574
5575        for (i = 0; i < host->n_ports; i++) {
5576                struct ata_port *ap = host->ports[i];
5577
5578                if (!ap)
5579                        continue;
5580
5581                if (ap->scsi_host)
5582                        scsi_host_put(ap->scsi_host);
5583
5584                kfree(ap->pmp_link);
5585                kfree(ap->slave_link);
5586                kfree(ap);
5587                host->ports[i] = NULL;
5588        }
5589
5590        dev_set_drvdata(gendev, NULL);
5591}
5592
5593/**
5594 *      ata_host_alloc - allocate and init basic ATA host resources
5595 *      @dev: generic device this host is associated with
5596 *      @max_ports: maximum number of ATA ports associated with this host
5597 *
5598 *      Allocate and initialize basic ATA host resources.  LLD calls
5599 *      this function to allocate a host, initializes it fully and
5600 *      attaches it using ata_host_register().
5601 *
5602 *      @max_ports ports are allocated and host->n_ports is
5603 *      initialized to @max_ports.  The caller is allowed to decrease
5604 *      host->n_ports before calling ata_host_register().  The unused
5605 *      ports will be automatically freed on registration.
5606 *
5607 *      RETURNS:
5608 *      Allocate ATA host on success, NULL on failure.
5609 *
5610 *      LOCKING:
5611 *      Inherited from calling layer (may sleep).
5612 */
5613struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5614{
5615        struct ata_host *host;
5616        size_t sz;
5617        int i;
5618
5619        DPRINTK("ENTER\n");
5620
5621        if (!devres_open_group(dev, NULL, GFP_KERNEL))
5622                return NULL;
5623
5624        /* alloc a container for our list of ATA ports (buses) */
5625        sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5626        /* alloc a container for our list of ATA ports (buses) */
5627        host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5628        if (!host)
5629                goto err_out;
5630
5631        devres_add(dev, host);
5632        dev_set_drvdata(dev, host);
5633
5634        spin_lock_init(&host->lock);
5635        mutex_init(&host->eh_mutex);
5636        host->dev = dev;
5637        host->n_ports = max_ports;
5638
5639        /* allocate ports bound to this host */
5640        for (i = 0; i < max_ports; i++) {
5641                struct ata_port *ap;
5642
5643                ap = ata_port_alloc(host);
5644                if (!ap)
5645                        goto err_out;
5646
5647                ap->port_no = i;
5648                host->ports[i] = ap;
5649        }
5650
5651        devres_remove_group(dev, NULL);
5652        return host;
5653
5654 err_out:
5655        devres_release_group(dev, NULL);
5656        return NULL;
5657}
5658
5659/**
5660 *      ata_host_alloc_pinfo - alloc host and init with port_info array
5661 *      @dev: generic device this host is associated with
5662 *      @ppi: array of ATA port_info to initialize host with
5663 *      @n_ports: number of ATA ports attached to this host
5664 *
5665 *      Allocate ATA host and initialize with info from @ppi.  If NULL
5666 *      terminated, @ppi may contain fewer entries than @n_ports.  The
5667 *      last entry will be used for the remaining ports.
5668 *
5669 *      RETURNS:
5670 *      Allocate ATA host on success, NULL on failure.
5671 *
5672 *      LOCKING:
5673 *      Inherited from calling layer (may sleep).
5674 */
5675struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5676                                      const struct ata_port_info * const * ppi,
5677                                      int n_ports)
5678{
5679        const struct ata_port_info *pi;
5680        struct ata_host *host;
5681        int i, j;
5682
5683        host = ata_host_alloc(dev, n_ports);
5684        if (!host)
5685                return NULL;
5686
5687        for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5688                struct ata_port *ap = host->ports[i];
5689
5690                if (ppi[j])
5691                        pi = ppi[j++];
5692
5693                ap->pio_mask = pi->pio_mask;
5694                ap->mwdma_mask = pi->mwdma_mask;
5695                ap->udma_mask = pi->udma_mask;
5696                ap->flags |= pi->flags;
5697                ap->link.flags |= pi->link_flags;
5698                ap->ops = pi->port_ops;
5699
5700                if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5701                        host->ops = pi->port_ops;
5702        }
5703
5704        return host;
5705}
5706
5707/**
5708 *      ata_slave_link_init - initialize slave link
5709 *      @ap: port to initialize slave link for
5710 *
5711 *      Create and initialize slave link for @ap.  This enables slave
5712 *      link handling on the port.
5713 *
5714 *      In libata, a port contains links and a link contains devices.
5715 *      There is single host link but if a PMP is attached to it,
5716 *      there can be multiple fan-out links.  On SATA, there's usually
5717 *      a single device connected to a link but PATA and SATA
5718 *      controllers emulating TF based interface can have two - master
5719 *      and slave.
5720 *
5721 *      However, there are a few controllers which don't fit into this
5722 *      abstraction too well - SATA controllers which emulate TF
5723 *      interface with both master and slave devices but also have
5724 *      separate SCR register sets for each device.  These controllers
5725 *      need separate links for physical link handling
5726 *      (e.g. onlineness, link speed) but should be treated like a
5727 *      traditional M/S controller for everything else (e.g. command
5728 *      issue, softreset).
5729 *
5730 *      slave_link is libata's way of handling this class of
5731 *      controllers without impacting core layer too much.  For
5732 *      anything other than physical link handling, the default host
5733 *      link is used for both master and slave.  For physical link
5734 *      handling, separate @ap->slave_link is used.  All dirty details
5735 *      are implemented inside libata core layer.  From LLD's POV, the
5736 *      only difference is that prereset, hardreset and postreset are
5737 *      called once more for the slave link, so the reset sequence
5738 *      looks like the following.
5739 *
5740 *      prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5741 *      softreset(M) -> postreset(M) -> postreset(S)
5742 *
5743 *      Note that softreset is called only for the master.  Softreset
5744 *      resets both M/S by definition, so SRST on master should handle
5745 *      both (the standard method will work just fine).
5746 *
5747 *      LOCKING:
5748 *      Should be called before host is registered.
5749 *
5750 *      RETURNS:
5751 *      0 on success, -errno on failure.
5752 */
5753int ata_slave_link_init(struct ata_port *ap)
5754{
5755        struct ata_link *link;
5756
5757        WARN_ON(ap->slave_link);
5758        WARN_ON(ap->flags & ATA_FLAG_PMP);
5759
5760        link = kzalloc(sizeof(*link), GFP_KERNEL);
5761        if (!link)
5762                return -ENOMEM;
5763
5764        ata_link_init(ap, link, 1);
5765        ap->slave_link = link;
5766        return 0;
5767}
5768
5769static void ata_host_stop(struct device *gendev, void *res)
5770{
5771        struct ata_host *host = dev_get_drvdata(gendev);
5772        int i;
5773
5774        WARN_ON(!(host->flags & ATA_HOST_STARTED));
5775
5776        for (i = 0; i < host->n_ports; i++) {
5777                struct ata_port *ap = host->ports[i];
5778
5779                if (ap->ops->port_stop)
5780                        ap->ops->port_stop(ap);
5781        }
5782
5783        if (host->ops->host_stop)
5784                host->ops->host_stop(host);
5785}
5786
5787/**
5788 *      ata_finalize_port_ops - finalize ata_port_operations
5789 *      @ops: ata_port_operations to finalize
5790 *
5791 *      An ata_port_operations can inherit from another ops and that
5792 *      ops can again inherit from another.  This can go on as many
5793 *      times as necessary as long as there is no loop in the
5794 *      inheritance chain.
5795 *
5796 *      Ops tables are finalized when the host is started.  NULL or
5797 *      unspecified entries are inherited from the closet ancestor
5798 *      which has the method and the entry is populated with it.
5799 *      After finalization, the ops table directly points to all the
5800 *      methods and ->inherits is no longer necessary and cleared.
5801 *
5802 *      Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5803 *
5804 *      LOCKING:
5805 *      None.
5806 */
5807static void ata_finalize_port_ops(struct ata_port_operations *ops)
5808{
5809        static DEFINE_SPINLOCK(lock);
5810        const struct ata_port_operations *cur;
5811        void **begin = (void **)ops;
5812        void **end = (void **)&ops->inherits;
5813        void **pp;
5814
5815        if (!ops || !ops->inherits)
5816                return;
5817
5818        spin_lock(&lock);
5819
5820        for (cur = ops->inherits; cur; cur = cur->inherits) {
5821                void **inherit = (void **)cur;
5822
5823                for (pp = begin; pp < end; pp++, inherit++)
5824                        if (!*pp)
5825                                *pp = *inherit;
5826        }
5827
5828        for (pp = begin; pp < end; pp++)
5829                if (IS_ERR(*pp))
5830                        *pp = NULL;
5831
5832        ops->inherits = NULL;
5833
5834        spin_unlock(&lock);
5835}
5836
5837/**
5838 *      ata_host_start - start and freeze ports of an ATA host
5839 *      @host: ATA host to start ports for
5840 *
5841 *      Start and then freeze ports of @host.  Started status is
5842 *      recorded in host->flags, so this function can be called
5843 *      multiple times.  Ports are guaranteed to get started only
5844 *      once.  If host->ops isn't initialized yet, its set to the
5845 *      first non-dummy port ops.
5846 *
5847 *      LOCKING:
5848 *      Inherited from calling layer (may sleep).
5849 *
5850 *      RETURNS:
5851 *      0 if all ports are started successfully, -errno otherwise.
5852 */
5853int ata_host_start(struct ata_host *host)
5854{
5855        int have_stop = 0;
5856        void *start_dr = NULL;
5857        int i, rc;
5858
5859        if (host->flags & ATA_HOST_STARTED)
5860                return 0;
5861
5862        ata_finalize_port_ops(host->ops);
5863
5864        for (i = 0; i < host->n_ports; i++) {
5865                struct ata_port *ap = host->ports[i];
5866
5867                ata_finalize_port_ops(ap->ops);
5868
5869                if (!host->ops && !ata_port_is_dummy(ap))
5870                        host->ops = ap->ops;
5871
5872                if (ap->ops->port_stop)
5873                        have_stop = 1;
5874        }
5875
5876        if (host->ops->host_stop)
5877                have_stop = 1;
5878
5879        if (have_stop) {
5880                start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5881                if (!start_dr)
5882                        return -ENOMEM;
5883        }
5884
5885        for (i = 0; i < host->n_ports; i++) {
5886                struct ata_port *ap = host->ports[i];
5887
5888                if (ap->ops->port_start) {
5889                        rc = ap->ops->port_start(ap);
5890                        if (rc) {
5891                                if (rc != -ENODEV)
5892                                        dev_err(host->dev,
5893                                                "failed to start port %d (errno=%d)\n",
5894                                                i, rc);
5895                                goto err_out;
5896                        }
5897                }
5898                ata_eh_freeze_port(ap);
5899        }
5900
5901        if (start_dr)
5902                devres_add(host->dev, start_dr);
5903        host->flags |= ATA_HOST_STARTED;
5904        return 0;
5905
5906 err_out:
5907        while (--i >= 0) {
5908                struct ata_port *ap = host->ports[i];
5909
5910                if (ap->ops->port_stop)
5911                        ap->ops->port_stop(ap);
5912        }
5913        devres_free(start_dr);
5914        return rc;
5915}
5916
5917/**
5918 *      ata_sas_host_init - Initialize a host struct
5919 *      @host:  host to initialize
5920 *      @dev:   device host is attached to
5921 *      @flags: host flags
5922 *      @ops:   port_ops
5923 *
5924 *      LOCKING:
5925 *      PCI/etc. bus probe sem.
5926 *
5927 */
5928/* KILLME - the only user left is ipr */
5929void ata_host_init(struct ata_host *host, struct device *dev,
5930                   unsigned long flags, struct ata_port_operations *ops)
5931{
5932        spin_lock_init(&host->lock);
5933        mutex_init(&host->eh_mutex);
5934        host->dev = dev;
5935        host->flags = flags;
5936        host->ops = ops;
5937}
5938
5939int ata_port_probe(struct ata_port *ap)
5940{
5941        int rc = 0;
5942
5943        /* probe */
5944        if (ap->ops->error_handler) {
5945                struct ata_eh_info *ehi = &ap->link.eh_info;
5946                unsigned long flags;
5947
5948                /* kick EH for boot probing */
5949                spin_lock_irqsave(ap->lock, flags);
5950
5951                ehi->probe_mask |= ATA_ALL_DEVICES;
5952                ehi->action |= ATA_EH_RESET;
5953                ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5954
5955                ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5956                ap->pflags |= ATA_PFLAG_LOADING;
5957                ata_port_schedule_eh(ap);
5958
5959                spin_unlock_irqrestore(ap->lock, flags);
5960
5961                /* wait for EH to finish */
5962                ata_port_wait_eh(ap);
5963        } else {
5964                DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5965                rc = ata_bus_probe(ap);
5966                DPRINTK("ata%u: bus probe end\n", ap->print_id);
5967        }
5968        return rc;
5969}
5970
5971
5972static void async_port_probe(void *data, async_cookie_t cookie)
5973{
5974        struct ata_port *ap = data;
5975
5976        /*
5977         * If we're not allowed to scan this host in parallel,
5978         * we need to wait until all previous scans have completed
5979         * before going further.
5980         * Jeff Garzik says this is only within a controller, so we
5981         * don't need to wait for port 0, only for later ports.
5982         */
5983        if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5984                async_synchronize_cookie(cookie);
5985
5986        (void)ata_port_probe(ap);
5987
5988        /* in order to keep device order, we need to synchronize at this point */
5989        async_synchronize_cookie(cookie);
5990
5991        ata_scsi_scan_host(ap, 1);
5992}
5993
5994/**
5995 *      ata_host_register - register initialized ATA host
5996 *      @host: ATA host to register
5997 *      @sht: template for SCSI host
5998 *
5999 *      Register initialized ATA host.  @host is allocated using
6000 *      ata_host_alloc() and fully initialized by LLD.  This function
6001 *      starts ports, registers @host with ATA and SCSI layers and
6002 *      probe registered devices.
6003 *
6004 *      LOCKING:
6005 *      Inherited from calling layer (may sleep).
6006 *
6007 *      RETURNS:
6008 *      0 on success, -errno otherwise.
6009 */
6010int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6011{
6012        int i, rc;
6013
6014        /* host must have been started */
6015        if (!(host->flags & ATA_HOST_STARTED)) {
6016                dev_err(host->dev, "BUG: trying to register unstarted host\n");
6017                WARN_ON(1);
6018                return -EINVAL;
6019        }
6020
6021        /* Blow away unused ports.  This happens when LLD can't
6022         * determine the exact number of ports to allocate at
6023         * allocation time.
6024         */
6025        for (i = host->n_ports; host->ports[i]; i++)
6026                kfree(host->ports[i]);
6027
6028        /* give ports names and add SCSI hosts */
6029        for (i = 0; i < host->n_ports; i++)
6030                host->ports[i]->print_id = ata_print_id++;
6031
6032
6033        /* Create associated sysfs transport objects  */
6034        for (i = 0; i < host->n_ports; i++) {
6035                rc = ata_tport_add(host->dev,host->ports[i]);
6036                if (rc) {
6037                        goto err_tadd;
6038                }
6039        }
6040
6041        rc = ata_scsi_add_hosts(host, sht);
6042        if (rc)
6043                goto err_tadd;
6044
6045        /* associate with ACPI nodes */
6046        ata_acpi_associate(host);
6047
6048        /* set cable, sata_spd_limit and report */
6049        for (i = 0; i < host->n_ports; i++) {
6050                struct ata_port *ap = host->ports[i];
6051                unsigned long xfer_mask;
6052
6053                /* set SATA cable type if still unset */
6054                if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6055                        ap->cbl = ATA_CBL_SATA;
6056
6057                /* init sata_spd_limit to the current value */
6058                sata_link_init_spd(&ap->link);
6059                if (ap->slave_link)
6060                        sata_link_init_spd(ap->slave_link);
6061
6062                /* print per-port info to dmesg */
6063                xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6064                                              ap->udma_mask);
6065
6066                if (!ata_port_is_dummy(ap)) {
6067                        ata_port_info(ap, "%cATA max %s %s\n",
6068                                      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6069                                      ata_mode_string(xfer_mask),
6070                                      ap->link.eh_info.desc);
6071                        ata_ehi_clear_desc(&ap->link.eh_info);
6072                } else
6073                        ata_port_info(ap, "DUMMY\n");
6074        }
6075
6076        /* perform each probe asynchronously */
6077        for (i = 0; i < host->n_ports; i++) {
6078                struct ata_port *ap = host->ports[i];
6079                async_schedule(async_port_probe, ap);
6080        }
6081
6082        return 0;
6083
6084 err_tadd:
6085        while (--i >= 0) {
6086                ata_tport_delete(host->ports[i]);
6087        }
6088        return rc;
6089
6090}
6091
6092/**
6093 *      ata_host_activate - start host, request IRQ and register it
6094 *      @host: target ATA host
6095 *      @irq: IRQ to request
6096 *      @irq_handler: irq_handler used when requesting IRQ
6097 *      @irq_flags: irq_flags used when requesting IRQ
6098 *      @sht: scsi_host_template to use when registering the host
6099 *
6100 *      After allocating an ATA host and initializing it, most libata
6101 *      LLDs perform three steps to activate the host - start host,
6102 *      request IRQ and register it.  This helper takes necessasry
6103 *      arguments and performs the three steps in one go.
6104 *
6105 *      An invalid IRQ skips the IRQ registration and expects the host to
6106 *      have set polling mode on the port. In this case, @irq_handler
6107 *      should be NULL.
6108 *
6109 *      LOCKING:
6110 *      Inherited from calling layer (may sleep).
6111 *
6112 *      RETURNS:
6113 *      0 on success, -errno otherwise.
6114 */
6115int ata_host_activate(struct ata_host *host, int irq,
6116                      irq_handler_t irq_handler, unsigned long irq_flags,
6117                      struct scsi_host_template *sht)
6118{
6119        int i, rc;
6120
6121        rc = ata_host_start(host);
6122        if (rc)
6123                return rc;
6124
6125        /* Special case for polling mode */
6126        if (!irq) {
6127                WARN_ON(irq_handler);
6128                return ata_host_register(host, sht);
6129        }
6130
6131        rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6132                              dev_driver_string(host->dev), host);
6133        if (rc)
6134                return rc;
6135
6136        for (i = 0; i < host->n_ports; i++)
6137                ata_port_desc(host->ports[i], "irq %d", irq);
6138
6139        rc = ata_host_register(host, sht);
6140        /* if failed, just free the IRQ and leave ports alone */
6141        if (rc)
6142                devm_free_irq(host->dev, irq, host);
6143
6144        return rc;
6145}
6146
6147/**
6148 *      ata_port_detach - Detach ATA port in prepration of device removal
6149 *      @ap: ATA port to be detached
6150 *
6151 *      Detach all ATA devices and the associated SCSI devices of @ap;
6152 *      then, remove the associated SCSI host.  @ap is guaranteed to
6153 *      be quiescent on return from this function.
6154 *
6155 *      LOCKING:
6156 *      Kernel thread context (may sleep).
6157 */
6158static void ata_port_detach(struct ata_port *ap)
6159{
6160        unsigned long flags;
6161
6162        if (!ap->ops->error_handler)
6163                goto skip_eh;
6164
6165        /* tell EH we're leaving & flush EH */
6166        spin_lock_irqsave(ap->lock, flags);
6167        ap->pflags |= ATA_PFLAG_UNLOADING;
6168        ata_port_schedule_eh(ap);
6169        spin_unlock_irqrestore(ap->lock, flags);
6170
6171        /* wait till EH commits suicide */
6172        ata_port_wait_eh(ap);
6173
6174        /* it better be dead now */
6175        WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6176
6177        cancel_delayed_work_sync(&ap->hotplug_task);
6178
6179 skip_eh:
6180        if (ap->pmp_link) {
6181                int i;
6182                for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6183                        ata_tlink_delete(&ap->pmp_link[i]);
6184        }
6185        ata_tport_delete(ap);
6186
6187        /* remove the associated SCSI host */
6188        scsi_remove_host(ap->scsi_host);
6189}
6190
6191/**
6192 *      ata_host_detach - Detach all ports of an ATA host
6193 *      @host: Host to detach
6194 *
6195 *      Detach all ports of @host.
6196 *
6197 *      LOCKING:
6198 *      Kernel thread context (may sleep).
6199 */
6200void ata_host_detach(struct ata_host *host)
6201{
6202        int i;
6203
6204        for (i = 0; i < host->n_ports; i++)
6205                ata_port_detach(host->ports[i]);
6206
6207        /* the host is dead now, dissociate ACPI */
6208        ata_acpi_dissociate(host);
6209}
6210
6211#ifdef CONFIG_PCI
6212
6213/**
6214 *      ata_pci_remove_one - PCI layer callback for device removal
6215 *      @pdev: PCI device that was removed
6216 *
6217 *      PCI layer indicates to libata via this hook that hot-unplug or
6218 *      module unload event has occurred.  Detach all ports.  Resource
6219 *      release is handled via devres.
6220 *
6221 *      LOCKING:
6222 *      Inherited from PCI layer (may sleep).
6223 */
6224void ata_pci_remove_one(struct pci_dev *pdev)
6225{
6226        struct device *dev = &pdev->dev;
6227        struct ata_host *host = dev_get_drvdata(dev);
6228
6229        ata_host_detach(host);
6230}
6231
6232/* move to PCI subsystem */
6233int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6234{
6235        unsigned long tmp = 0;
6236
6237        switch (bits->width) {
6238        case 1: {
6239                u8 tmp8 = 0;
6240                pci_read_config_byte(pdev, bits->reg, &tmp8);
6241                tmp = tmp8;
6242                break;
6243        }
6244        case 2: {
6245                u16 tmp16 = 0;
6246                pci_read_config_word(pdev, bits->reg, &tmp16);
6247                tmp = tmp16;
6248                break;
6249        }
6250        case 4: {
6251                u32 tmp32 = 0;
6252                pci_read_config_dword(pdev, bits->reg, &tmp32);
6253                tmp = tmp32;
6254                break;
6255        }
6256
6257        default:
6258                return -EINVAL;
6259        }
6260
6261        tmp &= bits->mask;
6262
6263        return (tmp == bits->val) ? 1 : 0;
6264}
6265
6266#ifdef CONFIG_PM
6267void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6268{
6269        pci_save_state(pdev);
6270        pci_disable_device(pdev);
6271
6272        if (mesg.event & PM_EVENT_SLEEP)
6273                pci_set_power_state(pdev, PCI_D3hot);
6274}
6275
6276int ata_pci_device_do_resume(struct pci_dev *pdev)
6277{
6278        int rc;
6279
6280        pci_set_power_state(pdev, PCI_D0);
6281        pci_restore_state(pdev);
6282
6283        rc = pcim_enable_device(pdev);
6284        if (rc) {
6285                dev_err(&pdev->dev,
6286                        "failed to enable device after resume (%d)\n", rc);
6287                return rc;
6288        }
6289
6290        pci_set_master(pdev);
6291        return 0;
6292}
6293
6294int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6295{
6296        struct ata_host *host = dev_get_drvdata(&pdev->dev);
6297        int rc = 0;
6298
6299        rc = ata_host_suspend(host, mesg);
6300        if (rc)
6301                return rc;
6302
6303        ata_pci_device_do_suspend(pdev, mesg);
6304
6305        return 0;
6306}
6307
6308int ata_pci_device_resume(struct pci_dev *pdev)
6309{
6310        struct ata_host *host = dev_get_drvdata(&pdev->dev);
6311        int rc;
6312
6313        rc = ata_pci_device_do_resume(pdev);
6314        if (rc == 0)
6315                ata_host_resume(host);
6316        return rc;
6317}
6318#endif /* CONFIG_PM */
6319
6320#endif /* CONFIG_PCI */
6321
6322static int __init ata_parse_force_one(char **cur,
6323                                      struct ata_force_ent *force_ent,
6324                                      const char **reason)
6325{
6326        /* FIXME: Currently, there's no way to tag init const data and
6327         * using __initdata causes build failure on some versions of
6328         * gcc.  Once __initdataconst is implemented, add const to the
6329         * following structure.
6330         */
6331        static struct ata_force_param force_tbl[] __initdata = {
6332                { "40c",        .cbl            = ATA_CBL_PATA40 },
6333                { "80c",        .cbl            = ATA_CBL_PATA80 },
6334                { "short40c",   .cbl            = ATA_CBL_PATA40_SHORT },
6335                { "unk",        .cbl            = ATA_CBL_PATA_UNK },
6336                { "ign",        .cbl            = ATA_CBL_PATA_IGN },
6337                { "sata",       .cbl            = ATA_CBL_SATA },
6338                { "1.5Gbps",    .spd_limit      = 1 },
6339                { "3.0Gbps",    .spd_limit      = 2 },
6340                { "noncq",      .horkage_on     = ATA_HORKAGE_NONCQ },
6341                { "ncq",        .horkage_off    = ATA_HORKAGE_NONCQ },
6342                { "dump_id",    .horkage_on     = ATA_HORKAGE_DUMP_ID },
6343                { "pio0",       .xfer_mask      = 1 << (ATA_SHIFT_PIO + 0) },
6344                { "pio1",       .xfer_mask      = 1 << (ATA_SHIFT_PIO + 1) },
6345                { "pio2",       .xfer_mask      = 1 << (ATA_SHIFT_PIO + 2) },
6346                { "pio3",       .xfer_mask      = 1 << (ATA_SHIFT_PIO + 3) },
6347                { "pio4",       .xfer_mask      = 1 << (ATA_SHIFT_PIO + 4) },
6348                { "pio5",       .xfer_mask      = 1 << (ATA_SHIFT_PIO + 5) },
6349                { "pio6",       .xfer_mask      = 1 << (ATA_SHIFT_PIO + 6) },
6350                { "mwdma0",     .xfer_mask      = 1 << (ATA_SHIFT_MWDMA + 0) },
6351                { "mwdma1",     .xfer_mask      = 1 << (ATA_SHIFT_MWDMA + 1) },
6352                { "mwdma2",     .xfer_mask      = 1 << (ATA_SHIFT_MWDMA + 2) },
6353                { "mwdma3",     .xfer_mask      = 1 << (ATA_SHIFT_MWDMA + 3) },
6354                { "mwdma4",     .xfer_mask      = 1 << (ATA_SHIFT_MWDMA + 4) },
6355                { "udma0",      .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 0) },
6356                { "udma16",     .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 0) },
6357                { "udma/16",    .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 0) },
6358                { "udma1",      .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 1) },
6359                { "udma25",     .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 1) },
6360                { "udma/25",    .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 1) },
6361                { "udma2",      .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 2) },
6362                { "udma33",     .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 2) },
6363                { "udma/33",    .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 2) },
6364                { "udma3",      .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 3) },
6365                { "udma44",     .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 3) },
6366                { "udma/44",    .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 3) },
6367                { "udma4",      .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 4) },
6368                { "udma66",     .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 4) },
6369                { "udma/66",    .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 4) },
6370                { "udma5",      .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 5) },
6371                { "udma100",    .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 5) },
6372                { "udma/100",   .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 5) },
6373                { "udma6",      .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 6) },
6374                { "udma133",    .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 6) },
6375                { "udma/133",   .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 6) },
6376                { "udma7",      .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 7) },
6377                { "nohrst",     .lflags         = ATA_LFLAG_NO_HRST },
6378                { "nosrst",     .lflags         = ATA_LFLAG_NO_SRST },
6379                { "norst",      .lflags         = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6380        };
6381        char *start = *cur, *p = *cur;
6382        char *id, *val, *endp;
6383        const struct ata_force_param *match_fp = NULL;
6384        int nr_matches = 0, i;
6385
6386        /* find where this param ends and update *cur */
6387        while (*p != '\0' && *p != ',')
6388                p++;
6389
6390        if (*p == '\0')
6391                *cur = p;
6392        else
6393                *cur = p + 1;
6394
6395        *p = '\0';
6396
6397        /* parse */
6398        p = strchr(start, ':');
6399        if (!p) {
6400                val = strstrip(start);
6401                goto parse_val;
6402        }
6403        *p = '\0';
6404
6405        id = strstrip(start);
6406        val = strstrip(p + 1);
6407
6408        /* parse id */
6409        p = strchr(id, '.');
6410        if (p) {
6411                *p++ = '\0';
6412                force_ent->device = simple_strtoul(p, &endp, 10);
6413                if (p == endp || *endp != '\0') {
6414                        *reason = "invalid device";
6415                        return -EINVAL;
6416                }
6417        }
6418
6419        force_ent->port = simple_strtoul(id, &endp, 10);
6420        if (p == endp || *endp != '\0') {
6421                *reason = "invalid port/link";
6422                return -EINVAL;
6423        }
6424
6425 parse_val:
6426        /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6427        for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6428                const struct ata_force_param *fp = &force_tbl[i];
6429
6430                if (strncasecmp(val, fp->name, strlen(val)))
6431                        continue;
6432
6433                nr_matches++;
6434                match_fp = fp;
6435
6436                if (strcasecmp(val, fp->name) == 0) {
6437                        nr_matches = 1;
6438                        break;
6439                }
6440        }
6441
6442        if (!nr_matches) {
6443                *reason = "unknown value";
6444                return -EINVAL;
6445        }
6446        if (nr_matches > 1) {
6447                *reason = "ambigious value";
6448                return -EINVAL;
6449        }
6450
6451        force_ent->param = *match_fp;
6452
6453        return 0;
6454}
6455
6456static void __init ata_parse_force_param(void)
6457{
6458        int idx = 0, size = 1;
6459        int last_port = -1, last_device = -1;
6460        char *p, *cur, *next;
6461
6462        /* calculate maximum number of params and allocate force_tbl */
6463        for (p = ata_force_param_buf; *p; p++)
6464                if (*p == ',')
6465                        size++;
6466
6467        ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6468        if (!ata_force_tbl) {
6469                printk(KERN_WARNING "ata: failed to extend force table, "
6470                       "libata.force ignored\n");
6471                return;
6472        }
6473
6474        /* parse and populate the table */
6475        for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6476                const char *reason = "";
6477                struct ata_force_ent te = { .port = -1, .device = -1 };
6478
6479                next = cur;
6480                if (ata_parse_force_one(&next, &te, &reason)) {
6481                        printk(KERN_WARNING "ata: failed to parse force "
6482                               "parameter \"%s\" (%s)\n",
6483                               cur, reason);
6484                        continue;
6485                }
6486
6487                if (te.port == -1) {
6488                        te.port = last_port;
6489                        te.device = last_device;
6490                }
6491
6492                ata_force_tbl[idx++] = te;
6493
6494                last_port = te.port;
6495                last_device = te.device;
6496        }
6497
6498        ata_force_tbl_size = idx;
6499}
6500
6501static int __init ata_init(void)
6502{
6503        int rc;
6504
6505        ata_parse_force_param();
6506
6507        rc = ata_sff_init();
6508        if (rc) {
6509                kfree(ata_force_tbl);
6510                return rc;
6511        }
6512
6513        libata_transport_init();
6514        ata_scsi_transport_template = ata_attach_transport();
6515        if (!ata_scsi_transport_template) {
6516                ata_sff_exit();
6517                rc = -ENOMEM;
6518                goto err_out;
6519        }
6520
6521        printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6522        return 0;
6523
6524err_out:
6525        return rc;
6526}
6527
6528static void __exit ata_exit(void)
6529{
6530        ata_release_transport(ata_scsi_transport_template);
6531        libata_transport_exit();
6532        ata_sff_exit();
6533        kfree(ata_force_tbl);
6534}
6535
6536subsys_initcall(ata_init);
6537module_exit(ata_exit);
6538
6539static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6540
6541int ata_ratelimit(void)
6542{
6543        return __ratelimit(&ratelimit);
6544}
6545
6546/**
6547 *      ata_msleep - ATA EH owner aware msleep
6548 *      @ap: ATA port to attribute the sleep to
6549 *      @msecs: duration to sleep in milliseconds
6550 *
6551 *      Sleeps @msecs.  If the current task is owner of @ap's EH, the
6552 *      ownership is released before going to sleep and reacquired
6553 *      after the sleep is complete.  IOW, other ports sharing the
6554 *      @ap->host will be allowed to own the EH while this task is
6555 *      sleeping.
6556 *
6557 *      LOCKING:
6558 *      Might sleep.
6559 */
6560void ata_msleep(struct ata_port *ap, unsigned int msecs)
6561{
6562        bool owns_eh = ap && ap->host->eh_owner == current;
6563
6564        if (owns_eh)
6565                ata_eh_release(ap);
6566
6567        msleep(msecs);
6568
6569        if (owns_eh)
6570                ata_eh_acquire(ap);
6571}
6572
6573/**
6574 *      ata_wait_register - wait until register value changes
6575 *      @ap: ATA port to wait register for, can be NULL
6576 *      @reg: IO-mapped register
6577 *      @mask: Mask to apply to read register value
6578 *      @val: Wait condition
6579 *      @interval: polling interval in milliseconds
6580 *      @timeout: timeout in milliseconds
6581 *
6582 *      Waiting for some bits of register to change is a common
6583 *      operation for ATA controllers.  This function reads 32bit LE
6584 *      IO-mapped register @reg and tests for the following condition.
6585 *
6586 *      (*@reg & mask) != val
6587 *
6588 *      If the condition is met, it returns; otherwise, the process is
6589 *      repeated after @interval_msec until timeout.
6590 *
6591 *      LOCKING:
6592 *      Kernel thread context (may sleep)
6593 *
6594 *      RETURNS:
6595 *      The final register value.
6596 */
6597u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6598                      unsigned long interval, unsigned long timeout)
6599{
6600        unsigned long deadline;
6601        u32 tmp;
6602
6603        tmp = ioread32(reg);
6604
6605        /* Calculate timeout _after_ the first read to make sure
6606         * preceding writes reach the controller before starting to
6607         * eat away the timeout.
6608         */
6609        deadline = ata_deadline(jiffies, timeout);
6610
6611        while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6612                ata_msleep(ap, interval);
6613                tmp = ioread32(reg);
6614        }
6615
6616        return tmp;
6617}
6618
6619/*
6620 * Dummy port_ops
6621 */
6622static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6623{
6624        return AC_ERR_SYSTEM;
6625}
6626
6627static void ata_dummy_error_handler(struct ata_port *ap)
6628{
6629        /* truly dummy */
6630}
6631
6632struct ata_port_operations ata_dummy_port_ops = {
6633        .qc_prep                = ata_noop_qc_prep,
6634        .qc_issue               = ata_dummy_qc_issue,
6635        .error_handler          = ata_dummy_error_handler,
6636};
6637
6638const struct ata_port_info ata_dummy_port_info = {
6639        .port_ops               = &ata_dummy_port_ops,
6640};
6641
6642/*
6643 * Utility print functions
6644 */
6645int ata_port_printk(const struct ata_port *ap, const char *level,
6646                    const char *fmt, ...)
6647{
6648        struct va_format vaf;
6649        va_list args;
6650        int r;
6651
6652        va_start(args, fmt);
6653
6654        vaf.fmt = fmt;
6655        vaf.va = &args;
6656
6657        r = printk("%sata%u: %pV", level, ap->print_id, &vaf);
6658
6659        va_end(args);
6660
6661        return r;
6662}
6663EXPORT_SYMBOL(ata_port_printk);
6664
6665int ata_link_printk(const struct ata_link *link, const char *level,
6666                    const char *fmt, ...)
6667{
6668        struct va_format vaf;
6669        va_list args;
6670        int r;
6671
6672        va_start(args, fmt);
6673
6674        vaf.fmt = fmt;
6675        vaf.va = &args;
6676
6677        if (sata_pmp_attached(link->ap) || link->ap->slave_link)
6678                r = printk("%sata%u.%02u: %pV",
6679                           level, link->ap->print_id, link->pmp, &vaf);
6680        else
6681                r = printk("%sata%u: %pV",
6682                           level, link->ap->print_id, &vaf);
6683
6684        va_end(args);
6685
6686        return r;
6687}
6688EXPORT_SYMBOL(ata_link_printk);
6689
6690int ata_dev_printk(const struct ata_device *dev, const char *level,
6691                    const char *fmt, ...)
6692{
6693        struct va_format vaf;
6694        va_list args;
6695        int r;
6696
6697        va_start(args, fmt);
6698
6699        vaf.fmt = fmt;
6700        vaf.va = &args;
6701
6702        r = printk("%sata%u.%02u: %pV",
6703                   level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6704                   &vaf);
6705
6706        va_end(args);
6707
6708        return r;
6709}
6710EXPORT_SYMBOL(ata_dev_printk);
6711
6712void ata_print_version(const struct device *dev, const char *version)
6713{
6714        dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6715}
6716EXPORT_SYMBOL(ata_print_version);
6717
6718/*
6719 * libata is essentially a library of internal helper functions for
6720 * low-level ATA host controller drivers.  As such, the API/ABI is
6721 * likely to change as new drivers are added and updated.
6722 * Do not depend on ABI/API stability.
6723 */
6724EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6725EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6726EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6727EXPORT_SYMBOL_GPL(ata_base_port_ops);
6728EXPORT_SYMBOL_GPL(sata_port_ops);
6729EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6730EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6731EXPORT_SYMBOL_GPL(ata_link_next);
6732EXPORT_SYMBOL_GPL(ata_dev_next);
6733EXPORT_SYMBOL_GPL(ata_std_bios_param);
6734EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
6735EXPORT_SYMBOL_GPL(ata_host_init);
6736EXPORT_SYMBOL_GPL(ata_host_alloc);
6737EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6738EXPORT_SYMBOL_GPL(ata_slave_link_init);
6739EXPORT_SYMBOL_GPL(ata_host_start);
6740EXPORT_SYMBOL_GPL(ata_host_register);
6741EXPORT_SYMBOL_GPL(ata_host_activate);
6742EXPORT_SYMBOL_GPL(ata_host_detach);
6743EXPORT_SYMBOL_GPL(ata_sg_init);
6744EXPORT_SYMBOL_GPL(ata_qc_complete);
6745EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6746EXPORT_SYMBOL_GPL(atapi_cmd_type);
6747EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6748EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6749EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6750EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6751EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6752EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6753EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6754EXPORT_SYMBOL_GPL(ata_mode_string);
6755EXPORT_SYMBOL_GPL(ata_id_xfermask);
6756EXPORT_SYMBOL_GPL(ata_do_set_mode);
6757EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6758EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6759EXPORT_SYMBOL_GPL(ata_dev_disable);
6760EXPORT_SYMBOL_GPL(sata_set_spd);
6761EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6762EXPORT_SYMBOL_GPL(sata_link_debounce);
6763EXPORT_SYMBOL_GPL(sata_link_resume);
6764EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
6765EXPORT_SYMBOL_GPL(ata_std_prereset);
6766EXPORT_SYMBOL_GPL(sata_link_hardreset);
6767EXPORT_SYMBOL_GPL(sata_std_hardreset);
6768EXPORT_SYMBOL_GPL(ata_std_postreset);
6769EXPORT_SYMBOL_GPL(ata_dev_classify);
6770EXPORT_SYMBOL_GPL(ata_dev_pair);
6771EXPORT_SYMBOL_GPL(ata_ratelimit);
6772EXPORT_SYMBOL_GPL(ata_msleep);
6773EXPORT_SYMBOL_GPL(ata_wait_register);
6774EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6775EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6776EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6777EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6778EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
6779EXPORT_SYMBOL_GPL(sata_scr_valid);
6780EXPORT_SYMBOL_GPL(sata_scr_read);
6781EXPORT_SYMBOL_GPL(sata_scr_write);
6782EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6783EXPORT_SYMBOL_GPL(ata_link_online);
6784EXPORT_SYMBOL_GPL(ata_link_offline);
6785#ifdef CONFIG_PM
6786EXPORT_SYMBOL_GPL(ata_host_suspend);
6787EXPORT_SYMBOL_GPL(ata_host_resume);
6788#endif /* CONFIG_PM */
6789EXPORT_SYMBOL_GPL(ata_id_string);
6790EXPORT_SYMBOL_GPL(ata_id_c_string);
6791EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6792EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6793
6794EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6795EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6796EXPORT_SYMBOL_GPL(ata_timing_compute);
6797EXPORT_SYMBOL_GPL(ata_timing_merge);
6798EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6799
6800#ifdef CONFIG_PCI
6801EXPORT_SYMBOL_GPL(pci_test_config_bits);
6802EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6803#ifdef CONFIG_PM
6804EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6805EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6806EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6807EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6808#endif /* CONFIG_PM */
6809#endif /* CONFIG_PCI */
6810
6811EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6812EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6813EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6814EXPORT_SYMBOL_GPL(ata_port_desc);
6815#ifdef CONFIG_PCI
6816EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6817#endif /* CONFIG_PCI */
6818EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6819EXPORT_SYMBOL_GPL(ata_link_abort);
6820EXPORT_SYMBOL_GPL(ata_port_abort);
6821EXPORT_SYMBOL_GPL(ata_port_freeze);
6822EXPORT_SYMBOL_GPL(sata_async_notification);
6823EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6824EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6825EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6826EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6827EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6828EXPORT_SYMBOL_GPL(ata_do_eh);
6829EXPORT_SYMBOL_GPL(ata_std_error_handler);
6830
6831EXPORT_SYMBOL_GPL(ata_cable_40wire);
6832EXPORT_SYMBOL_GPL(ata_cable_80wire);
6833EXPORT_SYMBOL_GPL(ata_cable_unknown);
6834EXPORT_SYMBOL_GPL(ata_cable_ignore);
6835EXPORT_SYMBOL_GPL(ata_cable_sata);
6836