linux/drivers/clocksource/tcb_clksrc.c
<<
>>
Prefs
   1#include <linux/init.h>
   2#include <linux/clocksource.h>
   3#include <linux/clockchips.h>
   4#include <linux/interrupt.h>
   5#include <linux/irq.h>
   6
   7#include <linux/clk.h>
   8#include <linux/err.h>
   9#include <linux/ioport.h>
  10#include <linux/io.h>
  11#include <linux/platform_device.h>
  12#include <linux/atmel_tc.h>
  13
  14
  15/*
  16 * We're configured to use a specific TC block, one that's not hooked
  17 * up to external hardware, to provide a time solution:
  18 *
  19 *   - Two channels combine to create a free-running 32 bit counter
  20 *     with a base rate of 5+ MHz, packaged as a clocksource (with
  21 *     resolution better than 200 nsec).
  22 *
  23 *   - The third channel may be used to provide a 16-bit clockevent
  24 *     source, used in either periodic or oneshot mode.  This runs
  25 *     at 32 KiHZ, and can handle delays of up to two seconds.
  26 *
  27 * A boot clocksource and clockevent source are also currently needed,
  28 * unless the relevant platforms (ARM/AT91, AVR32/AT32) are changed so
  29 * this code can be used when init_timers() is called, well before most
  30 * devices are set up.  (Some low end AT91 parts, which can run uClinux,
  31 * have only the timers in one TC block... they currently don't support
  32 * the tclib code, because of that initialization issue.)
  33 *
  34 * REVISIT behavior during system suspend states... we should disable
  35 * all clocks and save the power.  Easily done for clockevent devices,
  36 * but clocksources won't necessarily get the needed notifications.
  37 * For deeper system sleep states, this will be mandatory...
  38 */
  39
  40static void __iomem *tcaddr;
  41
  42static cycle_t tc_get_cycles(struct clocksource *cs)
  43{
  44        unsigned long   flags;
  45        u32             lower, upper;
  46
  47        raw_local_irq_save(flags);
  48        do {
  49                upper = __raw_readl(tcaddr + ATMEL_TC_REG(1, CV));
  50                lower = __raw_readl(tcaddr + ATMEL_TC_REG(0, CV));
  51        } while (upper != __raw_readl(tcaddr + ATMEL_TC_REG(1, CV)));
  52
  53        raw_local_irq_restore(flags);
  54        return (upper << 16) | lower;
  55}
  56
  57static struct clocksource clksrc = {
  58        .name           = "tcb_clksrc",
  59        .rating         = 200,
  60        .read           = tc_get_cycles,
  61        .mask           = CLOCKSOURCE_MASK(32),
  62        .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
  63};
  64
  65#ifdef CONFIG_GENERIC_CLOCKEVENTS
  66
  67struct tc_clkevt_device {
  68        struct clock_event_device       clkevt;
  69        struct clk                      *clk;
  70        void __iomem                    *regs;
  71};
  72
  73static struct tc_clkevt_device *to_tc_clkevt(struct clock_event_device *clkevt)
  74{
  75        return container_of(clkevt, struct tc_clkevt_device, clkevt);
  76}
  77
  78/* For now, we always use the 32K clock ... this optimizes for NO_HZ,
  79 * because using one of the divided clocks would usually mean the
  80 * tick rate can never be less than several dozen Hz (vs 0.5 Hz).
  81 *
  82 * A divided clock could be good for high resolution timers, since
  83 * 30.5 usec resolution can seem "low".
  84 */
  85static u32 timer_clock;
  86
  87static void tc_mode(enum clock_event_mode m, struct clock_event_device *d)
  88{
  89        struct tc_clkevt_device *tcd = to_tc_clkevt(d);
  90        void __iomem            *regs = tcd->regs;
  91
  92        if (tcd->clkevt.mode == CLOCK_EVT_MODE_PERIODIC
  93                        || tcd->clkevt.mode == CLOCK_EVT_MODE_ONESHOT) {
  94                __raw_writel(0xff, regs + ATMEL_TC_REG(2, IDR));
  95                __raw_writel(ATMEL_TC_CLKDIS, regs + ATMEL_TC_REG(2, CCR));
  96                clk_disable(tcd->clk);
  97        }
  98
  99        switch (m) {
 100
 101        /* By not making the gentime core emulate periodic mode on top
 102         * of oneshot, we get lower overhead and improved accuracy.
 103         */
 104        case CLOCK_EVT_MODE_PERIODIC:
 105                clk_enable(tcd->clk);
 106
 107                /* slow clock, count up to RC, then irq and restart */
 108                __raw_writel(timer_clock
 109                                | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
 110                                regs + ATMEL_TC_REG(2, CMR));
 111                __raw_writel((32768 + HZ/2) / HZ, tcaddr + ATMEL_TC_REG(2, RC));
 112
 113                /* Enable clock and interrupts on RC compare */
 114                __raw_writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
 115
 116                /* go go gadget! */
 117                __raw_writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
 118                                regs + ATMEL_TC_REG(2, CCR));
 119                break;
 120
 121        case CLOCK_EVT_MODE_ONESHOT:
 122                clk_enable(tcd->clk);
 123
 124                /* slow clock, count up to RC, then irq and stop */
 125                __raw_writel(timer_clock | ATMEL_TC_CPCSTOP
 126                                | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
 127                                regs + ATMEL_TC_REG(2, CMR));
 128                __raw_writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
 129
 130                /* set_next_event() configures and starts the timer */
 131                break;
 132
 133        default:
 134                break;
 135        }
 136}
 137
 138static int tc_next_event(unsigned long delta, struct clock_event_device *d)
 139{
 140        __raw_writel(delta, tcaddr + ATMEL_TC_REG(2, RC));
 141
 142        /* go go gadget! */
 143        __raw_writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
 144                        tcaddr + ATMEL_TC_REG(2, CCR));
 145        return 0;
 146}
 147
 148static struct tc_clkevt_device clkevt = {
 149        .clkevt = {
 150                .name           = "tc_clkevt",
 151                .features       = CLOCK_EVT_FEAT_PERIODIC
 152                                        | CLOCK_EVT_FEAT_ONESHOT,
 153                .shift          = 32,
 154                /* Should be lower than at91rm9200's system timer */
 155                .rating         = 125,
 156                .set_next_event = tc_next_event,
 157                .set_mode       = tc_mode,
 158        },
 159};
 160
 161static irqreturn_t ch2_irq(int irq, void *handle)
 162{
 163        struct tc_clkevt_device *dev = handle;
 164        unsigned int            sr;
 165
 166        sr = __raw_readl(dev->regs + ATMEL_TC_REG(2, SR));
 167        if (sr & ATMEL_TC_CPCS) {
 168                dev->clkevt.event_handler(&dev->clkevt);
 169                return IRQ_HANDLED;
 170        }
 171
 172        return IRQ_NONE;
 173}
 174
 175static struct irqaction tc_irqaction = {
 176        .name           = "tc_clkevt",
 177        .flags          = IRQF_TIMER | IRQF_DISABLED,
 178        .handler        = ch2_irq,
 179};
 180
 181static void __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
 182{
 183        struct clk *t2_clk = tc->clk[2];
 184        int irq = tc->irq[2];
 185
 186        clkevt.regs = tc->regs;
 187        clkevt.clk = t2_clk;
 188        tc_irqaction.dev_id = &clkevt;
 189
 190        timer_clock = clk32k_divisor_idx;
 191
 192        clkevt.clkevt.mult = div_sc(32768, NSEC_PER_SEC, clkevt.clkevt.shift);
 193        clkevt.clkevt.max_delta_ns
 194                = clockevent_delta2ns(0xffff, &clkevt.clkevt);
 195        clkevt.clkevt.min_delta_ns = clockevent_delta2ns(1, &clkevt.clkevt) + 1;
 196        clkevt.clkevt.cpumask = cpumask_of(0);
 197
 198        clockevents_register_device(&clkevt.clkevt);
 199
 200        setup_irq(irq, &tc_irqaction);
 201}
 202
 203#else /* !CONFIG_GENERIC_CLOCKEVENTS */
 204
 205static void __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
 206{
 207        /* NOTHING */
 208}
 209
 210#endif
 211
 212static int __init tcb_clksrc_init(void)
 213{
 214        static char bootinfo[] __initdata
 215                = KERN_DEBUG "%s: tc%d at %d.%03d MHz\n";
 216
 217        struct platform_device *pdev;
 218        struct atmel_tc *tc;
 219        struct clk *t0_clk;
 220        u32 rate, divided_rate = 0;
 221        int best_divisor_idx = -1;
 222        int clk32k_divisor_idx = -1;
 223        int i;
 224
 225        tc = atmel_tc_alloc(CONFIG_ATMEL_TCB_CLKSRC_BLOCK, clksrc.name);
 226        if (!tc) {
 227                pr_debug("can't alloc TC for clocksource\n");
 228                return -ENODEV;
 229        }
 230        tcaddr = tc->regs;
 231        pdev = tc->pdev;
 232
 233        t0_clk = tc->clk[0];
 234        clk_enable(t0_clk);
 235
 236        /* How fast will we be counting?  Pick something over 5 MHz.  */
 237        rate = (u32) clk_get_rate(t0_clk);
 238        for (i = 0; i < 5; i++) {
 239                unsigned divisor = atmel_tc_divisors[i];
 240                unsigned tmp;
 241
 242                /* remember 32 KiHz clock for later */
 243                if (!divisor) {
 244                        clk32k_divisor_idx = i;
 245                        continue;
 246                }
 247
 248                tmp = rate / divisor;
 249                pr_debug("TC: %u / %-3u [%d] --> %u\n", rate, divisor, i, tmp);
 250                if (best_divisor_idx > 0) {
 251                        if (tmp < 5 * 1000 * 1000)
 252                                continue;
 253                }
 254                divided_rate = tmp;
 255                best_divisor_idx = i;
 256        }
 257
 258
 259        printk(bootinfo, clksrc.name, CONFIG_ATMEL_TCB_CLKSRC_BLOCK,
 260                        divided_rate / 1000000,
 261                        ((divided_rate + 500000) % 1000000) / 1000);
 262
 263        /* tclib will give us three clocks no matter what the
 264         * underlying platform supports.
 265         */
 266        clk_enable(tc->clk[1]);
 267
 268        /* channel 0:  waveform mode, input mclk/8, clock TIOA0 on overflow */
 269        __raw_writel(best_divisor_idx                   /* likely divide-by-8 */
 270                        | ATMEL_TC_WAVE
 271                        | ATMEL_TC_WAVESEL_UP           /* free-run */
 272                        | ATMEL_TC_ACPA_SET             /* TIOA0 rises at 0 */
 273                        | ATMEL_TC_ACPC_CLEAR,          /* (duty cycle 50%) */
 274                        tcaddr + ATMEL_TC_REG(0, CMR));
 275        __raw_writel(0x0000, tcaddr + ATMEL_TC_REG(0, RA));
 276        __raw_writel(0x8000, tcaddr + ATMEL_TC_REG(0, RC));
 277        __raw_writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR));      /* no irqs */
 278        __raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
 279
 280        /* channel 1:  waveform mode, input TIOA0 */
 281        __raw_writel(ATMEL_TC_XC1                       /* input: TIOA0 */
 282                        | ATMEL_TC_WAVE
 283                        | ATMEL_TC_WAVESEL_UP,          /* free-run */
 284                        tcaddr + ATMEL_TC_REG(1, CMR));
 285        __raw_writel(0xff, tcaddr + ATMEL_TC_REG(1, IDR));      /* no irqs */
 286        __raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(1, CCR));
 287
 288        /* chain channel 0 to channel 1, then reset all the timers */
 289        __raw_writel(ATMEL_TC_TC1XC1S_TIOA0, tcaddr + ATMEL_TC_BMR);
 290        __raw_writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
 291
 292        /* and away we go! */
 293        clocksource_register_hz(&clksrc, divided_rate);
 294
 295        /* channel 2:  periodic and oneshot timer support */
 296        setup_clkevents(tc, clk32k_divisor_idx);
 297
 298        return 0;
 299}
 300arch_initcall(tcb_clksrc_init);
 301