linux/drivers/crypto/mv_cesa.c
<<
>>
Prefs
   1/*
   2 * Support for Marvell's crypto engine which can be found on some Orion5X
   3 * boards.
   4 *
   5 * Author: Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
   6 * License: GPLv2
   7 *
   8 */
   9#include <crypto/aes.h>
  10#include <crypto/algapi.h>
  11#include <linux/crypto.h>
  12#include <linux/interrupt.h>
  13#include <linux/io.h>
  14#include <linux/kthread.h>
  15#include <linux/platform_device.h>
  16#include <linux/scatterlist.h>
  17#include <linux/slab.h>
  18#include <linux/module.h>
  19#include <crypto/internal/hash.h>
  20#include <crypto/sha.h>
  21
  22#include "mv_cesa.h"
  23
  24#define MV_CESA "MV-CESA:"
  25#define MAX_HW_HASH_SIZE        0xFFFF
  26
  27/*
  28 * STM:
  29 *   /---------------------------------------\
  30 *   |                                       | request complete
  31 *  \./                                      |
  32 * IDLE -> new request -> BUSY -> done -> DEQUEUE
  33 *                         /°\               |
  34 *                          |                | more scatter entries
  35 *                          \________________/
  36 */
  37enum engine_status {
  38        ENGINE_IDLE,
  39        ENGINE_BUSY,
  40        ENGINE_W_DEQUEUE,
  41};
  42
  43/**
  44 * struct req_progress - used for every crypt request
  45 * @src_sg_it:          sg iterator for src
  46 * @dst_sg_it:          sg iterator for dst
  47 * @sg_src_left:        bytes left in src to process (scatter list)
  48 * @src_start:          offset to add to src start position (scatter list)
  49 * @crypt_len:          length of current hw crypt/hash process
  50 * @hw_nbytes:          total bytes to process in hw for this request
  51 * @copy_back:          whether to copy data back (crypt) or not (hash)
  52 * @sg_dst_left:        bytes left dst to process in this scatter list
  53 * @dst_start:          offset to add to dst start position (scatter list)
  54 * @hw_processed_bytes: number of bytes processed by hw (request).
  55 *
  56 * sg helper are used to iterate over the scatterlist. Since the size of the
  57 * SRAM may be less than the scatter size, this struct struct is used to keep
  58 * track of progress within current scatterlist.
  59 */
  60struct req_progress {
  61        struct sg_mapping_iter src_sg_it;
  62        struct sg_mapping_iter dst_sg_it;
  63        void (*complete) (void);
  64        void (*process) (int is_first);
  65
  66        /* src mostly */
  67        int sg_src_left;
  68        int src_start;
  69        int crypt_len;
  70        int hw_nbytes;
  71        /* dst mostly */
  72        int copy_back;
  73        int sg_dst_left;
  74        int dst_start;
  75        int hw_processed_bytes;
  76};
  77
  78struct crypto_priv {
  79        void __iomem *reg;
  80        void __iomem *sram;
  81        int irq;
  82        struct task_struct *queue_th;
  83
  84        /* the lock protects queue and eng_st */
  85        spinlock_t lock;
  86        struct crypto_queue queue;
  87        enum engine_status eng_st;
  88        struct crypto_async_request *cur_req;
  89        struct req_progress p;
  90        int max_req_size;
  91        int sram_size;
  92        int has_sha1;
  93        int has_hmac_sha1;
  94};
  95
  96static struct crypto_priv *cpg;
  97
  98struct mv_ctx {
  99        u8 aes_enc_key[AES_KEY_LEN];
 100        u32 aes_dec_key[8];
 101        int key_len;
 102        u32 need_calc_aes_dkey;
 103};
 104
 105enum crypto_op {
 106        COP_AES_ECB,
 107        COP_AES_CBC,
 108};
 109
 110struct mv_req_ctx {
 111        enum crypto_op op;
 112        int decrypt;
 113};
 114
 115enum hash_op {
 116        COP_SHA1,
 117        COP_HMAC_SHA1
 118};
 119
 120struct mv_tfm_hash_ctx {
 121        struct crypto_shash *fallback;
 122        struct crypto_shash *base_hash;
 123        u32 ivs[2 * SHA1_DIGEST_SIZE / 4];
 124        int count_add;
 125        enum hash_op op;
 126};
 127
 128struct mv_req_hash_ctx {
 129        u64 count;
 130        u32 state[SHA1_DIGEST_SIZE / 4];
 131        u8 buffer[SHA1_BLOCK_SIZE];
 132        int first_hash;         /* marks that we don't have previous state */
 133        int last_chunk;         /* marks that this is the 'final' request */
 134        int extra_bytes;        /* unprocessed bytes in buffer */
 135        enum hash_op op;
 136        int count_add;
 137};
 138
 139static void compute_aes_dec_key(struct mv_ctx *ctx)
 140{
 141        struct crypto_aes_ctx gen_aes_key;
 142        int key_pos;
 143
 144        if (!ctx->need_calc_aes_dkey)
 145                return;
 146
 147        crypto_aes_expand_key(&gen_aes_key, ctx->aes_enc_key, ctx->key_len);
 148
 149        key_pos = ctx->key_len + 24;
 150        memcpy(ctx->aes_dec_key, &gen_aes_key.key_enc[key_pos], 4 * 4);
 151        switch (ctx->key_len) {
 152        case AES_KEYSIZE_256:
 153                key_pos -= 2;
 154                /* fall */
 155        case AES_KEYSIZE_192:
 156                key_pos -= 2;
 157                memcpy(&ctx->aes_dec_key[4], &gen_aes_key.key_enc[key_pos],
 158                                4 * 4);
 159                break;
 160        }
 161        ctx->need_calc_aes_dkey = 0;
 162}
 163
 164static int mv_setkey_aes(struct crypto_ablkcipher *cipher, const u8 *key,
 165                unsigned int len)
 166{
 167        struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
 168        struct mv_ctx *ctx = crypto_tfm_ctx(tfm);
 169
 170        switch (len) {
 171        case AES_KEYSIZE_128:
 172        case AES_KEYSIZE_192:
 173        case AES_KEYSIZE_256:
 174                break;
 175        default:
 176                crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
 177                return -EINVAL;
 178        }
 179        ctx->key_len = len;
 180        ctx->need_calc_aes_dkey = 1;
 181
 182        memcpy(ctx->aes_enc_key, key, AES_KEY_LEN);
 183        return 0;
 184}
 185
 186static void copy_src_to_buf(struct req_progress *p, char *dbuf, int len)
 187{
 188        int ret;
 189        void *sbuf;
 190        int copy_len;
 191
 192        while (len) {
 193                if (!p->sg_src_left) {
 194                        ret = sg_miter_next(&p->src_sg_it);
 195                        BUG_ON(!ret);
 196                        p->sg_src_left = p->src_sg_it.length;
 197                        p->src_start = 0;
 198                }
 199
 200                sbuf = p->src_sg_it.addr + p->src_start;
 201
 202                copy_len = min(p->sg_src_left, len);
 203                memcpy(dbuf, sbuf, copy_len);
 204
 205                p->src_start += copy_len;
 206                p->sg_src_left -= copy_len;
 207
 208                len -= copy_len;
 209                dbuf += copy_len;
 210        }
 211}
 212
 213static void setup_data_in(void)
 214{
 215        struct req_progress *p = &cpg->p;
 216        int data_in_sram =
 217            min(p->hw_nbytes - p->hw_processed_bytes, cpg->max_req_size);
 218        copy_src_to_buf(p, cpg->sram + SRAM_DATA_IN_START + p->crypt_len,
 219                        data_in_sram - p->crypt_len);
 220        p->crypt_len = data_in_sram;
 221}
 222
 223static void mv_process_current_q(int first_block)
 224{
 225        struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
 226        struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
 227        struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
 228        struct sec_accel_config op;
 229
 230        switch (req_ctx->op) {
 231        case COP_AES_ECB:
 232                op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_ECB;
 233                break;
 234        case COP_AES_CBC:
 235        default:
 236                op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_CBC;
 237                op.enc_iv = ENC_IV_POINT(SRAM_DATA_IV) |
 238                        ENC_IV_BUF_POINT(SRAM_DATA_IV_BUF);
 239                if (first_block)
 240                        memcpy(cpg->sram + SRAM_DATA_IV, req->info, 16);
 241                break;
 242        }
 243        if (req_ctx->decrypt) {
 244                op.config |= CFG_DIR_DEC;
 245                memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_dec_key,
 246                                AES_KEY_LEN);
 247        } else {
 248                op.config |= CFG_DIR_ENC;
 249                memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_enc_key,
 250                                AES_KEY_LEN);
 251        }
 252
 253        switch (ctx->key_len) {
 254        case AES_KEYSIZE_128:
 255                op.config |= CFG_AES_LEN_128;
 256                break;
 257        case AES_KEYSIZE_192:
 258                op.config |= CFG_AES_LEN_192;
 259                break;
 260        case AES_KEYSIZE_256:
 261                op.config |= CFG_AES_LEN_256;
 262                break;
 263        }
 264        op.enc_p = ENC_P_SRC(SRAM_DATA_IN_START) |
 265                ENC_P_DST(SRAM_DATA_OUT_START);
 266        op.enc_key_p = SRAM_DATA_KEY_P;
 267
 268        setup_data_in();
 269        op.enc_len = cpg->p.crypt_len;
 270        memcpy(cpg->sram + SRAM_CONFIG, &op,
 271                        sizeof(struct sec_accel_config));
 272
 273        /* GO */
 274        writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
 275
 276        /*
 277         * XXX: add timer if the interrupt does not occur for some mystery
 278         * reason
 279         */
 280}
 281
 282static void mv_crypto_algo_completion(void)
 283{
 284        struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
 285        struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
 286
 287        sg_miter_stop(&cpg->p.src_sg_it);
 288        sg_miter_stop(&cpg->p.dst_sg_it);
 289
 290        if (req_ctx->op != COP_AES_CBC)
 291                return ;
 292
 293        memcpy(req->info, cpg->sram + SRAM_DATA_IV_BUF, 16);
 294}
 295
 296static void mv_process_hash_current(int first_block)
 297{
 298        struct ahash_request *req = ahash_request_cast(cpg->cur_req);
 299        const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
 300        struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
 301        struct req_progress *p = &cpg->p;
 302        struct sec_accel_config op = { 0 };
 303        int is_last;
 304
 305        switch (req_ctx->op) {
 306        case COP_SHA1:
 307        default:
 308                op.config = CFG_OP_MAC_ONLY | CFG_MACM_SHA1;
 309                break;
 310        case COP_HMAC_SHA1:
 311                op.config = CFG_OP_MAC_ONLY | CFG_MACM_HMAC_SHA1;
 312                memcpy(cpg->sram + SRAM_HMAC_IV_IN,
 313                                tfm_ctx->ivs, sizeof(tfm_ctx->ivs));
 314                break;
 315        }
 316
 317        op.mac_src_p =
 318                MAC_SRC_DATA_P(SRAM_DATA_IN_START) | MAC_SRC_TOTAL_LEN((u32)
 319                req_ctx->
 320                count);
 321
 322        setup_data_in();
 323
 324        op.mac_digest =
 325                MAC_DIGEST_P(SRAM_DIGEST_BUF) | MAC_FRAG_LEN(p->crypt_len);
 326        op.mac_iv =
 327                MAC_INNER_IV_P(SRAM_HMAC_IV_IN) |
 328                MAC_OUTER_IV_P(SRAM_HMAC_IV_OUT);
 329
 330        is_last = req_ctx->last_chunk
 331                && (p->hw_processed_bytes + p->crypt_len >= p->hw_nbytes)
 332                && (req_ctx->count <= MAX_HW_HASH_SIZE);
 333        if (req_ctx->first_hash) {
 334                if (is_last)
 335                        op.config |= CFG_NOT_FRAG;
 336                else
 337                        op.config |= CFG_FIRST_FRAG;
 338
 339                req_ctx->first_hash = 0;
 340        } else {
 341                if (is_last)
 342                        op.config |= CFG_LAST_FRAG;
 343                else
 344                        op.config |= CFG_MID_FRAG;
 345
 346                if (first_block) {
 347                        writel(req_ctx->state[0], cpg->reg + DIGEST_INITIAL_VAL_A);
 348                        writel(req_ctx->state[1], cpg->reg + DIGEST_INITIAL_VAL_B);
 349                        writel(req_ctx->state[2], cpg->reg + DIGEST_INITIAL_VAL_C);
 350                        writel(req_ctx->state[3], cpg->reg + DIGEST_INITIAL_VAL_D);
 351                        writel(req_ctx->state[4], cpg->reg + DIGEST_INITIAL_VAL_E);
 352                }
 353        }
 354
 355        memcpy(cpg->sram + SRAM_CONFIG, &op, sizeof(struct sec_accel_config));
 356
 357        /* GO */
 358        writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
 359
 360        /*
 361        * XXX: add timer if the interrupt does not occur for some mystery
 362        * reason
 363        */
 364}
 365
 366static inline int mv_hash_import_sha1_ctx(const struct mv_req_hash_ctx *ctx,
 367                                          struct shash_desc *desc)
 368{
 369        int i;
 370        struct sha1_state shash_state;
 371
 372        shash_state.count = ctx->count + ctx->count_add;
 373        for (i = 0; i < 5; i++)
 374                shash_state.state[i] = ctx->state[i];
 375        memcpy(shash_state.buffer, ctx->buffer, sizeof(shash_state.buffer));
 376        return crypto_shash_import(desc, &shash_state);
 377}
 378
 379static int mv_hash_final_fallback(struct ahash_request *req)
 380{
 381        const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
 382        struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
 383        struct {
 384                struct shash_desc shash;
 385                char ctx[crypto_shash_descsize(tfm_ctx->fallback)];
 386        } desc;
 387        int rc;
 388
 389        desc.shash.tfm = tfm_ctx->fallback;
 390        desc.shash.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 391        if (unlikely(req_ctx->first_hash)) {
 392                crypto_shash_init(&desc.shash);
 393                crypto_shash_update(&desc.shash, req_ctx->buffer,
 394                                    req_ctx->extra_bytes);
 395        } else {
 396                /* only SHA1 for now....
 397                 */
 398                rc = mv_hash_import_sha1_ctx(req_ctx, &desc.shash);
 399                if (rc)
 400                        goto out;
 401        }
 402        rc = crypto_shash_final(&desc.shash, req->result);
 403out:
 404        return rc;
 405}
 406
 407static void mv_hash_algo_completion(void)
 408{
 409        struct ahash_request *req = ahash_request_cast(cpg->cur_req);
 410        struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
 411
 412        if (ctx->extra_bytes)
 413                copy_src_to_buf(&cpg->p, ctx->buffer, ctx->extra_bytes);
 414        sg_miter_stop(&cpg->p.src_sg_it);
 415
 416        if (likely(ctx->last_chunk)) {
 417                if (likely(ctx->count <= MAX_HW_HASH_SIZE)) {
 418                        memcpy(req->result, cpg->sram + SRAM_DIGEST_BUF,
 419                               crypto_ahash_digestsize(crypto_ahash_reqtfm
 420                                                       (req)));
 421                } else
 422                        mv_hash_final_fallback(req);
 423        } else {
 424                ctx->state[0] = readl(cpg->reg + DIGEST_INITIAL_VAL_A);
 425                ctx->state[1] = readl(cpg->reg + DIGEST_INITIAL_VAL_B);
 426                ctx->state[2] = readl(cpg->reg + DIGEST_INITIAL_VAL_C);
 427                ctx->state[3] = readl(cpg->reg + DIGEST_INITIAL_VAL_D);
 428                ctx->state[4] = readl(cpg->reg + DIGEST_INITIAL_VAL_E);
 429        }
 430}
 431
 432static void dequeue_complete_req(void)
 433{
 434        struct crypto_async_request *req = cpg->cur_req;
 435        void *buf;
 436        int ret;
 437        cpg->p.hw_processed_bytes += cpg->p.crypt_len;
 438        if (cpg->p.copy_back) {
 439                int need_copy_len = cpg->p.crypt_len;
 440                int sram_offset = 0;
 441                do {
 442                        int dst_copy;
 443
 444                        if (!cpg->p.sg_dst_left) {
 445                                ret = sg_miter_next(&cpg->p.dst_sg_it);
 446                                BUG_ON(!ret);
 447                                cpg->p.sg_dst_left = cpg->p.dst_sg_it.length;
 448                                cpg->p.dst_start = 0;
 449                        }
 450
 451                        buf = cpg->p.dst_sg_it.addr;
 452                        buf += cpg->p.dst_start;
 453
 454                        dst_copy = min(need_copy_len, cpg->p.sg_dst_left);
 455
 456                        memcpy(buf,
 457                               cpg->sram + SRAM_DATA_OUT_START + sram_offset,
 458                               dst_copy);
 459                        sram_offset += dst_copy;
 460                        cpg->p.sg_dst_left -= dst_copy;
 461                        need_copy_len -= dst_copy;
 462                        cpg->p.dst_start += dst_copy;
 463                } while (need_copy_len > 0);
 464        }
 465
 466        cpg->p.crypt_len = 0;
 467
 468        BUG_ON(cpg->eng_st != ENGINE_W_DEQUEUE);
 469        if (cpg->p.hw_processed_bytes < cpg->p.hw_nbytes) {
 470                /* process next scatter list entry */
 471                cpg->eng_st = ENGINE_BUSY;
 472                cpg->p.process(0);
 473        } else {
 474                cpg->p.complete();
 475                cpg->eng_st = ENGINE_IDLE;
 476                local_bh_disable();
 477                req->complete(req, 0);
 478                local_bh_enable();
 479        }
 480}
 481
 482static int count_sgs(struct scatterlist *sl, unsigned int total_bytes)
 483{
 484        int i = 0;
 485        size_t cur_len;
 486
 487        while (sl) {
 488                cur_len = sl[i].length;
 489                ++i;
 490                if (total_bytes > cur_len)
 491                        total_bytes -= cur_len;
 492                else
 493                        break;
 494        }
 495
 496        return i;
 497}
 498
 499static void mv_start_new_crypt_req(struct ablkcipher_request *req)
 500{
 501        struct req_progress *p = &cpg->p;
 502        int num_sgs;
 503
 504        cpg->cur_req = &req->base;
 505        memset(p, 0, sizeof(struct req_progress));
 506        p->hw_nbytes = req->nbytes;
 507        p->complete = mv_crypto_algo_completion;
 508        p->process = mv_process_current_q;
 509        p->copy_back = 1;
 510
 511        num_sgs = count_sgs(req->src, req->nbytes);
 512        sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
 513
 514        num_sgs = count_sgs(req->dst, req->nbytes);
 515        sg_miter_start(&p->dst_sg_it, req->dst, num_sgs, SG_MITER_TO_SG);
 516
 517        mv_process_current_q(1);
 518}
 519
 520static void mv_start_new_hash_req(struct ahash_request *req)
 521{
 522        struct req_progress *p = &cpg->p;
 523        struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
 524        int num_sgs, hw_bytes, old_extra_bytes, rc;
 525        cpg->cur_req = &req->base;
 526        memset(p, 0, sizeof(struct req_progress));
 527        hw_bytes = req->nbytes + ctx->extra_bytes;
 528        old_extra_bytes = ctx->extra_bytes;
 529
 530        ctx->extra_bytes = hw_bytes % SHA1_BLOCK_SIZE;
 531        if (ctx->extra_bytes != 0
 532            && (!ctx->last_chunk || ctx->count > MAX_HW_HASH_SIZE))
 533                hw_bytes -= ctx->extra_bytes;
 534        else
 535                ctx->extra_bytes = 0;
 536
 537        num_sgs = count_sgs(req->src, req->nbytes);
 538        sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
 539
 540        if (hw_bytes) {
 541                p->hw_nbytes = hw_bytes;
 542                p->complete = mv_hash_algo_completion;
 543                p->process = mv_process_hash_current;
 544
 545                if (unlikely(old_extra_bytes)) {
 546                        memcpy(cpg->sram + SRAM_DATA_IN_START, ctx->buffer,
 547                               old_extra_bytes);
 548                        p->crypt_len = old_extra_bytes;
 549                }
 550
 551                mv_process_hash_current(1);
 552        } else {
 553                copy_src_to_buf(p, ctx->buffer + old_extra_bytes,
 554                                ctx->extra_bytes - old_extra_bytes);
 555                sg_miter_stop(&p->src_sg_it);
 556                if (ctx->last_chunk)
 557                        rc = mv_hash_final_fallback(req);
 558                else
 559                        rc = 0;
 560                cpg->eng_st = ENGINE_IDLE;
 561                local_bh_disable();
 562                req->base.complete(&req->base, rc);
 563                local_bh_enable();
 564        }
 565}
 566
 567static int queue_manag(void *data)
 568{
 569        cpg->eng_st = ENGINE_IDLE;
 570        do {
 571                struct crypto_async_request *async_req = NULL;
 572                struct crypto_async_request *backlog;
 573
 574                __set_current_state(TASK_INTERRUPTIBLE);
 575
 576                if (cpg->eng_st == ENGINE_W_DEQUEUE)
 577                        dequeue_complete_req();
 578
 579                spin_lock_irq(&cpg->lock);
 580                if (cpg->eng_st == ENGINE_IDLE) {
 581                        backlog = crypto_get_backlog(&cpg->queue);
 582                        async_req = crypto_dequeue_request(&cpg->queue);
 583                        if (async_req) {
 584                                BUG_ON(cpg->eng_st != ENGINE_IDLE);
 585                                cpg->eng_st = ENGINE_BUSY;
 586                        }
 587                }
 588                spin_unlock_irq(&cpg->lock);
 589
 590                if (backlog) {
 591                        backlog->complete(backlog, -EINPROGRESS);
 592                        backlog = NULL;
 593                }
 594
 595                if (async_req) {
 596                        if (async_req->tfm->__crt_alg->cra_type !=
 597                            &crypto_ahash_type) {
 598                                struct ablkcipher_request *req =
 599                                    ablkcipher_request_cast(async_req);
 600                                mv_start_new_crypt_req(req);
 601                        } else {
 602                                struct ahash_request *req =
 603                                    ahash_request_cast(async_req);
 604                                mv_start_new_hash_req(req);
 605                        }
 606                        async_req = NULL;
 607                }
 608
 609                schedule();
 610
 611        } while (!kthread_should_stop());
 612        return 0;
 613}
 614
 615static int mv_handle_req(struct crypto_async_request *req)
 616{
 617        unsigned long flags;
 618        int ret;
 619
 620        spin_lock_irqsave(&cpg->lock, flags);
 621        ret = crypto_enqueue_request(&cpg->queue, req);
 622        spin_unlock_irqrestore(&cpg->lock, flags);
 623        wake_up_process(cpg->queue_th);
 624        return ret;
 625}
 626
 627static int mv_enc_aes_ecb(struct ablkcipher_request *req)
 628{
 629        struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
 630
 631        req_ctx->op = COP_AES_ECB;
 632        req_ctx->decrypt = 0;
 633
 634        return mv_handle_req(&req->base);
 635}
 636
 637static int mv_dec_aes_ecb(struct ablkcipher_request *req)
 638{
 639        struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
 640        struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
 641
 642        req_ctx->op = COP_AES_ECB;
 643        req_ctx->decrypt = 1;
 644
 645        compute_aes_dec_key(ctx);
 646        return mv_handle_req(&req->base);
 647}
 648
 649static int mv_enc_aes_cbc(struct ablkcipher_request *req)
 650{
 651        struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
 652
 653        req_ctx->op = COP_AES_CBC;
 654        req_ctx->decrypt = 0;
 655
 656        return mv_handle_req(&req->base);
 657}
 658
 659static int mv_dec_aes_cbc(struct ablkcipher_request *req)
 660{
 661        struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
 662        struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
 663
 664        req_ctx->op = COP_AES_CBC;
 665        req_ctx->decrypt = 1;
 666
 667        compute_aes_dec_key(ctx);
 668        return mv_handle_req(&req->base);
 669}
 670
 671static int mv_cra_init(struct crypto_tfm *tfm)
 672{
 673        tfm->crt_ablkcipher.reqsize = sizeof(struct mv_req_ctx);
 674        return 0;
 675}
 676
 677static void mv_init_hash_req_ctx(struct mv_req_hash_ctx *ctx, int op,
 678                                 int is_last, unsigned int req_len,
 679                                 int count_add)
 680{
 681        memset(ctx, 0, sizeof(*ctx));
 682        ctx->op = op;
 683        ctx->count = req_len;
 684        ctx->first_hash = 1;
 685        ctx->last_chunk = is_last;
 686        ctx->count_add = count_add;
 687}
 688
 689static void mv_update_hash_req_ctx(struct mv_req_hash_ctx *ctx, int is_last,
 690                                   unsigned req_len)
 691{
 692        ctx->last_chunk = is_last;
 693        ctx->count += req_len;
 694}
 695
 696static int mv_hash_init(struct ahash_request *req)
 697{
 698        const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
 699        mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 0, 0,
 700                             tfm_ctx->count_add);
 701        return 0;
 702}
 703
 704static int mv_hash_update(struct ahash_request *req)
 705{
 706        if (!req->nbytes)
 707                return 0;
 708
 709        mv_update_hash_req_ctx(ahash_request_ctx(req), 0, req->nbytes);
 710        return mv_handle_req(&req->base);
 711}
 712
 713static int mv_hash_final(struct ahash_request *req)
 714{
 715        struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
 716
 717        ahash_request_set_crypt(req, NULL, req->result, 0);
 718        mv_update_hash_req_ctx(ctx, 1, 0);
 719        return mv_handle_req(&req->base);
 720}
 721
 722static int mv_hash_finup(struct ahash_request *req)
 723{
 724        mv_update_hash_req_ctx(ahash_request_ctx(req), 1, req->nbytes);
 725        return mv_handle_req(&req->base);
 726}
 727
 728static int mv_hash_digest(struct ahash_request *req)
 729{
 730        const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
 731        mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 1,
 732                             req->nbytes, tfm_ctx->count_add);
 733        return mv_handle_req(&req->base);
 734}
 735
 736static void mv_hash_init_ivs(struct mv_tfm_hash_ctx *ctx, const void *istate,
 737                             const void *ostate)
 738{
 739        const struct sha1_state *isha1_state = istate, *osha1_state = ostate;
 740        int i;
 741        for (i = 0; i < 5; i++) {
 742                ctx->ivs[i] = cpu_to_be32(isha1_state->state[i]);
 743                ctx->ivs[i + 5] = cpu_to_be32(osha1_state->state[i]);
 744        }
 745}
 746
 747static int mv_hash_setkey(struct crypto_ahash *tfm, const u8 * key,
 748                          unsigned int keylen)
 749{
 750        int rc;
 751        struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(&tfm->base);
 752        int bs, ds, ss;
 753
 754        if (!ctx->base_hash)
 755                return 0;
 756
 757        rc = crypto_shash_setkey(ctx->fallback, key, keylen);
 758        if (rc)
 759                return rc;
 760
 761        /* Can't see a way to extract the ipad/opad from the fallback tfm
 762           so I'm basically copying code from the hmac module */
 763        bs = crypto_shash_blocksize(ctx->base_hash);
 764        ds = crypto_shash_digestsize(ctx->base_hash);
 765        ss = crypto_shash_statesize(ctx->base_hash);
 766
 767        {
 768                struct {
 769                        struct shash_desc shash;
 770                        char ctx[crypto_shash_descsize(ctx->base_hash)];
 771                } desc;
 772                unsigned int i;
 773                char ipad[ss];
 774                char opad[ss];
 775
 776                desc.shash.tfm = ctx->base_hash;
 777                desc.shash.flags = crypto_shash_get_flags(ctx->base_hash) &
 778                    CRYPTO_TFM_REQ_MAY_SLEEP;
 779
 780                if (keylen > bs) {
 781                        int err;
 782
 783                        err =
 784                            crypto_shash_digest(&desc.shash, key, keylen, ipad);
 785                        if (err)
 786                                return err;
 787
 788                        keylen = ds;
 789                } else
 790                        memcpy(ipad, key, keylen);
 791
 792                memset(ipad + keylen, 0, bs - keylen);
 793                memcpy(opad, ipad, bs);
 794
 795                for (i = 0; i < bs; i++) {
 796                        ipad[i] ^= 0x36;
 797                        opad[i] ^= 0x5c;
 798                }
 799
 800                rc = crypto_shash_init(&desc.shash) ? :
 801                    crypto_shash_update(&desc.shash, ipad, bs) ? :
 802                    crypto_shash_export(&desc.shash, ipad) ? :
 803                    crypto_shash_init(&desc.shash) ? :
 804                    crypto_shash_update(&desc.shash, opad, bs) ? :
 805                    crypto_shash_export(&desc.shash, opad);
 806
 807                if (rc == 0)
 808                        mv_hash_init_ivs(ctx, ipad, opad);
 809
 810                return rc;
 811        }
 812}
 813
 814static int mv_cra_hash_init(struct crypto_tfm *tfm, const char *base_hash_name,
 815                            enum hash_op op, int count_add)
 816{
 817        const char *fallback_driver_name = tfm->__crt_alg->cra_name;
 818        struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
 819        struct crypto_shash *fallback_tfm = NULL;
 820        struct crypto_shash *base_hash = NULL;
 821        int err = -ENOMEM;
 822
 823        ctx->op = op;
 824        ctx->count_add = count_add;
 825
 826        /* Allocate a fallback and abort if it failed. */
 827        fallback_tfm = crypto_alloc_shash(fallback_driver_name, 0,
 828                                          CRYPTO_ALG_NEED_FALLBACK);
 829        if (IS_ERR(fallback_tfm)) {
 830                printk(KERN_WARNING MV_CESA
 831                       "Fallback driver '%s' could not be loaded!\n",
 832                       fallback_driver_name);
 833                err = PTR_ERR(fallback_tfm);
 834                goto out;
 835        }
 836        ctx->fallback = fallback_tfm;
 837
 838        if (base_hash_name) {
 839                /* Allocate a hash to compute the ipad/opad of hmac. */
 840                base_hash = crypto_alloc_shash(base_hash_name, 0,
 841                                               CRYPTO_ALG_NEED_FALLBACK);
 842                if (IS_ERR(base_hash)) {
 843                        printk(KERN_WARNING MV_CESA
 844                               "Base driver '%s' could not be loaded!\n",
 845                               base_hash_name);
 846                        err = PTR_ERR(base_hash);
 847                        goto err_bad_base;
 848                }
 849        }
 850        ctx->base_hash = base_hash;
 851
 852        crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
 853                                 sizeof(struct mv_req_hash_ctx) +
 854                                 crypto_shash_descsize(ctx->fallback));
 855        return 0;
 856err_bad_base:
 857        crypto_free_shash(fallback_tfm);
 858out:
 859        return err;
 860}
 861
 862static void mv_cra_hash_exit(struct crypto_tfm *tfm)
 863{
 864        struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
 865
 866        crypto_free_shash(ctx->fallback);
 867        if (ctx->base_hash)
 868                crypto_free_shash(ctx->base_hash);
 869}
 870
 871static int mv_cra_hash_sha1_init(struct crypto_tfm *tfm)
 872{
 873        return mv_cra_hash_init(tfm, NULL, COP_SHA1, 0);
 874}
 875
 876static int mv_cra_hash_hmac_sha1_init(struct crypto_tfm *tfm)
 877{
 878        return mv_cra_hash_init(tfm, "sha1", COP_HMAC_SHA1, SHA1_BLOCK_SIZE);
 879}
 880
 881irqreturn_t crypto_int(int irq, void *priv)
 882{
 883        u32 val;
 884
 885        val = readl(cpg->reg + SEC_ACCEL_INT_STATUS);
 886        if (!(val & SEC_INT_ACCEL0_DONE))
 887                return IRQ_NONE;
 888
 889        val &= ~SEC_INT_ACCEL0_DONE;
 890        writel(val, cpg->reg + FPGA_INT_STATUS);
 891        writel(val, cpg->reg + SEC_ACCEL_INT_STATUS);
 892        BUG_ON(cpg->eng_st != ENGINE_BUSY);
 893        cpg->eng_st = ENGINE_W_DEQUEUE;
 894        wake_up_process(cpg->queue_th);
 895        return IRQ_HANDLED;
 896}
 897
 898struct crypto_alg mv_aes_alg_ecb = {
 899        .cra_name               = "ecb(aes)",
 900        .cra_driver_name        = "mv-ecb-aes",
 901        .cra_priority   = 300,
 902        .cra_flags      = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
 903        .cra_blocksize  = 16,
 904        .cra_ctxsize    = sizeof(struct mv_ctx),
 905        .cra_alignmask  = 0,
 906        .cra_type       = &crypto_ablkcipher_type,
 907        .cra_module     = THIS_MODULE,
 908        .cra_init       = mv_cra_init,
 909        .cra_u          = {
 910                .ablkcipher = {
 911                        .min_keysize    =       AES_MIN_KEY_SIZE,
 912                        .max_keysize    =       AES_MAX_KEY_SIZE,
 913                        .setkey         =       mv_setkey_aes,
 914                        .encrypt        =       mv_enc_aes_ecb,
 915                        .decrypt        =       mv_dec_aes_ecb,
 916                },
 917        },
 918};
 919
 920struct crypto_alg mv_aes_alg_cbc = {
 921        .cra_name               = "cbc(aes)",
 922        .cra_driver_name        = "mv-cbc-aes",
 923        .cra_priority   = 300,
 924        .cra_flags      = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
 925        .cra_blocksize  = AES_BLOCK_SIZE,
 926        .cra_ctxsize    = sizeof(struct mv_ctx),
 927        .cra_alignmask  = 0,
 928        .cra_type       = &crypto_ablkcipher_type,
 929        .cra_module     = THIS_MODULE,
 930        .cra_init       = mv_cra_init,
 931        .cra_u          = {
 932                .ablkcipher = {
 933                        .ivsize         =       AES_BLOCK_SIZE,
 934                        .min_keysize    =       AES_MIN_KEY_SIZE,
 935                        .max_keysize    =       AES_MAX_KEY_SIZE,
 936                        .setkey         =       mv_setkey_aes,
 937                        .encrypt        =       mv_enc_aes_cbc,
 938                        .decrypt        =       mv_dec_aes_cbc,
 939                },
 940        },
 941};
 942
 943struct ahash_alg mv_sha1_alg = {
 944        .init = mv_hash_init,
 945        .update = mv_hash_update,
 946        .final = mv_hash_final,
 947        .finup = mv_hash_finup,
 948        .digest = mv_hash_digest,
 949        .halg = {
 950                 .digestsize = SHA1_DIGEST_SIZE,
 951                 .base = {
 952                          .cra_name = "sha1",
 953                          .cra_driver_name = "mv-sha1",
 954                          .cra_priority = 300,
 955                          .cra_flags =
 956                          CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
 957                          .cra_blocksize = SHA1_BLOCK_SIZE,
 958                          .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
 959                          .cra_init = mv_cra_hash_sha1_init,
 960                          .cra_exit = mv_cra_hash_exit,
 961                          .cra_module = THIS_MODULE,
 962                          }
 963                 }
 964};
 965
 966struct ahash_alg mv_hmac_sha1_alg = {
 967        .init = mv_hash_init,
 968        .update = mv_hash_update,
 969        .final = mv_hash_final,
 970        .finup = mv_hash_finup,
 971        .digest = mv_hash_digest,
 972        .setkey = mv_hash_setkey,
 973        .halg = {
 974                 .digestsize = SHA1_DIGEST_SIZE,
 975                 .base = {
 976                          .cra_name = "hmac(sha1)",
 977                          .cra_driver_name = "mv-hmac-sha1",
 978                          .cra_priority = 300,
 979                          .cra_flags =
 980                          CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
 981                          .cra_blocksize = SHA1_BLOCK_SIZE,
 982                          .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
 983                          .cra_init = mv_cra_hash_hmac_sha1_init,
 984                          .cra_exit = mv_cra_hash_exit,
 985                          .cra_module = THIS_MODULE,
 986                          }
 987                 }
 988};
 989
 990static int mv_probe(struct platform_device *pdev)
 991{
 992        struct crypto_priv *cp;
 993        struct resource *res;
 994        int irq;
 995        int ret;
 996
 997        if (cpg) {
 998                printk(KERN_ERR MV_CESA "Second crypto dev?\n");
 999                return -EEXIST;
1000        }
1001
1002        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
1003        if (!res)
1004                return -ENXIO;
1005
1006        cp = kzalloc(sizeof(*cp), GFP_KERNEL);
1007        if (!cp)
1008                return -ENOMEM;
1009
1010        spin_lock_init(&cp->lock);
1011        crypto_init_queue(&cp->queue, 50);
1012        cp->reg = ioremap(res->start, resource_size(res));
1013        if (!cp->reg) {
1014                ret = -ENOMEM;
1015                goto err;
1016        }
1017
1018        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sram");
1019        if (!res) {
1020                ret = -ENXIO;
1021                goto err_unmap_reg;
1022        }
1023        cp->sram_size = resource_size(res);
1024        cp->max_req_size = cp->sram_size - SRAM_CFG_SPACE;
1025        cp->sram = ioremap(res->start, cp->sram_size);
1026        if (!cp->sram) {
1027                ret = -ENOMEM;
1028                goto err_unmap_reg;
1029        }
1030
1031        irq = platform_get_irq(pdev, 0);
1032        if (irq < 0 || irq == NO_IRQ) {
1033                ret = irq;
1034                goto err_unmap_sram;
1035        }
1036        cp->irq = irq;
1037
1038        platform_set_drvdata(pdev, cp);
1039        cpg = cp;
1040
1041        cp->queue_th = kthread_run(queue_manag, cp, "mv_crypto");
1042        if (IS_ERR(cp->queue_th)) {
1043                ret = PTR_ERR(cp->queue_th);
1044                goto err_unmap_sram;
1045        }
1046
1047        ret = request_irq(irq, crypto_int, IRQF_DISABLED, dev_name(&pdev->dev),
1048                        cp);
1049        if (ret)
1050                goto err_thread;
1051
1052        writel(SEC_INT_ACCEL0_DONE, cpg->reg + SEC_ACCEL_INT_MASK);
1053        writel(SEC_CFG_STOP_DIG_ERR, cpg->reg + SEC_ACCEL_CFG);
1054        writel(SRAM_CONFIG, cpg->reg + SEC_ACCEL_DESC_P0);
1055
1056        ret = crypto_register_alg(&mv_aes_alg_ecb);
1057        if (ret) {
1058                printk(KERN_WARNING MV_CESA
1059                       "Could not register aes-ecb driver\n");
1060                goto err_irq;
1061        }
1062
1063        ret = crypto_register_alg(&mv_aes_alg_cbc);
1064        if (ret) {
1065                printk(KERN_WARNING MV_CESA
1066                       "Could not register aes-cbc driver\n");
1067                goto err_unreg_ecb;
1068        }
1069
1070        ret = crypto_register_ahash(&mv_sha1_alg);
1071        if (ret == 0)
1072                cpg->has_sha1 = 1;
1073        else
1074                printk(KERN_WARNING MV_CESA "Could not register sha1 driver\n");
1075
1076        ret = crypto_register_ahash(&mv_hmac_sha1_alg);
1077        if (ret == 0) {
1078                cpg->has_hmac_sha1 = 1;
1079        } else {
1080                printk(KERN_WARNING MV_CESA
1081                       "Could not register hmac-sha1 driver\n");
1082        }
1083
1084        return 0;
1085err_unreg_ecb:
1086        crypto_unregister_alg(&mv_aes_alg_ecb);
1087err_irq:
1088        free_irq(irq, cp);
1089err_thread:
1090        kthread_stop(cp->queue_th);
1091err_unmap_sram:
1092        iounmap(cp->sram);
1093err_unmap_reg:
1094        iounmap(cp->reg);
1095err:
1096        kfree(cp);
1097        cpg = NULL;
1098        platform_set_drvdata(pdev, NULL);
1099        return ret;
1100}
1101
1102static int mv_remove(struct platform_device *pdev)
1103{
1104        struct crypto_priv *cp = platform_get_drvdata(pdev);
1105
1106        crypto_unregister_alg(&mv_aes_alg_ecb);
1107        crypto_unregister_alg(&mv_aes_alg_cbc);
1108        if (cp->has_sha1)
1109                crypto_unregister_ahash(&mv_sha1_alg);
1110        if (cp->has_hmac_sha1)
1111                crypto_unregister_ahash(&mv_hmac_sha1_alg);
1112        kthread_stop(cp->queue_th);
1113        free_irq(cp->irq, cp);
1114        memset(cp->sram, 0, cp->sram_size);
1115        iounmap(cp->sram);
1116        iounmap(cp->reg);
1117        kfree(cp);
1118        cpg = NULL;
1119        return 0;
1120}
1121
1122static struct platform_driver marvell_crypto = {
1123        .probe          = mv_probe,
1124        .remove         = mv_remove,
1125        .driver         = {
1126                .owner  = THIS_MODULE,
1127                .name   = "mv_crypto",
1128        },
1129};
1130MODULE_ALIAS("platform:mv_crypto");
1131
1132module_platform_driver(marvell_crypto);
1133
1134MODULE_AUTHOR("Sebastian Andrzej Siewior <sebastian@breakpoint.cc>");
1135MODULE_DESCRIPTION("Support for Marvell's cryptographic engine");
1136MODULE_LICENSE("GPL");
1137