1#include <linux/init.h>
2#include <linux/clocksource.h>
3#include <linux/clockchips.h>
4#include <linux/interrupt.h>
5#include <linux/irq.h>
6
7#include <linux/clk.h>
8#include <linux/err.h>
9#include <linux/ioport.h>
10#include <linux/io.h>
11#include <linux/platform_device.h>
12#include <linux/atmel_tc.h>
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40static void __iomem *tcaddr;
41
42static cycle_t tc_get_cycles(struct clocksource *cs)
43{
44 unsigned long flags;
45 u32 lower, upper;
46
47 raw_local_irq_save(flags);
48 do {
49 upper = __raw_readl(tcaddr + ATMEL_TC_REG(1, CV));
50 lower = __raw_readl(tcaddr + ATMEL_TC_REG(0, CV));
51 } while (upper != __raw_readl(tcaddr + ATMEL_TC_REG(1, CV)));
52
53 raw_local_irq_restore(flags);
54 return (upper << 16) | lower;
55}
56
57static struct clocksource clksrc = {
58 .name = "tcb_clksrc",
59 .rating = 200,
60 .read = tc_get_cycles,
61 .mask = CLOCKSOURCE_MASK(32),
62 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
63};
64
65#ifdef CONFIG_GENERIC_CLOCKEVENTS
66
67struct tc_clkevt_device {
68 struct clock_event_device clkevt;
69 struct clk *clk;
70 void __iomem *regs;
71};
72
73static struct tc_clkevt_device *to_tc_clkevt(struct clock_event_device *clkevt)
74{
75 return container_of(clkevt, struct tc_clkevt_device, clkevt);
76}
77
78
79
80
81
82
83
84
85static u32 timer_clock;
86
87static void tc_mode(enum clock_event_mode m, struct clock_event_device *d)
88{
89 struct tc_clkevt_device *tcd = to_tc_clkevt(d);
90 void __iomem *regs = tcd->regs;
91
92 if (tcd->clkevt.mode == CLOCK_EVT_MODE_PERIODIC
93 || tcd->clkevt.mode == CLOCK_EVT_MODE_ONESHOT) {
94 __raw_writel(0xff, regs + ATMEL_TC_REG(2, IDR));
95 __raw_writel(ATMEL_TC_CLKDIS, regs + ATMEL_TC_REG(2, CCR));
96 clk_disable(tcd->clk);
97 }
98
99 switch (m) {
100
101
102
103
104 case CLOCK_EVT_MODE_PERIODIC:
105 clk_enable(tcd->clk);
106
107
108 __raw_writel(timer_clock
109 | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
110 regs + ATMEL_TC_REG(2, CMR));
111 __raw_writel((32768 + HZ/2) / HZ, tcaddr + ATMEL_TC_REG(2, RC));
112
113
114 __raw_writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
115
116
117 __raw_writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
118 regs + ATMEL_TC_REG(2, CCR));
119 break;
120
121 case CLOCK_EVT_MODE_ONESHOT:
122 clk_enable(tcd->clk);
123
124
125 __raw_writel(timer_clock | ATMEL_TC_CPCSTOP
126 | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
127 regs + ATMEL_TC_REG(2, CMR));
128 __raw_writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
129
130
131 break;
132
133 default:
134 break;
135 }
136}
137
138static int tc_next_event(unsigned long delta, struct clock_event_device *d)
139{
140 __raw_writel(delta, tcaddr + ATMEL_TC_REG(2, RC));
141
142
143 __raw_writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
144 tcaddr + ATMEL_TC_REG(2, CCR));
145 return 0;
146}
147
148static struct tc_clkevt_device clkevt = {
149 .clkevt = {
150 .name = "tc_clkevt",
151 .features = CLOCK_EVT_FEAT_PERIODIC
152 | CLOCK_EVT_FEAT_ONESHOT,
153 .shift = 32,
154
155 .rating = 125,
156 .set_next_event = tc_next_event,
157 .set_mode = tc_mode,
158 },
159};
160
161static irqreturn_t ch2_irq(int irq, void *handle)
162{
163 struct tc_clkevt_device *dev = handle;
164 unsigned int sr;
165
166 sr = __raw_readl(dev->regs + ATMEL_TC_REG(2, SR));
167 if (sr & ATMEL_TC_CPCS) {
168 dev->clkevt.event_handler(&dev->clkevt);
169 return IRQ_HANDLED;
170 }
171
172 return IRQ_NONE;
173}
174
175static struct irqaction tc_irqaction = {
176 .name = "tc_clkevt",
177 .flags = IRQF_TIMER | IRQF_DISABLED,
178 .handler = ch2_irq,
179};
180
181static void __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
182{
183 struct clk *t2_clk = tc->clk[2];
184 int irq = tc->irq[2];
185
186 clkevt.regs = tc->regs;
187 clkevt.clk = t2_clk;
188 tc_irqaction.dev_id = &clkevt;
189
190 timer_clock = clk32k_divisor_idx;
191
192 clkevt.clkevt.mult = div_sc(32768, NSEC_PER_SEC, clkevt.clkevt.shift);
193 clkevt.clkevt.max_delta_ns
194 = clockevent_delta2ns(0xffff, &clkevt.clkevt);
195 clkevt.clkevt.min_delta_ns = clockevent_delta2ns(1, &clkevt.clkevt) + 1;
196 clkevt.clkevt.cpumask = cpumask_of(0);
197
198 clockevents_register_device(&clkevt.clkevt);
199
200 setup_irq(irq, &tc_irqaction);
201}
202
203#else
204
205static void __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
206{
207
208}
209
210#endif
211
212static int __init tcb_clksrc_init(void)
213{
214 static char bootinfo[] __initdata
215 = KERN_DEBUG "%s: tc%d at %d.%03d MHz\n";
216
217 struct platform_device *pdev;
218 struct atmel_tc *tc;
219 struct clk *t0_clk;
220 u32 rate, divided_rate = 0;
221 int best_divisor_idx = -1;
222 int clk32k_divisor_idx = -1;
223 int i;
224
225 tc = atmel_tc_alloc(CONFIG_ATMEL_TCB_CLKSRC_BLOCK, clksrc.name);
226 if (!tc) {
227 pr_debug("can't alloc TC for clocksource\n");
228 return -ENODEV;
229 }
230 tcaddr = tc->regs;
231 pdev = tc->pdev;
232
233 t0_clk = tc->clk[0];
234 clk_enable(t0_clk);
235
236
237 rate = (u32) clk_get_rate(t0_clk);
238 for (i = 0; i < 5; i++) {
239 unsigned divisor = atmel_tc_divisors[i];
240 unsigned tmp;
241
242
243 if (!divisor) {
244 clk32k_divisor_idx = i;
245 continue;
246 }
247
248 tmp = rate / divisor;
249 pr_debug("TC: %u / %-3u [%d] --> %u\n", rate, divisor, i, tmp);
250 if (best_divisor_idx > 0) {
251 if (tmp < 5 * 1000 * 1000)
252 continue;
253 }
254 divided_rate = tmp;
255 best_divisor_idx = i;
256 }
257
258
259 printk(bootinfo, clksrc.name, CONFIG_ATMEL_TCB_CLKSRC_BLOCK,
260 divided_rate / 1000000,
261 ((divided_rate + 500000) % 1000000) / 1000);
262
263
264
265
266 clk_enable(tc->clk[1]);
267
268
269 __raw_writel(best_divisor_idx
270 | ATMEL_TC_WAVE
271 | ATMEL_TC_WAVESEL_UP
272 | ATMEL_TC_ACPA_SET
273 | ATMEL_TC_ACPC_CLEAR,
274 tcaddr + ATMEL_TC_REG(0, CMR));
275 __raw_writel(0x0000, tcaddr + ATMEL_TC_REG(0, RA));
276 __raw_writel(0x8000, tcaddr + ATMEL_TC_REG(0, RC));
277 __raw_writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR));
278 __raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
279
280
281 __raw_writel(ATMEL_TC_XC1
282 | ATMEL_TC_WAVE
283 | ATMEL_TC_WAVESEL_UP,
284 tcaddr + ATMEL_TC_REG(1, CMR));
285 __raw_writel(0xff, tcaddr + ATMEL_TC_REG(1, IDR));
286 __raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(1, CCR));
287
288
289 __raw_writel(ATMEL_TC_TC1XC1S_TIOA0, tcaddr + ATMEL_TC_BMR);
290 __raw_writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
291
292
293 clocksource_register_hz(&clksrc, divided_rate);
294
295
296 setup_clkevents(tc, clk32k_divisor_idx);
297
298 return 0;
299}
300arch_initcall(tcb_clksrc_init);
301