linux/drivers/gpu/drm/i915/intel_display.c
<<
>>
Prefs
   1/*
   2 * Copyright © 2006-2007 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21 * DEALINGS IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *      Eric Anholt <eric@anholt.net>
  25 */
  26
  27#include <linux/cpufreq.h>
  28#include <linux/module.h>
  29#include <linux/input.h>
  30#include <linux/i2c.h>
  31#include <linux/kernel.h>
  32#include <linux/slab.h>
  33#include <linux/vgaarb.h>
  34#include <drm/drm_edid.h>
  35#include "drmP.h"
  36#include "intel_drv.h"
  37#include "i915_drm.h"
  38#include "i915_drv.h"
  39#include "i915_trace.h"
  40#include "drm_dp_helper.h"
  41#include "drm_crtc_helper.h"
  42#include <linux/dma_remapping.h>
  43
  44#define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
  45
  46bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  47static void intel_update_watermarks(struct drm_device *dev);
  48static void intel_increase_pllclock(struct drm_crtc *crtc);
  49static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  50
  51typedef struct {
  52        /* given values */
  53        int n;
  54        int m1, m2;
  55        int p1, p2;
  56        /* derived values */
  57        int     dot;
  58        int     vco;
  59        int     m;
  60        int     p;
  61} intel_clock_t;
  62
  63typedef struct {
  64        int     min, max;
  65} intel_range_t;
  66
  67typedef struct {
  68        int     dot_limit;
  69        int     p2_slow, p2_fast;
  70} intel_p2_t;
  71
  72#define INTEL_P2_NUM                  2
  73typedef struct intel_limit intel_limit_t;
  74struct intel_limit {
  75        intel_range_t   dot, vco, n, m, m1, m2, p, p1;
  76        intel_p2_t          p2;
  77        bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
  78                        int, int, intel_clock_t *);
  79};
  80
  81/* FDI */
  82#define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
  83
  84static bool
  85intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  86                    int target, int refclk, intel_clock_t *best_clock);
  87static bool
  88intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  89                        int target, int refclk, intel_clock_t *best_clock);
  90
  91static bool
  92intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
  93                      int target, int refclk, intel_clock_t *best_clock);
  94static bool
  95intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
  96                           int target, int refclk, intel_clock_t *best_clock);
  97
  98static inline u32 /* units of 100MHz */
  99intel_fdi_link_freq(struct drm_device *dev)
 100{
 101        if (IS_GEN5(dev)) {
 102                struct drm_i915_private *dev_priv = dev->dev_private;
 103                return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
 104        } else
 105                return 27;
 106}
 107
 108static const intel_limit_t intel_limits_i8xx_dvo = {
 109        .dot = { .min = 25000, .max = 350000 },
 110        .vco = { .min = 930000, .max = 1400000 },
 111        .n = { .min = 3, .max = 16 },
 112        .m = { .min = 96, .max = 140 },
 113        .m1 = { .min = 18, .max = 26 },
 114        .m2 = { .min = 6, .max = 16 },
 115        .p = { .min = 4, .max = 128 },
 116        .p1 = { .min = 2, .max = 33 },
 117        .p2 = { .dot_limit = 165000,
 118                .p2_slow = 4, .p2_fast = 2 },
 119        .find_pll = intel_find_best_PLL,
 120};
 121
 122static const intel_limit_t intel_limits_i8xx_lvds = {
 123        .dot = { .min = 25000, .max = 350000 },
 124        .vco = { .min = 930000, .max = 1400000 },
 125        .n = { .min = 3, .max = 16 },
 126        .m = { .min = 96, .max = 140 },
 127        .m1 = { .min = 18, .max = 26 },
 128        .m2 = { .min = 6, .max = 16 },
 129        .p = { .min = 4, .max = 128 },
 130        .p1 = { .min = 1, .max = 6 },
 131        .p2 = { .dot_limit = 165000,
 132                .p2_slow = 14, .p2_fast = 7 },
 133        .find_pll = intel_find_best_PLL,
 134};
 135
 136static const intel_limit_t intel_limits_i9xx_sdvo = {
 137        .dot = { .min = 20000, .max = 400000 },
 138        .vco = { .min = 1400000, .max = 2800000 },
 139        .n = { .min = 1, .max = 6 },
 140        .m = { .min = 70, .max = 120 },
 141        .m1 = { .min = 10, .max = 22 },
 142        .m2 = { .min = 5, .max = 9 },
 143        .p = { .min = 5, .max = 80 },
 144        .p1 = { .min = 1, .max = 8 },
 145        .p2 = { .dot_limit = 200000,
 146                .p2_slow = 10, .p2_fast = 5 },
 147        .find_pll = intel_find_best_PLL,
 148};
 149
 150static const intel_limit_t intel_limits_i9xx_lvds = {
 151        .dot = { .min = 20000, .max = 400000 },
 152        .vco = { .min = 1400000, .max = 2800000 },
 153        .n = { .min = 1, .max = 6 },
 154        .m = { .min = 70, .max = 120 },
 155        .m1 = { .min = 10, .max = 22 },
 156        .m2 = { .min = 5, .max = 9 },
 157        .p = { .min = 7, .max = 98 },
 158        .p1 = { .min = 1, .max = 8 },
 159        .p2 = { .dot_limit = 112000,
 160                .p2_slow = 14, .p2_fast = 7 },
 161        .find_pll = intel_find_best_PLL,
 162};
 163
 164
 165static const intel_limit_t intel_limits_g4x_sdvo = {
 166        .dot = { .min = 25000, .max = 270000 },
 167        .vco = { .min = 1750000, .max = 3500000},
 168        .n = { .min = 1, .max = 4 },
 169        .m = { .min = 104, .max = 138 },
 170        .m1 = { .min = 17, .max = 23 },
 171        .m2 = { .min = 5, .max = 11 },
 172        .p = { .min = 10, .max = 30 },
 173        .p1 = { .min = 1, .max = 3},
 174        .p2 = { .dot_limit = 270000,
 175                .p2_slow = 10,
 176                .p2_fast = 10
 177        },
 178        .find_pll = intel_g4x_find_best_PLL,
 179};
 180
 181static const intel_limit_t intel_limits_g4x_hdmi = {
 182        .dot = { .min = 22000, .max = 400000 },
 183        .vco = { .min = 1750000, .max = 3500000},
 184        .n = { .min = 1, .max = 4 },
 185        .m = { .min = 104, .max = 138 },
 186        .m1 = { .min = 16, .max = 23 },
 187        .m2 = { .min = 5, .max = 11 },
 188        .p = { .min = 5, .max = 80 },
 189        .p1 = { .min = 1, .max = 8},
 190        .p2 = { .dot_limit = 165000,
 191                .p2_slow = 10, .p2_fast = 5 },
 192        .find_pll = intel_g4x_find_best_PLL,
 193};
 194
 195static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
 196        .dot = { .min = 20000, .max = 115000 },
 197        .vco = { .min = 1750000, .max = 3500000 },
 198        .n = { .min = 1, .max = 3 },
 199        .m = { .min = 104, .max = 138 },
 200        .m1 = { .min = 17, .max = 23 },
 201        .m2 = { .min = 5, .max = 11 },
 202        .p = { .min = 28, .max = 112 },
 203        .p1 = { .min = 2, .max = 8 },
 204        .p2 = { .dot_limit = 0,
 205                .p2_slow = 14, .p2_fast = 14
 206        },
 207        .find_pll = intel_g4x_find_best_PLL,
 208};
 209
 210static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
 211        .dot = { .min = 80000, .max = 224000 },
 212        .vco = { .min = 1750000, .max = 3500000 },
 213        .n = { .min = 1, .max = 3 },
 214        .m = { .min = 104, .max = 138 },
 215        .m1 = { .min = 17, .max = 23 },
 216        .m2 = { .min = 5, .max = 11 },
 217        .p = { .min = 14, .max = 42 },
 218        .p1 = { .min = 2, .max = 6 },
 219        .p2 = { .dot_limit = 0,
 220                .p2_slow = 7, .p2_fast = 7
 221        },
 222        .find_pll = intel_g4x_find_best_PLL,
 223};
 224
 225static const intel_limit_t intel_limits_g4x_display_port = {
 226        .dot = { .min = 161670, .max = 227000 },
 227        .vco = { .min = 1750000, .max = 3500000},
 228        .n = { .min = 1, .max = 2 },
 229        .m = { .min = 97, .max = 108 },
 230        .m1 = { .min = 0x10, .max = 0x12 },
 231        .m2 = { .min = 0x05, .max = 0x06 },
 232        .p = { .min = 10, .max = 20 },
 233        .p1 = { .min = 1, .max = 2},
 234        .p2 = { .dot_limit = 0,
 235                .p2_slow = 10, .p2_fast = 10 },
 236        .find_pll = intel_find_pll_g4x_dp,
 237};
 238
 239static const intel_limit_t intel_limits_pineview_sdvo = {
 240        .dot = { .min = 20000, .max = 400000},
 241        .vco = { .min = 1700000, .max = 3500000 },
 242        /* Pineview's Ncounter is a ring counter */
 243        .n = { .min = 3, .max = 6 },
 244        .m = { .min = 2, .max = 256 },
 245        /* Pineview only has one combined m divider, which we treat as m2. */
 246        .m1 = { .min = 0, .max = 0 },
 247        .m2 = { .min = 0, .max = 254 },
 248        .p = { .min = 5, .max = 80 },
 249        .p1 = { .min = 1, .max = 8 },
 250        .p2 = { .dot_limit = 200000,
 251                .p2_slow = 10, .p2_fast = 5 },
 252        .find_pll = intel_find_best_PLL,
 253};
 254
 255static const intel_limit_t intel_limits_pineview_lvds = {
 256        .dot = { .min = 20000, .max = 400000 },
 257        .vco = { .min = 1700000, .max = 3500000 },
 258        .n = { .min = 3, .max = 6 },
 259        .m = { .min = 2, .max = 256 },
 260        .m1 = { .min = 0, .max = 0 },
 261        .m2 = { .min = 0, .max = 254 },
 262        .p = { .min = 7, .max = 112 },
 263        .p1 = { .min = 1, .max = 8 },
 264        .p2 = { .dot_limit = 112000,
 265                .p2_slow = 14, .p2_fast = 14 },
 266        .find_pll = intel_find_best_PLL,
 267};
 268
 269/* Ironlake / Sandybridge
 270 *
 271 * We calculate clock using (register_value + 2) for N/M1/M2, so here
 272 * the range value for them is (actual_value - 2).
 273 */
 274static const intel_limit_t intel_limits_ironlake_dac = {
 275        .dot = { .min = 25000, .max = 350000 },
 276        .vco = { .min = 1760000, .max = 3510000 },
 277        .n = { .min = 1, .max = 5 },
 278        .m = { .min = 79, .max = 127 },
 279        .m1 = { .min = 12, .max = 22 },
 280        .m2 = { .min = 5, .max = 9 },
 281        .p = { .min = 5, .max = 80 },
 282        .p1 = { .min = 1, .max = 8 },
 283        .p2 = { .dot_limit = 225000,
 284                .p2_slow = 10, .p2_fast = 5 },
 285        .find_pll = intel_g4x_find_best_PLL,
 286};
 287
 288static const intel_limit_t intel_limits_ironlake_single_lvds = {
 289        .dot = { .min = 25000, .max = 350000 },
 290        .vco = { .min = 1760000, .max = 3510000 },
 291        .n = { .min = 1, .max = 3 },
 292        .m = { .min = 79, .max = 118 },
 293        .m1 = { .min = 12, .max = 22 },
 294        .m2 = { .min = 5, .max = 9 },
 295        .p = { .min = 28, .max = 112 },
 296        .p1 = { .min = 2, .max = 8 },
 297        .p2 = { .dot_limit = 225000,
 298                .p2_slow = 14, .p2_fast = 14 },
 299        .find_pll = intel_g4x_find_best_PLL,
 300};
 301
 302static const intel_limit_t intel_limits_ironlake_dual_lvds = {
 303        .dot = { .min = 25000, .max = 350000 },
 304        .vco = { .min = 1760000, .max = 3510000 },
 305        .n = { .min = 1, .max = 3 },
 306        .m = { .min = 79, .max = 127 },
 307        .m1 = { .min = 12, .max = 22 },
 308        .m2 = { .min = 5, .max = 9 },
 309        .p = { .min = 14, .max = 56 },
 310        .p1 = { .min = 2, .max = 8 },
 311        .p2 = { .dot_limit = 225000,
 312                .p2_slow = 7, .p2_fast = 7 },
 313        .find_pll = intel_g4x_find_best_PLL,
 314};
 315
 316/* LVDS 100mhz refclk limits. */
 317static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
 318        .dot = { .min = 25000, .max = 350000 },
 319        .vco = { .min = 1760000, .max = 3510000 },
 320        .n = { .min = 1, .max = 2 },
 321        .m = { .min = 79, .max = 126 },
 322        .m1 = { .min = 12, .max = 22 },
 323        .m2 = { .min = 5, .max = 9 },
 324        .p = { .min = 28, .max = 112 },
 325        .p1 = { .min = 2, .max = 8 },
 326        .p2 = { .dot_limit = 225000,
 327                .p2_slow = 14, .p2_fast = 14 },
 328        .find_pll = intel_g4x_find_best_PLL,
 329};
 330
 331static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
 332        .dot = { .min = 25000, .max = 350000 },
 333        .vco = { .min = 1760000, .max = 3510000 },
 334        .n = { .min = 1, .max = 3 },
 335        .m = { .min = 79, .max = 126 },
 336        .m1 = { .min = 12, .max = 22 },
 337        .m2 = { .min = 5, .max = 9 },
 338        .p = { .min = 14, .max = 42 },
 339        .p1 = { .min = 2, .max = 6 },
 340        .p2 = { .dot_limit = 225000,
 341                .p2_slow = 7, .p2_fast = 7 },
 342        .find_pll = intel_g4x_find_best_PLL,
 343};
 344
 345static const intel_limit_t intel_limits_ironlake_display_port = {
 346        .dot = { .min = 25000, .max = 350000 },
 347        .vco = { .min = 1760000, .max = 3510000},
 348        .n = { .min = 1, .max = 2 },
 349        .m = { .min = 81, .max = 90 },
 350        .m1 = { .min = 12, .max = 22 },
 351        .m2 = { .min = 5, .max = 9 },
 352        .p = { .min = 10, .max = 20 },
 353        .p1 = { .min = 1, .max = 2},
 354        .p2 = { .dot_limit = 0,
 355                .p2_slow = 10, .p2_fast = 10 },
 356        .find_pll = intel_find_pll_ironlake_dp,
 357};
 358
 359static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
 360                                                int refclk)
 361{
 362        struct drm_device *dev = crtc->dev;
 363        struct drm_i915_private *dev_priv = dev->dev_private;
 364        const intel_limit_t *limit;
 365
 366        if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
 367                if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
 368                    LVDS_CLKB_POWER_UP) {
 369                        /* LVDS dual channel */
 370                        if (refclk == 100000)
 371                                limit = &intel_limits_ironlake_dual_lvds_100m;
 372                        else
 373                                limit = &intel_limits_ironlake_dual_lvds;
 374                } else {
 375                        if (refclk == 100000)
 376                                limit = &intel_limits_ironlake_single_lvds_100m;
 377                        else
 378                                limit = &intel_limits_ironlake_single_lvds;
 379                }
 380        } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
 381                        HAS_eDP)
 382                limit = &intel_limits_ironlake_display_port;
 383        else
 384                limit = &intel_limits_ironlake_dac;
 385
 386        return limit;
 387}
 388
 389static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
 390{
 391        struct drm_device *dev = crtc->dev;
 392        struct drm_i915_private *dev_priv = dev->dev_private;
 393        const intel_limit_t *limit;
 394
 395        if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
 396                if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
 397                    LVDS_CLKB_POWER_UP)
 398                        /* LVDS with dual channel */
 399                        limit = &intel_limits_g4x_dual_channel_lvds;
 400                else
 401                        /* LVDS with dual channel */
 402                        limit = &intel_limits_g4x_single_channel_lvds;
 403        } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
 404                   intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
 405                limit = &intel_limits_g4x_hdmi;
 406        } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
 407                limit = &intel_limits_g4x_sdvo;
 408        } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
 409                limit = &intel_limits_g4x_display_port;
 410        } else /* The option is for other outputs */
 411                limit = &intel_limits_i9xx_sdvo;
 412
 413        return limit;
 414}
 415
 416static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
 417{
 418        struct drm_device *dev = crtc->dev;
 419        const intel_limit_t *limit;
 420
 421        if (HAS_PCH_SPLIT(dev))
 422                limit = intel_ironlake_limit(crtc, refclk);
 423        else if (IS_G4X(dev)) {
 424                limit = intel_g4x_limit(crtc);
 425        } else if (IS_PINEVIEW(dev)) {
 426                if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
 427                        limit = &intel_limits_pineview_lvds;
 428                else
 429                        limit = &intel_limits_pineview_sdvo;
 430        } else if (!IS_GEN2(dev)) {
 431                if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
 432                        limit = &intel_limits_i9xx_lvds;
 433                else
 434                        limit = &intel_limits_i9xx_sdvo;
 435        } else {
 436                if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
 437                        limit = &intel_limits_i8xx_lvds;
 438                else
 439                        limit = &intel_limits_i8xx_dvo;
 440        }
 441        return limit;
 442}
 443
 444/* m1 is reserved as 0 in Pineview, n is a ring counter */
 445static void pineview_clock(int refclk, intel_clock_t *clock)
 446{
 447        clock->m = clock->m2 + 2;
 448        clock->p = clock->p1 * clock->p2;
 449        clock->vco = refclk * clock->m / clock->n;
 450        clock->dot = clock->vco / clock->p;
 451}
 452
 453static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
 454{
 455        if (IS_PINEVIEW(dev)) {
 456                pineview_clock(refclk, clock);
 457                return;
 458        }
 459        clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
 460        clock->p = clock->p1 * clock->p2;
 461        clock->vco = refclk * clock->m / (clock->n + 2);
 462        clock->dot = clock->vco / clock->p;
 463}
 464
 465/**
 466 * Returns whether any output on the specified pipe is of the specified type
 467 */
 468bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
 469{
 470        struct drm_device *dev = crtc->dev;
 471        struct drm_mode_config *mode_config = &dev->mode_config;
 472        struct intel_encoder *encoder;
 473
 474        list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
 475                if (encoder->base.crtc == crtc && encoder->type == type)
 476                        return true;
 477
 478        return false;
 479}
 480
 481#define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
 482/**
 483 * Returns whether the given set of divisors are valid for a given refclk with
 484 * the given connectors.
 485 */
 486
 487static bool intel_PLL_is_valid(struct drm_device *dev,
 488                               const intel_limit_t *limit,
 489                               const intel_clock_t *clock)
 490{
 491        if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
 492                INTELPllInvalid("p1 out of range\n");
 493        if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
 494                INTELPllInvalid("p out of range\n");
 495        if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
 496                INTELPllInvalid("m2 out of range\n");
 497        if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
 498                INTELPllInvalid("m1 out of range\n");
 499        if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
 500                INTELPllInvalid("m1 <= m2\n");
 501        if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
 502                INTELPllInvalid("m out of range\n");
 503        if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
 504                INTELPllInvalid("n out of range\n");
 505        if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
 506                INTELPllInvalid("vco out of range\n");
 507        /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
 508         * connector, etc., rather than just a single range.
 509         */
 510        if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
 511                INTELPllInvalid("dot out of range\n");
 512
 513        return true;
 514}
 515
 516static bool
 517intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
 518                    int target, int refclk, intel_clock_t *best_clock)
 519
 520{
 521        struct drm_device *dev = crtc->dev;
 522        struct drm_i915_private *dev_priv = dev->dev_private;
 523        intel_clock_t clock;
 524        int err = target;
 525
 526        if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
 527            (I915_READ(LVDS)) != 0) {
 528                /*
 529                 * For LVDS, if the panel is on, just rely on its current
 530                 * settings for dual-channel.  We haven't figured out how to
 531                 * reliably set up different single/dual channel state, if we
 532                 * even can.
 533                 */
 534                if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
 535                    LVDS_CLKB_POWER_UP)
 536                        clock.p2 = limit->p2.p2_fast;
 537                else
 538                        clock.p2 = limit->p2.p2_slow;
 539        } else {
 540                if (target < limit->p2.dot_limit)
 541                        clock.p2 = limit->p2.p2_slow;
 542                else
 543                        clock.p2 = limit->p2.p2_fast;
 544        }
 545
 546        memset(best_clock, 0, sizeof(*best_clock));
 547
 548        for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
 549             clock.m1++) {
 550                for (clock.m2 = limit->m2.min;
 551                     clock.m2 <= limit->m2.max; clock.m2++) {
 552                        /* m1 is always 0 in Pineview */
 553                        if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
 554                                break;
 555                        for (clock.n = limit->n.min;
 556                             clock.n <= limit->n.max; clock.n++) {
 557                                for (clock.p1 = limit->p1.min;
 558                                        clock.p1 <= limit->p1.max; clock.p1++) {
 559                                        int this_err;
 560
 561                                        intel_clock(dev, refclk, &clock);
 562                                        if (!intel_PLL_is_valid(dev, limit,
 563                                                                &clock))
 564                                                continue;
 565
 566                                        this_err = abs(clock.dot - target);
 567                                        if (this_err < err) {
 568                                                *best_clock = clock;
 569                                                err = this_err;
 570                                        }
 571                                }
 572                        }
 573                }
 574        }
 575
 576        return (err != target);
 577}
 578
 579static bool
 580intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
 581                        int target, int refclk, intel_clock_t *best_clock)
 582{
 583        struct drm_device *dev = crtc->dev;
 584        struct drm_i915_private *dev_priv = dev->dev_private;
 585        intel_clock_t clock;
 586        int max_n;
 587        bool found;
 588        /* approximately equals target * 0.00585 */
 589        int err_most = (target >> 8) + (target >> 9);
 590        found = false;
 591
 592        if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
 593                int lvds_reg;
 594
 595                if (HAS_PCH_SPLIT(dev))
 596                        lvds_reg = PCH_LVDS;
 597                else
 598                        lvds_reg = LVDS;
 599                if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
 600                    LVDS_CLKB_POWER_UP)
 601                        clock.p2 = limit->p2.p2_fast;
 602                else
 603                        clock.p2 = limit->p2.p2_slow;
 604        } else {
 605                if (target < limit->p2.dot_limit)
 606                        clock.p2 = limit->p2.p2_slow;
 607                else
 608                        clock.p2 = limit->p2.p2_fast;
 609        }
 610
 611        memset(best_clock, 0, sizeof(*best_clock));
 612        max_n = limit->n.max;
 613        /* based on hardware requirement, prefer smaller n to precision */
 614        for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
 615                /* based on hardware requirement, prefere larger m1,m2 */
 616                for (clock.m1 = limit->m1.max;
 617                     clock.m1 >= limit->m1.min; clock.m1--) {
 618                        for (clock.m2 = limit->m2.max;
 619                             clock.m2 >= limit->m2.min; clock.m2--) {
 620                                for (clock.p1 = limit->p1.max;
 621                                     clock.p1 >= limit->p1.min; clock.p1--) {
 622                                        int this_err;
 623
 624                                        intel_clock(dev, refclk, &clock);
 625                                        if (!intel_PLL_is_valid(dev, limit,
 626                                                                &clock))
 627                                                continue;
 628
 629                                        this_err = abs(clock.dot - target);
 630                                        if (this_err < err_most) {
 631                                                *best_clock = clock;
 632                                                err_most = this_err;
 633                                                max_n = clock.n;
 634                                                found = true;
 635                                        }
 636                                }
 637                        }
 638                }
 639        }
 640        return found;
 641}
 642
 643static bool
 644intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
 645                           int target, int refclk, intel_clock_t *best_clock)
 646{
 647        struct drm_device *dev = crtc->dev;
 648        intel_clock_t clock;
 649
 650        if (target < 200000) {
 651                clock.n = 1;
 652                clock.p1 = 2;
 653                clock.p2 = 10;
 654                clock.m1 = 12;
 655                clock.m2 = 9;
 656        } else {
 657                clock.n = 2;
 658                clock.p1 = 1;
 659                clock.p2 = 10;
 660                clock.m1 = 14;
 661                clock.m2 = 8;
 662        }
 663        intel_clock(dev, refclk, &clock);
 664        memcpy(best_clock, &clock, sizeof(intel_clock_t));
 665        return true;
 666}
 667
 668/* DisplayPort has only two frequencies, 162MHz and 270MHz */
 669static bool
 670intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
 671                      int target, int refclk, intel_clock_t *best_clock)
 672{
 673        intel_clock_t clock;
 674        if (target < 200000) {
 675                clock.p1 = 2;
 676                clock.p2 = 10;
 677                clock.n = 2;
 678                clock.m1 = 23;
 679                clock.m2 = 8;
 680        } else {
 681                clock.p1 = 1;
 682                clock.p2 = 10;
 683                clock.n = 1;
 684                clock.m1 = 14;
 685                clock.m2 = 2;
 686        }
 687        clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
 688        clock.p = (clock.p1 * clock.p2);
 689        clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
 690        clock.vco = 0;
 691        memcpy(best_clock, &clock, sizeof(intel_clock_t));
 692        return true;
 693}
 694
 695/**
 696 * intel_wait_for_vblank - wait for vblank on a given pipe
 697 * @dev: drm device
 698 * @pipe: pipe to wait for
 699 *
 700 * Wait for vblank to occur on a given pipe.  Needed for various bits of
 701 * mode setting code.
 702 */
 703void intel_wait_for_vblank(struct drm_device *dev, int pipe)
 704{
 705        struct drm_i915_private *dev_priv = dev->dev_private;
 706        int pipestat_reg = PIPESTAT(pipe);
 707
 708        /* Clear existing vblank status. Note this will clear any other
 709         * sticky status fields as well.
 710         *
 711         * This races with i915_driver_irq_handler() with the result
 712         * that either function could miss a vblank event.  Here it is not
 713         * fatal, as we will either wait upon the next vblank interrupt or
 714         * timeout.  Generally speaking intel_wait_for_vblank() is only
 715         * called during modeset at which time the GPU should be idle and
 716         * should *not* be performing page flips and thus not waiting on
 717         * vblanks...
 718         * Currently, the result of us stealing a vblank from the irq
 719         * handler is that a single frame will be skipped during swapbuffers.
 720         */
 721        I915_WRITE(pipestat_reg,
 722                   I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
 723
 724        /* Wait for vblank interrupt bit to set */
 725        if (wait_for(I915_READ(pipestat_reg) &
 726                     PIPE_VBLANK_INTERRUPT_STATUS,
 727                     50))
 728                DRM_DEBUG_KMS("vblank wait timed out\n");
 729}
 730
 731/*
 732 * intel_wait_for_pipe_off - wait for pipe to turn off
 733 * @dev: drm device
 734 * @pipe: pipe to wait for
 735 *
 736 * After disabling a pipe, we can't wait for vblank in the usual way,
 737 * spinning on the vblank interrupt status bit, since we won't actually
 738 * see an interrupt when the pipe is disabled.
 739 *
 740 * On Gen4 and above:
 741 *   wait for the pipe register state bit to turn off
 742 *
 743 * Otherwise:
 744 *   wait for the display line value to settle (it usually
 745 *   ends up stopping at the start of the next frame).
 746 *
 747 */
 748void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
 749{
 750        struct drm_i915_private *dev_priv = dev->dev_private;
 751
 752        if (INTEL_INFO(dev)->gen >= 4) {
 753                int reg = PIPECONF(pipe);
 754
 755                /* Wait for the Pipe State to go off */
 756                if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
 757                             100))
 758                        DRM_DEBUG_KMS("pipe_off wait timed out\n");
 759        } else {
 760                u32 last_line;
 761                int reg = PIPEDSL(pipe);
 762                unsigned long timeout = jiffies + msecs_to_jiffies(100);
 763
 764                /* Wait for the display line to settle */
 765                do {
 766                        last_line = I915_READ(reg) & DSL_LINEMASK;
 767                        mdelay(5);
 768                } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
 769                         time_after(timeout, jiffies));
 770                if (time_after(jiffies, timeout))
 771                        DRM_DEBUG_KMS("pipe_off wait timed out\n");
 772        }
 773}
 774
 775static const char *state_string(bool enabled)
 776{
 777        return enabled ? "on" : "off";
 778}
 779
 780/* Only for pre-ILK configs */
 781static void assert_pll(struct drm_i915_private *dev_priv,
 782                       enum pipe pipe, bool state)
 783{
 784        int reg;
 785        u32 val;
 786        bool cur_state;
 787
 788        reg = DPLL(pipe);
 789        val = I915_READ(reg);
 790        cur_state = !!(val & DPLL_VCO_ENABLE);
 791        WARN(cur_state != state,
 792             "PLL state assertion failure (expected %s, current %s)\n",
 793             state_string(state), state_string(cur_state));
 794}
 795#define assert_pll_enabled(d, p) assert_pll(d, p, true)
 796#define assert_pll_disabled(d, p) assert_pll(d, p, false)
 797
 798/* For ILK+ */
 799static void assert_pch_pll(struct drm_i915_private *dev_priv,
 800                           enum pipe pipe, bool state)
 801{
 802        int reg;
 803        u32 val;
 804        bool cur_state;
 805
 806        if (HAS_PCH_CPT(dev_priv->dev)) {
 807                u32 pch_dpll;
 808
 809                pch_dpll = I915_READ(PCH_DPLL_SEL);
 810
 811                /* Make sure the selected PLL is enabled to the transcoder */
 812                WARN(!((pch_dpll >> (4 * pipe)) & 8),
 813                     "transcoder %d PLL not enabled\n", pipe);
 814
 815                /* Convert the transcoder pipe number to a pll pipe number */
 816                pipe = (pch_dpll >> (4 * pipe)) & 1;
 817        }
 818
 819        reg = PCH_DPLL(pipe);
 820        val = I915_READ(reg);
 821        cur_state = !!(val & DPLL_VCO_ENABLE);
 822        WARN(cur_state != state,
 823             "PCH PLL state assertion failure (expected %s, current %s)\n",
 824             state_string(state), state_string(cur_state));
 825}
 826#define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
 827#define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
 828
 829static void assert_fdi_tx(struct drm_i915_private *dev_priv,
 830                          enum pipe pipe, bool state)
 831{
 832        int reg;
 833        u32 val;
 834        bool cur_state;
 835
 836        reg = FDI_TX_CTL(pipe);
 837        val = I915_READ(reg);
 838        cur_state = !!(val & FDI_TX_ENABLE);
 839        WARN(cur_state != state,
 840             "FDI TX state assertion failure (expected %s, current %s)\n",
 841             state_string(state), state_string(cur_state));
 842}
 843#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
 844#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
 845
 846static void assert_fdi_rx(struct drm_i915_private *dev_priv,
 847                          enum pipe pipe, bool state)
 848{
 849        int reg;
 850        u32 val;
 851        bool cur_state;
 852
 853        reg = FDI_RX_CTL(pipe);
 854        val = I915_READ(reg);
 855        cur_state = !!(val & FDI_RX_ENABLE);
 856        WARN(cur_state != state,
 857             "FDI RX state assertion failure (expected %s, current %s)\n",
 858             state_string(state), state_string(cur_state));
 859}
 860#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
 861#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
 862
 863static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
 864                                      enum pipe pipe)
 865{
 866        int reg;
 867        u32 val;
 868
 869        /* ILK FDI PLL is always enabled */
 870        if (dev_priv->info->gen == 5)
 871                return;
 872
 873        reg = FDI_TX_CTL(pipe);
 874        val = I915_READ(reg);
 875        WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
 876}
 877
 878static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
 879                                      enum pipe pipe)
 880{
 881        int reg;
 882        u32 val;
 883
 884        reg = FDI_RX_CTL(pipe);
 885        val = I915_READ(reg);
 886        WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
 887}
 888
 889static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
 890                                  enum pipe pipe)
 891{
 892        int pp_reg, lvds_reg;
 893        u32 val;
 894        enum pipe panel_pipe = PIPE_A;
 895        bool locked = true;
 896
 897        if (HAS_PCH_SPLIT(dev_priv->dev)) {
 898                pp_reg = PCH_PP_CONTROL;
 899                lvds_reg = PCH_LVDS;
 900        } else {
 901                pp_reg = PP_CONTROL;
 902                lvds_reg = LVDS;
 903        }
 904
 905        val = I915_READ(pp_reg);
 906        if (!(val & PANEL_POWER_ON) ||
 907            ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
 908                locked = false;
 909
 910        if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
 911                panel_pipe = PIPE_B;
 912
 913        WARN(panel_pipe == pipe && locked,
 914             "panel assertion failure, pipe %c regs locked\n",
 915             pipe_name(pipe));
 916}
 917
 918void assert_pipe(struct drm_i915_private *dev_priv,
 919                 enum pipe pipe, bool state)
 920{
 921        int reg;
 922        u32 val;
 923        bool cur_state;
 924
 925        reg = PIPECONF(pipe);
 926        val = I915_READ(reg);
 927        cur_state = !!(val & PIPECONF_ENABLE);
 928        WARN(cur_state != state,
 929             "pipe %c assertion failure (expected %s, current %s)\n",
 930             pipe_name(pipe), state_string(state), state_string(cur_state));
 931}
 932
 933static void assert_plane_enabled(struct drm_i915_private *dev_priv,
 934                                 enum plane plane)
 935{
 936        int reg;
 937        u32 val;
 938
 939        reg = DSPCNTR(plane);
 940        val = I915_READ(reg);
 941        WARN(!(val & DISPLAY_PLANE_ENABLE),
 942             "plane %c assertion failure, should be active but is disabled\n",
 943             plane_name(plane));
 944}
 945
 946static void assert_planes_disabled(struct drm_i915_private *dev_priv,
 947                                   enum pipe pipe)
 948{
 949        int reg, i;
 950        u32 val;
 951        int cur_pipe;
 952
 953        /* Planes are fixed to pipes on ILK+ */
 954        if (HAS_PCH_SPLIT(dev_priv->dev))
 955                return;
 956
 957        /* Need to check both planes against the pipe */
 958        for (i = 0; i < 2; i++) {
 959                reg = DSPCNTR(i);
 960                val = I915_READ(reg);
 961                cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
 962                        DISPPLANE_SEL_PIPE_SHIFT;
 963                WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
 964                     "plane %c assertion failure, should be off on pipe %c but is still active\n",
 965                     plane_name(i), pipe_name(pipe));
 966        }
 967}
 968
 969static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
 970{
 971        u32 val;
 972        bool enabled;
 973
 974        val = I915_READ(PCH_DREF_CONTROL);
 975        enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
 976                            DREF_SUPERSPREAD_SOURCE_MASK));
 977        WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
 978}
 979
 980static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
 981                                       enum pipe pipe)
 982{
 983        int reg;
 984        u32 val;
 985        bool enabled;
 986
 987        reg = TRANSCONF(pipe);
 988        val = I915_READ(reg);
 989        enabled = !!(val & TRANS_ENABLE);
 990        WARN(enabled,
 991             "transcoder assertion failed, should be off on pipe %c but is still active\n",
 992             pipe_name(pipe));
 993}
 994
 995static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
 996                            enum pipe pipe, u32 port_sel, u32 val)
 997{
 998        if ((val & DP_PORT_EN) == 0)
 999                return false;
1000
1001        if (HAS_PCH_CPT(dev_priv->dev)) {
1002                u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1003                u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1004                if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1005                        return false;
1006        } else {
1007                if ((val & DP_PIPE_MASK) != (pipe << 30))
1008                        return false;
1009        }
1010        return true;
1011}
1012
1013static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1014                              enum pipe pipe, u32 val)
1015{
1016        if ((val & PORT_ENABLE) == 0)
1017                return false;
1018
1019        if (HAS_PCH_CPT(dev_priv->dev)) {
1020                if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1021                        return false;
1022        } else {
1023                if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1024                        return false;
1025        }
1026        return true;
1027}
1028
1029static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1030                              enum pipe pipe, u32 val)
1031{
1032        if ((val & LVDS_PORT_EN) == 0)
1033                return false;
1034
1035        if (HAS_PCH_CPT(dev_priv->dev)) {
1036                if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1037                        return false;
1038        } else {
1039                if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1040                        return false;
1041        }
1042        return true;
1043}
1044
1045static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1046                              enum pipe pipe, u32 val)
1047{
1048        if ((val & ADPA_DAC_ENABLE) == 0)
1049                return false;
1050        if (HAS_PCH_CPT(dev_priv->dev)) {
1051                if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1052                        return false;
1053        } else {
1054                if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1055                        return false;
1056        }
1057        return true;
1058}
1059
1060static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1061                                   enum pipe pipe, int reg, u32 port_sel)
1062{
1063        u32 val = I915_READ(reg);
1064        WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1065             "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1066             reg, pipe_name(pipe));
1067}
1068
1069static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1070                                     enum pipe pipe, int reg)
1071{
1072        u32 val = I915_READ(reg);
1073        WARN(hdmi_pipe_enabled(dev_priv, val, pipe),
1074             "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1075             reg, pipe_name(pipe));
1076}
1077
1078static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1079                                      enum pipe pipe)
1080{
1081        int reg;
1082        u32 val;
1083
1084        assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1085        assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1086        assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1087
1088        reg = PCH_ADPA;
1089        val = I915_READ(reg);
1090        WARN(adpa_pipe_enabled(dev_priv, val, pipe),
1091             "PCH VGA enabled on transcoder %c, should be disabled\n",
1092             pipe_name(pipe));
1093
1094        reg = PCH_LVDS;
1095        val = I915_READ(reg);
1096        WARN(lvds_pipe_enabled(dev_priv, val, pipe),
1097             "PCH LVDS enabled on transcoder %c, should be disabled\n",
1098             pipe_name(pipe));
1099
1100        assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1101        assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1102        assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1103}
1104
1105/**
1106 * intel_enable_pll - enable a PLL
1107 * @dev_priv: i915 private structure
1108 * @pipe: pipe PLL to enable
1109 *
1110 * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1111 * make sure the PLL reg is writable first though, since the panel write
1112 * protect mechanism may be enabled.
1113 *
1114 * Note!  This is for pre-ILK only.
1115 */
1116static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1117{
1118        int reg;
1119        u32 val;
1120
1121        /* No really, not for ILK+ */
1122        BUG_ON(dev_priv->info->gen >= 5);
1123
1124        /* PLL is protected by panel, make sure we can write it */
1125        if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1126                assert_panel_unlocked(dev_priv, pipe);
1127
1128        reg = DPLL(pipe);
1129        val = I915_READ(reg);
1130        val |= DPLL_VCO_ENABLE;
1131
1132        /* We do this three times for luck */
1133        I915_WRITE(reg, val);
1134        POSTING_READ(reg);
1135        udelay(150); /* wait for warmup */
1136        I915_WRITE(reg, val);
1137        POSTING_READ(reg);
1138        udelay(150); /* wait for warmup */
1139        I915_WRITE(reg, val);
1140        POSTING_READ(reg);
1141        udelay(150); /* wait for warmup */
1142}
1143
1144/**
1145 * intel_disable_pll - disable a PLL
1146 * @dev_priv: i915 private structure
1147 * @pipe: pipe PLL to disable
1148 *
1149 * Disable the PLL for @pipe, making sure the pipe is off first.
1150 *
1151 * Note!  This is for pre-ILK only.
1152 */
1153static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1154{
1155        int reg;
1156        u32 val;
1157
1158        /* Don't disable pipe A or pipe A PLLs if needed */
1159        if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1160                return;
1161
1162        /* Make sure the pipe isn't still relying on us */
1163        assert_pipe_disabled(dev_priv, pipe);
1164
1165        reg = DPLL(pipe);
1166        val = I915_READ(reg);
1167        val &= ~DPLL_VCO_ENABLE;
1168        I915_WRITE(reg, val);
1169        POSTING_READ(reg);
1170}
1171
1172/**
1173 * intel_enable_pch_pll - enable PCH PLL
1174 * @dev_priv: i915 private structure
1175 * @pipe: pipe PLL to enable
1176 *
1177 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1178 * drives the transcoder clock.
1179 */
1180static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
1181                                 enum pipe pipe)
1182{
1183        int reg;
1184        u32 val;
1185
1186        if (pipe > 1)
1187                return;
1188
1189        /* PCH only available on ILK+ */
1190        BUG_ON(dev_priv->info->gen < 5);
1191
1192        /* PCH refclock must be enabled first */
1193        assert_pch_refclk_enabled(dev_priv);
1194
1195        reg = PCH_DPLL(pipe);
1196        val = I915_READ(reg);
1197        val |= DPLL_VCO_ENABLE;
1198        I915_WRITE(reg, val);
1199        POSTING_READ(reg);
1200        udelay(200);
1201}
1202
1203static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
1204                                  enum pipe pipe)
1205{
1206        int reg;
1207        u32 val, pll_mask = TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL,
1208                pll_sel = TRANSC_DPLL_ENABLE;
1209
1210        if (pipe > 1)
1211                return;
1212
1213        /* PCH only available on ILK+ */
1214        BUG_ON(dev_priv->info->gen < 5);
1215
1216        /* Make sure transcoder isn't still depending on us */
1217        assert_transcoder_disabled(dev_priv, pipe);
1218
1219        if (pipe == 0)
1220                pll_sel |= TRANSC_DPLLA_SEL;
1221        else if (pipe == 1)
1222                pll_sel |= TRANSC_DPLLB_SEL;
1223
1224
1225        if ((I915_READ(PCH_DPLL_SEL) & pll_mask) == pll_sel)
1226                return;
1227
1228        reg = PCH_DPLL(pipe);
1229        val = I915_READ(reg);
1230        val &= ~DPLL_VCO_ENABLE;
1231        I915_WRITE(reg, val);
1232        POSTING_READ(reg);
1233        udelay(200);
1234}
1235
1236static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1237                                    enum pipe pipe)
1238{
1239        int reg;
1240        u32 val;
1241
1242        /* PCH only available on ILK+ */
1243        BUG_ON(dev_priv->info->gen < 5);
1244
1245        /* Make sure PCH DPLL is enabled */
1246        assert_pch_pll_enabled(dev_priv, pipe);
1247
1248        /* FDI must be feeding us bits for PCH ports */
1249        assert_fdi_tx_enabled(dev_priv, pipe);
1250        assert_fdi_rx_enabled(dev_priv, pipe);
1251
1252        reg = TRANSCONF(pipe);
1253        val = I915_READ(reg);
1254
1255        if (HAS_PCH_IBX(dev_priv->dev)) {
1256                /*
1257                 * make the BPC in transcoder be consistent with
1258                 * that in pipeconf reg.
1259                 */
1260                val &= ~PIPE_BPC_MASK;
1261                val |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
1262        }
1263        I915_WRITE(reg, val | TRANS_ENABLE);
1264        if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1265                DRM_ERROR("failed to enable transcoder %d\n", pipe);
1266}
1267
1268static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1269                                     enum pipe pipe)
1270{
1271        int reg;
1272        u32 val;
1273
1274        /* FDI relies on the transcoder */
1275        assert_fdi_tx_disabled(dev_priv, pipe);
1276        assert_fdi_rx_disabled(dev_priv, pipe);
1277
1278        /* Ports must be off as well */
1279        assert_pch_ports_disabled(dev_priv, pipe);
1280
1281        reg = TRANSCONF(pipe);
1282        val = I915_READ(reg);
1283        val &= ~TRANS_ENABLE;
1284        I915_WRITE(reg, val);
1285        /* wait for PCH transcoder off, transcoder state */
1286        if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1287                DRM_ERROR("failed to disable transcoder %d\n", pipe);
1288}
1289
1290/**
1291 * intel_enable_pipe - enable a pipe, asserting requirements
1292 * @dev_priv: i915 private structure
1293 * @pipe: pipe to enable
1294 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1295 *
1296 * Enable @pipe, making sure that various hardware specific requirements
1297 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1298 *
1299 * @pipe should be %PIPE_A or %PIPE_B.
1300 *
1301 * Will wait until the pipe is actually running (i.e. first vblank) before
1302 * returning.
1303 */
1304static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1305                              bool pch_port)
1306{
1307        int reg;
1308        u32 val;
1309
1310        /*
1311         * A pipe without a PLL won't actually be able to drive bits from
1312         * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1313         * need the check.
1314         */
1315        if (!HAS_PCH_SPLIT(dev_priv->dev))
1316                assert_pll_enabled(dev_priv, pipe);
1317        else {
1318                if (pch_port) {
1319                        /* if driving the PCH, we need FDI enabled */
1320                        assert_fdi_rx_pll_enabled(dev_priv, pipe);
1321                        assert_fdi_tx_pll_enabled(dev_priv, pipe);
1322                }
1323                /* FIXME: assert CPU port conditions for SNB+ */
1324        }
1325
1326        reg = PIPECONF(pipe);
1327        val = I915_READ(reg);
1328        if (val & PIPECONF_ENABLE)
1329                return;
1330
1331        I915_WRITE(reg, val | PIPECONF_ENABLE);
1332        intel_wait_for_vblank(dev_priv->dev, pipe);
1333}
1334
1335/**
1336 * intel_disable_pipe - disable a pipe, asserting requirements
1337 * @dev_priv: i915 private structure
1338 * @pipe: pipe to disable
1339 *
1340 * Disable @pipe, making sure that various hardware specific requirements
1341 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1342 *
1343 * @pipe should be %PIPE_A or %PIPE_B.
1344 *
1345 * Will wait until the pipe has shut down before returning.
1346 */
1347static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1348                               enum pipe pipe)
1349{
1350        int reg;
1351        u32 val;
1352
1353        /*
1354         * Make sure planes won't keep trying to pump pixels to us,
1355         * or we might hang the display.
1356         */
1357        assert_planes_disabled(dev_priv, pipe);
1358
1359        /* Don't disable pipe A or pipe A PLLs if needed */
1360        if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1361                return;
1362
1363        reg = PIPECONF(pipe);
1364        val = I915_READ(reg);
1365        if ((val & PIPECONF_ENABLE) == 0)
1366                return;
1367
1368        I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1369        intel_wait_for_pipe_off(dev_priv->dev, pipe);
1370}
1371
1372/*
1373 * Plane regs are double buffered, going from enabled->disabled needs a
1374 * trigger in order to latch.  The display address reg provides this.
1375 */
1376static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1377                                      enum plane plane)
1378{
1379        I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1380        I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1381}
1382
1383/**
1384 * intel_enable_plane - enable a display plane on a given pipe
1385 * @dev_priv: i915 private structure
1386 * @plane: plane to enable
1387 * @pipe: pipe being fed
1388 *
1389 * Enable @plane on @pipe, making sure that @pipe is running first.
1390 */
1391static void intel_enable_plane(struct drm_i915_private *dev_priv,
1392                               enum plane plane, enum pipe pipe)
1393{
1394        int reg;
1395        u32 val;
1396
1397        /* If the pipe isn't enabled, we can't pump pixels and may hang */
1398        assert_pipe_enabled(dev_priv, pipe);
1399
1400        reg = DSPCNTR(plane);
1401        val = I915_READ(reg);
1402        if (val & DISPLAY_PLANE_ENABLE)
1403                return;
1404
1405        I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1406        intel_flush_display_plane(dev_priv, plane);
1407        intel_wait_for_vblank(dev_priv->dev, pipe);
1408}
1409
1410/**
1411 * intel_disable_plane - disable a display plane
1412 * @dev_priv: i915 private structure
1413 * @plane: plane to disable
1414 * @pipe: pipe consuming the data
1415 *
1416 * Disable @plane; should be an independent operation.
1417 */
1418static void intel_disable_plane(struct drm_i915_private *dev_priv,
1419                                enum plane plane, enum pipe pipe)
1420{
1421        int reg;
1422        u32 val;
1423
1424        reg = DSPCNTR(plane);
1425        val = I915_READ(reg);
1426        if ((val & DISPLAY_PLANE_ENABLE) == 0)
1427                return;
1428
1429        I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1430        intel_flush_display_plane(dev_priv, plane);
1431        intel_wait_for_vblank(dev_priv->dev, pipe);
1432}
1433
1434static void disable_pch_dp(struct drm_i915_private *dev_priv,
1435                           enum pipe pipe, int reg, u32 port_sel)
1436{
1437        u32 val = I915_READ(reg);
1438        if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
1439                DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
1440                I915_WRITE(reg, val & ~DP_PORT_EN);
1441        }
1442}
1443
1444static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1445                             enum pipe pipe, int reg)
1446{
1447        u32 val = I915_READ(reg);
1448        if (hdmi_pipe_enabled(dev_priv, val, pipe)) {
1449                DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
1450                              reg, pipe);
1451                I915_WRITE(reg, val & ~PORT_ENABLE);
1452        }
1453}
1454
1455/* Disable any ports connected to this transcoder */
1456static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1457                                    enum pipe pipe)
1458{
1459        u32 reg, val;
1460
1461        val = I915_READ(PCH_PP_CONTROL);
1462        I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1463
1464        disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1465        disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1466        disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1467
1468        reg = PCH_ADPA;
1469        val = I915_READ(reg);
1470        if (adpa_pipe_enabled(dev_priv, val, pipe))
1471                I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1472
1473        reg = PCH_LVDS;
1474        val = I915_READ(reg);
1475        if (lvds_pipe_enabled(dev_priv, val, pipe)) {
1476                DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
1477                I915_WRITE(reg, val & ~LVDS_PORT_EN);
1478                POSTING_READ(reg);
1479                udelay(100);
1480        }
1481
1482        disable_pch_hdmi(dev_priv, pipe, HDMIB);
1483        disable_pch_hdmi(dev_priv, pipe, HDMIC);
1484        disable_pch_hdmi(dev_priv, pipe, HDMID);
1485}
1486
1487static void i8xx_disable_fbc(struct drm_device *dev)
1488{
1489        struct drm_i915_private *dev_priv = dev->dev_private;
1490        u32 fbc_ctl;
1491
1492        /* Disable compression */
1493        fbc_ctl = I915_READ(FBC_CONTROL);
1494        if ((fbc_ctl & FBC_CTL_EN) == 0)
1495                return;
1496
1497        fbc_ctl &= ~FBC_CTL_EN;
1498        I915_WRITE(FBC_CONTROL, fbc_ctl);
1499
1500        /* Wait for compressing bit to clear */
1501        if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1502                DRM_DEBUG_KMS("FBC idle timed out\n");
1503                return;
1504        }
1505
1506        DRM_DEBUG_KMS("disabled FBC\n");
1507}
1508
1509static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1510{
1511        struct drm_device *dev = crtc->dev;
1512        struct drm_i915_private *dev_priv = dev->dev_private;
1513        struct drm_framebuffer *fb = crtc->fb;
1514        struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1515        struct drm_i915_gem_object *obj = intel_fb->obj;
1516        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1517        int cfb_pitch;
1518        int plane, i;
1519        u32 fbc_ctl, fbc_ctl2;
1520
1521        cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1522        if (fb->pitches[0] < cfb_pitch)
1523                cfb_pitch = fb->pitches[0];
1524
1525        /* FBC_CTL wants 64B units */
1526        cfb_pitch = (cfb_pitch / 64) - 1;
1527        plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1528
1529        /* Clear old tags */
1530        for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1531                I915_WRITE(FBC_TAG + (i * 4), 0);
1532
1533        /* Set it up... */
1534        fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
1535        fbc_ctl2 |= plane;
1536        I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1537        I915_WRITE(FBC_FENCE_OFF, crtc->y);
1538
1539        /* enable it... */
1540        fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1541        if (IS_I945GM(dev))
1542                fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1543        fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1544        fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1545        fbc_ctl |= obj->fence_reg;
1546        I915_WRITE(FBC_CONTROL, fbc_ctl);
1547
1548        DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
1549                      cfb_pitch, crtc->y, intel_crtc->plane);
1550}
1551
1552static bool i8xx_fbc_enabled(struct drm_device *dev)
1553{
1554        struct drm_i915_private *dev_priv = dev->dev_private;
1555
1556        return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1557}
1558
1559static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1560{
1561        struct drm_device *dev = crtc->dev;
1562        struct drm_i915_private *dev_priv = dev->dev_private;
1563        struct drm_framebuffer *fb = crtc->fb;
1564        struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1565        struct drm_i915_gem_object *obj = intel_fb->obj;
1566        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1567        int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1568        unsigned long stall_watermark = 200;
1569        u32 dpfc_ctl;
1570
1571        dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1572        dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
1573        I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1574
1575        I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1576                   (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1577                   (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1578        I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1579
1580        /* enable it... */
1581        I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1582
1583        DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1584}
1585
1586static void g4x_disable_fbc(struct drm_device *dev)
1587{
1588        struct drm_i915_private *dev_priv = dev->dev_private;
1589        u32 dpfc_ctl;
1590
1591        /* Disable compression */
1592        dpfc_ctl = I915_READ(DPFC_CONTROL);
1593        if (dpfc_ctl & DPFC_CTL_EN) {
1594                dpfc_ctl &= ~DPFC_CTL_EN;
1595                I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1596
1597                DRM_DEBUG_KMS("disabled FBC\n");
1598        }
1599}
1600
1601static bool g4x_fbc_enabled(struct drm_device *dev)
1602{
1603        struct drm_i915_private *dev_priv = dev->dev_private;
1604
1605        return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1606}
1607
1608static void sandybridge_blit_fbc_update(struct drm_device *dev)
1609{
1610        struct drm_i915_private *dev_priv = dev->dev_private;
1611        u32 blt_ecoskpd;
1612
1613        /* Make sure blitter notifies FBC of writes */
1614        gen6_gt_force_wake_get(dev_priv);
1615        blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
1616        blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
1617                GEN6_BLITTER_LOCK_SHIFT;
1618        I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1619        blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
1620        I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1621        blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
1622                         GEN6_BLITTER_LOCK_SHIFT);
1623        I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1624        POSTING_READ(GEN6_BLITTER_ECOSKPD);
1625        gen6_gt_force_wake_put(dev_priv);
1626}
1627
1628static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1629{
1630        struct drm_device *dev = crtc->dev;
1631        struct drm_i915_private *dev_priv = dev->dev_private;
1632        struct drm_framebuffer *fb = crtc->fb;
1633        struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1634        struct drm_i915_gem_object *obj = intel_fb->obj;
1635        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1636        int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1637        unsigned long stall_watermark = 200;
1638        u32 dpfc_ctl;
1639
1640        dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1641        dpfc_ctl &= DPFC_RESERVED;
1642        dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1643        /* Set persistent mode for front-buffer rendering, ala X. */
1644        dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
1645        dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
1646        I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1647
1648        I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1649                   (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1650                   (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1651        I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1652        I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
1653        /* enable it... */
1654        I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1655
1656        if (IS_GEN6(dev)) {
1657                I915_WRITE(SNB_DPFC_CTL_SA,
1658                           SNB_CPU_FENCE_ENABLE | obj->fence_reg);
1659                I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
1660                sandybridge_blit_fbc_update(dev);
1661        }
1662
1663        DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1664}
1665
1666static void ironlake_disable_fbc(struct drm_device *dev)
1667{
1668        struct drm_i915_private *dev_priv = dev->dev_private;
1669        u32 dpfc_ctl;
1670
1671        /* Disable compression */
1672        dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1673        if (dpfc_ctl & DPFC_CTL_EN) {
1674                dpfc_ctl &= ~DPFC_CTL_EN;
1675                I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1676
1677                DRM_DEBUG_KMS("disabled FBC\n");
1678        }
1679}
1680
1681static bool ironlake_fbc_enabled(struct drm_device *dev)
1682{
1683        struct drm_i915_private *dev_priv = dev->dev_private;
1684
1685        return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1686}
1687
1688bool intel_fbc_enabled(struct drm_device *dev)
1689{
1690        struct drm_i915_private *dev_priv = dev->dev_private;
1691
1692        if (!dev_priv->display.fbc_enabled)
1693                return false;
1694
1695        return dev_priv->display.fbc_enabled(dev);
1696}
1697
1698static void intel_fbc_work_fn(struct work_struct *__work)
1699{
1700        struct intel_fbc_work *work =
1701                container_of(to_delayed_work(__work),
1702                             struct intel_fbc_work, work);
1703        struct drm_device *dev = work->crtc->dev;
1704        struct drm_i915_private *dev_priv = dev->dev_private;
1705
1706        mutex_lock(&dev->struct_mutex);
1707        if (work == dev_priv->fbc_work) {
1708                /* Double check that we haven't switched fb without cancelling
1709                 * the prior work.
1710                 */
1711                if (work->crtc->fb == work->fb) {
1712                        dev_priv->display.enable_fbc(work->crtc,
1713                                                     work->interval);
1714
1715                        dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
1716                        dev_priv->cfb_fb = work->crtc->fb->base.id;
1717                        dev_priv->cfb_y = work->crtc->y;
1718                }
1719
1720                dev_priv->fbc_work = NULL;
1721        }
1722        mutex_unlock(&dev->struct_mutex);
1723
1724        kfree(work);
1725}
1726
1727static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
1728{
1729        if (dev_priv->fbc_work == NULL)
1730                return;
1731
1732        DRM_DEBUG_KMS("cancelling pending FBC enable\n");
1733
1734        /* Synchronisation is provided by struct_mutex and checking of
1735         * dev_priv->fbc_work, so we can perform the cancellation
1736         * entirely asynchronously.
1737         */
1738        if (cancel_delayed_work(&dev_priv->fbc_work->work))
1739                /* tasklet was killed before being run, clean up */
1740                kfree(dev_priv->fbc_work);
1741
1742        /* Mark the work as no longer wanted so that if it does
1743         * wake-up (because the work was already running and waiting
1744         * for our mutex), it will discover that is no longer
1745         * necessary to run.
1746         */
1747        dev_priv->fbc_work = NULL;
1748}
1749
1750static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1751{
1752        struct intel_fbc_work *work;
1753        struct drm_device *dev = crtc->dev;
1754        struct drm_i915_private *dev_priv = dev->dev_private;
1755
1756        if (!dev_priv->display.enable_fbc)
1757                return;
1758
1759        intel_cancel_fbc_work(dev_priv);
1760
1761        work = kzalloc(sizeof *work, GFP_KERNEL);
1762        if (work == NULL) {
1763                dev_priv->display.enable_fbc(crtc, interval);
1764                return;
1765        }
1766
1767        work->crtc = crtc;
1768        work->fb = crtc->fb;
1769        work->interval = interval;
1770        INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
1771
1772        dev_priv->fbc_work = work;
1773
1774        DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
1775
1776        /* Delay the actual enabling to let pageflipping cease and the
1777         * display to settle before starting the compression. Note that
1778         * this delay also serves a second purpose: it allows for a
1779         * vblank to pass after disabling the FBC before we attempt
1780         * to modify the control registers.
1781         *
1782         * A more complicated solution would involve tracking vblanks
1783         * following the termination of the page-flipping sequence
1784         * and indeed performing the enable as a co-routine and not
1785         * waiting synchronously upon the vblank.
1786         */
1787        schedule_delayed_work(&work->work, msecs_to_jiffies(50));
1788}
1789
1790void intel_disable_fbc(struct drm_device *dev)
1791{
1792        struct drm_i915_private *dev_priv = dev->dev_private;
1793
1794        intel_cancel_fbc_work(dev_priv);
1795
1796        if (!dev_priv->display.disable_fbc)
1797                return;
1798
1799        dev_priv->display.disable_fbc(dev);
1800        dev_priv->cfb_plane = -1;
1801}
1802
1803/**
1804 * intel_update_fbc - enable/disable FBC as needed
1805 * @dev: the drm_device
1806 *
1807 * Set up the framebuffer compression hardware at mode set time.  We
1808 * enable it if possible:
1809 *   - plane A only (on pre-965)
1810 *   - no pixel mulitply/line duplication
1811 *   - no alpha buffer discard
1812 *   - no dual wide
1813 *   - framebuffer <= 2048 in width, 1536 in height
1814 *
1815 * We can't assume that any compression will take place (worst case),
1816 * so the compressed buffer has to be the same size as the uncompressed
1817 * one.  It also must reside (along with the line length buffer) in
1818 * stolen memory.
1819 *
1820 * We need to enable/disable FBC on a global basis.
1821 */
1822static void intel_update_fbc(struct drm_device *dev)
1823{
1824        struct drm_i915_private *dev_priv = dev->dev_private;
1825        struct drm_crtc *crtc = NULL, *tmp_crtc;
1826        struct intel_crtc *intel_crtc;
1827        struct drm_framebuffer *fb;
1828        struct intel_framebuffer *intel_fb;
1829        struct drm_i915_gem_object *obj;
1830        int enable_fbc;
1831
1832        DRM_DEBUG_KMS("\n");
1833
1834        if (!i915_powersave)
1835                return;
1836
1837        if (!I915_HAS_FBC(dev))
1838                return;
1839
1840        /*
1841         * If FBC is already on, we just have to verify that we can
1842         * keep it that way...
1843         * Need to disable if:
1844         *   - more than one pipe is active
1845         *   - changing FBC params (stride, fence, mode)
1846         *   - new fb is too large to fit in compressed buffer
1847         *   - going to an unsupported config (interlace, pixel multiply, etc.)
1848         */
1849        list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1850                if (tmp_crtc->enabled && tmp_crtc->fb) {
1851                        if (crtc) {
1852                                DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1853                                dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1854                                goto out_disable;
1855                        }
1856                        crtc = tmp_crtc;
1857                }
1858        }
1859
1860        if (!crtc || crtc->fb == NULL) {
1861                DRM_DEBUG_KMS("no output, disabling\n");
1862                dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
1863                goto out_disable;
1864        }
1865
1866        intel_crtc = to_intel_crtc(crtc);
1867        fb = crtc->fb;
1868        intel_fb = to_intel_framebuffer(fb);
1869        obj = intel_fb->obj;
1870
1871        enable_fbc = i915_enable_fbc;
1872        if (enable_fbc < 0) {
1873                DRM_DEBUG_KMS("fbc set to per-chip default\n");
1874                enable_fbc = 1;
1875                if (INTEL_INFO(dev)->gen <= 6)
1876                        enable_fbc = 0;
1877        }
1878        if (!enable_fbc) {
1879                DRM_DEBUG_KMS("fbc disabled per module param\n");
1880                dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
1881                goto out_disable;
1882        }
1883        if (intel_fb->obj->base.size > dev_priv->cfb_size) {
1884                DRM_DEBUG_KMS("framebuffer too large, disabling "
1885                              "compression\n");
1886                dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1887                goto out_disable;
1888        }
1889        if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
1890            (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
1891                DRM_DEBUG_KMS("mode incompatible with compression, "
1892                              "disabling\n");
1893                dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1894                goto out_disable;
1895        }
1896        if ((crtc->mode.hdisplay > 2048) ||
1897            (crtc->mode.vdisplay > 1536)) {
1898                DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1899                dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1900                goto out_disable;
1901        }
1902        if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
1903                DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1904                dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1905                goto out_disable;
1906        }
1907
1908        /* The use of a CPU fence is mandatory in order to detect writes
1909         * by the CPU to the scanout and trigger updates to the FBC.
1910         */
1911        if (obj->tiling_mode != I915_TILING_X ||
1912            obj->fence_reg == I915_FENCE_REG_NONE) {
1913                DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
1914                dev_priv->no_fbc_reason = FBC_NOT_TILED;
1915                goto out_disable;
1916        }
1917
1918        /* If the kernel debugger is active, always disable compression */
1919        if (in_dbg_master())
1920                goto out_disable;
1921
1922        /* If the scanout has not changed, don't modify the FBC settings.
1923         * Note that we make the fundamental assumption that the fb->obj
1924         * cannot be unpinned (and have its GTT offset and fence revoked)
1925         * without first being decoupled from the scanout and FBC disabled.
1926         */
1927        if (dev_priv->cfb_plane == intel_crtc->plane &&
1928            dev_priv->cfb_fb == fb->base.id &&
1929            dev_priv->cfb_y == crtc->y)
1930                return;
1931
1932        if (intel_fbc_enabled(dev)) {
1933                /* We update FBC along two paths, after changing fb/crtc
1934                 * configuration (modeswitching) and after page-flipping
1935                 * finishes. For the latter, we know that not only did
1936                 * we disable the FBC at the start of the page-flip
1937                 * sequence, but also more than one vblank has passed.
1938                 *
1939                 * For the former case of modeswitching, it is possible
1940                 * to switch between two FBC valid configurations
1941                 * instantaneously so we do need to disable the FBC
1942                 * before we can modify its control registers. We also
1943                 * have to wait for the next vblank for that to take
1944                 * effect. However, since we delay enabling FBC we can
1945                 * assume that a vblank has passed since disabling and
1946                 * that we can safely alter the registers in the deferred
1947                 * callback.
1948                 *
1949                 * In the scenario that we go from a valid to invalid
1950                 * and then back to valid FBC configuration we have
1951                 * no strict enforcement that a vblank occurred since
1952                 * disabling the FBC. However, along all current pipe
1953                 * disabling paths we do need to wait for a vblank at
1954                 * some point. And we wait before enabling FBC anyway.
1955                 */
1956                DRM_DEBUG_KMS("disabling active FBC for update\n");
1957                intel_disable_fbc(dev);
1958        }
1959
1960        intel_enable_fbc(crtc, 500);
1961        return;
1962
1963out_disable:
1964        /* Multiple disables should be harmless */
1965        if (intel_fbc_enabled(dev)) {
1966                DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1967                intel_disable_fbc(dev);
1968        }
1969}
1970
1971int
1972intel_pin_and_fence_fb_obj(struct drm_device *dev,
1973                           struct drm_i915_gem_object *obj,
1974                           struct intel_ring_buffer *pipelined)
1975{
1976        struct drm_i915_private *dev_priv = dev->dev_private;
1977        u32 alignment;
1978        int ret;
1979
1980        switch (obj->tiling_mode) {
1981        case I915_TILING_NONE:
1982                if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1983                        alignment = 128 * 1024;
1984                else if (INTEL_INFO(dev)->gen >= 4)
1985                        alignment = 4 * 1024;
1986                else
1987                        alignment = 64 * 1024;
1988                break;
1989        case I915_TILING_X:
1990                /* pin() will align the object as required by fence */
1991                alignment = 0;
1992                break;
1993        case I915_TILING_Y:
1994                /* FIXME: Is this true? */
1995                DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1996                return -EINVAL;
1997        default:
1998                BUG();
1999        }
2000
2001        dev_priv->mm.interruptible = false;
2002        ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2003        if (ret)
2004                goto err_interruptible;
2005
2006        /* Install a fence for tiled scan-out. Pre-i965 always needs a
2007         * fence, whereas 965+ only requires a fence if using
2008         * framebuffer compression.  For simplicity, we always install
2009         * a fence as the cost is not that onerous.
2010         */
2011        if (obj->tiling_mode != I915_TILING_NONE) {
2012                ret = i915_gem_object_get_fence(obj, pipelined);
2013                if (ret)
2014                        goto err_unpin;
2015        }
2016
2017        dev_priv->mm.interruptible = true;
2018        return 0;
2019
2020err_unpin:
2021        i915_gem_object_unpin(obj);
2022err_interruptible:
2023        dev_priv->mm.interruptible = true;
2024        return ret;
2025}
2026
2027static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2028                             int x, int y)
2029{
2030        struct drm_device *dev = crtc->dev;
2031        struct drm_i915_private *dev_priv = dev->dev_private;
2032        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2033        struct intel_framebuffer *intel_fb;
2034        struct drm_i915_gem_object *obj;
2035        int plane = intel_crtc->plane;
2036        unsigned long Start, Offset;
2037        u32 dspcntr;
2038        u32 reg;
2039
2040        switch (plane) {
2041        case 0:
2042        case 1:
2043                break;
2044        default:
2045                DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2046                return -EINVAL;
2047        }
2048
2049        intel_fb = to_intel_framebuffer(fb);
2050        obj = intel_fb->obj;
2051
2052        reg = DSPCNTR(plane);
2053        dspcntr = I915_READ(reg);
2054        /* Mask out pixel format bits in case we change it */
2055        dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2056        switch (fb->bits_per_pixel) {
2057        case 8:
2058                dspcntr |= DISPPLANE_8BPP;
2059                break;
2060        case 16:
2061                if (fb->depth == 15)
2062                        dspcntr |= DISPPLANE_15_16BPP;
2063                else
2064                        dspcntr |= DISPPLANE_16BPP;
2065                break;
2066        case 24:
2067        case 32:
2068                dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2069                break;
2070        default:
2071                DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2072                return -EINVAL;
2073        }
2074        if (INTEL_INFO(dev)->gen >= 4) {
2075                if (obj->tiling_mode != I915_TILING_NONE)
2076                        dspcntr |= DISPPLANE_TILED;
2077                else
2078                        dspcntr &= ~DISPPLANE_TILED;
2079        }
2080
2081        I915_WRITE(reg, dspcntr);
2082
2083        Start = obj->gtt_offset;
2084        Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2085
2086        DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2087                      Start, Offset, x, y, fb->pitches[0]);
2088        I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2089        if (INTEL_INFO(dev)->gen >= 4) {
2090                I915_WRITE(DSPSURF(plane), Start);
2091                I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2092                I915_WRITE(DSPADDR(plane), Offset);
2093        } else
2094                I915_WRITE(DSPADDR(plane), Start + Offset);
2095        POSTING_READ(reg);
2096
2097        return 0;
2098}
2099
2100static int ironlake_update_plane(struct drm_crtc *crtc,
2101                                 struct drm_framebuffer *fb, int x, int y)
2102{
2103        struct drm_device *dev = crtc->dev;
2104        struct drm_i915_private *dev_priv = dev->dev_private;
2105        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2106        struct intel_framebuffer *intel_fb;
2107        struct drm_i915_gem_object *obj;
2108        int plane = intel_crtc->plane;
2109        unsigned long Start, Offset;
2110        u32 dspcntr;
2111        u32 reg;
2112
2113        switch (plane) {
2114        case 0:
2115        case 1:
2116        case 2:
2117                break;
2118        default:
2119                DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2120                return -EINVAL;
2121        }
2122
2123        intel_fb = to_intel_framebuffer(fb);
2124        obj = intel_fb->obj;
2125
2126        reg = DSPCNTR(plane);
2127        dspcntr = I915_READ(reg);
2128        /* Mask out pixel format bits in case we change it */
2129        dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2130        switch (fb->bits_per_pixel) {
2131        case 8:
2132                dspcntr |= DISPPLANE_8BPP;
2133                break;
2134        case 16:
2135                if (fb->depth != 16)
2136                        return -EINVAL;
2137
2138                dspcntr |= DISPPLANE_16BPP;
2139                break;
2140        case 24:
2141        case 32:
2142                if (fb->depth == 24)
2143                        dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2144                else if (fb->depth == 30)
2145                        dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2146                else
2147                        return -EINVAL;
2148                break;
2149        default:
2150                DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2151                return -EINVAL;
2152        }
2153
2154        if (obj->tiling_mode != I915_TILING_NONE)
2155                dspcntr |= DISPPLANE_TILED;
2156        else
2157                dspcntr &= ~DISPPLANE_TILED;
2158
2159        /* must disable */
2160        dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2161
2162        I915_WRITE(reg, dspcntr);
2163
2164        Start = obj->gtt_offset;
2165        Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2166
2167        DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2168                      Start, Offset, x, y, fb->pitches[0]);
2169        I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2170        I915_WRITE(DSPSURF(plane), Start);
2171        I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2172        I915_WRITE(DSPADDR(plane), Offset);
2173        POSTING_READ(reg);
2174
2175        return 0;
2176}
2177
2178/* Assume fb object is pinned & idle & fenced and just update base pointers */
2179static int
2180intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2181                           int x, int y, enum mode_set_atomic state)
2182{
2183        struct drm_device *dev = crtc->dev;
2184        struct drm_i915_private *dev_priv = dev->dev_private;
2185        int ret;
2186
2187        ret = dev_priv->display.update_plane(crtc, fb, x, y);
2188        if (ret)
2189                return ret;
2190
2191        intel_update_fbc(dev);
2192        intel_increase_pllclock(crtc);
2193
2194        return 0;
2195}
2196
2197static int
2198intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2199                    struct drm_framebuffer *old_fb)
2200{
2201        struct drm_device *dev = crtc->dev;
2202        struct drm_i915_master_private *master_priv;
2203        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2204        int ret;
2205
2206        /* no fb bound */
2207        if (!crtc->fb) {
2208                DRM_ERROR("No FB bound\n");
2209                return 0;
2210        }
2211
2212        switch (intel_crtc->plane) {
2213        case 0:
2214        case 1:
2215                break;
2216        case 2:
2217                if (IS_IVYBRIDGE(dev))
2218                        break;
2219                /* fall through otherwise */
2220        default:
2221                DRM_ERROR("no plane for crtc\n");
2222                return -EINVAL;
2223        }
2224
2225        mutex_lock(&dev->struct_mutex);
2226        ret = intel_pin_and_fence_fb_obj(dev,
2227                                         to_intel_framebuffer(crtc->fb)->obj,
2228                                         NULL);
2229        if (ret != 0) {
2230                mutex_unlock(&dev->struct_mutex);
2231                DRM_ERROR("pin & fence failed\n");
2232                return ret;
2233        }
2234
2235        if (old_fb) {
2236                struct drm_i915_private *dev_priv = dev->dev_private;
2237                struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2238
2239                wait_event(dev_priv->pending_flip_queue,
2240                           atomic_read(&dev_priv->mm.wedged) ||
2241                           atomic_read(&obj->pending_flip) == 0);
2242
2243                /* Big Hammer, we also need to ensure that any pending
2244                 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2245                 * current scanout is retired before unpinning the old
2246                 * framebuffer.
2247                 *
2248                 * This should only fail upon a hung GPU, in which case we
2249                 * can safely continue.
2250                 */
2251                ret = i915_gem_object_finish_gpu(obj);
2252                (void) ret;
2253        }
2254
2255        ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
2256                                         LEAVE_ATOMIC_MODE_SET);
2257        if (ret) {
2258                i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
2259                mutex_unlock(&dev->struct_mutex);
2260                DRM_ERROR("failed to update base address\n");
2261                return ret;
2262        }
2263
2264        if (old_fb) {
2265                intel_wait_for_vblank(dev, intel_crtc->pipe);
2266                i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj);
2267        }
2268
2269        mutex_unlock(&dev->struct_mutex);
2270
2271        if (!dev->primary->master)
2272                return 0;
2273
2274        master_priv = dev->primary->master->driver_priv;
2275        if (!master_priv->sarea_priv)
2276                return 0;
2277
2278        if (intel_crtc->pipe) {
2279                master_priv->sarea_priv->pipeB_x = x;
2280                master_priv->sarea_priv->pipeB_y = y;
2281        } else {
2282                master_priv->sarea_priv->pipeA_x = x;
2283                master_priv->sarea_priv->pipeA_y = y;
2284        }
2285
2286        return 0;
2287}
2288
2289static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2290{
2291        struct drm_device *dev = crtc->dev;
2292        struct drm_i915_private *dev_priv = dev->dev_private;
2293        u32 dpa_ctl;
2294
2295        DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2296        dpa_ctl = I915_READ(DP_A);
2297        dpa_ctl &= ~DP_PLL_FREQ_MASK;
2298
2299        if (clock < 200000) {
2300                u32 temp;
2301                dpa_ctl |= DP_PLL_FREQ_160MHZ;
2302                /* workaround for 160Mhz:
2303                   1) program 0x4600c bits 15:0 = 0x8124
2304                   2) program 0x46010 bit 0 = 1
2305                   3) program 0x46034 bit 24 = 1
2306                   4) program 0x64000 bit 14 = 1
2307                   */
2308                temp = I915_READ(0x4600c);
2309                temp &= 0xffff0000;
2310                I915_WRITE(0x4600c, temp | 0x8124);
2311
2312                temp = I915_READ(0x46010);
2313                I915_WRITE(0x46010, temp | 1);
2314
2315                temp = I915_READ(0x46034);
2316                I915_WRITE(0x46034, temp | (1 << 24));
2317        } else {
2318                dpa_ctl |= DP_PLL_FREQ_270MHZ;
2319        }
2320        I915_WRITE(DP_A, dpa_ctl);
2321
2322        POSTING_READ(DP_A);
2323        udelay(500);
2324}
2325
2326static void intel_fdi_normal_train(struct drm_crtc *crtc)
2327{
2328        struct drm_device *dev = crtc->dev;
2329        struct drm_i915_private *dev_priv = dev->dev_private;
2330        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2331        int pipe = intel_crtc->pipe;
2332        u32 reg, temp;
2333
2334        /* enable normal train */
2335        reg = FDI_TX_CTL(pipe);
2336        temp = I915_READ(reg);
2337        if (IS_IVYBRIDGE(dev)) {
2338                temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2339                temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2340        } else {
2341                temp &= ~FDI_LINK_TRAIN_NONE;
2342                temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2343        }
2344        I915_WRITE(reg, temp);
2345
2346        reg = FDI_RX_CTL(pipe);
2347        temp = I915_READ(reg);
2348        if (HAS_PCH_CPT(dev)) {
2349                temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2350                temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2351        } else {
2352                temp &= ~FDI_LINK_TRAIN_NONE;
2353                temp |= FDI_LINK_TRAIN_NONE;
2354        }
2355        I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2356
2357        /* wait one idle pattern time */
2358        POSTING_READ(reg);
2359        udelay(1000);
2360
2361        /* IVB wants error correction enabled */
2362        if (IS_IVYBRIDGE(dev))
2363                I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2364                           FDI_FE_ERRC_ENABLE);
2365}
2366
2367static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2368{
2369        struct drm_i915_private *dev_priv = dev->dev_private;
2370        u32 flags = I915_READ(SOUTH_CHICKEN1);
2371
2372        flags |= FDI_PHASE_SYNC_OVR(pipe);
2373        I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2374        flags |= FDI_PHASE_SYNC_EN(pipe);
2375        I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2376        POSTING_READ(SOUTH_CHICKEN1);
2377}
2378
2379/* The FDI link training functions for ILK/Ibexpeak. */
2380static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2381{
2382        struct drm_device *dev = crtc->dev;
2383        struct drm_i915_private *dev_priv = dev->dev_private;
2384        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2385        int pipe = intel_crtc->pipe;
2386        int plane = intel_crtc->plane;
2387        u32 reg, temp, tries;
2388
2389        /* FDI needs bits from pipe & plane first */
2390        assert_pipe_enabled(dev_priv, pipe);
2391        assert_plane_enabled(dev_priv, plane);
2392
2393        /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2394           for train result */
2395        reg = FDI_RX_IMR(pipe);
2396        temp = I915_READ(reg);
2397        temp &= ~FDI_RX_SYMBOL_LOCK;
2398        temp &= ~FDI_RX_BIT_LOCK;
2399        I915_WRITE(reg, temp);
2400        I915_READ(reg);
2401        udelay(150);
2402
2403        /* enable CPU FDI TX and PCH FDI RX */
2404        reg = FDI_TX_CTL(pipe);
2405        temp = I915_READ(reg);
2406        temp &= ~(7 << 19);
2407        temp |= (intel_crtc->fdi_lanes - 1) << 19;
2408        temp &= ~FDI_LINK_TRAIN_NONE;
2409        temp |= FDI_LINK_TRAIN_PATTERN_1;
2410        I915_WRITE(reg, temp | FDI_TX_ENABLE);
2411
2412        reg = FDI_RX_CTL(pipe);
2413        temp = I915_READ(reg);
2414        temp &= ~FDI_LINK_TRAIN_NONE;
2415        temp |= FDI_LINK_TRAIN_PATTERN_1;
2416        I915_WRITE(reg, temp | FDI_RX_ENABLE);
2417
2418        POSTING_READ(reg);
2419        udelay(150);
2420
2421        /* Ironlake workaround, enable clock pointer after FDI enable*/
2422        if (HAS_PCH_IBX(dev)) {
2423                I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2424                I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2425                           FDI_RX_PHASE_SYNC_POINTER_EN);
2426        }
2427
2428        reg = FDI_RX_IIR(pipe);
2429        for (tries = 0; tries < 5; tries++) {
2430                temp = I915_READ(reg);
2431                DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2432
2433                if ((temp & FDI_RX_BIT_LOCK)) {
2434                        DRM_DEBUG_KMS("FDI train 1 done.\n");
2435                        I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2436                        break;
2437                }
2438        }
2439        if (tries == 5)
2440                DRM_ERROR("FDI train 1 fail!\n");
2441
2442        /* Train 2 */
2443        reg = FDI_TX_CTL(pipe);
2444        temp = I915_READ(reg);
2445        temp &= ~FDI_LINK_TRAIN_NONE;
2446        temp |= FDI_LINK_TRAIN_PATTERN_2;
2447        I915_WRITE(reg, temp);
2448
2449        reg = FDI_RX_CTL(pipe);
2450        temp = I915_READ(reg);
2451        temp &= ~FDI_LINK_TRAIN_NONE;
2452        temp |= FDI_LINK_TRAIN_PATTERN_2;
2453        I915_WRITE(reg, temp);
2454
2455        POSTING_READ(reg);
2456        udelay(150);
2457
2458        reg = FDI_RX_IIR(pipe);
2459        for (tries = 0; tries < 5; tries++) {
2460                temp = I915_READ(reg);
2461                DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2462
2463                if (temp & FDI_RX_SYMBOL_LOCK) {
2464                        I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2465                        DRM_DEBUG_KMS("FDI train 2 done.\n");
2466                        break;
2467                }
2468        }
2469        if (tries == 5)
2470                DRM_ERROR("FDI train 2 fail!\n");
2471
2472        DRM_DEBUG_KMS("FDI train done\n");
2473
2474}
2475
2476static const int snb_b_fdi_train_param[] = {
2477        FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2478        FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2479        FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2480        FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2481};
2482
2483/* The FDI link training functions for SNB/Cougarpoint. */
2484static void gen6_fdi_link_train(struct drm_crtc *crtc)
2485{
2486        struct drm_device *dev = crtc->dev;
2487        struct drm_i915_private *dev_priv = dev->dev_private;
2488        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2489        int pipe = intel_crtc->pipe;
2490        u32 reg, temp, i;
2491
2492        /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2493           for train result */
2494        reg = FDI_RX_IMR(pipe);
2495        temp = I915_READ(reg);
2496        temp &= ~FDI_RX_SYMBOL_LOCK;
2497        temp &= ~FDI_RX_BIT_LOCK;
2498        I915_WRITE(reg, temp);
2499
2500        POSTING_READ(reg);
2501        udelay(150);
2502
2503        /* enable CPU FDI TX and PCH FDI RX */
2504        reg = FDI_TX_CTL(pipe);
2505        temp = I915_READ(reg);
2506        temp &= ~(7 << 19);
2507        temp |= (intel_crtc->fdi_lanes - 1) << 19;
2508        temp &= ~FDI_LINK_TRAIN_NONE;
2509        temp |= FDI_LINK_TRAIN_PATTERN_1;
2510        temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2511        /* SNB-B */
2512        temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2513        I915_WRITE(reg, temp | FDI_TX_ENABLE);
2514
2515        reg = FDI_RX_CTL(pipe);
2516        temp = I915_READ(reg);
2517        if (HAS_PCH_CPT(dev)) {
2518                temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2519                temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2520        } else {
2521                temp &= ~FDI_LINK_TRAIN_NONE;
2522                temp |= FDI_LINK_TRAIN_PATTERN_1;
2523        }
2524        I915_WRITE(reg, temp | FDI_RX_ENABLE);
2525
2526        POSTING_READ(reg);
2527        udelay(150);
2528
2529        if (HAS_PCH_CPT(dev))
2530                cpt_phase_pointer_enable(dev, pipe);
2531
2532        for (i = 0; i < 4; i++) {
2533                reg = FDI_TX_CTL(pipe);
2534                temp = I915_READ(reg);
2535                temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2536                temp |= snb_b_fdi_train_param[i];
2537                I915_WRITE(reg, temp);
2538
2539                POSTING_READ(reg);
2540                udelay(500);
2541
2542                reg = FDI_RX_IIR(pipe);
2543                temp = I915_READ(reg);
2544                DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2545
2546                if (temp & FDI_RX_BIT_LOCK) {
2547                        I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2548                        DRM_DEBUG_KMS("FDI train 1 done.\n");
2549                        break;
2550                }
2551        }
2552        if (i == 4)
2553                DRM_ERROR("FDI train 1 fail!\n");
2554
2555        /* Train 2 */
2556        reg = FDI_TX_CTL(pipe);
2557        temp = I915_READ(reg);
2558        temp &= ~FDI_LINK_TRAIN_NONE;
2559        temp |= FDI_LINK_TRAIN_PATTERN_2;
2560        if (IS_GEN6(dev)) {
2561                temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2562                /* SNB-B */
2563                temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2564        }
2565        I915_WRITE(reg, temp);
2566
2567        reg = FDI_RX_CTL(pipe);
2568        temp = I915_READ(reg);
2569        if (HAS_PCH_CPT(dev)) {
2570                temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2571                temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2572        } else {
2573                temp &= ~FDI_LINK_TRAIN_NONE;
2574                temp |= FDI_LINK_TRAIN_PATTERN_2;
2575        }
2576        I915_WRITE(reg, temp);
2577
2578        POSTING_READ(reg);
2579        udelay(150);
2580
2581        for (i = 0; i < 4; i++) {
2582                reg = FDI_TX_CTL(pipe);
2583                temp = I915_READ(reg);
2584                temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2585                temp |= snb_b_fdi_train_param[i];
2586                I915_WRITE(reg, temp);
2587
2588                POSTING_READ(reg);
2589                udelay(500);
2590
2591                reg = FDI_RX_IIR(pipe);
2592                temp = I915_READ(reg);
2593                DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2594
2595                if (temp & FDI_RX_SYMBOL_LOCK) {
2596                        I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2597                        DRM_DEBUG_KMS("FDI train 2 done.\n");
2598                        break;
2599                }
2600        }
2601        if (i == 4)
2602                DRM_ERROR("FDI train 2 fail!\n");
2603
2604        DRM_DEBUG_KMS("FDI train done.\n");
2605}
2606
2607/* Manual link training for Ivy Bridge A0 parts */
2608static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2609{
2610        struct drm_device *dev = crtc->dev;
2611        struct drm_i915_private *dev_priv = dev->dev_private;
2612        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2613        int pipe = intel_crtc->pipe;
2614        u32 reg, temp, i;
2615
2616        /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2617           for train result */
2618        reg = FDI_RX_IMR(pipe);
2619        temp = I915_READ(reg);
2620        temp &= ~FDI_RX_SYMBOL_LOCK;
2621        temp &= ~FDI_RX_BIT_LOCK;
2622        I915_WRITE(reg, temp);
2623
2624        POSTING_READ(reg);
2625        udelay(150);
2626
2627        /* enable CPU FDI TX and PCH FDI RX */
2628        reg = FDI_TX_CTL(pipe);
2629        temp = I915_READ(reg);
2630        temp &= ~(7 << 19);
2631        temp |= (intel_crtc->fdi_lanes - 1) << 19;
2632        temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2633        temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2634        temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2635        temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2636        temp |= FDI_COMPOSITE_SYNC;
2637        I915_WRITE(reg, temp | FDI_TX_ENABLE);
2638
2639        reg = FDI_RX_CTL(pipe);
2640        temp = I915_READ(reg);
2641        temp &= ~FDI_LINK_TRAIN_AUTO;
2642        temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2643        temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2644        temp |= FDI_COMPOSITE_SYNC;
2645        I915_WRITE(reg, temp | FDI_RX_ENABLE);
2646
2647        POSTING_READ(reg);
2648        udelay(150);
2649
2650        if (HAS_PCH_CPT(dev))
2651                cpt_phase_pointer_enable(dev, pipe);
2652
2653        for (i = 0; i < 4; i++) {
2654                reg = FDI_TX_CTL(pipe);
2655                temp = I915_READ(reg);
2656                temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2657                temp |= snb_b_fdi_train_param[i];
2658                I915_WRITE(reg, temp);
2659
2660                POSTING_READ(reg);
2661                udelay(500);
2662
2663                reg = FDI_RX_IIR(pipe);
2664                temp = I915_READ(reg);
2665                DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2666
2667                if (temp & FDI_RX_BIT_LOCK ||
2668                    (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2669                        I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2670                        DRM_DEBUG_KMS("FDI train 1 done.\n");
2671                        break;
2672                }
2673        }
2674        if (i == 4)
2675                DRM_ERROR("FDI train 1 fail!\n");
2676
2677        /* Train 2 */
2678        reg = FDI_TX_CTL(pipe);
2679        temp = I915_READ(reg);
2680        temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2681        temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2682        temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2683        temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2684        I915_WRITE(reg, temp);
2685
2686        reg = FDI_RX_CTL(pipe);
2687        temp = I915_READ(reg);
2688        temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2689        temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2690        I915_WRITE(reg, temp);
2691
2692        POSTING_READ(reg);
2693        udelay(150);
2694
2695        for (i = 0; i < 4; i++) {
2696                reg = FDI_TX_CTL(pipe);
2697                temp = I915_READ(reg);
2698                temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2699                temp |= snb_b_fdi_train_param[i];
2700                I915_WRITE(reg, temp);
2701
2702                POSTING_READ(reg);
2703                udelay(500);
2704
2705                reg = FDI_RX_IIR(pipe);
2706                temp = I915_READ(reg);
2707                DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2708
2709                if (temp & FDI_RX_SYMBOL_LOCK) {
2710                        I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2711                        DRM_DEBUG_KMS("FDI train 2 done.\n");
2712                        break;
2713                }
2714        }
2715        if (i == 4)
2716                DRM_ERROR("FDI train 2 fail!\n");
2717
2718        DRM_DEBUG_KMS("FDI train done.\n");
2719}
2720
2721static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
2722{
2723        struct drm_device *dev = crtc->dev;
2724        struct drm_i915_private *dev_priv = dev->dev_private;
2725        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2726        int pipe = intel_crtc->pipe;
2727        u32 reg, temp;
2728
2729        /* Write the TU size bits so error detection works */
2730        I915_WRITE(FDI_RX_TUSIZE1(pipe),
2731                   I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2732
2733        /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2734        reg = FDI_RX_CTL(pipe);
2735        temp = I915_READ(reg);
2736        temp &= ~((0x7 << 19) | (0x7 << 16));
2737        temp |= (intel_crtc->fdi_lanes - 1) << 19;
2738        temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2739        I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2740
2741        POSTING_READ(reg);
2742        udelay(200);
2743
2744        /* Switch from Rawclk to PCDclk */
2745        temp = I915_READ(reg);
2746        I915_WRITE(reg, temp | FDI_PCDCLK);
2747
2748        POSTING_READ(reg);
2749        udelay(200);
2750
2751        /* Enable CPU FDI TX PLL, always on for Ironlake */
2752        reg = FDI_TX_CTL(pipe);
2753        temp = I915_READ(reg);
2754        if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2755                I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2756
2757                POSTING_READ(reg);
2758                udelay(100);
2759        }
2760}
2761
2762static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2763{
2764        struct drm_i915_private *dev_priv = dev->dev_private;
2765        u32 flags = I915_READ(SOUTH_CHICKEN1);
2766
2767        flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2768        I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2769        flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2770        I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2771        POSTING_READ(SOUTH_CHICKEN1);
2772}
2773static void ironlake_fdi_disable(struct drm_crtc *crtc)
2774{
2775        struct drm_device *dev = crtc->dev;
2776        struct drm_i915_private *dev_priv = dev->dev_private;
2777        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2778        int pipe = intel_crtc->pipe;
2779        u32 reg, temp;
2780
2781        /* disable CPU FDI tx and PCH FDI rx */
2782        reg = FDI_TX_CTL(pipe);
2783        temp = I915_READ(reg);
2784        I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2785        POSTING_READ(reg);
2786
2787        reg = FDI_RX_CTL(pipe);
2788        temp = I915_READ(reg);
2789        temp &= ~(0x7 << 16);
2790        temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2791        I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2792
2793        POSTING_READ(reg);
2794        udelay(100);
2795
2796        /* Ironlake workaround, disable clock pointer after downing FDI */
2797        if (HAS_PCH_IBX(dev)) {
2798                I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2799                I915_WRITE(FDI_RX_CHICKEN(pipe),
2800                           I915_READ(FDI_RX_CHICKEN(pipe) &
2801                                     ~FDI_RX_PHASE_SYNC_POINTER_EN));
2802        } else if (HAS_PCH_CPT(dev)) {
2803                cpt_phase_pointer_disable(dev, pipe);
2804        }
2805
2806        /* still set train pattern 1 */
2807        reg = FDI_TX_CTL(pipe);
2808        temp = I915_READ(reg);
2809        temp &= ~FDI_LINK_TRAIN_NONE;
2810        temp |= FDI_LINK_TRAIN_PATTERN_1;
2811        I915_WRITE(reg, temp);
2812
2813        reg = FDI_RX_CTL(pipe);
2814        temp = I915_READ(reg);
2815        if (HAS_PCH_CPT(dev)) {
2816                temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2817                temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2818        } else {
2819                temp &= ~FDI_LINK_TRAIN_NONE;
2820                temp |= FDI_LINK_TRAIN_PATTERN_1;
2821        }
2822        /* BPC in FDI rx is consistent with that in PIPECONF */
2823        temp &= ~(0x07 << 16);
2824        temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2825        I915_WRITE(reg, temp);
2826
2827        POSTING_READ(reg);
2828        udelay(100);
2829}
2830
2831/*
2832 * When we disable a pipe, we need to clear any pending scanline wait events
2833 * to avoid hanging the ring, which we assume we are waiting on.
2834 */
2835static void intel_clear_scanline_wait(struct drm_device *dev)
2836{
2837        struct drm_i915_private *dev_priv = dev->dev_private;
2838        struct intel_ring_buffer *ring;
2839        u32 tmp;
2840
2841        if (IS_GEN2(dev))
2842                /* Can't break the hang on i8xx */
2843                return;
2844
2845        ring = LP_RING(dev_priv);
2846        tmp = I915_READ_CTL(ring);
2847        if (tmp & RING_WAIT)
2848                I915_WRITE_CTL(ring, tmp);
2849}
2850
2851static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2852{
2853        struct drm_i915_gem_object *obj;
2854        struct drm_i915_private *dev_priv;
2855
2856        if (crtc->fb == NULL)
2857                return;
2858
2859        obj = to_intel_framebuffer(crtc->fb)->obj;
2860        dev_priv = crtc->dev->dev_private;
2861        wait_event(dev_priv->pending_flip_queue,
2862                   atomic_read(&obj->pending_flip) == 0);
2863}
2864
2865static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2866{
2867        struct drm_device *dev = crtc->dev;
2868        struct drm_mode_config *mode_config = &dev->mode_config;
2869        struct intel_encoder *encoder;
2870
2871        /*
2872         * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2873         * must be driven by its own crtc; no sharing is possible.
2874         */
2875        list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
2876                if (encoder->base.crtc != crtc)
2877                        continue;
2878
2879                switch (encoder->type) {
2880                case INTEL_OUTPUT_EDP:
2881                        if (!intel_encoder_is_pch_edp(&encoder->base))
2882                                return false;
2883                        continue;
2884                }
2885        }
2886
2887        return true;
2888}
2889
2890/*
2891 * Enable PCH resources required for PCH ports:
2892 *   - PCH PLLs
2893 *   - FDI training & RX/TX
2894 *   - update transcoder timings
2895 *   - DP transcoding bits
2896 *   - transcoder
2897 */
2898static void ironlake_pch_enable(struct drm_crtc *crtc)
2899{
2900        struct drm_device *dev = crtc->dev;
2901        struct drm_i915_private *dev_priv = dev->dev_private;
2902        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2903        int pipe = intel_crtc->pipe;
2904        u32 reg, temp, transc_sel;
2905
2906        /* For PCH output, training FDI link */
2907        dev_priv->display.fdi_link_train(crtc);
2908
2909        intel_enable_pch_pll(dev_priv, pipe);
2910
2911        if (HAS_PCH_CPT(dev)) {
2912                transc_sel = intel_crtc->use_pll_a ? TRANSC_DPLLA_SEL :
2913                        TRANSC_DPLLB_SEL;
2914
2915                /* Be sure PCH DPLL SEL is set */
2916                temp = I915_READ(PCH_DPLL_SEL);
2917                if (pipe == 0) {
2918                        temp &= ~(TRANSA_DPLLB_SEL);
2919                        temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2920                } else if (pipe == 1) {
2921                        temp &= ~(TRANSB_DPLLB_SEL);
2922                        temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2923                } else if (pipe == 2) {
2924                        temp &= ~(TRANSC_DPLLB_SEL);
2925                        temp |= (TRANSC_DPLL_ENABLE | transc_sel);
2926                }
2927                I915_WRITE(PCH_DPLL_SEL, temp);
2928        }
2929
2930        /* set transcoder timing, panel must allow it */
2931        assert_panel_unlocked(dev_priv, pipe);
2932        I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2933        I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2934        I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
2935
2936        I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2937        I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2938        I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
2939
2940        intel_fdi_normal_train(crtc);
2941
2942        /* For PCH DP, enable TRANS_DP_CTL */
2943        if (HAS_PCH_CPT(dev) &&
2944            (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
2945             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2946                u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
2947                reg = TRANS_DP_CTL(pipe);
2948                temp = I915_READ(reg);
2949                temp &= ~(TRANS_DP_PORT_SEL_MASK |
2950                          TRANS_DP_SYNC_MASK |
2951                          TRANS_DP_BPC_MASK);
2952                temp |= (TRANS_DP_OUTPUT_ENABLE |
2953                         TRANS_DP_ENH_FRAMING);
2954                temp |= bpc << 9; /* same format but at 11:9 */
2955
2956                if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2957                        temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2958                if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2959                        temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2960
2961                switch (intel_trans_dp_port_sel(crtc)) {
2962                case PCH_DP_B:
2963                        temp |= TRANS_DP_PORT_SEL_B;
2964                        break;
2965                case PCH_DP_C:
2966                        temp |= TRANS_DP_PORT_SEL_C;
2967                        break;
2968                case PCH_DP_D:
2969                        temp |= TRANS_DP_PORT_SEL_D;
2970                        break;
2971                default:
2972                        DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2973                        temp |= TRANS_DP_PORT_SEL_B;
2974                        break;
2975                }
2976
2977                I915_WRITE(reg, temp);
2978        }
2979
2980        intel_enable_transcoder(dev_priv, pipe);
2981}
2982
2983void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
2984{
2985        struct drm_i915_private *dev_priv = dev->dev_private;
2986        int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
2987        u32 temp;
2988
2989        temp = I915_READ(dslreg);
2990        udelay(500);
2991        if (wait_for(I915_READ(dslreg) != temp, 5)) {
2992                /* Without this, mode sets may fail silently on FDI */
2993                I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
2994                udelay(250);
2995                I915_WRITE(tc2reg, 0);
2996                if (wait_for(I915_READ(dslreg) != temp, 5))
2997                        DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
2998        }
2999}
3000
3001static void ironlake_crtc_enable(struct drm_crtc *crtc)
3002{
3003        struct drm_device *dev = crtc->dev;
3004        struct drm_i915_private *dev_priv = dev->dev_private;
3005        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3006        int pipe = intel_crtc->pipe;
3007        int plane = intel_crtc->plane;
3008        u32 temp;
3009        bool is_pch_port;
3010
3011        if (intel_crtc->active)
3012                return;
3013
3014        intel_crtc->active = true;
3015        intel_update_watermarks(dev);
3016
3017        if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3018                temp = I915_READ(PCH_LVDS);
3019                if ((temp & LVDS_PORT_EN) == 0)
3020                        I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3021        }
3022
3023        is_pch_port = intel_crtc_driving_pch(crtc);
3024
3025        if (is_pch_port)
3026                ironlake_fdi_pll_enable(crtc);
3027        else
3028                ironlake_fdi_disable(crtc);
3029
3030        /* Enable panel fitting for LVDS */
3031        if (dev_priv->pch_pf_size &&
3032            (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3033                /* Force use of hard-coded filter coefficients
3034                 * as some pre-programmed values are broken,
3035                 * e.g. x201.
3036                 */
3037                I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3038                I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3039                I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3040        }
3041
3042        /*
3043         * On ILK+ LUT must be loaded before the pipe is running but with
3044         * clocks enabled
3045         */
3046        intel_crtc_load_lut(crtc);
3047
3048        intel_enable_pipe(dev_priv, pipe, is_pch_port);
3049        intel_enable_plane(dev_priv, plane, pipe);
3050
3051        if (is_pch_port)
3052                ironlake_pch_enable(crtc);
3053
3054        mutex_lock(&dev->struct_mutex);
3055        intel_update_fbc(dev);
3056        mutex_unlock(&dev->struct_mutex);
3057
3058        intel_crtc_update_cursor(crtc, true);
3059}
3060
3061static void ironlake_crtc_disable(struct drm_crtc *crtc)
3062{
3063        struct drm_device *dev = crtc->dev;
3064        struct drm_i915_private *dev_priv = dev->dev_private;
3065        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3066        int pipe = intel_crtc->pipe;
3067        int plane = intel_crtc->plane;
3068        u32 reg, temp;
3069
3070        if (!intel_crtc->active)
3071                return;
3072
3073        intel_crtc_wait_for_pending_flips(crtc);
3074        drm_vblank_off(dev, pipe);
3075        intel_crtc_update_cursor(crtc, false);
3076
3077        intel_disable_plane(dev_priv, plane, pipe);
3078
3079        if (dev_priv->cfb_plane == plane)
3080                intel_disable_fbc(dev);
3081
3082        intel_disable_pipe(dev_priv, pipe);
3083
3084        /* Disable PF */
3085        I915_WRITE(PF_CTL(pipe), 0);
3086        I915_WRITE(PF_WIN_SZ(pipe), 0);
3087
3088        ironlake_fdi_disable(crtc);
3089
3090        /* This is a horrible layering violation; we should be doing this in
3091         * the connector/encoder ->prepare instead, but we don't always have
3092         * enough information there about the config to know whether it will
3093         * actually be necessary or just cause undesired flicker.
3094         */
3095        intel_disable_pch_ports(dev_priv, pipe);
3096
3097        intel_disable_transcoder(dev_priv, pipe);
3098
3099        if (HAS_PCH_CPT(dev)) {
3100                /* disable TRANS_DP_CTL */
3101                reg = TRANS_DP_CTL(pipe);
3102                temp = I915_READ(reg);
3103                temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3104                temp |= TRANS_DP_PORT_SEL_NONE;
3105                I915_WRITE(reg, temp);
3106
3107                /* disable DPLL_SEL */
3108                temp = I915_READ(PCH_DPLL_SEL);
3109                switch (pipe) {
3110                case 0:
3111                        temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3112                        break;
3113                case 1:
3114                        temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3115                        break;
3116                case 2:
3117                        /* C shares PLL A or B */
3118                        temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3119                        break;
3120                default:
3121                        BUG(); /* wtf */
3122                }
3123                I915_WRITE(PCH_DPLL_SEL, temp);
3124        }
3125
3126        /* disable PCH DPLL */
3127        if (!intel_crtc->no_pll)
3128                intel_disable_pch_pll(dev_priv, pipe);
3129
3130        /* Switch from PCDclk to Rawclk */
3131        reg = FDI_RX_CTL(pipe);
3132        temp = I915_READ(reg);
3133        I915_WRITE(reg, temp & ~FDI_PCDCLK);
3134
3135        /* Disable CPU FDI TX PLL */
3136        reg = FDI_TX_CTL(pipe);
3137        temp = I915_READ(reg);
3138        I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3139
3140        POSTING_READ(reg);
3141        udelay(100);
3142
3143        reg = FDI_RX_CTL(pipe);
3144        temp = I915_READ(reg);
3145        I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3146
3147        /* Wait for the clocks to turn off. */
3148        POSTING_READ(reg);
3149        udelay(100);
3150
3151        intel_crtc->active = false;
3152        intel_update_watermarks(dev);
3153
3154        mutex_lock(&dev->struct_mutex);
3155        intel_update_fbc(dev);
3156        intel_clear_scanline_wait(dev);
3157        mutex_unlock(&dev->struct_mutex);
3158}
3159
3160static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
3161{
3162        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3163        int pipe = intel_crtc->pipe;
3164        int plane = intel_crtc->plane;
3165
3166        /* XXX: When our outputs are all unaware of DPMS modes other than off
3167         * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3168         */
3169        switch (mode) {
3170        case DRM_MODE_DPMS_ON:
3171        case DRM_MODE_DPMS_STANDBY:
3172        case DRM_MODE_DPMS_SUSPEND:
3173                DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
3174                ironlake_crtc_enable(crtc);
3175                break;
3176
3177        case DRM_MODE_DPMS_OFF:
3178                DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
3179                ironlake_crtc_disable(crtc);
3180                break;
3181        }
3182}
3183
3184static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3185{
3186        if (!enable && intel_crtc->overlay) {
3187                struct drm_device *dev = intel_crtc->base.dev;
3188                struct drm_i915_private *dev_priv = dev->dev_private;
3189
3190                mutex_lock(&dev->struct_mutex);
3191                dev_priv->mm.interruptible = false;
3192                (void) intel_overlay_switch_off(intel_crtc->overlay);
3193                dev_priv->mm.interruptible = true;
3194                mutex_unlock(&dev->struct_mutex);
3195        }
3196
3197        /* Let userspace switch the overlay on again. In most cases userspace
3198         * has to recompute where to put it anyway.
3199         */
3200}
3201
3202static void i9xx_crtc_enable(struct drm_crtc *crtc)
3203{
3204        struct drm_device *dev = crtc->dev;
3205        struct drm_i915_private *dev_priv = dev->dev_private;
3206        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3207        int pipe = intel_crtc->pipe;
3208        int plane = intel_crtc->plane;
3209
3210        if (intel_crtc->active)
3211                return;
3212
3213        intel_crtc->active = true;
3214        intel_update_watermarks(dev);
3215
3216        intel_enable_pll(dev_priv, pipe);
3217        intel_enable_pipe(dev_priv, pipe, false);
3218        intel_enable_plane(dev_priv, plane, pipe);
3219
3220        intel_crtc_load_lut(crtc);
3221        intel_update_fbc(dev);
3222
3223        /* Give the overlay scaler a chance to enable if it's on this pipe */
3224        intel_crtc_dpms_overlay(intel_crtc, true);
3225        intel_crtc_update_cursor(crtc, true);
3226}
3227
3228static void i9xx_crtc_disable(struct drm_crtc *crtc)
3229{
3230        struct drm_device *dev = crtc->dev;
3231        struct drm_i915_private *dev_priv = dev->dev_private;
3232        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3233        int pipe = intel_crtc->pipe;
3234        int plane = intel_crtc->plane;
3235
3236        if (!intel_crtc->active)
3237                return;
3238
3239        /* Give the overlay scaler a chance to disable if it's on this pipe */
3240        intel_crtc_wait_for_pending_flips(crtc);
3241        drm_vblank_off(dev, pipe);
3242        intel_crtc_dpms_overlay(intel_crtc, false);
3243        intel_crtc_update_cursor(crtc, false);
3244
3245        if (dev_priv->cfb_plane == plane)
3246                intel_disable_fbc(dev);
3247
3248        intel_disable_plane(dev_priv, plane, pipe);
3249        intel_disable_pipe(dev_priv, pipe);
3250        intel_disable_pll(dev_priv, pipe);
3251
3252        intel_crtc->active = false;
3253        intel_update_fbc(dev);
3254        intel_update_watermarks(dev);
3255        intel_clear_scanline_wait(dev);
3256}
3257
3258static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
3259{
3260        /* XXX: When our outputs are all unaware of DPMS modes other than off
3261         * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3262         */
3263        switch (mode) {
3264        case DRM_MODE_DPMS_ON:
3265        case DRM_MODE_DPMS_STANDBY:
3266        case DRM_MODE_DPMS_SUSPEND:
3267                i9xx_crtc_enable(crtc);
3268                break;
3269        case DRM_MODE_DPMS_OFF:
3270                i9xx_crtc_disable(crtc);
3271                break;
3272        }
3273}
3274
3275/**
3276 * Sets the power management mode of the pipe and plane.
3277 */
3278static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
3279{
3280        struct drm_device *dev = crtc->dev;
3281        struct drm_i915_private *dev_priv = dev->dev_private;
3282        struct drm_i915_master_private *master_priv;
3283        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3284        int pipe = intel_crtc->pipe;
3285        bool enabled;
3286
3287        if (intel_crtc->dpms_mode == mode)
3288                return;
3289
3290        intel_crtc->dpms_mode = mode;
3291
3292        dev_priv->display.dpms(crtc, mode);
3293
3294        if (!dev->primary->master)
3295                return;
3296
3297        master_priv = dev->primary->master->driver_priv;
3298        if (!master_priv->sarea_priv)
3299                return;
3300
3301        enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
3302
3303        switch (pipe) {
3304        case 0:
3305                master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3306                master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3307                break;
3308        case 1:
3309                master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3310                master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3311                break;
3312        default:
3313                DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3314                break;
3315        }
3316}
3317
3318static void intel_crtc_disable(struct drm_crtc *crtc)
3319{
3320        struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3321        struct drm_device *dev = crtc->dev;
3322
3323        crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
3324
3325        if (crtc->fb) {
3326                mutex_lock(&dev->struct_mutex);
3327                i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
3328                mutex_unlock(&dev->struct_mutex);
3329        }
3330}
3331
3332/* Prepare for a mode set.
3333 *
3334 * Note we could be a lot smarter here.  We need to figure out which outputs
3335 * will be enabled, which disabled (in short, how the config will changes)
3336 * and perform the minimum necessary steps to accomplish that, e.g. updating
3337 * watermarks, FBC configuration, making sure PLLs are programmed correctly,
3338 * panel fitting is in the proper state, etc.
3339 */
3340static void i9xx_crtc_prepare(struct drm_crtc *crtc)
3341{
3342        i9xx_crtc_disable(crtc);
3343}
3344
3345static void i9xx_crtc_commit(struct drm_crtc *crtc)
3346{
3347        i9xx_crtc_enable(crtc);
3348}
3349
3350static void ironlake_crtc_prepare(struct drm_crtc *crtc)
3351{
3352        ironlake_crtc_disable(crtc);
3353}
3354
3355static void ironlake_crtc_commit(struct drm_crtc *crtc)
3356{
3357        ironlake_crtc_enable(crtc);
3358}
3359
3360void intel_encoder_prepare(struct drm_encoder *encoder)
3361{
3362        struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3363        /* lvds has its own version of prepare see intel_lvds_prepare */
3364        encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3365}
3366
3367void intel_encoder_commit(struct drm_encoder *encoder)
3368{
3369        struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3370        struct drm_device *dev = encoder->dev;
3371        struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3372        struct intel_crtc *intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
3373
3374        /* lvds has its own version of commit see intel_lvds_commit */
3375        encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3376
3377        if (HAS_PCH_CPT(dev))
3378                intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3379}
3380
3381void intel_encoder_destroy(struct drm_encoder *encoder)
3382{
3383        struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3384
3385        drm_encoder_cleanup(encoder);
3386        kfree(intel_encoder);
3387}
3388
3389static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3390                                  struct drm_display_mode *mode,
3391                                  struct drm_display_mode *adjusted_mode)
3392{
3393        struct drm_device *dev = crtc->dev;
3394
3395        if (HAS_PCH_SPLIT(dev)) {
3396                /* FDI link clock is fixed at 2.7G */
3397                if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3398                        return false;
3399        }
3400
3401        /* XXX some encoders set the crtcinfo, others don't.
3402         * Obviously we need some form of conflict resolution here...
3403         */
3404        if (adjusted_mode->crtc_htotal == 0)
3405                drm_mode_set_crtcinfo(adjusted_mode, 0);
3406
3407        return true;
3408}
3409
3410static int i945_get_display_clock_speed(struct drm_device *dev)
3411{
3412        return 400000;
3413}
3414
3415static int i915_get_display_clock_speed(struct drm_device *dev)
3416{
3417        return 333000;
3418}
3419
3420static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3421{
3422        return 200000;
3423}
3424
3425static int i915gm_get_display_clock_speed(struct drm_device *dev)
3426{
3427        u16 gcfgc = 0;
3428
3429        pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3430
3431        if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3432                return 133000;
3433        else {
3434                switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3435                case GC_DISPLAY_CLOCK_333_MHZ:
3436                        return 333000;
3437                default:
3438                case GC_DISPLAY_CLOCK_190_200_MHZ:
3439                        return 190000;
3440                }
3441        }
3442}
3443
3444static int i865_get_display_clock_speed(struct drm_device *dev)
3445{
3446        return 266000;
3447}
3448
3449static int i855_get_display_clock_speed(struct drm_device *dev)
3450{
3451        u16 hpllcc = 0;
3452        /* Assume that the hardware is in the high speed state.  This
3453         * should be the default.
3454         */
3455        switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3456        case GC_CLOCK_133_200:
3457        case GC_CLOCK_100_200:
3458                return 200000;
3459        case GC_CLOCK_166_250:
3460                return 250000;
3461        case GC_CLOCK_100_133:
3462                return 133000;
3463        }
3464
3465        /* Shouldn't happen */
3466        return 0;
3467}
3468
3469static int i830_get_display_clock_speed(struct drm_device *dev)
3470{
3471        return 133000;
3472}
3473
3474struct fdi_m_n {
3475        u32        tu;
3476        u32        gmch_m;
3477        u32        gmch_n;
3478        u32        link_m;
3479        u32        link_n;
3480};
3481
3482static void
3483fdi_reduce_ratio(u32 *num, u32 *den)
3484{
3485        while (*num > 0xffffff || *den > 0xffffff) {
3486                *num >>= 1;
3487                *den >>= 1;
3488        }
3489}
3490
3491static void
3492ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3493                     int link_clock, struct fdi_m_n *m_n)
3494{
3495        m_n->tu = 64; /* default size */
3496
3497        /* BUG_ON(pixel_clock > INT_MAX / 36); */
3498        m_n->gmch_m = bits_per_pixel * pixel_clock;
3499        m_n->gmch_n = link_clock * nlanes * 8;
3500        fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3501
3502        m_n->link_m = pixel_clock;
3503        m_n->link_n = link_clock;
3504        fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3505}
3506
3507
3508struct intel_watermark_params {
3509        unsigned long fifo_size;
3510        unsigned long max_wm;
3511        unsigned long default_wm;
3512        unsigned long guard_size;
3513        unsigned long cacheline_size;
3514};
3515
3516/* Pineview has different values for various configs */
3517static const struct intel_watermark_params pineview_display_wm = {
3518        PINEVIEW_DISPLAY_FIFO,
3519        PINEVIEW_MAX_WM,
3520        PINEVIEW_DFT_WM,
3521        PINEVIEW_GUARD_WM,
3522        PINEVIEW_FIFO_LINE_SIZE
3523};
3524static const struct intel_watermark_params pineview_display_hplloff_wm = {
3525        PINEVIEW_DISPLAY_FIFO,
3526        PINEVIEW_MAX_WM,
3527        PINEVIEW_DFT_HPLLOFF_WM,
3528        PINEVIEW_GUARD_WM,
3529        PINEVIEW_FIFO_LINE_SIZE
3530};
3531static const struct intel_watermark_params pineview_cursor_wm = {
3532        PINEVIEW_CURSOR_FIFO,
3533        PINEVIEW_CURSOR_MAX_WM,
3534        PINEVIEW_CURSOR_DFT_WM,
3535        PINEVIEW_CURSOR_GUARD_WM,
3536        PINEVIEW_FIFO_LINE_SIZE,
3537};
3538static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
3539        PINEVIEW_CURSOR_FIFO,
3540        PINEVIEW_CURSOR_MAX_WM,
3541        PINEVIEW_CURSOR_DFT_WM,
3542        PINEVIEW_CURSOR_GUARD_WM,
3543        PINEVIEW_FIFO_LINE_SIZE
3544};
3545static const struct intel_watermark_params g4x_wm_info = {
3546        G4X_FIFO_SIZE,
3547        G4X_MAX_WM,
3548        G4X_MAX_WM,
3549        2,
3550        G4X_FIFO_LINE_SIZE,
3551};
3552static const struct intel_watermark_params g4x_cursor_wm_info = {
3553        I965_CURSOR_FIFO,
3554        I965_CURSOR_MAX_WM,
3555        I965_CURSOR_DFT_WM,
3556        2,
3557        G4X_FIFO_LINE_SIZE,
3558};
3559static const struct intel_watermark_params i965_cursor_wm_info = {
3560        I965_CURSOR_FIFO,
3561        I965_CURSOR_MAX_WM,
3562        I965_CURSOR_DFT_WM,
3563        2,
3564        I915_FIFO_LINE_SIZE,
3565};
3566static const struct intel_watermark_params i945_wm_info = {
3567        I945_FIFO_SIZE,
3568        I915_MAX_WM,
3569        1,
3570        2,
3571        I915_FIFO_LINE_SIZE
3572};
3573static const struct intel_watermark_params i915_wm_info = {
3574        I915_FIFO_SIZE,
3575        I915_MAX_WM,
3576        1,
3577        2,
3578        I915_FIFO_LINE_SIZE
3579};
3580static const struct intel_watermark_params i855_wm_info = {
3581        I855GM_FIFO_SIZE,
3582        I915_MAX_WM,
3583        1,
3584        2,
3585        I830_FIFO_LINE_SIZE
3586};
3587static const struct intel_watermark_params i830_wm_info = {
3588        I830_FIFO_SIZE,
3589        I915_MAX_WM,
3590        1,
3591        2,
3592        I830_FIFO_LINE_SIZE
3593};
3594
3595static const struct intel_watermark_params ironlake_display_wm_info = {
3596        ILK_DISPLAY_FIFO,
3597        ILK_DISPLAY_MAXWM,
3598        ILK_DISPLAY_DFTWM,
3599        2,
3600        ILK_FIFO_LINE_SIZE
3601};
3602static const struct intel_watermark_params ironlake_cursor_wm_info = {
3603        ILK_CURSOR_FIFO,
3604        ILK_CURSOR_MAXWM,
3605        ILK_CURSOR_DFTWM,
3606        2,
3607        ILK_FIFO_LINE_SIZE
3608};
3609static const struct intel_watermark_params ironlake_display_srwm_info = {
3610        ILK_DISPLAY_SR_FIFO,
3611        ILK_DISPLAY_MAX_SRWM,
3612        ILK_DISPLAY_DFT_SRWM,
3613        2,
3614        ILK_FIFO_LINE_SIZE
3615};
3616static const struct intel_watermark_params ironlake_cursor_srwm_info = {
3617        ILK_CURSOR_SR_FIFO,
3618        ILK_CURSOR_MAX_SRWM,
3619        ILK_CURSOR_DFT_SRWM,
3620        2,
3621        ILK_FIFO_LINE_SIZE
3622};
3623
3624static const struct intel_watermark_params sandybridge_display_wm_info = {
3625        SNB_DISPLAY_FIFO,
3626        SNB_DISPLAY_MAXWM,
3627        SNB_DISPLAY_DFTWM,
3628        2,
3629        SNB_FIFO_LINE_SIZE
3630};
3631static const struct intel_watermark_params sandybridge_cursor_wm_info = {
3632        SNB_CURSOR_FIFO,
3633        SNB_CURSOR_MAXWM,
3634        SNB_CURSOR_DFTWM,
3635        2,
3636        SNB_FIFO_LINE_SIZE
3637};
3638static const struct intel_watermark_params sandybridge_display_srwm_info = {
3639        SNB_DISPLAY_SR_FIFO,
3640        SNB_DISPLAY_MAX_SRWM,
3641        SNB_DISPLAY_DFT_SRWM,
3642        2,
3643        SNB_FIFO_LINE_SIZE
3644};
3645static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
3646        SNB_CURSOR_SR_FIFO,
3647        SNB_CURSOR_MAX_SRWM,
3648        SNB_CURSOR_DFT_SRWM,
3649        2,
3650        SNB_FIFO_LINE_SIZE
3651};
3652
3653
3654/**
3655 * intel_calculate_wm - calculate watermark level
3656 * @clock_in_khz: pixel clock
3657 * @wm: chip FIFO params
3658 * @pixel_size: display pixel size
3659 * @latency_ns: memory latency for the platform
3660 *
3661 * Calculate the watermark level (the level at which the display plane will
3662 * start fetching from memory again).  Each chip has a different display
3663 * FIFO size and allocation, so the caller needs to figure that out and pass
3664 * in the correct intel_watermark_params structure.
3665 *
3666 * As the pixel clock runs, the FIFO will be drained at a rate that depends
3667 * on the pixel size.  When it reaches the watermark level, it'll start
3668 * fetching FIFO line sized based chunks from memory until the FIFO fills
3669 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
3670 * will occur, and a display engine hang could result.
3671 */
3672static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
3673                                        const struct intel_watermark_params *wm,
3674                                        int fifo_size,
3675                                        int pixel_size,
3676                                        unsigned long latency_ns)
3677{
3678        long entries_required, wm_size;
3679
3680        /*
3681         * Note: we need to make sure we don't overflow for various clock &
3682         * latency values.
3683         * clocks go from a few thousand to several hundred thousand.
3684         * latency is usually a few thousand
3685         */
3686        entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
3687                1000;
3688        entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
3689
3690        DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
3691
3692        wm_size = fifo_size - (entries_required + wm->guard_size);
3693
3694        DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
3695
3696        /* Don't promote wm_size to unsigned... */
3697        if (wm_size > (long)wm->max_wm)
3698                wm_size = wm->max_wm;
3699        if (wm_size <= 0)
3700                wm_size = wm->default_wm;
3701        return wm_size;
3702}
3703
3704struct cxsr_latency {
3705        int is_desktop;
3706        int is_ddr3;
3707        unsigned long fsb_freq;
3708        unsigned long mem_freq;
3709        unsigned long display_sr;
3710        unsigned long display_hpll_disable;
3711        unsigned long cursor_sr;
3712        unsigned long cursor_hpll_disable;
3713};
3714
3715static const struct cxsr_latency cxsr_latency_table[] = {
3716        {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
3717        {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
3718        {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
3719        {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
3720        {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
3721
3722        {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
3723        {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
3724        {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
3725        {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
3726        {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
3727
3728        {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
3729        {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
3730        {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
3731        {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
3732        {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
3733
3734        {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
3735        {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
3736        {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
3737        {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
3738        {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
3739
3740        {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
3741        {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
3742        {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
3743        {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
3744        {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
3745
3746        {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
3747        {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
3748        {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
3749        {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
3750        {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
3751};
3752
3753static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
3754                                                         int is_ddr3,
3755                                                         int fsb,
3756                                                         int mem)
3757{
3758        const struct cxsr_latency *latency;
3759        int i;
3760
3761        if (fsb == 0 || mem == 0)
3762                return NULL;
3763
3764        for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
3765                latency = &cxsr_latency_table[i];
3766                if (is_desktop == latency->is_desktop &&
3767                    is_ddr3 == latency->is_ddr3 &&
3768                    fsb == latency->fsb_freq && mem == latency->mem_freq)
3769                        return latency;
3770        }
3771
3772        DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3773
3774        return NULL;
3775}
3776
3777static void pineview_disable_cxsr(struct drm_device *dev)
3778{
3779        struct drm_i915_private *dev_priv = dev->dev_private;
3780
3781        /* deactivate cxsr */
3782        I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
3783}
3784
3785/*
3786 * Latency for FIFO fetches is dependent on several factors:
3787 *   - memory configuration (speed, channels)
3788 *   - chipset
3789 *   - current MCH state
3790 * It can be fairly high in some situations, so here we assume a fairly
3791 * pessimal value.  It's a tradeoff between extra memory fetches (if we
3792 * set this value too high, the FIFO will fetch frequently to stay full)
3793 * and power consumption (set it too low to save power and we might see
3794 * FIFO underruns and display "flicker").
3795 *
3796 * A value of 5us seems to be a good balance; safe for very low end
3797 * platforms but not overly aggressive on lower latency configs.
3798 */
3799static const int latency_ns = 5000;
3800
3801static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
3802{
3803        struct drm_i915_private *dev_priv = dev->dev_private;
3804        uint32_t dsparb = I915_READ(DSPARB);
3805        int size;
3806
3807        size = dsparb & 0x7f;
3808        if (plane)
3809                size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
3810
3811        DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3812                      plane ? "B" : "A", size);
3813
3814        return size;
3815}
3816
3817static int i85x_get_fifo_size(struct drm_device *dev, int plane)
3818{
3819        struct drm_i915_private *dev_priv = dev->dev_private;
3820        uint32_t dsparb = I915_READ(DSPARB);
3821        int size;
3822
3823        size = dsparb & 0x1ff;
3824        if (plane)
3825                size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
3826        size >>= 1; /* Convert to cachelines */
3827
3828        DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3829                      plane ? "B" : "A", size);
3830
3831        return size;
3832}
3833
3834static int i845_get_fifo_size(struct drm_device *dev, int plane)
3835{
3836        struct drm_i915_private *dev_priv = dev->dev_private;
3837        uint32_t dsparb = I915_READ(DSPARB);
3838        int size;
3839
3840        size = dsparb & 0x7f;
3841        size >>= 2; /* Convert to cachelines */
3842
3843        DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3844                      plane ? "B" : "A",
3845                      size);
3846
3847        return size;
3848}
3849
3850static int i830_get_fifo_size(struct drm_device *dev, int plane)
3851{
3852        struct drm_i915_private *dev_priv = dev->dev_private;
3853        uint32_t dsparb = I915_READ(DSPARB);
3854        int size;
3855
3856        size = dsparb & 0x7f;
3857        size >>= 1; /* Convert to cachelines */
3858
3859        DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3860                      plane ? "B" : "A", size);
3861
3862        return size;
3863}
3864
3865static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
3866{
3867        struct drm_crtc *crtc, *enabled = NULL;
3868
3869        list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3870                if (crtc->enabled && crtc->fb) {
3871                        if (enabled)
3872                                return NULL;
3873                        enabled = crtc;
3874                }
3875        }
3876
3877        return enabled;
3878}
3879
3880static void pineview_update_wm(struct drm_device *dev)
3881{
3882        struct drm_i915_private *dev_priv = dev->dev_private;
3883        struct drm_crtc *crtc;
3884        const struct cxsr_latency *latency;
3885        u32 reg;
3886        unsigned long wm;
3887
3888        latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
3889                                         dev_priv->fsb_freq, dev_priv->mem_freq);
3890        if (!latency) {
3891                DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3892                pineview_disable_cxsr(dev);
3893                return;
3894        }
3895
3896        crtc = single_enabled_crtc(dev);
3897        if (crtc) {
3898                int clock = crtc->mode.clock;
3899                int pixel_size = crtc->fb->bits_per_pixel / 8;
3900
3901                /* Display SR */
3902                wm = intel_calculate_wm(clock, &pineview_display_wm,
3903                                        pineview_display_wm.fifo_size,
3904                                        pixel_size, latency->display_sr);
3905                reg = I915_READ(DSPFW1);
3906                reg &= ~DSPFW_SR_MASK;
3907                reg |= wm << DSPFW_SR_SHIFT;
3908                I915_WRITE(DSPFW1, reg);
3909                DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3910
3911                /* cursor SR */
3912                wm = intel_calculate_wm(clock, &pineview_cursor_wm,
3913                                        pineview_display_wm.fifo_size,
3914                                        pixel_size, latency->cursor_sr);
3915                reg = I915_READ(DSPFW3);
3916                reg &= ~DSPFW_CURSOR_SR_MASK;
3917                reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3918                I915_WRITE(DSPFW3, reg);
3919
3920                /* Display HPLL off SR */
3921                wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
3922                                        pineview_display_hplloff_wm.fifo_size,
3923                                        pixel_size, latency->display_hpll_disable);
3924                reg = I915_READ(DSPFW3);
3925                reg &= ~DSPFW_HPLL_SR_MASK;
3926                reg |= wm & DSPFW_HPLL_SR_MASK;
3927                I915_WRITE(DSPFW3, reg);
3928
3929                /* cursor HPLL off SR */
3930                wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
3931                                        pineview_display_hplloff_wm.fifo_size,
3932                                        pixel_size, latency->cursor_hpll_disable);
3933                reg = I915_READ(DSPFW3);
3934                reg &= ~DSPFW_HPLL_CURSOR_MASK;
3935                reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3936                I915_WRITE(DSPFW3, reg);
3937                DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3938
3939                /* activate cxsr */
3940                I915_WRITE(DSPFW3,
3941                           I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
3942                DRM_DEBUG_KMS("Self-refresh is enabled\n");
3943        } else {
3944                pineview_disable_cxsr(dev);
3945                DRM_DEBUG_KMS("Self-refresh is disabled\n");
3946        }
3947}
3948
3949static bool g4x_compute_wm0(struct drm_device *dev,
3950                            int plane,
3951                            const struct intel_watermark_params *display,
3952                            int display_latency_ns,
3953                            const struct intel_watermark_params *cursor,
3954                            int cursor_latency_ns,
3955                            int *plane_wm,
3956                            int *cursor_wm)
3957{
3958        struct drm_crtc *crtc;
3959        int htotal, hdisplay, clock, pixel_size;
3960        int line_time_us, line_count;
3961        int entries, tlb_miss;
3962
3963        crtc = intel_get_crtc_for_plane(dev, plane);
3964        if (crtc->fb == NULL || !crtc->enabled) {
3965                *cursor_wm = cursor->guard_size;
3966                *plane_wm = display->guard_size;
3967                return false;
3968        }
3969
3970        htotal = crtc->mode.htotal;
3971        hdisplay = crtc->mode.hdisplay;
3972        clock = crtc->mode.clock;
3973        pixel_size = crtc->fb->bits_per_pixel / 8;
3974
3975        /* Use the small buffer method to calculate plane watermark */
3976        entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
3977        tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
3978        if (tlb_miss > 0)
3979                entries += tlb_miss;
3980        entries = DIV_ROUND_UP(entries, display->cacheline_size);
3981        *plane_wm = entries + display->guard_size;
3982        if (*plane_wm > (int)display->max_wm)
3983                *plane_wm = display->max_wm;
3984
3985        /* Use the large buffer method to calculate cursor watermark */
3986        line_time_us = ((htotal * 1000) / clock);
3987        line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
3988        entries = line_count * 64 * pixel_size;
3989        tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
3990        if (tlb_miss > 0)
3991                entries += tlb_miss;
3992        entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3993        *cursor_wm = entries + cursor->guard_size;
3994        if (*cursor_wm > (int)cursor->max_wm)
3995                *cursor_wm = (int)cursor->max_wm;
3996
3997        return true;
3998}
3999
4000/*
4001 * Check the wm result.
4002 *
4003 * If any calculated watermark values is larger than the maximum value that
4004 * can be programmed into the associated watermark register, that watermark
4005 * must be disabled.
4006 */
4007static bool g4x_check_srwm(struct drm_device *dev,
4008                           int display_wm, int cursor_wm,
4009                           const struct intel_watermark_params *display,
4010                           const struct intel_watermark_params *cursor)
4011{
4012        DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
4013                      display_wm, cursor_wm);
4014
4015        if (display_wm > display->max_wm) {
4016                DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
4017                              display_wm, display->max_wm);
4018                return false;
4019        }
4020
4021        if (cursor_wm > cursor->max_wm) {
4022                DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
4023                              cursor_wm, cursor->max_wm);
4024                return false;
4025        }
4026
4027        if (!(display_wm || cursor_wm)) {
4028                DRM_DEBUG_KMS("SR latency is 0, disabling\n");
4029                return false;
4030        }
4031
4032        return true;
4033}
4034
4035static bool g4x_compute_srwm(struct drm_device *dev,
4036                             int plane,
4037                             int latency_ns,
4038                             const struct intel_watermark_params *display,
4039                             const struct intel_watermark_params *cursor,
4040                             int *display_wm, int *cursor_wm)
4041{
4042        struct drm_crtc *crtc;
4043        int hdisplay, htotal, pixel_size, clock;
4044        unsigned long line_time_us;
4045        int line_count, line_size;
4046        int small, large;
4047        int entries;
4048
4049        if (!latency_ns) {
4050                *display_wm = *cursor_wm = 0;
4051                return false;
4052        }
4053
4054        crtc = intel_get_crtc_for_plane(dev, plane);
4055        hdisplay = crtc->mode.hdisplay;
4056        htotal = crtc->mode.htotal;
4057        clock = crtc->mode.clock;
4058        pixel_size = crtc->fb->bits_per_pixel / 8;
4059
4060        line_time_us = (htotal * 1000) / clock;
4061        line_count = (latency_ns / line_time_us + 1000) / 1000;
4062        line_size = hdisplay * pixel_size;
4063
4064        /* Use the minimum of the small and large buffer method for primary */
4065        small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4066        large = line_count * line_size;
4067
4068        entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4069        *display_wm = entries + display->guard_size;
4070
4071        /* calculate the self-refresh watermark for display cursor */
4072        entries = line_count * pixel_size * 64;
4073        entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4074        *cursor_wm = entries + cursor->guard_size;
4075
4076        return g4x_check_srwm(dev,
4077                              *display_wm, *cursor_wm,
4078                              display, cursor);
4079}
4080
4081#define single_plane_enabled(mask) is_power_of_2(mask)
4082
4083static void g4x_update_wm(struct drm_device *dev)
4084{
4085        static const int sr_latency_ns = 12000;
4086        struct drm_i915_private *dev_priv = dev->dev_private;
4087        int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
4088        int plane_sr, cursor_sr;
4089        unsigned int enabled = 0;
4090
4091        if (g4x_compute_wm0(dev, 0,
4092                            &g4x_wm_info, latency_ns,
4093                            &g4x_cursor_wm_info, latency_ns,
4094                            &planea_wm, &cursora_wm))
4095                enabled |= 1;
4096
4097        if (g4x_compute_wm0(dev, 1,
4098                            &g4x_wm_info, latency_ns,
4099                            &g4x_cursor_wm_info, latency_ns,
4100                            &planeb_wm, &cursorb_wm))
4101                enabled |= 2;
4102
4103        plane_sr = cursor_sr = 0;
4104        if (single_plane_enabled(enabled) &&
4105            g4x_compute_srwm(dev, ffs(enabled) - 1,
4106                             sr_latency_ns,
4107                             &g4x_wm_info,
4108                             &g4x_cursor_wm_info,
4109                             &plane_sr, &cursor_sr))
4110                I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
4111        else
4112                I915_WRITE(FW_BLC_SELF,
4113                           I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
4114
4115        DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
4116                      planea_wm, cursora_wm,
4117                      planeb_wm, cursorb_wm,
4118                      plane_sr, cursor_sr);
4119
4120        I915_WRITE(DSPFW1,
4121                   (plane_sr << DSPFW_SR_SHIFT) |
4122                   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
4123                   (planeb_wm << DSPFW_PLANEB_SHIFT) |
4124                   planea_wm);
4125        I915_WRITE(DSPFW2,
4126                   (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
4127                   (cursora_wm << DSPFW_CURSORA_SHIFT));
4128        /* HPLL off in SR has some issues on G4x... disable it */
4129        I915_WRITE(DSPFW3,
4130                   (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
4131                   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4132}
4133
4134static void i965_update_wm(struct drm_device *dev)
4135{
4136        struct drm_i915_private *dev_priv = dev->dev_private;
4137        struct drm_crtc *crtc;
4138        int srwm = 1;
4139        int cursor_sr = 16;
4140
4141        /* Calc sr entries for one plane configs */
4142        crtc = single_enabled_crtc(dev);
4143        if (crtc) {
4144                /* self-refresh has much higher latency */
4145                static const int sr_latency_ns = 12000;
4146                int clock = crtc->mode.clock;
4147                int htotal = crtc->mode.htotal;
4148                int hdisplay = crtc->mode.hdisplay;
4149                int pixel_size = crtc->fb->bits_per_pixel / 8;
4150                unsigned long line_time_us;
4151                int entries;
4152
4153                line_time_us = ((htotal * 1000) / clock);
4154
4155                /* Use ns/us then divide to preserve precision */
4156                entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4157                        pixel_size * hdisplay;
4158                entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
4159                srwm = I965_FIFO_SIZE - entries;
4160                if (srwm < 0)
4161                        srwm = 1;
4162                srwm &= 0x1ff;
4163                DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
4164                              entries, srwm);
4165
4166                entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4167                        pixel_size * 64;
4168                entries = DIV_ROUND_UP(entries,
4169                                          i965_cursor_wm_info.cacheline_size);
4170                cursor_sr = i965_cursor_wm_info.fifo_size -
4171                        (entries + i965_cursor_wm_info.guard_size);
4172
4173                if (cursor_sr > i965_cursor_wm_info.max_wm)
4174                        cursor_sr = i965_cursor_wm_info.max_wm;
4175
4176                DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
4177                              "cursor %d\n", srwm, cursor_sr);
4178
4179                if (IS_CRESTLINE(dev))
4180                        I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
4181        } else {
4182                /* Turn off self refresh if both pipes are enabled */
4183                if (IS_CRESTLINE(dev))
4184                        I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
4185                                   & ~FW_BLC_SELF_EN);
4186        }
4187
4188        DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
4189                      srwm);
4190
4191        /* 965 has limitations... */
4192        I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
4193                   (8 << 16) | (8 << 8) | (8 << 0));
4194        I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
4195        /* update cursor SR watermark */
4196        I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4197}
4198
4199static void i9xx_update_wm(struct drm_device *dev)
4200{
4201        struct drm_i915_private *dev_priv = dev->dev_private;
4202        const struct intel_watermark_params *wm_info;
4203        uint32_t fwater_lo;
4204        uint32_t fwater_hi;
4205        int cwm, srwm = 1;
4206        int fifo_size;
4207        int planea_wm, planeb_wm;
4208        struct drm_crtc *crtc, *enabled = NULL;
4209
4210        if (IS_I945GM(dev))
4211                wm_info = &i945_wm_info;
4212        else if (!IS_GEN2(dev))
4213                wm_info = &i915_wm_info;
4214        else
4215                wm_info = &i855_wm_info;
4216
4217        fifo_size = dev_priv->display.get_fifo_size(dev, 0);
4218        crtc = intel_get_crtc_for_plane(dev, 0);
4219        if (crtc->enabled && crtc->fb) {
4220                planea_wm = intel_calculate_wm(crtc->mode.clock,
4221                                               wm_info, fifo_size,
4222                                               crtc->fb->bits_per_pixel / 8,
4223                                               latency_ns);
4224                enabled = crtc;
4225        } else
4226                planea_wm = fifo_size - wm_info->guard_size;
4227
4228        fifo_size = dev_priv->display.get_fifo_size(dev, 1);
4229        crtc = intel_get_crtc_for_plane(dev, 1);
4230        if (crtc->enabled && crtc->fb) {
4231                planeb_wm = intel_calculate_wm(crtc->mode.clock,
4232                                               wm_info, fifo_size,
4233                                               crtc->fb->bits_per_pixel / 8,
4234                                               latency_ns);
4235                if (enabled == NULL)
4236                        enabled = crtc;
4237                else
4238                        enabled = NULL;
4239        } else
4240                planeb_wm = fifo_size - wm_info->guard_size;
4241
4242        DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
4243
4244        /*
4245         * Overlay gets an aggressive default since video jitter is bad.
4246         */
4247        cwm = 2;
4248
4249        /* Play safe and disable self-refresh before adjusting watermarks. */
4250        if (IS_I945G(dev) || IS_I945GM(dev))
4251                I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
4252        else if (IS_I915GM(dev))
4253                I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
4254
4255        /* Calc sr entries for one plane configs */
4256        if (HAS_FW_BLC(dev) && enabled) {
4257                /* self-refresh has much higher latency */
4258                static const int sr_latency_ns = 6000;
4259                int clock = enabled->mode.clock;
4260                int htotal = enabled->mode.htotal;
4261                int hdisplay = enabled->mode.hdisplay;
4262                int pixel_size = enabled->fb->bits_per_pixel / 8;
4263                unsigned long line_time_us;
4264                int entries;
4265
4266                line_time_us = (htotal * 1000) / clock;
4267
4268                /* Use ns/us then divide to preserve precision */
4269                entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4270                        pixel_size * hdisplay;
4271                entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
4272                DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
4273                srwm = wm_info->fifo_size - entries;
4274                if (srwm < 0)
4275                        srwm = 1;
4276
4277                if (IS_I945G(dev) || IS_I945GM(dev))
4278                        I915_WRITE(FW_BLC_SELF,
4279                                   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
4280                else if (IS_I915GM(dev))
4281                        I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
4282        }
4283
4284        DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
4285                      planea_wm, planeb_wm, cwm, srwm);
4286
4287        fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
4288        fwater_hi = (cwm & 0x1f);
4289
4290        /* Set request length to 8 cachelines per fetch */
4291        fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
4292        fwater_hi = fwater_hi | (1 << 8);
4293
4294        I915_WRITE(FW_BLC, fwater_lo);
4295        I915_WRITE(FW_BLC2, fwater_hi);
4296
4297        if (HAS_FW_BLC(dev)) {
4298                if (enabled) {
4299                        if (IS_I945G(dev) || IS_I945GM(dev))
4300                                I915_WRITE(FW_BLC_SELF,
4301                                           FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4302                        else if (IS_I915GM(dev))
4303                                I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
4304                        DRM_DEBUG_KMS("memory self refresh enabled\n");
4305                } else
4306                        DRM_DEBUG_KMS("memory self refresh disabled\n");
4307        }
4308}
4309
4310static void i830_update_wm(struct drm_device *dev)
4311{
4312        struct drm_i915_private *dev_priv = dev->dev_private;
4313        struct drm_crtc *crtc;
4314        uint32_t fwater_lo;
4315        int planea_wm;
4316
4317        crtc = single_enabled_crtc(dev);
4318        if (crtc == NULL)
4319                return;
4320
4321        planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
4322                                       dev_priv->display.get_fifo_size(dev, 0),
4323                                       crtc->fb->bits_per_pixel / 8,
4324                                       latency_ns);
4325        fwater_lo = I915_READ(FW_BLC) & ~0xfff;
4326        fwater_lo |= (3<<8) | planea_wm;
4327
4328        DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
4329
4330        I915_WRITE(FW_BLC, fwater_lo);
4331}
4332
4333#define ILK_LP0_PLANE_LATENCY           700
4334#define ILK_LP0_CURSOR_LATENCY          1300
4335
4336/*
4337 * Check the wm result.
4338 *
4339 * If any calculated watermark values is larger than the maximum value that
4340 * can be programmed into the associated watermark register, that watermark
4341 * must be disabled.
4342 */
4343static bool ironlake_check_srwm(struct drm_device *dev, int level,
4344                                int fbc_wm, int display_wm, int cursor_wm,
4345                                const struct intel_watermark_params *display,
4346                                const struct intel_watermark_params *cursor)
4347{
4348        struct drm_i915_private *dev_priv = dev->dev_private;
4349
4350        DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
4351                      " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
4352
4353        if (fbc_wm > SNB_FBC_MAX_SRWM) {
4354                DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
4355                              fbc_wm, SNB_FBC_MAX_SRWM, level);
4356
4357                /* fbc has it's own way to disable FBC WM */
4358                I915_WRITE(DISP_ARB_CTL,
4359                           I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
4360                return false;
4361        }
4362
4363        if (display_wm > display->max_wm) {
4364                DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
4365                              display_wm, SNB_DISPLAY_MAX_SRWM, level);
4366                return false;
4367        }
4368
4369        if (cursor_wm > cursor->max_wm) {
4370                DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
4371                              cursor_wm, SNB_CURSOR_MAX_SRWM, level);
4372                return false;
4373        }
4374
4375        if (!(fbc_wm || display_wm || cursor_wm)) {
4376                DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
4377                return false;
4378        }
4379
4380        return true;
4381}
4382
4383/*
4384 * Compute watermark values of WM[1-3],
4385 */
4386static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
4387                                  int latency_ns,
4388                                  const struct intel_watermark_params *display,
4389                                  const struct intel_watermark_params *cursor,
4390                                  int *fbc_wm, int *display_wm, int *cursor_wm)
4391{
4392        struct drm_crtc *crtc;
4393        unsigned long line_time_us;
4394        int hdisplay, htotal, pixel_size, clock;
4395        int line_count, line_size;
4396        int small, large;
4397        int entries;
4398
4399        if (!latency_ns) {
4400                *fbc_wm = *display_wm = *cursor_wm = 0;
4401                return false;
4402        }
4403
4404        crtc = intel_get_crtc_for_plane(dev, plane);
4405        hdisplay = crtc->mode.hdisplay;
4406        htotal = crtc->mode.htotal;
4407        clock = crtc->mode.clock;
4408        pixel_size = crtc->fb->bits_per_pixel / 8;
4409
4410        line_time_us = (htotal * 1000) / clock;
4411        line_count = (latency_ns / line_time_us + 1000) / 1000;
4412        line_size = hdisplay * pixel_size;
4413
4414        /* Use the minimum of the small and large buffer method for primary */
4415        small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4416        large = line_count * line_size;
4417
4418        entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4419        *display_wm = entries + display->guard_size;
4420
4421        /*
4422         * Spec says:
4423         * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
4424         */
4425        *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
4426
4427        /* calculate the self-refresh watermark for display cursor */
4428        entries = line_count * pixel_size * 64;
4429        entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4430        *cursor_wm = entries + cursor->guard_size;
4431
4432        return ironlake_check_srwm(dev, level,
4433                                   *fbc_wm, *display_wm, *cursor_wm,
4434                                   display, cursor);
4435}
4436
4437static void ironlake_update_wm(struct drm_device *dev)
4438{
4439        struct drm_i915_private *dev_priv = dev->dev_private;
4440        int fbc_wm, plane_wm, cursor_wm;
4441        unsigned int enabled;
4442
4443        enabled = 0;
4444        if (g4x_compute_wm0(dev, 0,
4445                            &ironlake_display_wm_info,
4446                            ILK_LP0_PLANE_LATENCY,
4447                            &ironlake_cursor_wm_info,
4448                            ILK_LP0_CURSOR_LATENCY,
4449                            &plane_wm, &cursor_wm)) {
4450                I915_WRITE(WM0_PIPEA_ILK,
4451                           (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4452                DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4453                              " plane %d, " "cursor: %d\n",
4454                              plane_wm, cursor_wm);
4455                enabled |= 1;
4456        }
4457
4458        if (g4x_compute_wm0(dev, 1,
4459                            &ironlake_display_wm_info,
4460                            ILK_LP0_PLANE_LATENCY,
4461                            &ironlake_cursor_wm_info,
4462                            ILK_LP0_CURSOR_LATENCY,
4463                            &plane_wm, &cursor_wm)) {
4464                I915_WRITE(WM0_PIPEB_ILK,
4465                           (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4466                DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4467                              " plane %d, cursor: %d\n",
4468                              plane_wm, cursor_wm);
4469                enabled |= 2;
4470        }
4471
4472        /*
4473         * Calculate and update the self-refresh watermark only when one
4474         * display plane is used.
4475         */
4476        I915_WRITE(WM3_LP_ILK, 0);
4477        I915_WRITE(WM2_LP_ILK, 0);
4478        I915_WRITE(WM1_LP_ILK, 0);
4479
4480        if (!single_plane_enabled(enabled))
4481                return;
4482        enabled = ffs(enabled) - 1;
4483
4484        /* WM1 */
4485        if (!ironlake_compute_srwm(dev, 1, enabled,
4486                                   ILK_READ_WM1_LATENCY() * 500,
4487                                   &ironlake_display_srwm_info,
4488                                   &ironlake_cursor_srwm_info,
4489                                   &fbc_wm, &plane_wm, &cursor_wm))
4490                return;
4491
4492        I915_WRITE(WM1_LP_ILK,
4493                   WM1_LP_SR_EN |
4494                   (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4495                   (fbc_wm << WM1_LP_FBC_SHIFT) |
4496                   (plane_wm << WM1_LP_SR_SHIFT) |
4497                   cursor_wm);
4498
4499        /* WM2 */
4500        if (!ironlake_compute_srwm(dev, 2, enabled,
4501                                   ILK_READ_WM2_LATENCY() * 500,
4502                                   &ironlake_display_srwm_info,
4503                                   &ironlake_cursor_srwm_info,
4504                                   &fbc_wm, &plane_wm, &cursor_wm))
4505                return;
4506
4507        I915_WRITE(WM2_LP_ILK,
4508                   WM2_LP_EN |
4509                   (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4510                   (fbc_wm << WM1_LP_FBC_SHIFT) |
4511                   (plane_wm << WM1_LP_SR_SHIFT) |
4512                   cursor_wm);
4513
4514        /*
4515         * WM3 is unsupported on ILK, probably because we don't have latency
4516         * data for that power state
4517         */
4518}
4519
4520void sandybridge_update_wm(struct drm_device *dev)
4521{
4522        struct drm_i915_private *dev_priv = dev->dev_private;
4523        int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
4524        int fbc_wm, plane_wm, cursor_wm;
4525        unsigned int enabled;
4526
4527        enabled = 0;
4528        if (g4x_compute_wm0(dev, 0,
4529                            &sandybridge_display_wm_info, latency,
4530                            &sandybridge_cursor_wm_info, latency,
4531                            &plane_wm, &cursor_wm)) {
4532                I915_WRITE(WM0_PIPEA_ILK,
4533                           (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4534                DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4535                              " plane %d, " "cursor: %d\n",
4536                              plane_wm, cursor_wm);
4537                enabled |= 1;
4538        }
4539
4540        if (g4x_compute_wm0(dev, 1,
4541                            &sandybridge_display_wm_info, latency,
4542                            &sandybridge_cursor_wm_info, latency,
4543                            &plane_wm, &cursor_wm)) {
4544                I915_WRITE(WM0_PIPEB_ILK,
4545                           (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4546                DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4547                              " plane %d, cursor: %d\n",
4548                              plane_wm, cursor_wm);
4549                enabled |= 2;
4550        }
4551
4552        /* IVB has 3 pipes */
4553        if (IS_IVYBRIDGE(dev) &&
4554            g4x_compute_wm0(dev, 2,
4555                            &sandybridge_display_wm_info, latency,
4556                            &sandybridge_cursor_wm_info, latency,
4557                            &plane_wm, &cursor_wm)) {
4558                I915_WRITE(WM0_PIPEC_IVB,
4559                           (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4560                DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
4561                              " plane %d, cursor: %d\n",
4562                              plane_wm, cursor_wm);
4563                enabled |= 3;
4564        }
4565
4566        /*
4567         * Calculate and update the self-refresh watermark only when one
4568         * display plane is used.
4569         *
4570         * SNB support 3 levels of watermark.
4571         *
4572         * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
4573         * and disabled in the descending order
4574         *
4575         */
4576        I915_WRITE(WM3_LP_ILK, 0);
4577        I915_WRITE(WM2_LP_ILK, 0);
4578        I915_WRITE(WM1_LP_ILK, 0);
4579
4580        if (!single_plane_enabled(enabled) ||
4581            dev_priv->sprite_scaling_enabled)
4582                return;
4583        enabled = ffs(enabled) - 1;
4584
4585        /* WM1 */
4586        if (!ironlake_compute_srwm(dev, 1, enabled,
4587                                   SNB_READ_WM1_LATENCY() * 500,
4588                                   &sandybridge_display_srwm_info,
4589                                   &sandybridge_cursor_srwm_info,
4590                                   &fbc_wm, &plane_wm, &cursor_wm))
4591                return;
4592
4593        I915_WRITE(WM1_LP_ILK,
4594                   WM1_LP_SR_EN |
4595                   (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4596                   (fbc_wm << WM1_LP_FBC_SHIFT) |
4597                   (plane_wm << WM1_LP_SR_SHIFT) |
4598                   cursor_wm);
4599
4600        /* WM2 */
4601        if (!ironlake_compute_srwm(dev, 2, enabled,
4602                                   SNB_READ_WM2_LATENCY() * 500,
4603                                   &sandybridge_display_srwm_info,
4604                                   &sandybridge_cursor_srwm_info,
4605                                   &fbc_wm, &plane_wm, &cursor_wm))
4606                return;
4607
4608        I915_WRITE(WM2_LP_ILK,
4609                   WM2_LP_EN |
4610                   (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4611                   (fbc_wm << WM1_LP_FBC_SHIFT) |
4612                   (plane_wm << WM1_LP_SR_SHIFT) |
4613                   cursor_wm);
4614
4615        /* WM3 */
4616        if (!ironlake_compute_srwm(dev, 3, enabled,
4617                                   SNB_READ_WM3_LATENCY() * 500,
4618                                   &sandybridge_display_srwm_info,
4619                                   &sandybridge_cursor_srwm_info,
4620                                   &fbc_wm, &plane_wm, &cursor_wm))
4621                return;
4622
4623        I915_WRITE(WM3_LP_ILK,
4624                   WM3_LP_EN |
4625                   (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4626                   (fbc_wm << WM1_LP_FBC_SHIFT) |
4627                   (plane_wm << WM1_LP_SR_SHIFT) |
4628                   cursor_wm);
4629}
4630
4631static bool
4632sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
4633                              uint32_t sprite_width, int pixel_size,
4634                              const struct intel_watermark_params *display,
4635                              int display_latency_ns, int *sprite_wm)
4636{
4637        struct drm_crtc *crtc;
4638        int clock;
4639        int entries, tlb_miss;
4640
4641        crtc = intel_get_crtc_for_plane(dev, plane);
4642        if (crtc->fb == NULL || !crtc->enabled) {
4643                *sprite_wm = display->guard_size;
4644                return false;
4645        }
4646
4647        clock = crtc->mode.clock;
4648
4649        /* Use the small buffer method to calculate the sprite watermark */
4650        entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
4651        tlb_miss = display->fifo_size*display->cacheline_size -
4652                sprite_width * 8;
4653        if (tlb_miss > 0)
4654                entries += tlb_miss;
4655        entries = DIV_ROUND_UP(entries, display->cacheline_size);
4656        *sprite_wm = entries + display->guard_size;
4657        if (*sprite_wm > (int)display->max_wm)
4658                *sprite_wm = display->max_wm;
4659
4660        return true;
4661}
4662
4663static bool
4664sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
4665                                uint32_t sprite_width, int pixel_size,
4666                                const struct intel_watermark_params *display,
4667                                int latency_ns, int *sprite_wm)
4668{
4669        struct drm_crtc *crtc;
4670        unsigned long line_time_us;
4671        int clock;
4672        int line_count, line_size;
4673        int small, large;
4674        int entries;
4675
4676        if (!latency_ns) {
4677                *sprite_wm = 0;
4678                return false;
4679        }
4680
4681        crtc = intel_get_crtc_for_plane(dev, plane);
4682        clock = crtc->mode.clock;
4683        if (!clock) {
4684                *sprite_wm = 0;
4685                return false;
4686        }
4687
4688        line_time_us = (sprite_width * 1000) / clock;
4689        if (!line_time_us) {
4690                *sprite_wm = 0;
4691                return false;
4692        }
4693
4694        line_count = (latency_ns / line_time_us + 1000) / 1000;
4695        line_size = sprite_width * pixel_size;
4696
4697        /* Use the minimum of the small and large buffer method for primary */
4698        small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4699        large = line_count * line_size;
4700
4701        entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4702        *sprite_wm = entries + display->guard_size;
4703
4704        return *sprite_wm > 0x3ff ? false : true;
4705}
4706
4707static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
4708                                         uint32_t sprite_width, int pixel_size)
4709{
4710        struct drm_i915_private *dev_priv = dev->dev_private;
4711        int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
4712        int sprite_wm, reg;
4713        int ret;
4714
4715        switch (pipe) {
4716        case 0:
4717                reg = WM0_PIPEA_ILK;
4718                break;
4719        case 1:
4720                reg = WM0_PIPEB_ILK;
4721                break;
4722        case 2:
4723                reg = WM0_PIPEC_IVB;
4724                break;
4725        default:
4726                return; /* bad pipe */
4727        }
4728
4729        ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
4730                                            &sandybridge_display_wm_info,
4731                                            latency, &sprite_wm);
4732        if (!ret) {
4733                DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
4734                              pipe);
4735                return;
4736        }
4737
4738        I915_WRITE(reg, I915_READ(reg) | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
4739        DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
4740
4741
4742        ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
4743                                              pixel_size,
4744                                              &sandybridge_display_srwm_info,
4745                                              SNB_READ_WM1_LATENCY() * 500,
4746                                              &sprite_wm);
4747        if (!ret) {
4748                DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
4749                              pipe);
4750                return;
4751        }
4752        I915_WRITE(WM1S_LP_ILK, sprite_wm);
4753
4754        /* Only IVB has two more LP watermarks for sprite */
4755        if (!IS_IVYBRIDGE(dev))
4756                return;
4757
4758        ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
4759                                              pixel_size,
4760                                              &sandybridge_display_srwm_info,
4761                                              SNB_READ_WM2_LATENCY() * 500,
4762                                              &sprite_wm);
4763        if (!ret) {
4764                DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
4765                              pipe);
4766                return;
4767        }
4768        I915_WRITE(WM2S_LP_IVB, sprite_wm);
4769
4770        ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
4771                                              pixel_size,
4772                                              &sandybridge_display_srwm_info,
4773                                              SNB_READ_WM3_LATENCY() * 500,
4774                                              &sprite_wm);
4775        if (!ret) {
4776                DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
4777                              pipe);
4778                return;
4779        }
4780        I915_WRITE(WM3S_LP_IVB, sprite_wm);
4781}
4782
4783/**
4784 * intel_update_watermarks - update FIFO watermark values based on current modes
4785 *
4786 * Calculate watermark values for the various WM regs based on current mode
4787 * and plane configuration.
4788 *
4789 * There are several cases to deal with here:
4790 *   - normal (i.e. non-self-refresh)
4791 *   - self-refresh (SR) mode
4792 *   - lines are large relative to FIFO size (buffer can hold up to 2)
4793 *   - lines are small relative to FIFO size (buffer can hold more than 2
4794 *     lines), so need to account for TLB latency
4795 *
4796 *   The normal calculation is:
4797 *     watermark = dotclock * bytes per pixel * latency
4798 *   where latency is platform & configuration dependent (we assume pessimal
4799 *   values here).
4800 *
4801 *   The SR calculation is:
4802 *     watermark = (trunc(latency/line time)+1) * surface width *
4803 *       bytes per pixel
4804 *   where
4805 *     line time = htotal / dotclock
4806 *     surface width = hdisplay for normal plane and 64 for cursor
4807 *   and latency is assumed to be high, as above.
4808 *
4809 * The final value programmed to the register should always be rounded up,
4810 * and include an extra 2 entries to account for clock crossings.
4811 *
4812 * We don't use the sprite, so we can ignore that.  And on Crestline we have
4813 * to set the non-SR watermarks to 8.
4814 */
4815static void intel_update_watermarks(struct drm_device *dev)
4816{
4817        struct drm_i915_private *dev_priv = dev->dev_private;
4818
4819        if (dev_priv->display.update_wm)
4820                dev_priv->display.update_wm(dev);
4821}
4822
4823void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
4824                                    uint32_t sprite_width, int pixel_size)
4825{
4826        struct drm_i915_private *dev_priv = dev->dev_private;
4827
4828        if (dev_priv->display.update_sprite_wm)
4829                dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
4830                                                   pixel_size);
4831}
4832
4833static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4834{
4835        if (i915_panel_use_ssc >= 0)
4836                return i915_panel_use_ssc != 0;
4837        return dev_priv->lvds_use_ssc
4838                && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4839}
4840
4841/**
4842 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4843 * @crtc: CRTC structure
4844 * @mode: requested mode
4845 *
4846 * A pipe may be connected to one or more outputs.  Based on the depth of the
4847 * attached framebuffer, choose a good color depth to use on the pipe.
4848 *
4849 * If possible, match the pipe depth to the fb depth.  In some cases, this
4850 * isn't ideal, because the connected output supports a lesser or restricted
4851 * set of depths.  Resolve that here:
4852 *    LVDS typically supports only 6bpc, so clamp down in that case
4853 *    HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4854 *    Displays may support a restricted set as well, check EDID and clamp as
4855 *      appropriate.
4856 *    DP may want to dither down to 6bpc to fit larger modes
4857 *
4858 * RETURNS:
4859 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4860 * true if they don't match).
4861 */
4862static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4863                                         unsigned int *pipe_bpp,
4864                                         struct drm_display_mode *mode)
4865{
4866        struct drm_device *dev = crtc->dev;
4867        struct drm_i915_private *dev_priv = dev->dev_private;
4868        struct drm_encoder *encoder;
4869        struct drm_connector *connector;
4870        unsigned int display_bpc = UINT_MAX, bpc;
4871
4872        /* Walk the encoders & connectors on this crtc, get min bpc */
4873        list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
4874                struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4875
4876                if (encoder->crtc != crtc)
4877                        continue;
4878
4879                if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4880                        unsigned int lvds_bpc;
4881
4882                        if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4883                            LVDS_A3_POWER_UP)
4884                                lvds_bpc = 8;
4885                        else
4886                                lvds_bpc = 6;
4887
4888                        if (lvds_bpc < display_bpc) {
4889                                DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
4890                                display_bpc = lvds_bpc;
4891                        }
4892                        continue;
4893                }
4894
4895                if (intel_encoder->type == INTEL_OUTPUT_EDP) {
4896                        /* Use VBT settings if we have an eDP panel */
4897                        unsigned int edp_bpc = dev_priv->edp.bpp / 3;
4898
4899                        if (edp_bpc < display_bpc) {
4900                                DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
4901                                display_bpc = edp_bpc;
4902                        }
4903                        continue;
4904                }
4905
4906                /* Not one of the known troublemakers, check the EDID */
4907                list_for_each_entry(connector, &dev->mode_config.connector_list,
4908                                    head) {
4909                        if (connector->encoder != encoder)
4910                                continue;
4911
4912                        /* Don't use an invalid EDID bpc value */
4913                        if (connector->display_info.bpc &&
4914                            connector->display_info.bpc < display_bpc) {
4915                                DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4916                                display_bpc = connector->display_info.bpc;
4917                        }
4918                }
4919
4920                /*
4921                 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4922                 * through, clamp it down.  (Note: >12bpc will be caught below.)
4923                 */
4924                if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4925                        if (display_bpc > 8 && display_bpc < 12) {
4926                                DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
4927                                display_bpc = 12;
4928                        } else {
4929                                DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
4930                                display_bpc = 8;
4931                        }
4932                }
4933        }
4934
4935        if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4936                DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
4937                display_bpc = 6;
4938        }
4939
4940        /*
4941         * We could just drive the pipe at the highest bpc all the time and
4942         * enable dithering as needed, but that costs bandwidth.  So choose
4943         * the minimum value that expresses the full color range of the fb but
4944         * also stays within the max display bpc discovered above.
4945         */
4946
4947        switch (crtc->fb->depth) {
4948        case 8:
4949                bpc = 8; /* since we go through a colormap */
4950                break;
4951        case 15:
4952        case 16:
4953                bpc = 6; /* min is 18bpp */
4954                break;
4955        case 24:
4956                bpc = 8;
4957                break;
4958        case 30:
4959                bpc = 10;
4960                break;
4961        case 48:
4962                bpc = 12;
4963                break;
4964        default:
4965                DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4966                bpc = min((unsigned int)8, display_bpc);
4967                break;
4968        }
4969
4970        display_bpc = min(display_bpc, bpc);
4971
4972        DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
4973                      bpc, display_bpc);
4974
4975        *pipe_bpp = display_bpc * 3;
4976
4977        return display_bpc != bpc;
4978}
4979
4980static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4981                              struct drm_display_mode *mode,
4982                              struct drm_display_mode *adjusted_mode,
4983                              int x, int y,
4984                              struct drm_framebuffer *old_fb)
4985{
4986        struct drm_device *dev = crtc->dev;
4987        struct drm_i915_private *dev_priv = dev->dev_private;
4988        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4989        int pipe = intel_crtc->pipe;
4990        int plane = intel_crtc->plane;
4991        int refclk, num_connectors = 0;
4992        intel_clock_t clock, reduced_clock;
4993        u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
4994        bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
4995        bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
4996        struct drm_mode_config *mode_config = &dev->mode_config;
4997        struct intel_encoder *encoder;
4998        const intel_limit_t *limit;
4999        int ret;
5000        u32 temp;
5001        u32 lvds_sync = 0;
5002
5003        list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5004                if (encoder->base.crtc != crtc)
5005                        continue;
5006
5007                switch (encoder->type) {
5008                case INTEL_OUTPUT_LVDS:
5009                        is_lvds = true;
5010                        break;
5011                case INTEL_OUTPUT_SDVO:
5012                case INTEL_OUTPUT_HDMI:
5013                        is_sdvo = true;
5014                        if (encoder->needs_tv_clock)
5015                                is_tv = true;
5016                        break;
5017                case INTEL_OUTPUT_DVO:
5018                        is_dvo = true;
5019                        break;
5020                case INTEL_OUTPUT_TVOUT:
5021                        is_tv = true;
5022                        break;
5023                case INTEL_OUTPUT_ANALOG:
5024                        is_crt = true;
5025                        break;
5026                case INTEL_OUTPUT_DISPLAYPORT:
5027                        is_dp = true;
5028                        break;
5029                }
5030
5031                num_connectors++;
5032        }
5033
5034        if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5035                refclk = dev_priv->lvds_ssc_freq * 1000;
5036                DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5037                              refclk / 1000);
5038        } else if (!IS_GEN2(dev)) {
5039                refclk = 96000;
5040        } else {
5041                refclk = 48000;
5042        }
5043
5044        /*
5045         * Returns a set of divisors for the desired target clock with the given
5046         * refclk, or FALSE.  The returned values represent the clock equation:
5047         * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5048         */
5049        limit = intel_limit(crtc, refclk);
5050        ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
5051        if (!ok) {
5052                DRM_ERROR("Couldn't find PLL settings for mode!\n");
5053                return -EINVAL;
5054        }
5055
5056        /* Ensure that the cursor is valid for the new mode before changing... */
5057        intel_crtc_update_cursor(crtc, true);
5058
5059        if (is_lvds && dev_priv->lvds_downclock_avail) {
5060                has_reduced_clock = limit->find_pll(limit, crtc,
5061                                                    dev_priv->lvds_downclock,
5062                                                    refclk,
5063                                                    &reduced_clock);
5064                if (has_reduced_clock && (clock.p != reduced_clock.p)) {
5065                        /*
5066                         * If the different P is found, it means that we can't
5067                         * switch the display clock by using the FP0/FP1.
5068                         * In such case we will disable the LVDS downclock
5069                         * feature.
5070                         */
5071                        DRM_DEBUG_KMS("Different P is found for "
5072                                      "LVDS clock/downclock\n");
5073                        has_reduced_clock = 0;
5074                }
5075        }
5076        /* SDVO TV has fixed PLL values depend on its clock range,
5077           this mirrors vbios setting. */
5078        if (is_sdvo && is_tv) {
5079                if (adjusted_mode->clock >= 100000
5080                    && adjusted_mode->clock < 140500) {
5081                        clock.p1 = 2;
5082                        clock.p2 = 10;
5083                        clock.n = 3;
5084                        clock.m1 = 16;
5085                        clock.m2 = 8;
5086                } else if (adjusted_mode->clock >= 140500
5087                           && adjusted_mode->clock <= 200000) {
5088                        clock.p1 = 1;
5089                        clock.p2 = 10;
5090                        clock.n = 6;
5091                        clock.m1 = 12;
5092                        clock.m2 = 8;
5093                }
5094        }
5095
5096        if (IS_PINEVIEW(dev)) {
5097                fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
5098                if (has_reduced_clock)
5099                        fp2 = (1 << reduced_clock.n) << 16 |
5100                                reduced_clock.m1 << 8 | reduced_clock.m2;
5101        } else {
5102                fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5103                if (has_reduced_clock)
5104                        fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5105                                reduced_clock.m2;
5106        }
5107
5108        dpll = DPLL_VGA_MODE_DIS;
5109
5110        if (!IS_GEN2(dev)) {
5111                if (is_lvds)
5112                        dpll |= DPLLB_MODE_LVDS;
5113                else
5114                        dpll |= DPLLB_MODE_DAC_SERIAL;
5115                if (is_sdvo) {
5116                        int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5117                        if (pixel_multiplier > 1) {
5118                                if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5119                                        dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
5120                        }
5121                        dpll |= DPLL_DVO_HIGH_SPEED;
5122                }
5123                if (is_dp)
5124                        dpll |= DPLL_DVO_HIGH_SPEED;
5125
5126                /* compute bitmask from p1 value */
5127                if (IS_PINEVIEW(dev))
5128                        dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5129                else {
5130                        dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5131                        if (IS_G4X(dev) && has_reduced_clock)
5132                                dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5133                }
5134                switch (clock.p2) {
5135                case 5:
5136                        dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5137                        break;
5138                case 7:
5139                        dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5140                        break;
5141                case 10:
5142                        dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5143                        break;
5144                case 14:
5145                        dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5146                        break;
5147                }
5148                if (INTEL_INFO(dev)->gen >= 4)
5149                        dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5150        } else {
5151                if (is_lvds) {
5152                        dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5153                } else {
5154                        if (clock.p1 == 2)
5155                                dpll |= PLL_P1_DIVIDE_BY_TWO;
5156                        else
5157                                dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5158                        if (clock.p2 == 4)
5159                                dpll |= PLL_P2_DIVIDE_BY_4;
5160                }
5161        }
5162
5163        if (is_sdvo && is_tv)
5164                dpll |= PLL_REF_INPUT_TVCLKINBC;
5165        else if (is_tv)
5166                /* XXX: just matching BIOS for now */
5167                /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5168                dpll |= 3;
5169        else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5170                dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5171        else
5172                dpll |= PLL_REF_INPUT_DREFCLK;
5173
5174        /* setup pipeconf */
5175        pipeconf = I915_READ(PIPECONF(pipe));
5176
5177        /* Set up the display plane register */
5178        dspcntr = DISPPLANE_GAMMA_ENABLE;
5179
5180        /* Ironlake's plane is forced to pipe, bit 24 is to
5181           enable color space conversion */
5182        if (pipe == 0)
5183                dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
5184        else
5185                dspcntr |= DISPPLANE_SEL_PIPE_B;
5186
5187        if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
5188                /* Enable pixel doubling when the dot clock is > 90% of the (display)
5189                 * core speed.
5190                 *
5191                 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
5192                 * pipe == 0 check?
5193                 */
5194                if (mode->clock >
5195                    dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
5196                        pipeconf |= PIPECONF_DOUBLE_WIDE;
5197                else
5198                        pipeconf &= ~PIPECONF_DOUBLE_WIDE;
5199        }
5200
5201        /* default to 8bpc */
5202        pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
5203        if (is_dp) {
5204                if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
5205                        pipeconf |= PIPECONF_BPP_6 |
5206                                    PIPECONF_DITHER_EN |
5207                                    PIPECONF_DITHER_TYPE_SP;
5208                }
5209        }
5210
5211        dpll |= DPLL_VCO_ENABLE;
5212
5213        DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
5214        drm_mode_debug_printmodeline(mode);
5215
5216        I915_WRITE(FP0(pipe), fp);
5217        I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5218
5219        POSTING_READ(DPLL(pipe));
5220        udelay(150);
5221
5222        /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5223         * This is an exception to the general rule that mode_set doesn't turn
5224         * things on.
5225         */
5226        if (is_lvds) {
5227                temp = I915_READ(LVDS);
5228                temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5229                if (pipe == 1) {
5230                        temp |= LVDS_PIPEB_SELECT;
5231                } else {
5232                        temp &= ~LVDS_PIPEB_SELECT;
5233                }
5234                /* set the corresponsding LVDS_BORDER bit */
5235                temp |= dev_priv->lvds_border_bits;
5236                /* Set the B0-B3 data pairs corresponding to whether we're going to
5237                 * set the DPLLs for dual-channel mode or not.
5238                 */
5239                if (clock.p2 == 7)
5240                        temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5241                else
5242                        temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5243
5244                /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5245                 * appropriately here, but we need to look more thoroughly into how
5246                 * panels behave in the two modes.
5247                 */
5248                /* set the dithering flag on LVDS as needed */
5249                if (INTEL_INFO(dev)->gen >= 4) {
5250                        if (dev_priv->lvds_dither)
5251                                temp |= LVDS_ENABLE_DITHER;
5252                        else
5253                                temp &= ~LVDS_ENABLE_DITHER;
5254                }
5255                if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5256                        lvds_sync |= LVDS_HSYNC_POLARITY;
5257                if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5258                        lvds_sync |= LVDS_VSYNC_POLARITY;
5259                if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5260                    != lvds_sync) {
5261                        char flags[2] = "-+";
5262                        DRM_INFO("Changing LVDS panel from "
5263                                 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5264                                 flags[!(temp & LVDS_HSYNC_POLARITY)],
5265                                 flags[!(temp & LVDS_VSYNC_POLARITY)],
5266                                 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5267                                 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5268                        temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5269                        temp |= lvds_sync;
5270                }
5271                I915_WRITE(LVDS, temp);
5272        }
5273
5274        if (is_dp) {
5275                intel_dp_set_m_n(crtc, mode, adjusted_mode);
5276        }
5277
5278        I915_WRITE(DPLL(pipe), dpll);
5279
5280        /* Wait for the clocks to stabilize. */
5281        POSTING_READ(DPLL(pipe));
5282        udelay(150);
5283
5284        if (INTEL_INFO(dev)->gen >= 4) {
5285                temp = 0;
5286                if (is_sdvo) {
5287                        temp = intel_mode_get_pixel_multiplier(adjusted_mode);
5288                        if (temp > 1)
5289                                temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5290                        else
5291                                temp = 0;
5292                }
5293                I915_WRITE(DPLL_MD(pipe), temp);
5294        } else {
5295                /* The pixel multiplier can only be updated once the
5296                 * DPLL is enabled and the clocks are stable.
5297                 *
5298                 * So write it again.
5299                 */
5300                I915_WRITE(DPLL(pipe), dpll);
5301        }
5302
5303        intel_crtc->lowfreq_avail = false;
5304        if (is_lvds && has_reduced_clock && i915_powersave) {
5305                I915_WRITE(FP1(pipe), fp2);
5306                intel_crtc->lowfreq_avail = true;
5307                if (HAS_PIPE_CXSR(dev)) {
5308                        DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5309                        pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5310                }
5311        } else {
5312                I915_WRITE(FP1(pipe), fp);
5313                if (HAS_PIPE_CXSR(dev)) {
5314                        DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5315                        pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5316                }
5317        }
5318
5319        pipeconf &= ~PIPECONF_INTERLACE_MASK;
5320        if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5321                pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5322                /* the chip adds 2 halflines automatically */
5323                adjusted_mode->crtc_vdisplay -= 1;
5324                adjusted_mode->crtc_vtotal -= 1;
5325                adjusted_mode->crtc_vblank_start -= 1;
5326                adjusted_mode->crtc_vblank_end -= 1;
5327                adjusted_mode->crtc_vsync_end -= 1;
5328                adjusted_mode->crtc_vsync_start -= 1;
5329        } else
5330                pipeconf |= PIPECONF_PROGRESSIVE;
5331
5332        I915_WRITE(HTOTAL(pipe),
5333                   (adjusted_mode->crtc_hdisplay - 1) |
5334                   ((adjusted_mode->crtc_htotal - 1) << 16));
5335        I915_WRITE(HBLANK(pipe),
5336                   (adjusted_mode->crtc_hblank_start - 1) |
5337                   ((adjusted_mode->crtc_hblank_end - 1) << 16));
5338        I915_WRITE(HSYNC(pipe),
5339                   (adjusted_mode->crtc_hsync_start - 1) |
5340                   ((adjusted_mode->crtc_hsync_end - 1) << 16));
5341
5342        I915_WRITE(VTOTAL(pipe),
5343                   (adjusted_mode->crtc_vdisplay - 1) |
5344                   ((adjusted_mode->crtc_vtotal - 1) << 16));
5345        I915_WRITE(VBLANK(pipe),
5346                   (adjusted_mode->crtc_vblank_start - 1) |
5347                   ((adjusted_mode->crtc_vblank_end - 1) << 16));
5348        I915_WRITE(VSYNC(pipe),
5349                   (adjusted_mode->crtc_vsync_start - 1) |
5350                   ((adjusted_mode->crtc_vsync_end - 1) << 16));
5351
5352        /* pipesrc and dspsize control the size that is scaled from,
5353         * which should always be the user's requested size.
5354         */
5355        I915_WRITE(DSPSIZE(plane),
5356                   ((mode->vdisplay - 1) << 16) |
5357                   (mode->hdisplay - 1));
5358        I915_WRITE(DSPPOS(plane), 0);
5359        I915_WRITE(PIPESRC(pipe),
5360                   ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5361
5362        I915_WRITE(PIPECONF(pipe), pipeconf);
5363        POSTING_READ(PIPECONF(pipe));
5364        intel_enable_pipe(dev_priv, pipe, false);
5365
5366        intel_wait_for_vblank(dev, pipe);
5367
5368        I915_WRITE(DSPCNTR(plane), dspcntr);
5369        POSTING_READ(DSPCNTR(plane));
5370        intel_enable_plane(dev_priv, plane, pipe);
5371
5372        ret = intel_pipe_set_base(crtc, x, y, old_fb);
5373
5374        intel_update_watermarks(dev);
5375
5376        return ret;
5377}
5378
5379/*
5380 * Initialize reference clocks when the driver loads
5381 */
5382void ironlake_init_pch_refclk(struct drm_device *dev)
5383{
5384        struct drm_i915_private *dev_priv = dev->dev_private;
5385        struct drm_mode_config *mode_config = &dev->mode_config;
5386        struct intel_encoder *encoder;
5387        u32 temp;
5388        bool has_lvds = false;
5389        bool has_cpu_edp = false;
5390        bool has_pch_edp = false;
5391        bool has_panel = false;
5392        bool has_ck505 = false;
5393        bool can_ssc = false;
5394
5395        /* We need to take the global config into account */
5396        list_for_each_entry(encoder, &mode_config->encoder_list,
5397                            base.head) {
5398                switch (encoder->type) {
5399                case INTEL_OUTPUT_LVDS:
5400                        has_panel = true;
5401                        has_lvds = true;
5402                        break;
5403                case INTEL_OUTPUT_EDP:
5404                        has_panel = true;
5405                        if (intel_encoder_is_pch_edp(&encoder->base))
5406                                has_pch_edp = true;
5407                        else
5408                                has_cpu_edp = true;
5409                        break;
5410                }
5411        }
5412
5413        if (HAS_PCH_IBX(dev)) {
5414                has_ck505 = dev_priv->display_clock_mode;
5415                can_ssc = has_ck505;
5416        } else {
5417                has_ck505 = false;
5418                can_ssc = true;
5419        }
5420
5421        DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
5422                      has_panel, has_lvds, has_pch_edp, has_cpu_edp,
5423                      has_ck505);
5424
5425        /* Ironlake: try to setup display ref clock before DPLL
5426         * enabling. This is only under driver's control after
5427         * PCH B stepping, previous chipset stepping should be
5428         * ignoring this setting.
5429         */
5430        temp = I915_READ(PCH_DREF_CONTROL);
5431        /* Always enable nonspread source */
5432        temp &= ~DREF_NONSPREAD_SOURCE_MASK;
5433
5434        if (has_ck505)
5435                temp |= DREF_NONSPREAD_CK505_ENABLE;
5436        else
5437                temp |= DREF_NONSPREAD_SOURCE_ENABLE;
5438
5439        if (has_panel) {
5440                temp &= ~DREF_SSC_SOURCE_MASK;
5441                temp |= DREF_SSC_SOURCE_ENABLE;
5442
5443                /* SSC must be turned on before enabling the CPU output  */
5444                if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5445                        DRM_DEBUG_KMS("Using SSC on panel\n");
5446                        temp |= DREF_SSC1_ENABLE;
5447                }
5448
5449                /* Get SSC going before enabling the outputs */
5450                I915_WRITE(PCH_DREF_CONTROL, temp);
5451                POSTING_READ(PCH_DREF_CONTROL);
5452                udelay(200);
5453
5454                temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5455
5456                /* Enable CPU source on CPU attached eDP */
5457                if (has_cpu_edp) {
5458                        if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5459                                DRM_DEBUG_KMS("Using SSC on eDP\n");
5460                                temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5461                        }
5462                        else
5463                                temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5464                } else
5465                        temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5466
5467                I915_WRITE(PCH_DREF_CONTROL, temp);
5468                POSTING_READ(PCH_DREF_CONTROL);
5469                udelay(200);
5470        } else {
5471                DRM_DEBUG_KMS("Disabling SSC entirely\n");
5472
5473                temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5474
5475                /* Turn off CPU output */
5476                temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5477
5478                I915_WRITE(PCH_DREF_CONTROL, temp);
5479                POSTING_READ(PCH_DREF_CONTROL);
5480                udelay(200);
5481
5482                /* Turn off the SSC source */
5483                temp &= ~DREF_SSC_SOURCE_MASK;
5484                temp |= DREF_SSC_SOURCE_DISABLE;
5485
5486                /* Turn off SSC1 */
5487                temp &= ~ DREF_SSC1_ENABLE;
5488
5489                I915_WRITE(PCH_DREF_CONTROL, temp);
5490                POSTING_READ(PCH_DREF_CONTROL);
5491                udelay(200);
5492        }
5493}
5494
5495static int ironlake_get_refclk(struct drm_crtc *crtc)
5496{
5497        struct drm_device *dev = crtc->dev;
5498        struct drm_i915_private *dev_priv = dev->dev_private;
5499        struct intel_encoder *encoder;
5500        struct drm_mode_config *mode_config = &dev->mode_config;
5501        struct intel_encoder *edp_encoder = NULL;
5502        int num_connectors = 0;
5503        bool is_lvds = false;
5504
5505        list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5506                if (encoder->base.crtc != crtc)
5507                        continue;
5508
5509                switch (encoder->type) {
5510                case INTEL_OUTPUT_LVDS:
5511                        is_lvds = true;
5512                        break;
5513                case INTEL_OUTPUT_EDP:
5514                        edp_encoder = encoder;
5515                        break;
5516                }
5517                num_connectors++;
5518        }
5519
5520        if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5521                DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5522                              dev_priv->lvds_ssc_freq);
5523                return dev_priv->lvds_ssc_freq * 1000;
5524        }
5525
5526        return 120000;
5527}
5528
5529static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5530                                  struct drm_display_mode *mode,
5531                                  struct drm_display_mode *adjusted_mode,
5532                                  int x, int y,
5533                                  struct drm_framebuffer *old_fb)
5534{
5535        struct drm_device *dev = crtc->dev;
5536        struct drm_i915_private *dev_priv = dev->dev_private;
5537        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5538        int pipe = intel_crtc->pipe;
5539        int plane = intel_crtc->plane;
5540        int refclk, num_connectors = 0;
5541        intel_clock_t clock, reduced_clock;
5542        u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
5543        bool ok, has_reduced_clock = false, is_sdvo = false;
5544        bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
5545        struct intel_encoder *has_edp_encoder = NULL;
5546        struct drm_mode_config *mode_config = &dev->mode_config;
5547        struct intel_encoder *encoder;
5548        const intel_limit_t *limit;
5549        int ret;
5550        struct fdi_m_n m_n = {0};
5551        u32 temp;
5552        u32 lvds_sync = 0;
5553        int target_clock, pixel_multiplier, lane, link_bw, factor;
5554        unsigned int pipe_bpp;
5555        bool dither;
5556
5557        list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5558                if (encoder->base.crtc != crtc)
5559                        continue;
5560
5561                switch (encoder->type) {
5562                case INTEL_OUTPUT_LVDS:
5563                        is_lvds = true;
5564                        break;
5565                case INTEL_OUTPUT_SDVO:
5566                case INTEL_OUTPUT_HDMI:
5567                        is_sdvo = true;
5568                        if (encoder->needs_tv_clock)
5569                                is_tv = true;
5570                        break;
5571                case INTEL_OUTPUT_TVOUT:
5572                        is_tv = true;
5573                        break;
5574                case INTEL_OUTPUT_ANALOG:
5575                        is_crt = true;
5576                        break;
5577                case INTEL_OUTPUT_DISPLAYPORT:
5578                        is_dp = true;
5579                        break;
5580                case INTEL_OUTPUT_EDP:
5581                        has_edp_encoder = encoder;
5582                        break;
5583                }
5584
5585                num_connectors++;
5586        }
5587
5588        refclk = ironlake_get_refclk(crtc);
5589
5590        /*
5591         * Returns a set of divisors for the desired target clock with the given
5592         * refclk, or FALSE.  The returned values represent the clock equation:
5593         * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5594         */
5595        limit = intel_limit(crtc, refclk);
5596        ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
5597        if (!ok) {
5598                DRM_ERROR("Couldn't find PLL settings for mode!\n");
5599                return -EINVAL;
5600        }
5601
5602        /* Ensure that the cursor is valid for the new mode before changing... */
5603        intel_crtc_update_cursor(crtc, true);
5604
5605        if (is_lvds && dev_priv->lvds_downclock_avail) {
5606                has_reduced_clock = limit->find_pll(limit, crtc,
5607                                                    dev_priv->lvds_downclock,
5608                                                    refclk,
5609                                                    &reduced_clock);
5610                if (has_reduced_clock && (clock.p != reduced_clock.p)) {
5611                        /*
5612                         * If the different P is found, it means that we can't
5613                         * switch the display clock by using the FP0/FP1.
5614                         * In such case we will disable the LVDS downclock
5615                         * feature.
5616                         */
5617                        DRM_DEBUG_KMS("Different P is found for "
5618                                      "LVDS clock/downclock\n");
5619                        has_reduced_clock = 0;
5620                }
5621        }
5622        /* SDVO TV has fixed PLL values depend on its clock range,
5623           this mirrors vbios setting. */
5624        if (is_sdvo && is_tv) {
5625                if (adjusted_mode->clock >= 100000
5626                    && adjusted_mode->clock < 140500) {
5627                        clock.p1 = 2;
5628                        clock.p2 = 10;
5629                        clock.n = 3;
5630                        clock.m1 = 16;
5631                        clock.m2 = 8;
5632                } else if (adjusted_mode->clock >= 140500
5633                           && adjusted_mode->clock <= 200000) {
5634                        clock.p1 = 1;
5635                        clock.p2 = 10;
5636                        clock.n = 6;
5637                        clock.m1 = 12;
5638                        clock.m2 = 8;
5639                }
5640        }
5641
5642        /* FDI link */
5643        pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5644        lane = 0;
5645        /* CPU eDP doesn't require FDI link, so just set DP M/N
5646           according to current link config */
5647        if (has_edp_encoder &&
5648            !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5649                target_clock = mode->clock;
5650                intel_edp_link_config(has_edp_encoder,
5651                                      &lane, &link_bw);
5652        } else {
5653                /* [e]DP over FDI requires target mode clock
5654                   instead of link clock */
5655                if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5656                        target_clock = mode->clock;
5657                else
5658                        target_clock = adjusted_mode->clock;
5659
5660                /* FDI is a binary signal running at ~2.7GHz, encoding
5661                 * each output octet as 10 bits. The actual frequency
5662                 * is stored as a divider into a 100MHz clock, and the
5663                 * mode pixel clock is stored in units of 1KHz.
5664                 * Hence the bw of each lane in terms of the mode signal
5665                 * is:
5666                 */
5667                link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5668        }
5669
5670        /* determine panel color depth */
5671        temp = I915_READ(PIPECONF(pipe));
5672        temp &= ~PIPE_BPC_MASK;
5673        dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp, mode);
5674        switch (pipe_bpp) {
5675        case 18:
5676                temp |= PIPE_6BPC;
5677                break;
5678        case 24:
5679                temp |= PIPE_8BPC;
5680                break;
5681        case 30:
5682                temp |= PIPE_10BPC;
5683                break;
5684        case 36:
5685                temp |= PIPE_12BPC;
5686                break;
5687        default:
5688                WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
5689                        pipe_bpp);
5690                temp |= PIPE_8BPC;
5691                pipe_bpp = 24;
5692                break;
5693        }
5694
5695        intel_crtc->bpp = pipe_bpp;
5696        I915_WRITE(PIPECONF(pipe), temp);
5697
5698        if (!lane) {
5699                /*
5700                 * Account for spread spectrum to avoid
5701                 * oversubscribing the link. Max center spread
5702                 * is 2.5%; use 5% for safety's sake.
5703                 */
5704                u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
5705                lane = bps / (link_bw * 8) + 1;
5706        }
5707
5708        intel_crtc->fdi_lanes = lane;
5709
5710        if (pixel_multiplier > 1)
5711                link_bw *= pixel_multiplier;
5712        ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5713                             &m_n);
5714
5715        fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5716        if (has_reduced_clock)
5717                fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5718                        reduced_clock.m2;
5719
5720        /* Enable autotuning of the PLL clock (if permissible) */
5721        factor = 21;
5722        if (is_lvds) {
5723                if ((intel_panel_use_ssc(dev_priv) &&
5724                     dev_priv->lvds_ssc_freq == 100) ||
5725                    (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5726                        factor = 25;
5727        } else if (is_sdvo && is_tv)
5728                factor = 20;
5729
5730        if (clock.m < factor * clock.n)
5731                fp |= FP_CB_TUNE;
5732
5733        dpll = 0;
5734
5735        if (is_lvds)
5736                dpll |= DPLLB_MODE_LVDS;
5737        else
5738                dpll |= DPLLB_MODE_DAC_SERIAL;
5739        if (is_sdvo) {
5740                int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5741                if (pixel_multiplier > 1) {
5742                        dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5743                }
5744                dpll |= DPLL_DVO_HIGH_SPEED;
5745        }
5746        if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5747                dpll |= DPLL_DVO_HIGH_SPEED;
5748
5749        /* compute bitmask from p1 value */
5750        dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5751        /* also FPA1 */
5752        dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5753
5754        switch (clock.p2) {
5755        case 5:
5756                dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5757                break;
5758        case 7:
5759                dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5760                break;
5761        case 10:
5762                dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5763                break;
5764        case 14:
5765                dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5766                break;
5767        }
5768
5769        if (is_sdvo && is_tv)
5770                dpll |= PLL_REF_INPUT_TVCLKINBC;
5771        else if (is_tv)
5772                /* XXX: just matching BIOS for now */
5773                /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5774                dpll |= 3;
5775        else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5776                dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5777        else
5778                dpll |= PLL_REF_INPUT_DREFCLK;
5779
5780        /* setup pipeconf */
5781        pipeconf = I915_READ(PIPECONF(pipe));
5782
5783        /* Set up the display plane register */
5784        dspcntr = DISPPLANE_GAMMA_ENABLE;
5785
5786        DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5787        drm_mode_debug_printmodeline(mode);
5788
5789        /* PCH eDP needs FDI, but CPU eDP does not */
5790        if (!intel_crtc->no_pll) {
5791                if (!has_edp_encoder ||
5792                    intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5793                        I915_WRITE(PCH_FP0(pipe), fp);
5794                        I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5795
5796                        POSTING_READ(PCH_DPLL(pipe));
5797                        udelay(150);
5798                }
5799        } else {
5800                if (dpll == (I915_READ(PCH_DPLL(0)) & 0x7fffffff) &&
5801                    fp == I915_READ(PCH_FP0(0))) {
5802                        intel_crtc->use_pll_a = true;
5803                        DRM_DEBUG_KMS("using pipe a dpll\n");
5804                } else if (dpll == (I915_READ(PCH_DPLL(1)) & 0x7fffffff) &&
5805                           fp == I915_READ(PCH_FP0(1))) {
5806                        intel_crtc->use_pll_a = false;
5807                        DRM_DEBUG_KMS("using pipe b dpll\n");
5808                } else {
5809                        DRM_DEBUG_KMS("no matching PLL configuration for pipe 2\n");
5810                        return -EINVAL;
5811                }
5812        }
5813
5814        /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5815         * This is an exception to the general rule that mode_set doesn't turn
5816         * things on.
5817         */
5818        if (is_lvds) {
5819                temp = I915_READ(PCH_LVDS);
5820                temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5821                if (HAS_PCH_CPT(dev)) {
5822                        temp &= ~PORT_TRANS_SEL_MASK;
5823                        temp |= PORT_TRANS_SEL_CPT(pipe);
5824                } else {
5825                        if (pipe == 1)
5826                                temp |= LVDS_PIPEB_SELECT;
5827                        else
5828                                temp &= ~LVDS_PIPEB_SELECT;
5829                }
5830
5831                /* set the corresponsding LVDS_BORDER bit */
5832                temp |= dev_priv->lvds_border_bits;
5833                /* Set the B0-B3 data pairs corresponding to whether we're going to
5834                 * set the DPLLs for dual-channel mode or not.
5835                 */
5836                if (clock.p2 == 7)
5837                        temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5838                else
5839                        temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5840
5841                /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5842                 * appropriately here, but we need to look more thoroughly into how
5843                 * panels behave in the two modes.
5844                 */
5845                if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5846                        lvds_sync |= LVDS_HSYNC_POLARITY;
5847                if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5848                        lvds_sync |= LVDS_VSYNC_POLARITY;
5849                if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5850                    != lvds_sync) {
5851                        char flags[2] = "-+";
5852                        DRM_INFO("Changing LVDS panel from "
5853                                 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5854                                 flags[!(temp & LVDS_HSYNC_POLARITY)],
5855                                 flags[!(temp & LVDS_VSYNC_POLARITY)],
5856                                 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5857                                 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5858                        temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5859                        temp |= lvds_sync;
5860                }
5861                I915_WRITE(PCH_LVDS, temp);
5862        }
5863
5864        pipeconf &= ~PIPECONF_DITHER_EN;
5865        pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
5866        if ((is_lvds && dev_priv->lvds_dither) || dither) {
5867                pipeconf |= PIPECONF_DITHER_EN;
5868                pipeconf |= PIPECONF_DITHER_TYPE_SP;
5869        }
5870        if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5871                intel_dp_set_m_n(crtc, mode, adjusted_mode);
5872        } else {
5873                /* For non-DP output, clear any trans DP clock recovery setting.*/
5874                I915_WRITE(TRANSDATA_M1(pipe), 0);
5875                I915_WRITE(TRANSDATA_N1(pipe), 0);
5876                I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5877                I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5878        }
5879
5880        if (!intel_crtc->no_pll &&
5881            (!has_edp_encoder ||
5882             intel_encoder_is_pch_edp(&has_edp_encoder->base))) {
5883                I915_WRITE(PCH_DPLL(pipe), dpll);
5884
5885                /* Wait for the clocks to stabilize. */
5886                POSTING_READ(PCH_DPLL(pipe));
5887                udelay(150);
5888
5889                /* The pixel multiplier can only be updated once the
5890                 * DPLL is enabled and the clocks are stable.
5891                 *
5892                 * So write it again.
5893                 */
5894                I915_WRITE(PCH_DPLL(pipe), dpll);
5895        }
5896
5897        intel_crtc->lowfreq_avail = false;
5898        if (!intel_crtc->no_pll) {
5899                if (is_lvds && has_reduced_clock && i915_powersave) {
5900                        I915_WRITE(PCH_FP1(pipe), fp2);
5901                        intel_crtc->lowfreq_avail = true;
5902                        if (HAS_PIPE_CXSR(dev)) {
5903                                DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5904                                pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5905                        }
5906                } else {
5907                        I915_WRITE(PCH_FP1(pipe), fp);
5908                        if (HAS_PIPE_CXSR(dev)) {
5909                                DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5910                                pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5911                        }
5912                }
5913        }
5914
5915        pipeconf &= ~PIPECONF_INTERLACE_MASK;
5916        if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5917                pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5918                /* the chip adds 2 halflines automatically */
5919                adjusted_mode->crtc_vdisplay -= 1;
5920                adjusted_mode->crtc_vtotal -= 1;
5921                adjusted_mode->crtc_vblank_start -= 1;
5922                adjusted_mode->crtc_vblank_end -= 1;
5923                adjusted_mode->crtc_vsync_end -= 1;
5924                adjusted_mode->crtc_vsync_start -= 1;
5925        } else
5926                pipeconf |= PIPECONF_PROGRESSIVE;
5927
5928        I915_WRITE(HTOTAL(pipe),
5929                   (adjusted_mode->crtc_hdisplay - 1) |
5930                   ((adjusted_mode->crtc_htotal - 1) << 16));
5931        I915_WRITE(HBLANK(pipe),
5932                   (adjusted_mode->crtc_hblank_start - 1) |
5933                   ((adjusted_mode->crtc_hblank_end - 1) << 16));
5934        I915_WRITE(HSYNC(pipe),
5935                   (adjusted_mode->crtc_hsync_start - 1) |
5936                   ((adjusted_mode->crtc_hsync_end - 1) << 16));
5937
5938        I915_WRITE(VTOTAL(pipe),
5939                   (adjusted_mode->crtc_vdisplay - 1) |
5940                   ((adjusted_mode->crtc_vtotal - 1) << 16));
5941        I915_WRITE(VBLANK(pipe),
5942                   (adjusted_mode->crtc_vblank_start - 1) |
5943                   ((adjusted_mode->crtc_vblank_end - 1) << 16));
5944        I915_WRITE(VSYNC(pipe),
5945                   (adjusted_mode->crtc_vsync_start - 1) |
5946                   ((adjusted_mode->crtc_vsync_end - 1) << 16));
5947
5948        /* pipesrc controls the size that is scaled from, which should
5949         * always be the user's requested size.
5950         */
5951        I915_WRITE(PIPESRC(pipe),
5952                   ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5953
5954        I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
5955        I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
5956        I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
5957        I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
5958
5959        if (has_edp_encoder &&
5960            !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5961                ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5962        }
5963
5964        I915_WRITE(PIPECONF(pipe), pipeconf);
5965        POSTING_READ(PIPECONF(pipe));
5966
5967        intel_wait_for_vblank(dev, pipe);
5968
5969        if (IS_GEN5(dev)) {
5970                /* enable address swizzle for tiling buffer */
5971                temp = I915_READ(DISP_ARB_CTL);
5972                I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
5973        }
5974
5975        I915_WRITE(DSPCNTR(plane), dspcntr);
5976        POSTING_READ(DSPCNTR(plane));
5977
5978        ret = intel_pipe_set_base(crtc, x, y, old_fb);
5979
5980        intel_update_watermarks(dev);
5981
5982        return ret;
5983}
5984
5985static int intel_crtc_mode_set(struct drm_crtc *crtc,
5986                               struct drm_display_mode *mode,
5987                               struct drm_display_mode *adjusted_mode,
5988                               int x, int y,
5989                               struct drm_framebuffer *old_fb)
5990{
5991        struct drm_device *dev = crtc->dev;
5992        struct drm_i915_private *dev_priv = dev->dev_private;
5993        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5994        int pipe = intel_crtc->pipe;
5995        int ret;
5996
5997        drm_vblank_pre_modeset(dev, pipe);
5998
5999        ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
6000                                              x, y, old_fb);
6001        drm_vblank_post_modeset(dev, pipe);
6002
6003        if (ret)
6004                intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
6005        else
6006                intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
6007
6008        return ret;
6009}
6010
6011static bool intel_eld_uptodate(struct drm_connector *connector,
6012                               int reg_eldv, uint32_t bits_eldv,
6013                               int reg_elda, uint32_t bits_elda,
6014                               int reg_edid)
6015{
6016        struct drm_i915_private *dev_priv = connector->dev->dev_private;
6017        uint8_t *eld = connector->eld;
6018        uint32_t i;
6019
6020        i = I915_READ(reg_eldv);
6021        i &= bits_eldv;
6022
6023        if (!eld[0])
6024                return !i;
6025
6026        if (!i)
6027                return false;
6028
6029        i = I915_READ(reg_elda);
6030        i &= ~bits_elda;
6031        I915_WRITE(reg_elda, i);
6032
6033        for (i = 0; i < eld[2]; i++)
6034                if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6035                        return false;
6036
6037        return true;
6038}
6039
6040static void g4x_write_eld(struct drm_connector *connector,
6041                          struct drm_crtc *crtc)
6042{
6043        struct drm_i915_private *dev_priv = connector->dev->dev_private;
6044        uint8_t *eld = connector->eld;
6045        uint32_t eldv;
6046        uint32_t len;
6047        uint32_t i;
6048
6049        i = I915_READ(G4X_AUD_VID_DID);
6050
6051        if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6052                eldv = G4X_ELDV_DEVCL_DEVBLC;
6053        else
6054                eldv = G4X_ELDV_DEVCTG;
6055
6056        if (intel_eld_uptodate(connector,
6057                               G4X_AUD_CNTL_ST, eldv,
6058                               G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6059                               G4X_HDMIW_HDMIEDID))
6060                return;
6061
6062        i = I915_READ(G4X_AUD_CNTL_ST);
6063        i &= ~(eldv | G4X_ELD_ADDR);
6064        len = (i >> 9) & 0x1f;          /* ELD buffer size */
6065        I915_WRITE(G4X_AUD_CNTL_ST, i);
6066
6067        if (!eld[0])
6068                return;
6069
6070        len = min_t(uint8_t, eld[2], len);
6071        DRM_DEBUG_DRIVER("ELD size %d\n", len);
6072        for (i = 0; i < len; i++)
6073                I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6074
6075        i = I915_READ(G4X_AUD_CNTL_ST);
6076        i |= eldv;
6077        I915_WRITE(G4X_AUD_CNTL_ST, i);
6078}
6079
6080static void ironlake_write_eld(struct drm_connector *connector,
6081                                     struct drm_crtc *crtc)
6082{
6083        struct drm_i915_private *dev_priv = connector->dev->dev_private;
6084        uint8_t *eld = connector->eld;
6085        uint32_t eldv;
6086        uint32_t i;
6087        int len;
6088        int hdmiw_hdmiedid;
6089        int aud_cntl_st;
6090        int aud_cntrl_st2;
6091
6092        if (HAS_PCH_IBX(connector->dev)) {
6093                hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID_A;
6094                aud_cntl_st = IBX_AUD_CNTL_ST_A;
6095                aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6096        } else {
6097                hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID_A;
6098                aud_cntl_st = CPT_AUD_CNTL_ST_A;
6099                aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6100        }
6101
6102        i = to_intel_crtc(crtc)->pipe;
6103        hdmiw_hdmiedid += i * 0x100;
6104        aud_cntl_st += i * 0x100;
6105
6106        DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(i));
6107
6108        i = I915_READ(aud_cntl_st);
6109        i = (i >> 29) & 0x3;            /* DIP_Port_Select, 0x1 = PortB */
6110        if (!i) {
6111                DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6112                /* operate blindly on all ports */
6113                eldv = IBX_ELD_VALIDB;
6114                eldv |= IBX_ELD_VALIDB << 4;
6115                eldv |= IBX_ELD_VALIDB << 8;
6116        } else {
6117                DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
6118                eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6119        }
6120
6121        if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6122                DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6123                eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6124        }
6125
6126        if (intel_eld_uptodate(connector,
6127                               aud_cntrl_st2, eldv,
6128                               aud_cntl_st, IBX_ELD_ADDRESS,
6129                               hdmiw_hdmiedid))
6130                return;
6131
6132        i = I915_READ(aud_cntrl_st2);
6133        i &= ~eldv;
6134        I915_WRITE(aud_cntrl_st2, i);
6135
6136        if (!eld[0])
6137                return;
6138
6139        i = I915_READ(aud_cntl_st);
6140        i &= ~IBX_ELD_ADDRESS;
6141        I915_WRITE(aud_cntl_st, i);
6142
6143        len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6144        DRM_DEBUG_DRIVER("ELD size %d\n", len);
6145        for (i = 0; i < len; i++)
6146                I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6147
6148        i = I915_READ(aud_cntrl_st2);
6149        i |= eldv;
6150        I915_WRITE(aud_cntrl_st2, i);
6151}
6152
6153void intel_write_eld(struct drm_encoder *encoder,
6154                     struct drm_display_mode *mode)
6155{
6156        struct drm_crtc *crtc = encoder->crtc;
6157        struct drm_connector *connector;
6158        struct drm_device *dev = encoder->dev;
6159        struct drm_i915_private *dev_priv = dev->dev_private;
6160
6161        connector = drm_select_eld(encoder, mode);
6162        if (!connector)
6163                return;
6164
6165        DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6166                         connector->base.id,
6167                         drm_get_connector_name(connector),
6168                         connector->encoder->base.id,
6169                         drm_get_encoder_name(connector->encoder));
6170
6171        connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6172
6173        if (dev_priv->display.write_eld)
6174                dev_priv->display.write_eld(connector, crtc);
6175}
6176
6177/** Loads the palette/gamma unit for the CRTC with the prepared values */
6178void intel_crtc_load_lut(struct drm_crtc *crtc)
6179{
6180        struct drm_device *dev = crtc->dev;
6181        struct drm_i915_private *dev_priv = dev->dev_private;
6182        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6183        int palreg = PALETTE(intel_crtc->pipe);
6184        int i;
6185
6186        /* The clocks have to be on to load the palette. */
6187        if (!crtc->enabled || !intel_crtc->active)
6188                return;
6189
6190        /* use legacy palette for Ironlake */
6191        if (HAS_PCH_SPLIT(dev))
6192                palreg = LGC_PALETTE(intel_crtc->pipe);
6193
6194        for (i = 0; i < 256; i++) {
6195                I915_WRITE(palreg + 4 * i,
6196                           (intel_crtc->lut_r[i] << 16) |
6197                           (intel_crtc->lut_g[i] << 8) |
6198                           intel_crtc->lut_b[i]);
6199        }
6200}
6201
6202static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6203{
6204        struct drm_device *dev = crtc->dev;
6205        struct drm_i915_private *dev_priv = dev->dev_private;
6206        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6207        bool visible = base != 0;
6208        u32 cntl;
6209
6210        if (intel_crtc->cursor_visible == visible)
6211                return;
6212
6213        cntl = I915_READ(_CURACNTR);
6214        if (visible) {
6215                /* On these chipsets we can only modify the base whilst
6216                 * the cursor is disabled.
6217                 */
6218                I915_WRITE(_CURABASE, base);
6219
6220                cntl &= ~(CURSOR_FORMAT_MASK);
6221                /* XXX width must be 64, stride 256 => 0x00 << 28 */
6222                cntl |= CURSOR_ENABLE |
6223                        CURSOR_GAMMA_ENABLE |
6224                        CURSOR_FORMAT_ARGB;
6225        } else
6226                cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6227        I915_WRITE(_CURACNTR, cntl);
6228
6229        intel_crtc->cursor_visible = visible;
6230}
6231
6232static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6233{
6234        struct drm_device *dev = crtc->dev;
6235        struct drm_i915_private *dev_priv = dev->dev_private;
6236        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6237        int pipe = intel_crtc->pipe;
6238        bool visible = base != 0;
6239
6240        if (intel_crtc->cursor_visible != visible) {
6241                uint32_t cntl = I915_READ(CURCNTR(pipe));
6242                if (base) {
6243                        cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6244                        cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6245                        cntl |= pipe << 28; /* Connect to correct pipe */
6246                } else {
6247                        cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6248                        cntl |= CURSOR_MODE_DISABLE;
6249                }
6250                I915_WRITE(CURCNTR(pipe), cntl);
6251
6252                intel_crtc->cursor_visible = visible;
6253        }
6254        /* and commit changes on next vblank */
6255        I915_WRITE(CURBASE(pipe), base);
6256}
6257
6258static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6259{
6260        struct drm_device *dev = crtc->dev;
6261        struct drm_i915_private *dev_priv = dev->dev_private;
6262        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6263        int pipe = intel_crtc->pipe;
6264        bool visible = base != 0;
6265
6266        if (intel_crtc->cursor_visible != visible) {
6267                uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6268                if (base) {
6269                        cntl &= ~CURSOR_MODE;
6270                        cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6271                } else {
6272                        cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6273                        cntl |= CURSOR_MODE_DISABLE;
6274                }
6275                I915_WRITE(CURCNTR_IVB(pipe), cntl);
6276
6277                intel_crtc->cursor_visible = visible;
6278        }
6279        /* and commit changes on next vblank */
6280        I915_WRITE(CURBASE_IVB(pipe), base);
6281}
6282
6283/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6284static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6285                                     bool on)
6286{
6287        struct drm_device *dev = crtc->dev;
6288        struct drm_i915_private *dev_priv = dev->dev_private;
6289        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6290        int pipe = intel_crtc->pipe;
6291        int x = intel_crtc->cursor_x;
6292        int y = intel_crtc->cursor_y;
6293        u32 base, pos;
6294        bool visible;
6295
6296        pos = 0;
6297
6298        if (on && crtc->enabled && crtc->fb) {
6299                base = intel_crtc->cursor_addr;
6300                if (x > (int) crtc->fb->width)
6301                        base = 0;
6302
6303                if (y > (int) crtc->fb->height)
6304                        base = 0;
6305        } else
6306                base = 0;
6307
6308        if (x < 0) {
6309                if (x + intel_crtc->cursor_width < 0)
6310                        base = 0;
6311
6312                pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6313                x = -x;
6314        }
6315        pos |= x << CURSOR_X_SHIFT;
6316
6317        if (y < 0) {
6318                if (y + intel_crtc->cursor_height < 0)
6319                        base = 0;
6320
6321                pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6322                y = -y;
6323        }
6324        pos |= y << CURSOR_Y_SHIFT;
6325
6326        visible = base != 0;
6327        if (!visible && !intel_crtc->cursor_visible)
6328                return;
6329
6330        if (IS_IVYBRIDGE(dev)) {
6331                I915_WRITE(CURPOS_IVB(pipe), pos);
6332                ivb_update_cursor(crtc, base);
6333        } else {
6334                I915_WRITE(CURPOS(pipe), pos);
6335                if (IS_845G(dev) || IS_I865G(dev))
6336                        i845_update_cursor(crtc, base);
6337                else
6338                        i9xx_update_cursor(crtc, base);
6339        }
6340
6341        if (visible)
6342                intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
6343}
6344
6345static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6346                                 struct drm_file *file,
6347                                 uint32_t handle,
6348                                 uint32_t width, uint32_t height)
6349{
6350        struct drm_device *dev = crtc->dev;
6351        struct drm_i915_private *dev_priv = dev->dev_private;
6352        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6353        struct drm_i915_gem_object *obj;
6354        uint32_t addr;
6355        int ret;
6356
6357        DRM_DEBUG_KMS("\n");
6358
6359        /* if we want to turn off the cursor ignore width and height */
6360        if (!handle) {
6361                DRM_DEBUG_KMS("cursor off\n");
6362                addr = 0;
6363                obj = NULL;
6364                mutex_lock(&dev->struct_mutex);
6365                goto finish;
6366        }
6367
6368        /* Currently we only support 64x64 cursors */
6369        if (width != 64 || height != 64) {
6370                DRM_ERROR("we currently only support 64x64 cursors\n");
6371                return -EINVAL;
6372        }
6373
6374        obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6375        if (&obj->base == NULL)
6376                return -ENOENT;
6377
6378        if (obj->base.size < width * height * 4) {
6379                DRM_ERROR("buffer is to small\n");
6380                ret = -ENOMEM;
6381                goto fail;
6382        }
6383
6384        /* we only need to pin inside GTT if cursor is non-phy */
6385        mutex_lock(&dev->struct_mutex);
6386        if (!dev_priv->info->cursor_needs_physical) {
6387                if (obj->tiling_mode) {
6388                        DRM_ERROR("cursor cannot be tiled\n");
6389                        ret = -EINVAL;
6390                        goto fail_locked;
6391                }
6392
6393                ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6394                if (ret) {
6395                        DRM_ERROR("failed to move cursor bo into the GTT\n");
6396                        goto fail_locked;
6397                }
6398
6399                ret = i915_gem_object_put_fence(obj);
6400                if (ret) {
6401                        DRM_ERROR("failed to release fence for cursor");
6402                        goto fail_unpin;
6403                }
6404
6405                addr = obj->gtt_offset;
6406        } else {
6407                int align = IS_I830(dev) ? 16 * 1024 : 256;
6408                ret = i915_gem_attach_phys_object(dev, obj,
6409                                                  (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6410                                                  align);
6411                if (ret) {
6412                        DRM_ERROR("failed to attach phys object\n");
6413                        goto fail_locked;
6414                }
6415                addr = obj->phys_obj->handle->busaddr;
6416        }
6417
6418        if (IS_GEN2(dev))
6419                I915_WRITE(CURSIZE, (height << 12) | width);
6420
6421 finish:
6422        if (intel_crtc->cursor_bo) {
6423                if (dev_priv->info->cursor_needs_physical) {
6424                        if (intel_crtc->cursor_bo != obj)
6425                                i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6426                } else
6427                        i915_gem_object_unpin(intel_crtc->cursor_bo);
6428                drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6429        }
6430
6431        mutex_unlock(&dev->struct_mutex);
6432
6433        intel_crtc->cursor_addr = addr;
6434        intel_crtc->cursor_bo = obj;
6435        intel_crtc->cursor_width = width;
6436        intel_crtc->cursor_height = height;
6437
6438        intel_crtc_update_cursor(crtc, true);
6439
6440        return 0;
6441fail_unpin:
6442        i915_gem_object_unpin(obj);
6443fail_locked:
6444        mutex_unlock(&dev->struct_mutex);
6445fail:
6446        drm_gem_object_unreference_unlocked(&obj->base);
6447        return ret;
6448}
6449
6450static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6451{
6452        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6453
6454        intel_crtc->cursor_x = x;
6455        intel_crtc->cursor_y = y;
6456
6457        intel_crtc_update_cursor(crtc, true);
6458
6459        return 0;
6460}
6461
6462/** Sets the color ramps on behalf of RandR */
6463void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6464                                 u16 blue, int regno)
6465{
6466        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6467
6468        intel_crtc->lut_r[regno] = red >> 8;
6469        intel_crtc->lut_g[regno] = green >> 8;
6470        intel_crtc->lut_b[regno] = blue >> 8;
6471}
6472
6473void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6474                             u16 *blue, int regno)
6475{
6476        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6477
6478        *red = intel_crtc->lut_r[regno] << 8;
6479        *green = intel_crtc->lut_g[regno] << 8;
6480        *blue = intel_crtc->lut_b[regno] << 8;
6481}
6482
6483static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6484                                 u16 *blue, uint32_t start, uint32_t size)
6485{
6486        int end = (start + size > 256) ? 256 : start + size, i;
6487        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6488
6489        for (i = start; i < end; i++) {
6490                intel_crtc->lut_r[i] = red[i] >> 8;
6491                intel_crtc->lut_g[i] = green[i] >> 8;
6492                intel_crtc->lut_b[i] = blue[i] >> 8;
6493        }
6494
6495        intel_crtc_load_lut(crtc);
6496}
6497
6498/**
6499 * Get a pipe with a simple mode set on it for doing load-based monitor
6500 * detection.
6501 *
6502 * It will be up to the load-detect code to adjust the pipe as appropriate for
6503 * its requirements.  The pipe will be connected to no other encoders.
6504 *
6505 * Currently this code will only succeed if there is a pipe with no encoders
6506 * configured for it.  In the future, it could choose to temporarily disable
6507 * some outputs to free up a pipe for its use.
6508 *
6509 * \return crtc, or NULL if no pipes are available.
6510 */
6511
6512/* VESA 640x480x72Hz mode to set on the pipe */
6513static struct drm_display_mode load_detect_mode = {
6514        DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6515                 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6516};
6517
6518static struct drm_framebuffer *
6519intel_framebuffer_create(struct drm_device *dev,
6520                         struct drm_mode_fb_cmd2 *mode_cmd,
6521                         struct drm_i915_gem_object *obj)
6522{
6523        struct intel_framebuffer *intel_fb;
6524        int ret;
6525
6526        intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6527        if (!intel_fb) {
6528                drm_gem_object_unreference_unlocked(&obj->base);
6529                return ERR_PTR(-ENOMEM);
6530        }
6531
6532        ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6533        if (ret) {
6534                drm_gem_object_unreference_unlocked(&obj->base);
6535                kfree(intel_fb);
6536                return ERR_PTR(ret);
6537        }
6538
6539        return &intel_fb->base;
6540}
6541
6542static u32
6543intel_framebuffer_pitch_for_width(int width, int bpp)
6544{
6545        u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6546        return ALIGN(pitch, 64);
6547}
6548
6549static u32
6550intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6551{
6552        u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6553        return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6554}
6555
6556static struct drm_framebuffer *
6557intel_framebuffer_create_for_mode(struct drm_device *dev,
6558                                  struct drm_display_mode *mode,
6559                                  int depth, int bpp)
6560{
6561        struct drm_i915_gem_object *obj;
6562        struct drm_mode_fb_cmd2 mode_cmd;
6563
6564        obj = i915_gem_alloc_object(dev,
6565                                    intel_framebuffer_size_for_mode(mode, bpp));
6566        if (obj == NULL)
6567                return ERR_PTR(-ENOMEM);
6568
6569        mode_cmd.width = mode->hdisplay;
6570        mode_cmd.height = mode->vdisplay;
6571        mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6572                                                                bpp);
6573        mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6574
6575        return intel_framebuffer_create(dev, &mode_cmd, obj);
6576}
6577
6578static struct drm_framebuffer *
6579mode_fits_in_fbdev(struct drm_device *dev,
6580                   struct drm_display_mode *mode)
6581{
6582        struct drm_i915_private *dev_priv = dev->dev_private;
6583        struct drm_i915_gem_object *obj;
6584        struct drm_framebuffer *fb;
6585
6586        if (dev_priv->fbdev == NULL)
6587                return NULL;
6588
6589        obj = dev_priv->fbdev->ifb.obj;
6590        if (obj == NULL)
6591                return NULL;
6592
6593        fb = &dev_priv->fbdev->ifb.base;
6594        if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6595                                                               fb->bits_per_pixel))
6596                return NULL;
6597
6598        if (obj->base.size < mode->vdisplay * fb->pitches[0])
6599                return NULL;
6600
6601        return fb;
6602}
6603
6604bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
6605                                struct drm_connector *connector,
6606                                struct drm_display_mode *mode,
6607                                struct intel_load_detect_pipe *old)
6608{
6609        struct intel_crtc *intel_crtc;
6610        struct drm_crtc *possible_crtc;
6611        struct drm_encoder *encoder = &intel_encoder->base;
6612        struct drm_crtc *crtc = NULL;
6613        struct drm_device *dev = encoder->dev;
6614        struct drm_framebuffer *old_fb;
6615        int i = -1;
6616
6617        DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6618                      connector->base.id, drm_get_connector_name(connector),
6619                      encoder->base.id, drm_get_encoder_name(encoder));
6620
6621        /*
6622         * Algorithm gets a little messy:
6623         *
6624         *   - if the connector already has an assigned crtc, use it (but make
6625         *     sure it's on first)
6626         *
6627         *   - try to find the first unused crtc that can drive this connector,
6628         *     and use that if we find one
6629         */
6630
6631        /* See if we already have a CRTC for this connector */
6632        if (encoder->crtc) {
6633                crtc = encoder->crtc;
6634
6635                intel_crtc = to_intel_crtc(crtc);
6636                old->dpms_mode = intel_crtc->dpms_mode;
6637                old->load_detect_temp = false;
6638
6639                /* Make sure the crtc and connector are running */
6640                if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
6641                        struct drm_encoder_helper_funcs *encoder_funcs;
6642                        struct drm_crtc_helper_funcs *crtc_funcs;
6643
6644                        crtc_funcs = crtc->helper_private;
6645                        crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
6646
6647                        encoder_funcs = encoder->helper_private;
6648                        encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
6649                }
6650
6651                return true;
6652        }
6653
6654        /* Find an unused one (if possible) */
6655        list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6656                i++;
6657                if (!(encoder->possible_crtcs & (1 << i)))
6658                        continue;
6659                if (!possible_crtc->enabled) {
6660                        crtc = possible_crtc;
6661                        break;
6662                }
6663        }
6664
6665        /*
6666         * If we didn't find an unused CRTC, don't use any.
6667         */
6668        if (!crtc) {
6669                DRM_DEBUG_KMS("no pipe available for load-detect\n");
6670                return false;
6671        }
6672
6673        encoder->crtc = crtc;
6674        connector->encoder = encoder;
6675
6676        intel_crtc = to_intel_crtc(crtc);
6677        old->dpms_mode = intel_crtc->dpms_mode;
6678        old->load_detect_temp = true;
6679        old->release_fb = NULL;
6680
6681        if (!mode)
6682                mode = &load_detect_mode;
6683
6684        old_fb = crtc->fb;
6685
6686        /* We need a framebuffer large enough to accommodate all accesses
6687         * that the plane may generate whilst we perform load detection.
6688         * We can not rely on the fbcon either being present (we get called
6689         * during its initialisation to detect all boot displays, or it may
6690         * not even exist) or that it is large enough to satisfy the
6691         * requested mode.
6692         */
6693        crtc->fb = mode_fits_in_fbdev(dev, mode);
6694        if (crtc->fb == NULL) {
6695                DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6696                crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6697                old->release_fb = crtc->fb;
6698        } else
6699                DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6700        if (IS_ERR(crtc->fb)) {
6701                DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6702                crtc->fb = old_fb;
6703                return false;
6704        }
6705
6706        if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
6707                DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6708                if (old->release_fb)
6709                        old->release_fb->funcs->destroy(old->release_fb);
6710                crtc->fb = old_fb;
6711                return false;
6712        }
6713
6714        /* let the connector get through one full cycle before testing */
6715        intel_wait_for_vblank(dev, intel_crtc->pipe);
6716
6717        return true;
6718}
6719
6720void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
6721                                    struct drm_connector *connector,
6722                                    struct intel_load_detect_pipe *old)
6723{
6724        struct drm_encoder *encoder = &intel_encoder->base;
6725        struct drm_device *dev = encoder->dev;
6726        struct drm_crtc *crtc = encoder->crtc;
6727        struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
6728        struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
6729
6730        DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6731                      connector->base.id, drm_get_connector_name(connector),
6732                      encoder->base.id, drm_get_encoder_name(encoder));
6733
6734        if (old->load_detect_temp) {
6735                connector->encoder = NULL;
6736                drm_helper_disable_unused_functions(dev);
6737
6738                if (old->release_fb)
6739                        old->release_fb->funcs->destroy(old->release_fb);
6740
6741                return;
6742        }
6743
6744        /* Switch crtc and encoder back off if necessary */
6745        if (old->dpms_mode != DRM_MODE_DPMS_ON) {
6746                encoder_funcs->dpms(encoder, old->dpms_mode);
6747                crtc_funcs->dpms(crtc, old->dpms_mode);
6748        }
6749}
6750
6751/* Returns the clock of the currently programmed mode of the given pipe. */
6752static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6753{
6754        struct drm_i915_private *dev_priv = dev->dev_private;
6755        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6756        int pipe = intel_crtc->pipe;
6757        u32 dpll = I915_READ(DPLL(pipe));
6758        u32 fp;
6759        intel_clock_t clock;
6760
6761        if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6762                fp = I915_READ(FP0(pipe));
6763        else
6764                fp = I915_READ(FP1(pipe));
6765
6766        clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6767        if (IS_PINEVIEW(dev)) {
6768                clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6769                clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6770        } else {
6771                clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6772                clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6773        }
6774
6775        if (!IS_GEN2(dev)) {
6776                if (IS_PINEVIEW(dev))
6777                        clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6778                                DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6779                else
6780                        clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6781                               DPLL_FPA01_P1_POST_DIV_SHIFT);
6782
6783                switch (dpll & DPLL_MODE_MASK) {
6784                case DPLLB_MODE_DAC_SERIAL:
6785                        clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6786                                5 : 10;
6787                        break;
6788                case DPLLB_MODE_LVDS:
6789                        clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6790                                7 : 14;
6791                        break;
6792                default:
6793                        DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6794                                  "mode\n", (int)(dpll & DPLL_MODE_MASK));
6795                        return 0;
6796                }
6797
6798                /* XXX: Handle the 100Mhz refclk */
6799                intel_clock(dev, 96000, &clock);
6800        } else {
6801                bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6802
6803                if (is_lvds) {
6804                        clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6805                                       DPLL_FPA01_P1_POST_DIV_SHIFT);
6806                        clock.p2 = 14;
6807
6808                        if ((dpll & PLL_REF_INPUT_MASK) ==
6809                            PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6810                                /* XXX: might not be 66MHz */
6811                                intel_clock(dev, 66000, &clock);
6812                        } else
6813                                intel_clock(dev, 48000, &clock);
6814                } else {
6815                        if (dpll & PLL_P1_DIVIDE_BY_TWO)
6816                                clock.p1 = 2;
6817                        else {
6818                                clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6819                                            DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6820                        }
6821                        if (dpll & PLL_P2_DIVIDE_BY_4)
6822                                clock.p2 = 4;
6823                        else
6824                                clock.p2 = 2;
6825
6826                        intel_clock(dev, 48000, &clock);
6827                }
6828        }
6829
6830        /* XXX: It would be nice to validate the clocks, but we can't reuse
6831         * i830PllIsValid() because it relies on the xf86_config connector
6832         * configuration being accurate, which it isn't necessarily.
6833         */
6834
6835        return clock.dot;
6836}
6837
6838/** Returns the currently programmed mode of the given pipe. */
6839struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6840                                             struct drm_crtc *crtc)
6841{
6842        struct drm_i915_private *dev_priv = dev->dev_private;
6843        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6844        int pipe = intel_crtc->pipe;
6845        struct drm_display_mode *mode;
6846        int htot = I915_READ(HTOTAL(pipe));
6847        int hsync = I915_READ(HSYNC(pipe));
6848        int vtot = I915_READ(VTOTAL(pipe));
6849        int vsync = I915_READ(VSYNC(pipe));
6850
6851        mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6852        if (!mode)
6853                return NULL;
6854
6855        mode->clock = intel_crtc_clock_get(dev, crtc);
6856        mode->hdisplay = (htot & 0xffff) + 1;
6857        mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6858        mode->hsync_start = (hsync & 0xffff) + 1;
6859        mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6860        mode->vdisplay = (vtot & 0xffff) + 1;
6861        mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6862        mode->vsync_start = (vsync & 0xffff) + 1;
6863        mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6864
6865        drm_mode_set_name(mode);
6866        drm_mode_set_crtcinfo(mode, 0);
6867
6868        return mode;
6869}
6870
6871#define GPU_IDLE_TIMEOUT 500 /* ms */
6872
6873/* When this timer fires, we've been idle for awhile */
6874static void intel_gpu_idle_timer(unsigned long arg)
6875{
6876        struct drm_device *dev = (struct drm_device *)arg;
6877        drm_i915_private_t *dev_priv = dev->dev_private;
6878
6879        if (!list_empty(&dev_priv->mm.active_list)) {
6880                /* Still processing requests, so just re-arm the timer. */
6881                mod_timer(&dev_priv->idle_timer, jiffies +
6882                          msecs_to_jiffies(GPU_IDLE_TIMEOUT));
6883                return;
6884        }
6885
6886        dev_priv->busy = false;
6887        queue_work(dev_priv->wq, &dev_priv->idle_work);
6888}
6889
6890#define CRTC_IDLE_TIMEOUT 1000 /* ms */
6891
6892static void intel_crtc_idle_timer(unsigned long arg)
6893{
6894        struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
6895        struct drm_crtc *crtc = &intel_crtc->base;
6896        drm_i915_private_t *dev_priv = crtc->dev->dev_private;
6897        struct intel_framebuffer *intel_fb;
6898
6899        intel_fb = to_intel_framebuffer(crtc->fb);
6900        if (intel_fb && intel_fb->obj->active) {
6901                /* The framebuffer is still being accessed by the GPU. */
6902                mod_timer(&intel_crtc->idle_timer, jiffies +
6903                          msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6904                return;
6905        }
6906
6907        intel_crtc->busy = false;
6908        queue_work(dev_priv->wq, &dev_priv->idle_work);
6909}
6910
6911static void intel_increase_pllclock(struct drm_crtc *crtc)
6912{
6913        struct drm_device *dev = crtc->dev;
6914        drm_i915_private_t *dev_priv = dev->dev_private;
6915        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6916        int pipe = intel_crtc->pipe;
6917        int dpll_reg = DPLL(pipe);
6918        int dpll;
6919
6920        if (HAS_PCH_SPLIT(dev))
6921                return;
6922
6923        if (!dev_priv->lvds_downclock_avail)
6924                return;
6925
6926        dpll = I915_READ(dpll_reg);
6927        if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6928                DRM_DEBUG_DRIVER("upclocking LVDS\n");
6929
6930                /* Unlock panel regs */
6931                I915_WRITE(PP_CONTROL,
6932                           I915_READ(PP_CONTROL) | PANEL_UNLOCK_REGS);
6933
6934                dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6935                I915_WRITE(dpll_reg, dpll);
6936                intel_wait_for_vblank(dev, pipe);
6937
6938                dpll = I915_READ(dpll_reg);
6939                if (dpll & DISPLAY_RATE_SELECT_FPA1)
6940                        DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6941
6942                /* ...and lock them again */
6943                I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
6944        }
6945
6946        /* Schedule downclock */
6947        mod_timer(&intel_crtc->idle_timer, jiffies +
6948                  msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6949}
6950
6951static void intel_decrease_pllclock(struct drm_crtc *crtc)
6952{
6953        struct drm_device *dev = crtc->dev;
6954        drm_i915_private_t *dev_priv = dev->dev_private;
6955        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6956        int pipe = intel_crtc->pipe;
6957        int dpll_reg = DPLL(pipe);
6958        int dpll = I915_READ(dpll_reg);
6959
6960        if (HAS_PCH_SPLIT(dev))
6961                return;
6962
6963        if (!dev_priv->lvds_downclock_avail)
6964                return;
6965
6966        /*
6967         * Since this is called by a timer, we should never get here in
6968         * the manual case.
6969         */
6970        if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6971                DRM_DEBUG_DRIVER("downclocking LVDS\n");
6972
6973                /* Unlock panel regs */
6974                I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
6975                           PANEL_UNLOCK_REGS);
6976
6977                dpll |= DISPLAY_RATE_SELECT_FPA1;
6978                I915_WRITE(dpll_reg, dpll);
6979                intel_wait_for_vblank(dev, pipe);
6980                dpll = I915_READ(dpll_reg);
6981                if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6982                        DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6983
6984                /* ...and lock them again */
6985                I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
6986        }
6987
6988}
6989
6990/**
6991 * intel_idle_update - adjust clocks for idleness
6992 * @work: work struct
6993 *
6994 * Either the GPU or display (or both) went idle.  Check the busy status
6995 * here and adjust the CRTC and GPU clocks as necessary.
6996 */
6997static void intel_idle_update(struct work_struct *work)
6998{
6999        drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
7000                                                    idle_work);
7001        struct drm_device *dev = dev_priv->dev;
7002        struct drm_crtc *crtc;
7003        struct intel_crtc *intel_crtc;
7004
7005        if (!i915_powersave)
7006                return;
7007
7008        mutex_lock(&dev->struct_mutex);
7009
7010        i915_update_gfx_val(dev_priv);
7011
7012        list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7013                /* Skip inactive CRTCs */
7014                if (!crtc->fb)
7015                        continue;
7016
7017                intel_crtc = to_intel_crtc(crtc);
7018                if (!intel_crtc->busy)
7019                        intel_decrease_pllclock(crtc);
7020        }
7021
7022
7023        mutex_unlock(&dev->struct_mutex);
7024}
7025
7026/**
7027 * intel_mark_busy - mark the GPU and possibly the display busy
7028 * @dev: drm device
7029 * @obj: object we're operating on
7030 *
7031 * Callers can use this function to indicate that the GPU is busy processing
7032 * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
7033 * buffer), we'll also mark the display as busy, so we know to increase its
7034 * clock frequency.
7035 */
7036void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
7037{
7038        drm_i915_private_t *dev_priv = dev->dev_private;
7039        struct drm_crtc *crtc = NULL;
7040        struct intel_framebuffer *intel_fb;
7041        struct intel_crtc *intel_crtc;
7042
7043        if (!drm_core_check_feature(dev, DRIVER_MODESET))
7044                return;
7045
7046        if (!dev_priv->busy)
7047                dev_priv->busy = true;
7048        else
7049                mod_timer(&dev_priv->idle_timer, jiffies +
7050                          msecs_to_jiffies(GPU_IDLE_TIMEOUT));
7051
7052        list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7053                if (!crtc->fb)
7054                        continue;
7055
7056                intel_crtc = to_intel_crtc(crtc);
7057                intel_fb = to_intel_framebuffer(crtc->fb);
7058                if (intel_fb->obj == obj) {
7059                        if (!intel_crtc->busy) {
7060                                /* Non-busy -> busy, upclock */
7061                                intel_increase_pllclock(crtc);
7062                                intel_crtc->busy = true;
7063                        } else {
7064                                /* Busy -> busy, put off timer */
7065                                mod_timer(&intel_crtc->idle_timer, jiffies +
7066                                          msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
7067                        }
7068                }
7069        }
7070}
7071
7072static void intel_crtc_destroy(struct drm_crtc *crtc)
7073{
7074        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7075        struct drm_device *dev = crtc->dev;
7076        struct intel_unpin_work *work;
7077        unsigned long flags;
7078
7079        spin_lock_irqsave(&dev->event_lock, flags);
7080        work = intel_crtc->unpin_work;
7081        intel_crtc->unpin_work = NULL;
7082        spin_unlock_irqrestore(&dev->event_lock, flags);
7083
7084        if (work) {
7085                cancel_work_sync(&work->work);
7086                kfree(work);
7087        }
7088
7089        drm_crtc_cleanup(crtc);
7090
7091        kfree(intel_crtc);
7092}
7093
7094static void intel_unpin_work_fn(struct work_struct *__work)
7095{
7096        struct intel_unpin_work *work =
7097                container_of(__work, struct intel_unpin_work, work);
7098
7099        mutex_lock(&work->dev->struct_mutex);
7100        i915_gem_object_unpin(work->old_fb_obj);
7101        drm_gem_object_unreference(&work->pending_flip_obj->base);
7102        drm_gem_object_unreference(&work->old_fb_obj->base);
7103
7104        intel_update_fbc(work->dev);
7105        mutex_unlock(&work->dev->struct_mutex);
7106        kfree(work);
7107}
7108
7109static void do_intel_finish_page_flip(struct drm_device *dev,
7110                                      struct drm_crtc *crtc)
7111{
7112        drm_i915_private_t *dev_priv = dev->dev_private;
7113        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7114        struct intel_unpin_work *work;
7115        struct drm_i915_gem_object *obj;
7116        struct drm_pending_vblank_event *e;
7117        struct timeval tnow, tvbl;
7118        unsigned long flags;
7119
7120        /* Ignore early vblank irqs */
7121        if (intel_crtc == NULL)
7122                return;
7123
7124        do_gettimeofday(&tnow);
7125
7126        spin_lock_irqsave(&dev->event_lock, flags);
7127        work = intel_crtc->unpin_work;
7128        if (work == NULL || !work->pending) {
7129                spin_unlock_irqrestore(&dev->event_lock, flags);
7130                return;
7131        }
7132
7133        intel_crtc->unpin_work = NULL;
7134
7135        if (work->event) {
7136                e = work->event;
7137                e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
7138
7139                /* Called before vblank count and timestamps have
7140                 * been updated for the vblank interval of flip
7141                 * completion? Need to increment vblank count and
7142                 * add one videorefresh duration to returned timestamp
7143                 * to account for this. We assume this happened if we
7144                 * get called over 0.9 frame durations after the last
7145                 * timestamped vblank.
7146                 *
7147                 * This calculation can not be used with vrefresh rates
7148                 * below 5Hz (10Hz to be on the safe side) without
7149                 * promoting to 64 integers.
7150                 */
7151                if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
7152                    9 * crtc->framedur_ns) {
7153                        e->event.sequence++;
7154                        tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
7155                                             crtc->framedur_ns);
7156                }
7157
7158                e->event.tv_sec = tvbl.tv_sec;
7159                e->event.tv_usec = tvbl.tv_usec;
7160
7161                list_add_tail(&e->base.link,
7162                              &e->base.file_priv->event_list);
7163                wake_up_interruptible(&e->base.file_priv->event_wait);
7164        }
7165
7166        drm_vblank_put(dev, intel_crtc->pipe);
7167
7168        spin_unlock_irqrestore(&dev->event_lock, flags);
7169
7170        obj = work->old_fb_obj;
7171
7172        atomic_clear_mask(1 << intel_crtc->plane,
7173                          &obj->pending_flip.counter);
7174        if (atomic_read(&obj->pending_flip) == 0)
7175                wake_up(&dev_priv->pending_flip_queue);
7176
7177        schedule_work(&work->work);
7178
7179        trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7180}
7181
7182void intel_finish_page_flip(struct drm_device *dev, int pipe)
7183{
7184        drm_i915_private_t *dev_priv = dev->dev_private;
7185        struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7186
7187        do_intel_finish_page_flip(dev, crtc);
7188}
7189
7190void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7191{
7192        drm_i915_private_t *dev_priv = dev->dev_private;
7193        struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7194
7195        do_intel_finish_page_flip(dev, crtc);
7196}
7197
7198void intel_prepare_page_flip(struct drm_device *dev, int plane)
7199{
7200        drm_i915_private_t *dev_priv = dev->dev_private;
7201        struct intel_crtc *intel_crtc =
7202                to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7203        unsigned long flags;
7204
7205        spin_lock_irqsave(&dev->event_lock, flags);
7206        if (intel_crtc->unpin_work) {
7207                if ((++intel_crtc->unpin_work->pending) > 1)
7208                        DRM_ERROR("Prepared flip multiple times\n");
7209        } else {
7210                DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
7211        }
7212        spin_unlock_irqrestore(&dev->event_lock, flags);
7213}
7214
7215static int intel_gen2_queue_flip(struct drm_device *dev,
7216                                 struct drm_crtc *crtc,
7217                                 struct drm_framebuffer *fb,
7218                                 struct drm_i915_gem_object *obj)
7219{
7220        struct drm_i915_private *dev_priv = dev->dev_private;
7221        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7222        unsigned long offset;
7223        u32 flip_mask;
7224        int ret;
7225
7226        ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7227        if (ret)
7228                goto out;
7229
7230        /* Offset into the new buffer for cases of shared fbs between CRTCs */
7231        offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
7232
7233        ret = BEGIN_LP_RING(6);
7234        if (ret)
7235                goto out;
7236
7237        /* Can't queue multiple flips, so wait for the previous
7238         * one to finish before executing the next.
7239         */
7240        if (intel_crtc->plane)
7241                flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7242        else
7243                flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7244        OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
7245        OUT_RING(MI_NOOP);
7246        OUT_RING(MI_DISPLAY_FLIP |
7247                 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7248        OUT_RING(fb->pitches[0]);
7249        OUT_RING(obj->gtt_offset + offset);
7250        OUT_RING(MI_NOOP);
7251        ADVANCE_LP_RING();
7252out:
7253        return ret;
7254}
7255
7256static int intel_gen3_queue_flip(struct drm_device *dev,
7257                                 struct drm_crtc *crtc,
7258                                 struct drm_framebuffer *fb,
7259                                 struct drm_i915_gem_object *obj)
7260{
7261        struct drm_i915_private *dev_priv = dev->dev_private;
7262        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7263        unsigned long offset;
7264        u32 flip_mask;
7265        int ret;
7266
7267        ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7268        if (ret)
7269                goto out;
7270
7271        /* Offset into the new buffer for cases of shared fbs between CRTCs */
7272        offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
7273
7274        ret = BEGIN_LP_RING(6);
7275        if (ret)
7276                goto out;
7277
7278        if (intel_crtc->plane)
7279                flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7280        else
7281                flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7282        OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
7283        OUT_RING(MI_NOOP);
7284        OUT_RING(MI_DISPLAY_FLIP_I915 |
7285                 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7286        OUT_RING(fb->pitches[0]);
7287        OUT_RING(obj->gtt_offset + offset);
7288        OUT_RING(MI_NOOP);
7289
7290        ADVANCE_LP_RING();
7291out:
7292        return ret;
7293}
7294
7295static int intel_gen4_queue_flip(struct drm_device *dev,
7296                                 struct drm_crtc *crtc,
7297                                 struct drm_framebuffer *fb,
7298                                 struct drm_i915_gem_object *obj)
7299{
7300        struct drm_i915_private *dev_priv = dev->dev_private;
7301        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7302        uint32_t pf, pipesrc;
7303        int ret;
7304
7305        ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7306        if (ret)
7307                goto out;
7308
7309        ret = BEGIN_LP_RING(4);
7310        if (ret)
7311                goto out;
7312
7313        /* i965+ uses the linear or tiled offsets from the
7314         * Display Registers (which do not change across a page-flip)
7315         * so we need only reprogram the base address.
7316         */
7317        OUT_RING(MI_DISPLAY_FLIP |
7318                 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7319        OUT_RING(fb->pitches[0]);
7320        OUT_RING(obj->gtt_offset | obj->tiling_mode);
7321
7322        /* XXX Enabling the panel-fitter across page-flip is so far
7323         * untested on non-native modes, so ignore it for now.
7324         * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7325         */
7326        pf = 0;
7327        pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7328        OUT_RING(pf | pipesrc);
7329        ADVANCE_LP_RING();
7330out:
7331        return ret;
7332}
7333
7334static int intel_gen6_queue_flip(struct drm_device *dev,
7335                                 struct drm_crtc *crtc,
7336                                 struct drm_framebuffer *fb,
7337                                 struct drm_i915_gem_object *obj)
7338{
7339        struct drm_i915_private *dev_priv = dev->dev_private;
7340        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7341        uint32_t pf, pipesrc;
7342        int ret;
7343
7344        ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7345        if (ret)
7346                goto out;
7347
7348        ret = BEGIN_LP_RING(4);
7349        if (ret)
7350                goto out;
7351
7352        OUT_RING(MI_DISPLAY_FLIP |
7353                 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7354        OUT_RING(fb->pitches[0] | obj->tiling_mode);
7355        OUT_RING(obj->gtt_offset);
7356
7357        pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7358        pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7359        OUT_RING(pf | pipesrc);
7360        ADVANCE_LP_RING();
7361out:
7362        return ret;
7363}
7364
7365/*
7366 * On gen7 we currently use the blit ring because (in early silicon at least)
7367 * the render ring doesn't give us interrpts for page flip completion, which
7368 * means clients will hang after the first flip is queued.  Fortunately the
7369 * blit ring generates interrupts properly, so use it instead.
7370 */
7371static int intel_gen7_queue_flip(struct drm_device *dev,
7372                                 struct drm_crtc *crtc,
7373                                 struct drm_framebuffer *fb,
7374                                 struct drm_i915_gem_object *obj)
7375{
7376        struct drm_i915_private *dev_priv = dev->dev_private;
7377        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7378        struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7379        int ret;
7380
7381        ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7382        if (ret)
7383                goto out;
7384
7385        ret = intel_ring_begin(ring, 4);
7386        if (ret)
7387                goto out;
7388
7389        intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
7390        intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7391        intel_ring_emit(ring, (obj->gtt_offset));
7392        intel_ring_emit(ring, (MI_NOOP));
7393        intel_ring_advance(ring);
7394out:
7395        return ret;
7396}
7397
7398static int intel_default_queue_flip(struct drm_device *dev,
7399                                    struct drm_crtc *crtc,
7400                                    struct drm_framebuffer *fb,
7401                                    struct drm_i915_gem_object *obj)
7402{
7403        return -ENODEV;
7404}
7405
7406static int intel_crtc_page_flip(struct drm_crtc *crtc,
7407                                struct drm_framebuffer *fb,
7408                                struct drm_pending_vblank_event *event)
7409{
7410        struct drm_device *dev = crtc->dev;
7411        struct drm_i915_private *dev_priv = dev->dev_private;
7412        struct intel_framebuffer *intel_fb;
7413        struct drm_i915_gem_object *obj;
7414        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7415        struct intel_unpin_work *work;
7416        unsigned long flags;
7417        int ret;
7418
7419        work = kzalloc(sizeof *work, GFP_KERNEL);
7420        if (work == NULL)
7421                return -ENOMEM;
7422
7423        work->event = event;
7424        work->dev = crtc->dev;
7425        intel_fb = to_intel_framebuffer(crtc->fb);
7426        work->old_fb_obj = intel_fb->obj;
7427        INIT_WORK(&work->work, intel_unpin_work_fn);
7428
7429        ret = drm_vblank_get(dev, intel_crtc->pipe);
7430        if (ret)
7431                goto free_work;
7432
7433        /* We borrow the event spin lock for protecting unpin_work */
7434        spin_lock_irqsave(&dev->event_lock, flags);
7435        if (intel_crtc->unpin_work) {
7436                spin_unlock_irqrestore(&dev->event_lock, flags);
7437                kfree(work);
7438                drm_vblank_put(dev, intel_crtc->pipe);
7439
7440                DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7441                return -EBUSY;
7442        }
7443        intel_crtc->unpin_work = work;
7444        spin_unlock_irqrestore(&dev->event_lock, flags);
7445
7446        intel_fb = to_intel_framebuffer(fb);
7447        obj = intel_fb->obj;
7448
7449        mutex_lock(&dev->struct_mutex);
7450
7451        /* Reference the objects for the scheduled work. */
7452        drm_gem_object_reference(&work->old_fb_obj->base);
7453        drm_gem_object_reference(&obj->base);
7454
7455        crtc->fb = fb;
7456
7457        work->pending_flip_obj = obj;
7458
7459        work->enable_stall_check = true;
7460
7461        /* Block clients from rendering to the new back buffer until
7462         * the flip occurs and the object is no longer visible.
7463         */
7464        atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7465
7466        ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7467        if (ret)
7468                goto cleanup_pending;
7469
7470        intel_disable_fbc(dev);
7471        mutex_unlock(&dev->struct_mutex);
7472
7473        trace_i915_flip_request(intel_crtc->plane, obj);
7474
7475        return 0;
7476
7477cleanup_pending:
7478        atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7479        drm_gem_object_unreference(&work->old_fb_obj->base);
7480        drm_gem_object_unreference(&obj->base);
7481        mutex_unlock(&dev->struct_mutex);
7482
7483        spin_lock_irqsave(&dev->event_lock, flags);
7484        intel_crtc->unpin_work = NULL;
7485        spin_unlock_irqrestore(&dev->event_lock, flags);
7486
7487        drm_vblank_put(dev, intel_crtc->pipe);
7488free_work:
7489        kfree(work);
7490
7491        return ret;
7492}
7493
7494static void intel_sanitize_modesetting(struct drm_device *dev,
7495                                       int pipe, int plane)
7496{
7497        struct drm_i915_private *dev_priv = dev->dev_private;
7498        u32 reg, val;
7499
7500        if (HAS_PCH_SPLIT(dev))
7501                return;
7502
7503        /* Who knows what state these registers were left in by the BIOS or
7504         * grub?
7505         *
7506         * If we leave the registers in a conflicting state (e.g. with the
7507         * display plane reading from the other pipe than the one we intend
7508         * to use) then when we attempt to teardown the active mode, we will
7509         * not disable the pipes and planes in the correct order -- leaving
7510         * a plane reading from a disabled pipe and possibly leading to
7511         * undefined behaviour.
7512         */
7513
7514        reg = DSPCNTR(plane);
7515        val = I915_READ(reg);
7516
7517        if ((val & DISPLAY_PLANE_ENABLE) == 0)
7518                return;
7519        if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
7520                return;
7521
7522        /* This display plane is active and attached to the other CPU pipe. */
7523        pipe = !pipe;
7524
7525        /* Disable the plane and wait for it to stop reading from the pipe. */
7526        intel_disable_plane(dev_priv, plane, pipe);
7527        intel_disable_pipe(dev_priv, pipe);
7528}
7529
7530static void intel_crtc_reset(struct drm_crtc *crtc)
7531{
7532        struct drm_device *dev = crtc->dev;
7533        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7534
7535        /* Reset flags back to the 'unknown' status so that they
7536         * will be correctly set on the initial modeset.
7537         */
7538        intel_crtc->dpms_mode = -1;
7539
7540        /* We need to fix up any BIOS configuration that conflicts with
7541         * our expectations.
7542         */
7543        intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
7544}
7545
7546static struct drm_crtc_helper_funcs intel_helper_funcs = {
7547        .dpms = intel_crtc_dpms,
7548        .mode_fixup = intel_crtc_mode_fixup,
7549        .mode_set = intel_crtc_mode_set,
7550        .mode_set_base = intel_pipe_set_base,
7551        .mode_set_base_atomic = intel_pipe_set_base_atomic,
7552        .load_lut = intel_crtc_load_lut,
7553        .disable = intel_crtc_disable,
7554};
7555
7556static const struct drm_crtc_funcs intel_crtc_funcs = {
7557        .reset = intel_crtc_reset,
7558        .cursor_set = intel_crtc_cursor_set,
7559        .cursor_move = intel_crtc_cursor_move,
7560        .gamma_set = intel_crtc_gamma_set,
7561        .set_config = drm_crtc_helper_set_config,
7562        .destroy = intel_crtc_destroy,
7563        .page_flip = intel_crtc_page_flip,
7564};
7565
7566static void intel_crtc_init(struct drm_device *dev, int pipe)
7567{
7568        drm_i915_private_t *dev_priv = dev->dev_private;
7569        struct intel_crtc *intel_crtc;
7570        int i;
7571
7572        intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
7573        if (intel_crtc == NULL)
7574                return;
7575
7576        drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
7577
7578        drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
7579        for (i = 0; i < 256; i++) {
7580                intel_crtc->lut_r[i] = i;
7581                intel_crtc->lut_g[i] = i;
7582                intel_crtc->lut_b[i] = i;
7583        }
7584
7585        /* Swap pipes & planes for FBC on pre-965 */
7586        intel_crtc->pipe = pipe;
7587        intel_crtc->plane = pipe;
7588        if (IS_MOBILE(dev) && IS_GEN3(dev)) {
7589                DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
7590                intel_crtc->plane = !pipe;
7591        }
7592
7593        BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
7594               dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
7595        dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
7596        dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
7597
7598        intel_crtc_reset(&intel_crtc->base);
7599        intel_crtc->active = true; /* force the pipe off on setup_init_config */
7600        intel_crtc->bpp = 24; /* default for pre-Ironlake */
7601
7602        if (HAS_PCH_SPLIT(dev)) {
7603                if (pipe == 2 && IS_IVYBRIDGE(dev))
7604                        intel_crtc->no_pll = true;
7605                intel_helper_funcs.prepare = ironlake_crtc_prepare;
7606                intel_helper_funcs.commit = ironlake_crtc_commit;
7607        } else {
7608                intel_helper_funcs.prepare = i9xx_crtc_prepare;
7609                intel_helper_funcs.commit = i9xx_crtc_commit;
7610        }
7611
7612        drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
7613
7614        intel_crtc->busy = false;
7615
7616        setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
7617                    (unsigned long)intel_crtc);
7618}
7619
7620int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
7621                                struct drm_file *file)
7622{
7623        drm_i915_private_t *dev_priv = dev->dev_private;
7624        struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7625        struct drm_mode_object *drmmode_obj;
7626        struct intel_crtc *crtc;
7627
7628        if (!dev_priv) {
7629                DRM_ERROR("called with no initialization\n");
7630                return -EINVAL;
7631        }
7632
7633        drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
7634                        DRM_MODE_OBJECT_CRTC);
7635
7636        if (!drmmode_obj) {
7637                DRM_ERROR("no such CRTC id\n");
7638                return -EINVAL;
7639        }
7640
7641        crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
7642        pipe_from_crtc_id->pipe = crtc->pipe;
7643
7644        return 0;
7645}
7646
7647static int intel_encoder_clones(struct drm_device *dev, int type_mask)
7648{
7649        struct intel_encoder *encoder;
7650        int index_mask = 0;
7651        int entry = 0;
7652
7653        list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7654                if (type_mask & encoder->clone_mask)
7655                        index_mask |= (1 << entry);
7656                entry++;
7657        }
7658
7659        return index_mask;
7660}
7661
7662static bool has_edp_a(struct drm_device *dev)
7663{
7664        struct drm_i915_private *dev_priv = dev->dev_private;
7665
7666        if (!IS_MOBILE(dev))
7667                return false;
7668
7669        if ((I915_READ(DP_A) & DP_DETECTED) == 0)
7670                return false;
7671
7672        if (IS_GEN5(dev) &&
7673            (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
7674                return false;
7675
7676        return true;
7677}
7678
7679static void intel_setup_outputs(struct drm_device *dev)
7680{
7681        struct drm_i915_private *dev_priv = dev->dev_private;
7682        struct intel_encoder *encoder;
7683        bool dpd_is_edp = false;
7684        bool has_lvds = false;
7685
7686        if (IS_MOBILE(dev) && !IS_I830(dev))
7687                has_lvds = intel_lvds_init(dev);
7688        if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
7689                /* disable the panel fitter on everything but LVDS */
7690                I915_WRITE(PFIT_CONTROL, 0);
7691        }
7692
7693        if (HAS_PCH_SPLIT(dev)) {
7694                dpd_is_edp = intel_dpd_is_edp(dev);
7695
7696                if (has_edp_a(dev))
7697                        intel_dp_init(dev, DP_A);
7698
7699                if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7700                        intel_dp_init(dev, PCH_DP_D);
7701        }
7702
7703        intel_crt_init(dev);
7704
7705        if (HAS_PCH_SPLIT(dev)) {
7706                int found;
7707
7708                if (I915_READ(HDMIB) & PORT_DETECTED) {
7709                        /* PCH SDVOB multiplex with HDMIB */
7710                        found = intel_sdvo_init(dev, PCH_SDVOB);
7711                        if (!found)
7712                                intel_hdmi_init(dev, HDMIB);
7713                        if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
7714                                intel_dp_init(dev, PCH_DP_B);
7715                }
7716
7717                if (I915_READ(HDMIC) & PORT_DETECTED)
7718                        intel_hdmi_init(dev, HDMIC);
7719
7720                if (I915_READ(HDMID) & PORT_DETECTED)
7721                        intel_hdmi_init(dev, HDMID);
7722
7723                if (I915_READ(PCH_DP_C) & DP_DETECTED)
7724                        intel_dp_init(dev, PCH_DP_C);
7725
7726                if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7727                        intel_dp_init(dev, PCH_DP_D);
7728
7729        } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
7730                bool found = false;
7731
7732                if (I915_READ(SDVOB) & SDVO_DETECTED) {
7733                        DRM_DEBUG_KMS("probing SDVOB\n");
7734                        found = intel_sdvo_init(dev, SDVOB);
7735                        if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
7736                                DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
7737                                intel_hdmi_init(dev, SDVOB);
7738                        }
7739
7740                        if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
7741                                DRM_DEBUG_KMS("probing DP_B\n");
7742                                intel_dp_init(dev, DP_B);
7743                        }
7744                }
7745
7746                /* Before G4X SDVOC doesn't have its own detect register */
7747
7748                if (I915_READ(SDVOB) & SDVO_DETECTED) {
7749                        DRM_DEBUG_KMS("probing SDVOC\n");
7750                        found = intel_sdvo_init(dev, SDVOC);
7751                }
7752
7753                if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
7754
7755                        if (SUPPORTS_INTEGRATED_HDMI(dev)) {
7756                                DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
7757                                intel_hdmi_init(dev, SDVOC);
7758                        }
7759                        if (SUPPORTS_INTEGRATED_DP(dev)) {
7760                                DRM_DEBUG_KMS("probing DP_C\n");
7761                                intel_dp_init(dev, DP_C);
7762                        }
7763                }
7764
7765                if (SUPPORTS_INTEGRATED_DP(dev) &&
7766                    (I915_READ(DP_D) & DP_DETECTED)) {
7767                        DRM_DEBUG_KMS("probing DP_D\n");
7768                        intel_dp_init(dev, DP_D);
7769                }
7770        } else if (IS_GEN2(dev))
7771                intel_dvo_init(dev);
7772
7773        if (SUPPORTS_TV(dev))
7774                intel_tv_init(dev);
7775
7776        list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7777                encoder->base.possible_crtcs = encoder->crtc_mask;
7778                encoder->base.possible_clones =
7779                        intel_encoder_clones(dev, encoder->clone_mask);
7780        }
7781
7782        /* disable all the possible outputs/crtcs before entering KMS mode */
7783        drm_helper_disable_unused_functions(dev);
7784
7785        if (HAS_PCH_SPLIT(dev))
7786                ironlake_init_pch_refclk(dev);
7787}
7788
7789static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
7790{
7791        struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7792
7793        drm_framebuffer_cleanup(fb);
7794        drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
7795
7796        kfree(intel_fb);
7797}
7798
7799static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
7800                                                struct drm_file *file,
7801                                                unsigned int *handle)
7802{
7803        struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7804        struct drm_i915_gem_object *obj = intel_fb->obj;
7805
7806        return drm_gem_handle_create(file, &obj->base, handle);
7807}
7808
7809static const struct drm_framebuffer_funcs intel_fb_funcs = {
7810        .destroy = intel_user_framebuffer_destroy,
7811        .create_handle = intel_user_framebuffer_create_handle,
7812};
7813
7814int intel_framebuffer_init(struct drm_device *dev,
7815                           struct intel_framebuffer *intel_fb,
7816                           struct drm_mode_fb_cmd2 *mode_cmd,
7817                           struct drm_i915_gem_object *obj)
7818{
7819        int ret;
7820
7821        if (obj->tiling_mode == I915_TILING_Y)
7822                return -EINVAL;
7823
7824        if (mode_cmd->pitches[0] & 63)
7825                return -EINVAL;
7826
7827        switch (mode_cmd->pixel_format) {
7828        case DRM_FORMAT_RGB332:
7829        case DRM_FORMAT_RGB565:
7830        case DRM_FORMAT_XRGB8888:
7831        case DRM_FORMAT_XBGR8888:
7832        case DRM_FORMAT_ARGB8888:
7833        case DRM_FORMAT_XRGB2101010:
7834        case DRM_FORMAT_ARGB2101010:
7835                /* RGB formats are common across chipsets */
7836                break;
7837        case DRM_FORMAT_YUYV:
7838        case DRM_FORMAT_UYVY:
7839        case DRM_FORMAT_YVYU:
7840        case DRM_FORMAT_VYUY:
7841                break;
7842        default:
7843                DRM_ERROR("unsupported pixel format\n");
7844                return -EINVAL;
7845        }
7846
7847        ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
7848        if (ret) {
7849                DRM_ERROR("framebuffer init failed %d\n", ret);
7850                return ret;
7851        }
7852
7853        drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
7854        intel_fb->obj = obj;
7855        return 0;
7856}
7857
7858static struct drm_framebuffer *
7859intel_user_framebuffer_create(struct drm_device *dev,
7860                              struct drm_file *filp,
7861                              struct drm_mode_fb_cmd2 *mode_cmd)
7862{
7863        struct drm_i915_gem_object *obj;
7864
7865        obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
7866                                                mode_cmd->handles[0]));
7867        if (&obj->base == NULL)
7868                return ERR_PTR(-ENOENT);
7869
7870        return intel_framebuffer_create(dev, mode_cmd, obj);
7871}
7872
7873static const struct drm_mode_config_funcs intel_mode_funcs = {
7874        .fb_create = intel_user_framebuffer_create,
7875        .output_poll_changed = intel_fb_output_poll_changed,
7876};
7877
7878static struct drm_i915_gem_object *
7879intel_alloc_context_page(struct drm_device *dev)
7880{
7881        struct drm_i915_gem_object *ctx;
7882        int ret;
7883
7884        WARN_ON(!mutex_is_locked(&dev->struct_mutex));
7885
7886        ctx = i915_gem_alloc_object(dev, 4096);
7887        if (!ctx) {
7888                DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
7889                return NULL;
7890        }
7891
7892        ret = i915_gem_object_pin(ctx, 4096, true);
7893        if (ret) {
7894                DRM_ERROR("failed to pin power context: %d\n", ret);
7895                goto err_unref;
7896        }
7897
7898        ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
7899        if (ret) {
7900                DRM_ERROR("failed to set-domain on power context: %d\n", ret);
7901                goto err_unpin;
7902        }
7903
7904        return ctx;
7905
7906err_unpin:
7907        i915_gem_object_unpin(ctx);
7908err_unref:
7909        drm_gem_object_unreference(&ctx->base);
7910        mutex_unlock(&dev->struct_mutex);
7911        return NULL;
7912}
7913
7914bool ironlake_set_drps(struct drm_device *dev, u8 val)
7915{
7916        struct drm_i915_private *dev_priv = dev->dev_private;
7917        u16 rgvswctl;
7918
7919        rgvswctl = I915_READ16(MEMSWCTL);
7920        if (rgvswctl & MEMCTL_CMD_STS) {
7921                DRM_DEBUG("gpu busy, RCS change rejected\n");
7922                return false; /* still busy with another command */
7923        }
7924
7925        rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
7926                (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
7927        I915_WRITE16(MEMSWCTL, rgvswctl);
7928        POSTING_READ16(MEMSWCTL);
7929
7930        rgvswctl |= MEMCTL_CMD_STS;
7931        I915_WRITE16(MEMSWCTL, rgvswctl);
7932
7933        return true;
7934}
7935
7936void ironlake_enable_drps(struct drm_device *dev)
7937{
7938        struct drm_i915_private *dev_priv = dev->dev_private;
7939        u32 rgvmodectl = I915_READ(MEMMODECTL);
7940        u8 fmax, fmin, fstart, vstart;
7941
7942        /* Enable temp reporting */
7943        I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
7944        I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
7945
7946        /* 100ms RC evaluation intervals */
7947        I915_WRITE(RCUPEI, 100000);
7948        I915_WRITE(RCDNEI, 100000);
7949
7950        /* Set max/min thresholds to 90ms and 80ms respectively */
7951        I915_WRITE(RCBMAXAVG, 90000);
7952        I915_WRITE(RCBMINAVG, 80000);
7953
7954        I915_WRITE(MEMIHYST, 1);
7955
7956        /* Set up min, max, and cur for interrupt handling */
7957        fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
7958        fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
7959        fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
7960                MEMMODE_FSTART_SHIFT;
7961
7962        vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
7963                PXVFREQ_PX_SHIFT;
7964
7965        dev_priv->fmax = fmax; /* IPS callback will increase this */
7966        dev_priv->fstart = fstart;
7967
7968        dev_priv->max_delay = fstart;
7969        dev_priv->min_delay = fmin;
7970        dev_priv->cur_delay = fstart;
7971
7972        DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
7973                         fmax, fmin, fstart);
7974
7975        I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
7976
7977        /*
7978         * Interrupts will be enabled in ironlake_irq_postinstall
7979         */
7980
7981        I915_WRITE(VIDSTART, vstart);
7982        POSTING_READ(VIDSTART);
7983
7984        rgvmodectl |= MEMMODE_SWMODE_EN;
7985        I915_WRITE(MEMMODECTL, rgvmodectl);
7986
7987        if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
7988                DRM_ERROR("stuck trying to change perf mode\n");
7989        msleep(1);
7990
7991        ironlake_set_drps(dev, fstart);
7992
7993        dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
7994                I915_READ(0x112e0);
7995        dev_priv->last_time1 = jiffies_to_msecs(jiffies);
7996        dev_priv->last_count2 = I915_READ(0x112f4);
7997        getrawmonotonic(&dev_priv->last_time2);
7998}
7999
8000void ironlake_disable_drps(struct drm_device *dev)
8001{
8002        struct drm_i915_private *dev_priv = dev->dev_private;
8003        u16 rgvswctl = I915_READ16(MEMSWCTL);
8004
8005        /* Ack interrupts, disable EFC interrupt */
8006        I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
8007        I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
8008        I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
8009        I915_WRITE(DEIIR, DE_PCU_EVENT);
8010        I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
8011
8012        /* Go back to the starting frequency */
8013        ironlake_set_drps(dev, dev_priv->fstart);
8014        msleep(1);
8015        rgvswctl |= MEMCTL_CMD_STS;
8016        I915_WRITE(MEMSWCTL, rgvswctl);
8017        msleep(1);
8018
8019}
8020
8021void gen6_set_rps(struct drm_device *dev, u8 val)
8022{
8023        struct drm_i915_private *dev_priv = dev->dev_private;
8024        u32 swreq;
8025
8026        swreq = (val & 0x3ff) << 25;
8027        I915_WRITE(GEN6_RPNSWREQ, swreq);
8028}
8029
8030void gen6_disable_rps(struct drm_device *dev)
8031{
8032        struct drm_i915_private *dev_priv = dev->dev_private;
8033
8034        I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
8035        I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
8036        I915_WRITE(GEN6_PMIER, 0);
8037        /* Complete PM interrupt masking here doesn't race with the rps work
8038         * item again unmasking PM interrupts because that is using a different
8039         * register (PMIMR) to mask PM interrupts. The only risk is in leaving
8040         * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
8041
8042        spin_lock_irq(&dev_priv->rps_lock);
8043        dev_priv->pm_iir = 0;
8044        spin_unlock_irq(&dev_priv->rps_lock);
8045
8046        I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
8047}
8048
8049static unsigned long intel_pxfreq(u32 vidfreq)
8050{
8051        unsigned long freq;
8052        int div = (vidfreq & 0x3f0000) >> 16;
8053        int post = (vidfreq & 0x3000) >> 12;
8054        int pre = (vidfreq & 0x7);
8055
8056        if (!pre)
8057                return 0;
8058
8059        freq = ((div * 133333) / ((1<<post) * pre));
8060
8061        return freq;
8062}
8063
8064void intel_init_emon(struct drm_device *dev)
8065{
8066        struct drm_i915_private *dev_priv = dev->dev_private;
8067        u32 lcfuse;
8068        u8 pxw[16];
8069        int i;
8070
8071        /* Disable to program */
8072        I915_WRITE(ECR, 0);
8073        POSTING_READ(ECR);
8074
8075        /* Program energy weights for various events */
8076        I915_WRITE(SDEW, 0x15040d00);
8077        I915_WRITE(CSIEW0, 0x007f0000);
8078        I915_WRITE(CSIEW1, 0x1e220004);
8079        I915_WRITE(CSIEW2, 0x04000004);
8080
8081        for (i = 0; i < 5; i++)
8082                I915_WRITE(PEW + (i * 4), 0);
8083        for (i = 0; i < 3; i++)
8084                I915_WRITE(DEW + (i * 4), 0);
8085
8086        /* Program P-state weights to account for frequency power adjustment */
8087        for (i = 0; i < 16; i++) {
8088                u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
8089                unsigned long freq = intel_pxfreq(pxvidfreq);
8090                unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
8091                        PXVFREQ_PX_SHIFT;
8092                unsigned long val;
8093
8094                val = vid * vid;
8095                val *= (freq / 1000);
8096                val *= 255;
8097                val /= (127*127*900);
8098                if (val > 0xff)
8099                        DRM_ERROR("bad pxval: %ld\n", val);
8100                pxw[i] = val;
8101        }
8102        /* Render standby states get 0 weight */
8103        pxw[14] = 0;
8104        pxw[15] = 0;
8105
8106        for (i = 0; i < 4; i++) {
8107                u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
8108                        (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
8109                I915_WRITE(PXW + (i * 4), val);
8110        }
8111
8112        /* Adjust magic regs to magic values (more experimental results) */
8113        I915_WRITE(OGW0, 0);
8114        I915_WRITE(OGW1, 0);
8115        I915_WRITE(EG0, 0x00007f00);
8116        I915_WRITE(EG1, 0x0000000e);
8117        I915_WRITE(EG2, 0x000e0000);
8118        I915_WRITE(EG3, 0x68000300);
8119        I915_WRITE(EG4, 0x42000000);
8120        I915_WRITE(EG5, 0x00140031);
8121        I915_WRITE(EG6, 0);
8122        I915_WRITE(EG7, 0);
8123
8124        for (i = 0; i < 8; i++)
8125                I915_WRITE(PXWL + (i * 4), 0);
8126
8127        /* Enable PMON + select events */
8128        I915_WRITE(ECR, 0x80000019);
8129
8130        lcfuse = I915_READ(LCFUSE02);
8131
8132        dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
8133}
8134
8135static bool intel_enable_rc6(struct drm_device *dev)
8136{
8137        /*
8138         * Respect the kernel parameter if it is set
8139         */
8140        if (i915_enable_rc6 >= 0)
8141                return i915_enable_rc6;
8142
8143        /*
8144         * Disable RC6 on Ironlake
8145         */
8146        if (INTEL_INFO(dev)->gen == 5)
8147                return 0;
8148
8149        /*
8150         * Disable rc6 on Sandybridge
8151         */
8152        if (INTEL_INFO(dev)->gen == 6) {
8153                DRM_DEBUG_DRIVER("Sandybridge: RC6 disabled\n");
8154                return 0;
8155        }
8156        DRM_DEBUG_DRIVER("RC6 enabled\n");
8157        return 1;
8158}
8159
8160void gen6_enable_rps(struct drm_i915_private *dev_priv)
8161{
8162        u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
8163        u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
8164        u32 pcu_mbox, rc6_mask = 0;
8165        int cur_freq, min_freq, max_freq;
8166        int i;
8167
8168        /* Here begins a magic sequence of register writes to enable
8169         * auto-downclocking.
8170         *
8171         * Perhaps there might be some value in exposing these to
8172         * userspace...
8173         */
8174        I915_WRITE(GEN6_RC_STATE, 0);
8175        mutex_lock(&dev_priv->dev->struct_mutex);
8176        gen6_gt_force_wake_get(dev_priv);
8177
8178        /* disable the counters and set deterministic thresholds */
8179        I915_WRITE(GEN6_RC_CONTROL, 0);
8180
8181        I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
8182        I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
8183        I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
8184        I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
8185        I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
8186
8187        for (i = 0; i < I915_NUM_RINGS; i++)
8188                I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
8189
8190        I915_WRITE(GEN6_RC_SLEEP, 0);
8191        I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
8192        I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
8193        I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
8194        I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
8195
8196        if (intel_enable_rc6(dev_priv->dev))
8197                rc6_mask = GEN6_RC_CTL_RC6_ENABLE |
8198                        ((IS_GEN7(dev_priv->dev)) ? GEN6_RC_CTL_RC6p_ENABLE : 0);
8199
8200        I915_WRITE(GEN6_RC_CONTROL,
8201                   rc6_mask |
8202                   GEN6_RC_CTL_EI_MODE(1) |
8203                   GEN6_RC_CTL_HW_ENABLE);
8204
8205        I915_WRITE(GEN6_RPNSWREQ,
8206                   GEN6_FREQUENCY(10) |
8207                   GEN6_OFFSET(0) |
8208                   GEN6_AGGRESSIVE_TURBO);
8209        I915_WRITE(GEN6_RC_VIDEO_FREQ,
8210                   GEN6_FREQUENCY(12));
8211
8212        I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
8213        I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
8214                   18 << 24 |
8215                   6 << 16);
8216        I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
8217        I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
8218        I915_WRITE(GEN6_RP_UP_EI, 100000);
8219        I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
8220        I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
8221        I915_WRITE(GEN6_RP_CONTROL,
8222                   GEN6_RP_MEDIA_TURBO |
8223                   GEN6_RP_MEDIA_HW_MODE |
8224                   GEN6_RP_MEDIA_IS_GFX |
8225                   GEN6_RP_ENABLE |
8226                   GEN6_RP_UP_BUSY_AVG |
8227                   GEN6_RP_DOWN_IDLE_CONT);
8228
8229        if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8230                     500))
8231                DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
8232
8233        I915_WRITE(GEN6_PCODE_DATA, 0);
8234        I915_WRITE(GEN6_PCODE_MAILBOX,
8235                   GEN6_PCODE_READY |
8236                   GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
8237        if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8238                     500))
8239                DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
8240
8241        min_freq = (rp_state_cap & 0xff0000) >> 16;
8242        max_freq = rp_state_cap & 0xff;
8243        cur_freq = (gt_perf_status & 0xff00) >> 8;
8244
8245        /* Check for overclock support */
8246        if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8247                     500))
8248                DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
8249        I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
8250        pcu_mbox = I915_READ(GEN6_PCODE_DATA);
8251        if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8252                     500))
8253                DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
8254        if (pcu_mbox & (1<<31)) { /* OC supported */
8255                max_freq = pcu_mbox & 0xff;
8256                DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
8257        }
8258
8259        /* In units of 100MHz */
8260        dev_priv->max_delay = max_freq;
8261        dev_priv->min_delay = min_freq;
8262        dev_priv->cur_delay = cur_freq;
8263
8264        /* requires MSI enabled */
8265        I915_WRITE(GEN6_PMIER,
8266                   GEN6_PM_MBOX_EVENT |
8267                   GEN6_PM_THERMAL_EVENT |
8268                   GEN6_PM_RP_DOWN_TIMEOUT |
8269                   GEN6_PM_RP_UP_THRESHOLD |
8270                   GEN6_PM_RP_DOWN_THRESHOLD |
8271                   GEN6_PM_RP_UP_EI_EXPIRED |
8272                   GEN6_PM_RP_DOWN_EI_EXPIRED);
8273        spin_lock_irq(&dev_priv->rps_lock);
8274        WARN_ON(dev_priv->pm_iir != 0);
8275        I915_WRITE(GEN6_PMIMR, 0);
8276        spin_unlock_irq(&dev_priv->rps_lock);
8277        /* enable all PM interrupts */
8278        I915_WRITE(GEN6_PMINTRMSK, 0);
8279
8280        gen6_gt_force_wake_put(dev_priv);
8281        mutex_unlock(&dev_priv->dev->struct_mutex);
8282}
8283
8284void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
8285{
8286        int min_freq = 15;
8287        int gpu_freq, ia_freq, max_ia_freq;
8288        int scaling_factor = 180;
8289
8290        max_ia_freq = cpufreq_quick_get_max(0);
8291        /*
8292         * Default to measured freq if none found, PCU will ensure we don't go
8293         * over
8294         */
8295        if (!max_ia_freq)
8296                max_ia_freq = tsc_khz;
8297
8298        /* Convert from kHz to MHz */
8299        max_ia_freq /= 1000;
8300
8301        mutex_lock(&dev_priv->dev->struct_mutex);
8302
8303        /*
8304         * For each potential GPU frequency, load a ring frequency we'd like
8305         * to use for memory access.  We do this by specifying the IA frequency
8306         * the PCU should use as a reference to determine the ring frequency.
8307         */
8308        for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
8309             gpu_freq--) {
8310                int diff = dev_priv->max_delay - gpu_freq;
8311
8312                /*
8313                 * For GPU frequencies less than 750MHz, just use the lowest
8314                 * ring freq.
8315                 */
8316                if (gpu_freq < min_freq)
8317                        ia_freq = 800;
8318                else
8319                        ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
8320                ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
8321
8322                I915_WRITE(GEN6_PCODE_DATA,
8323                           (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
8324                           gpu_freq);
8325                I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
8326                           GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
8327                if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
8328                              GEN6_PCODE_READY) == 0, 10)) {
8329                        DRM_ERROR("pcode write of freq table timed out\n");
8330                        continue;
8331                }
8332        }
8333
8334        mutex_unlock(&dev_priv->dev->struct_mutex);
8335}
8336
8337static void ironlake_init_clock_gating(struct drm_device *dev)
8338{
8339        struct drm_i915_private *dev_priv = dev->dev_private;
8340        uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8341
8342        /* Required for FBC */
8343        dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
8344                DPFCRUNIT_CLOCK_GATE_DISABLE |
8345                DPFDUNIT_CLOCK_GATE_DISABLE;
8346        /* Required for CxSR */
8347        dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
8348
8349        I915_WRITE(PCH_3DCGDIS0,
8350                   MARIUNIT_CLOCK_GATE_DISABLE |
8351                   SVSMUNIT_CLOCK_GATE_DISABLE);
8352        I915_WRITE(PCH_3DCGDIS1,
8353                   VFMUNIT_CLOCK_GATE_DISABLE);
8354
8355        I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8356
8357        /*
8358         * According to the spec the following bits should be set in
8359         * order to enable memory self-refresh
8360         * The bit 22/21 of 0x42004
8361         * The bit 5 of 0x42020
8362         * The bit 15 of 0x45000
8363         */
8364        I915_WRITE(ILK_DISPLAY_CHICKEN2,
8365                   (I915_READ(ILK_DISPLAY_CHICKEN2) |
8366                    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8367        I915_WRITE(ILK_DSPCLK_GATE,
8368                   (I915_READ(ILK_DSPCLK_GATE) |
8369                    ILK_DPARB_CLK_GATE));
8370        I915_WRITE(DISP_ARB_CTL,
8371                   (I915_READ(DISP_ARB_CTL) |
8372                    DISP_FBC_WM_DIS));
8373        I915_WRITE(WM3_LP_ILK, 0);
8374        I915_WRITE(WM2_LP_ILK, 0);
8375        I915_WRITE(WM1_LP_ILK, 0);
8376
8377        /*
8378         * Based on the document from hardware guys the following bits
8379         * should be set unconditionally in order to enable FBC.
8380         * The bit 22 of 0x42000
8381         * The bit 22 of 0x42004
8382         * The bit 7,8,9 of 0x42020.
8383         */
8384        if (IS_IRONLAKE_M(dev)) {
8385                I915_WRITE(ILK_DISPLAY_CHICKEN1,
8386                           I915_READ(ILK_DISPLAY_CHICKEN1) |
8387                           ILK_FBCQ_DIS);
8388                I915_WRITE(ILK_DISPLAY_CHICKEN2,
8389                           I915_READ(ILK_DISPLAY_CHICKEN2) |
8390                           ILK_DPARB_GATE);
8391                I915_WRITE(ILK_DSPCLK_GATE,
8392                           I915_READ(ILK_DSPCLK_GATE) |
8393                           ILK_DPFC_DIS1 |
8394                           ILK_DPFC_DIS2 |
8395                           ILK_CLK_FBC);
8396        }
8397
8398        I915_WRITE(ILK_DISPLAY_CHICKEN2,
8399                   I915_READ(ILK_DISPLAY_CHICKEN2) |
8400                   ILK_ELPIN_409_SELECT);
8401        I915_WRITE(_3D_CHICKEN2,
8402                   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
8403                   _3D_CHICKEN2_WM_READ_PIPELINED);
8404}
8405
8406static void gen6_init_clock_gating(struct drm_device *dev)
8407{
8408        struct drm_i915_private *dev_priv = dev->dev_private;
8409        int pipe;
8410        uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8411
8412        I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8413
8414        I915_WRITE(ILK_DISPLAY_CHICKEN2,
8415                   I915_READ(ILK_DISPLAY_CHICKEN2) |
8416                   ILK_ELPIN_409_SELECT);
8417
8418        I915_WRITE(WM3_LP_ILK, 0);
8419        I915_WRITE(WM2_LP_ILK, 0);
8420        I915_WRITE(WM1_LP_ILK, 0);
8421
8422        /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
8423         * gating disable must be set.  Failure to set it results in
8424         * flickering pixels due to Z write ordering failures after
8425         * some amount of runtime in the Mesa "fire" demo, and Unigine
8426         * Sanctuary and Tropics, and apparently anything else with
8427         * alpha test or pixel discard.
8428         *
8429         * According to the spec, bit 11 (RCCUNIT) must also be set,
8430         * but we didn't debug actual testcases to find it out.
8431         */
8432        I915_WRITE(GEN6_UCGCTL2,
8433                   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
8434                   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
8435
8436        /*
8437         * According to the spec the following bits should be
8438         * set in order to enable memory self-refresh and fbc:
8439         * The bit21 and bit22 of 0x42000
8440         * The bit21 and bit22 of 0x42004
8441         * The bit5 and bit7 of 0x42020
8442         * The bit14 of 0x70180
8443         * The bit14 of 0x71180
8444         */
8445        I915_WRITE(ILK_DISPLAY_CHICKEN1,
8446                   I915_READ(ILK_DISPLAY_CHICKEN1) |
8447                   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
8448        I915_WRITE(ILK_DISPLAY_CHICKEN2,
8449                   I915_READ(ILK_DISPLAY_CHICKEN2) |
8450                   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8451        I915_WRITE(ILK_DSPCLK_GATE,
8452                   I915_READ(ILK_DSPCLK_GATE) |
8453                   ILK_DPARB_CLK_GATE  |
8454                   ILK_DPFD_CLK_GATE);
8455
8456        for_each_pipe(pipe) {
8457                I915_WRITE(DSPCNTR(pipe),
8458                           I915_READ(DSPCNTR(pipe)) |
8459                           DISPPLANE_TRICKLE_FEED_DISABLE);
8460                intel_flush_display_plane(dev_priv, pipe);
8461        }
8462}
8463
8464static void ivybridge_init_clock_gating(struct drm_device *dev)
8465{
8466        struct drm_i915_private *dev_priv = dev->dev_private;
8467        int pipe;
8468        uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8469
8470        I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8471
8472        I915_WRITE(WM3_LP_ILK, 0);
8473        I915_WRITE(WM2_LP_ILK, 0);
8474        I915_WRITE(WM1_LP_ILK, 0);
8475
8476        /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8477         * This implements the WaDisableRCZUnitClockGating workaround.
8478         */
8479        I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8480
8481        I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
8482
8483        I915_WRITE(IVB_CHICKEN3,
8484                   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
8485                   CHICKEN3_DGMG_DONE_FIX_DISABLE);
8486
8487        /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
8488        I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
8489                   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
8490
8491        /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
8492        I915_WRITE(GEN7_L3CNTLREG1,
8493                        GEN7_WA_FOR_GEN7_L3_CONTROL);
8494        I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
8495                        GEN7_WA_L3_CHICKEN_MODE);
8496
8497        /* This is required by WaCatErrorRejectionIssue */
8498        I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8499                        I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8500                        GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8501
8502        for_each_pipe(pipe) {
8503                I915_WRITE(DSPCNTR(pipe),
8504                           I915_READ(DSPCNTR(pipe)) |
8505                           DISPPLANE_TRICKLE_FEED_DISABLE);
8506                intel_flush_display_plane(dev_priv, pipe);
8507        }
8508}
8509
8510static void g4x_init_clock_gating(struct drm_device *dev)
8511{
8512        struct drm_i915_private *dev_priv = dev->dev_private;
8513        uint32_t dspclk_gate;
8514
8515        I915_WRITE(RENCLK_GATE_D1, 0);
8516        I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
8517                   GS_UNIT_CLOCK_GATE_DISABLE |
8518                   CL_UNIT_CLOCK_GATE_DISABLE);
8519        I915_WRITE(RAMCLK_GATE_D, 0);
8520        dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
8521                OVRUNIT_CLOCK_GATE_DISABLE |
8522                OVCUNIT_CLOCK_GATE_DISABLE;
8523        if (IS_GM45(dev))
8524                dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
8525        I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
8526}
8527
8528static void crestline_init_clock_gating(struct drm_device *dev)
8529{
8530        struct drm_i915_private *dev_priv = dev->dev_private;
8531
8532        I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
8533        I915_WRITE(RENCLK_GATE_D2, 0);
8534        I915_WRITE(DSPCLK_GATE_D, 0);
8535        I915_WRITE(RAMCLK_GATE_D, 0);
8536        I915_WRITE16(DEUC, 0);
8537}
8538
8539static void broadwater_init_clock_gating(struct drm_device *dev)
8540{
8541        struct drm_i915_private *dev_priv = dev->dev_private;
8542
8543        I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
8544                   I965_RCC_CLOCK_GATE_DISABLE |
8545                   I965_RCPB_CLOCK_GATE_DISABLE |
8546                   I965_ISC_CLOCK_GATE_DISABLE |
8547                   I965_FBC_CLOCK_GATE_DISABLE);
8548        I915_WRITE(RENCLK_GATE_D2, 0);
8549}
8550
8551static void gen3_init_clock_gating(struct drm_device *dev)
8552{
8553        struct drm_i915_private *dev_priv = dev->dev_private;
8554        u32 dstate = I915_READ(D_STATE);
8555
8556        dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
8557                DSTATE_DOT_CLOCK_GATING;
8558        I915_WRITE(D_STATE, dstate);
8559}
8560
8561static void i85x_init_clock_gating(struct drm_device *dev)
8562{
8563        struct drm_i915_private *dev_priv = dev->dev_private;
8564
8565        I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
8566}
8567
8568static void i830_init_clock_gating(struct drm_device *dev)
8569{
8570        struct drm_i915_private *dev_priv = dev->dev_private;
8571
8572        I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
8573}
8574
8575static void ibx_init_clock_gating(struct drm_device *dev)
8576{
8577        struct drm_i915_private *dev_priv = dev->dev_private;
8578
8579        /*
8580         * On Ibex Peak and Cougar Point, we need to disable clock
8581         * gating for the panel power sequencer or it will fail to
8582         * start up when no ports are active.
8583         */
8584        I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8585}
8586
8587static void cpt_init_clock_gating(struct drm_device *dev)
8588{
8589        struct drm_i915_private *dev_priv = dev->dev_private;
8590        int pipe;
8591
8592        /*
8593         * On Ibex Peak and Cougar Point, we need to disable clock
8594         * gating for the panel power sequencer or it will fail to
8595         * start up when no ports are active.
8596         */
8597        I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8598        I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
8599                   DPLS_EDP_PPS_FIX_DIS);
8600        /* Without this, mode sets may fail silently on FDI */
8601        for_each_pipe(pipe)
8602                I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS);
8603}
8604
8605static void ironlake_teardown_rc6(struct drm_device *dev)
8606{
8607        struct drm_i915_private *dev_priv = dev->dev_private;
8608
8609        if (dev_priv->renderctx) {
8610                i915_gem_object_unpin(dev_priv->renderctx);
8611                drm_gem_object_unreference(&dev_priv->renderctx->base);
8612                dev_priv->renderctx = NULL;
8613        }
8614
8615        if (dev_priv->pwrctx) {
8616                i915_gem_object_unpin(dev_priv->pwrctx);
8617                drm_gem_object_unreference(&dev_priv->pwrctx->base);
8618                dev_priv->pwrctx = NULL;
8619        }
8620}
8621
8622static void ironlake_disable_rc6(struct drm_device *dev)
8623{
8624        struct drm_i915_private *dev_priv = dev->dev_private;
8625
8626        if (I915_READ(PWRCTXA)) {
8627                /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
8628                I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
8629                wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
8630                         50);
8631
8632                I915_WRITE(PWRCTXA, 0);
8633                POSTING_READ(PWRCTXA);
8634
8635                I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
8636                POSTING_READ(RSTDBYCTL);
8637        }
8638
8639        ironlake_teardown_rc6(dev);
8640}
8641
8642static int ironlake_setup_rc6(struct drm_device *dev)
8643{
8644        struct drm_i915_private *dev_priv = dev->dev_private;
8645
8646        if (dev_priv->renderctx == NULL)
8647                dev_priv->renderctx = intel_alloc_context_page(dev);
8648        if (!dev_priv->renderctx)
8649                return -ENOMEM;
8650
8651        if (dev_priv->pwrctx == NULL)
8652                dev_priv->pwrctx = intel_alloc_context_page(dev);
8653        if (!dev_priv->pwrctx) {
8654                ironlake_teardown_rc6(dev);
8655                return -ENOMEM;
8656        }
8657
8658        return 0;
8659}
8660
8661void ironlake_enable_rc6(struct drm_device *dev)
8662{
8663        struct drm_i915_private *dev_priv = dev->dev_private;
8664        int ret;
8665
8666        /* rc6 disabled by default due to repeated reports of hanging during
8667         * boot and resume.
8668         */
8669        if (!intel_enable_rc6(dev))
8670                return;
8671
8672        mutex_lock(&dev->struct_mutex);
8673        ret = ironlake_setup_rc6(dev);
8674        if (ret) {
8675                mutex_unlock(&dev->struct_mutex);
8676                return;
8677        }
8678
8679        /*
8680         * GPU can automatically power down the render unit if given a page
8681         * to save state.
8682         */
8683        ret = BEGIN_LP_RING(6);
8684        if (ret) {
8685                ironlake_teardown_rc6(dev);
8686                mutex_unlock(&dev->struct_mutex);
8687                return;
8688        }
8689
8690        OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
8691        OUT_RING(MI_SET_CONTEXT);
8692        OUT_RING(dev_priv->renderctx->gtt_offset |
8693                 MI_MM_SPACE_GTT |
8694                 MI_SAVE_EXT_STATE_EN |
8695                 MI_RESTORE_EXT_STATE_EN |
8696                 MI_RESTORE_INHIBIT);
8697        OUT_RING(MI_SUSPEND_FLUSH);
8698        OUT_RING(MI_NOOP);
8699        OUT_RING(MI_FLUSH);
8700        ADVANCE_LP_RING();
8701
8702        /*
8703         * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
8704         * does an implicit flush, combined with MI_FLUSH above, it should be
8705         * safe to assume that renderctx is valid
8706         */
8707        ret = intel_wait_ring_idle(LP_RING(dev_priv));
8708        if (ret) {
8709                DRM_ERROR("failed to enable ironlake power power savings\n");
8710                ironlake_teardown_rc6(dev);
8711                mutex_unlock(&dev->struct_mutex);
8712                return;
8713        }
8714
8715        I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
8716        I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
8717        mutex_unlock(&dev->struct_mutex);
8718}
8719
8720void intel_init_clock_gating(struct drm_device *dev)
8721{
8722        struct drm_i915_private *dev_priv = dev->dev_private;
8723
8724        dev_priv->display.init_clock_gating(dev);
8725
8726        if (dev_priv->display.init_pch_clock_gating)
8727                dev_priv->display.init_pch_clock_gating(dev);
8728}
8729
8730/* Set up chip specific display functions */
8731static void intel_init_display(struct drm_device *dev)
8732{
8733        struct drm_i915_private *dev_priv = dev->dev_private;
8734
8735        /* We always want a DPMS function */
8736        if (HAS_PCH_SPLIT(dev)) {
8737                dev_priv->display.dpms = ironlake_crtc_dpms;
8738                dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8739                dev_priv->display.update_plane = ironlake_update_plane;
8740        } else {
8741                dev_priv->display.dpms = i9xx_crtc_dpms;
8742                dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8743                dev_priv->display.update_plane = i9xx_update_plane;
8744        }
8745
8746        if (I915_HAS_FBC(dev)) {
8747                if (HAS_PCH_SPLIT(dev)) {
8748                        dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
8749                        dev_priv->display.enable_fbc = ironlake_enable_fbc;
8750                        dev_priv->display.disable_fbc = ironlake_disable_fbc;
8751                } else if (IS_GM45(dev)) {
8752                        dev_priv->display.fbc_enabled = g4x_fbc_enabled;
8753                        dev_priv->display.enable_fbc = g4x_enable_fbc;
8754                        dev_priv->display.disable_fbc = g4x_disable_fbc;
8755                } else if (IS_CRESTLINE(dev)) {
8756                        dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
8757                        dev_priv->display.enable_fbc = i8xx_enable_fbc;
8758                        dev_priv->display.disable_fbc = i8xx_disable_fbc;
8759                }
8760                /* 855GM needs testing */
8761        }
8762
8763        /* Returns the core display clock speed */
8764        if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8765                dev_priv->display.get_display_clock_speed =
8766                        i945_get_display_clock_speed;
8767        else if (IS_I915G(dev))
8768                dev_priv->display.get_display_clock_speed =
8769                        i915_get_display_clock_speed;
8770        else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8771                dev_priv->display.get_display_clock_speed =
8772                        i9xx_misc_get_display_clock_speed;
8773        else if (IS_I915GM(dev))
8774                dev_priv->display.get_display_clock_speed =
8775                        i915gm_get_display_clock_speed;
8776        else if (IS_I865G(dev))
8777                dev_priv->display.get_display_clock_speed =
8778                        i865_get_display_clock_speed;
8779        else if (IS_I85X(dev))
8780                dev_priv->display.get_display_clock_speed =
8781                        i855_get_display_clock_speed;
8782        else /* 852, 830 */
8783                dev_priv->display.get_display_clock_speed =
8784                        i830_get_display_clock_speed;
8785
8786        /* For FIFO watermark updates */
8787        if (HAS_PCH_SPLIT(dev)) {
8788                dev_priv->display.force_wake_get = __gen6_gt_force_wake_get;
8789                dev_priv->display.force_wake_put = __gen6_gt_force_wake_put;
8790
8791                /* IVB configs may use multi-threaded forcewake */
8792                if (IS_IVYBRIDGE(dev)) {
8793                        u32     ecobus;
8794
8795                        /* A small trick here - if the bios hasn't configured MT forcewake,
8796                         * and if the device is in RC6, then force_wake_mt_get will not wake
8797                         * the device and the ECOBUS read will return zero. Which will be
8798                         * (correctly) interpreted by the test below as MT forcewake being
8799                         * disabled.
8800                         */
8801                        mutex_lock(&dev->struct_mutex);
8802                        __gen6_gt_force_wake_mt_get(dev_priv);
8803                        ecobus = I915_READ_NOTRACE(ECOBUS);
8804                        __gen6_gt_force_wake_mt_put(dev_priv);
8805                        mutex_unlock(&dev->struct_mutex);
8806
8807                        if (ecobus & FORCEWAKE_MT_ENABLE) {
8808                                DRM_DEBUG_KMS("Using MT version of forcewake\n");
8809                                dev_priv->display.force_wake_get =
8810                                        __gen6_gt_force_wake_mt_get;
8811                                dev_priv->display.force_wake_put =
8812                                        __gen6_gt_force_wake_mt_put;
8813                        }
8814                }
8815
8816                if (HAS_PCH_IBX(dev))
8817                        dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
8818                else if (HAS_PCH_CPT(dev))
8819                        dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
8820
8821                if (IS_GEN5(dev)) {
8822                        if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
8823                                dev_priv->display.update_wm = ironlake_update_wm;
8824                        else {
8825                                DRM_DEBUG_KMS("Failed to get proper latency. "
8826                                              "Disable CxSR\n");
8827                                dev_priv->display.update_wm = NULL;
8828                        }
8829                        dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8830                        dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
8831                        dev_priv->display.write_eld = ironlake_write_eld;
8832                } else if (IS_GEN6(dev)) {
8833                        if (SNB_READ_WM0_LATENCY()) {
8834                                dev_priv->display.update_wm = sandybridge_update_wm;
8835                                dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
8836                        } else {
8837                                DRM_DEBUG_KMS("Failed to read display plane latency. "
8838                                              "Disable CxSR\n");
8839                                dev_priv->display.update_wm = NULL;
8840                        }
8841                        dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8842                        dev_priv->display.init_clock_gating = gen6_init_clock_gating;
8843                        dev_priv->display.write_eld = ironlake_write_eld;
8844                } else if (IS_IVYBRIDGE(dev)) {
8845                        /* FIXME: detect B0+ stepping and use auto training */
8846                        dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8847                        if (SNB_READ_WM0_LATENCY()) {
8848                                dev_priv->display.update_wm = sandybridge_update_wm;
8849                                dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
8850                        } else {
8851                                DRM_DEBUG_KMS("Failed to read display plane latency. "
8852                                              "Disable CxSR\n");
8853                                dev_priv->display.update_wm = NULL;
8854                        }
8855                        dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
8856                        dev_priv->display.write_eld = ironlake_write_eld;
8857                } else
8858                        dev_priv->display.update_wm = NULL;
8859        } else if (IS_PINEVIEW(dev)) {
8860                if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
8861                                            dev_priv->is_ddr3,
8862                                            dev_priv->fsb_freq,
8863                                            dev_priv->mem_freq)) {
8864                        DRM_INFO("failed to find known CxSR latency "
8865                                 "(found ddr%s fsb freq %d, mem freq %d), "
8866                                 "disabling CxSR\n",
8867                                 (dev_priv->is_ddr3 == 1) ? "3" : "2",
8868                                 dev_priv->fsb_freq, dev_priv->mem_freq);
8869                        /* Disable CxSR and never update its watermark again */
8870                        pineview_disable_cxsr(dev);
8871                        dev_priv->display.update_wm = NULL;
8872                } else
8873                        dev_priv->display.update_wm = pineview_update_wm;
8874                dev_priv->display.init_clock_gating = gen3_init_clock_gating;
8875        } else if (IS_G4X(dev)) {
8876                dev_priv->display.write_eld = g4x_write_eld;
8877                dev_priv->display.update_wm = g4x_update_wm;
8878                dev_priv->display.init_clock_gating = g4x_init_clock_gating;
8879        } else if (IS_GEN4(dev)) {
8880                dev_priv->display.update_wm = i965_update_wm;
8881                if (IS_CRESTLINE(dev))
8882                        dev_priv->display.init_clock_gating = crestline_init_clock_gating;
8883                else if (IS_BROADWATER(dev))
8884                        dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
8885        } else if (IS_GEN3(dev)) {
8886                dev_priv->display.update_wm = i9xx_update_wm;
8887                dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
8888                dev_priv->display.init_clock_gating = gen3_init_clock_gating;
8889        } else if (IS_I865G(dev)) {
8890                dev_priv->display.update_wm = i830_update_wm;
8891                dev_priv->display.init_clock_gating = i85x_init_clock_gating;
8892                dev_priv->display.get_fifo_size = i830_get_fifo_size;
8893        } else if (IS_I85X(dev)) {
8894                dev_priv->display.update_wm = i9xx_update_wm;
8895                dev_priv->display.get_fifo_size = i85x_get_fifo_size;
8896                dev_priv->display.init_clock_gating = i85x_init_clock_gating;
8897        } else {
8898                dev_priv->display.update_wm = i830_update_wm;
8899                dev_priv->display.init_clock_gating = i830_init_clock_gating;
8900                if (IS_845G(dev))
8901                        dev_priv->display.get_fifo_size = i845_get_fifo_size;
8902                else
8903                        dev_priv->display.get_fifo_size = i830_get_fifo_size;
8904        }
8905
8906        /* Default just returns -ENODEV to indicate unsupported */
8907        dev_priv->display.queue_flip = intel_default_queue_flip;
8908
8909        switch (INTEL_INFO(dev)->gen) {
8910        case 2:
8911                dev_priv->display.queue_flip = intel_gen2_queue_flip;
8912                break;
8913
8914        case 3:
8915                dev_priv->display.queue_flip = intel_gen3_queue_flip;
8916                break;
8917
8918        case 4:
8919        case 5:
8920                dev_priv->display.queue_flip = intel_gen4_queue_flip;
8921                break;
8922
8923        case 6:
8924                dev_priv->display.queue_flip = intel_gen6_queue_flip;
8925                break;
8926        case 7:
8927                dev_priv->display.queue_flip = intel_gen7_queue_flip;
8928                break;
8929        }
8930}
8931
8932/*
8933 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8934 * resume, or other times.  This quirk makes sure that's the case for
8935 * affected systems.
8936 */
8937static void quirk_pipea_force(struct drm_device *dev)
8938{
8939        struct drm_i915_private *dev_priv = dev->dev_private;
8940
8941        dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8942        DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
8943}
8944
8945/*
8946 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8947 */
8948static void quirk_ssc_force_disable(struct drm_device *dev)
8949{
8950        struct drm_i915_private *dev_priv = dev->dev_private;
8951        dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8952}
8953
8954struct intel_quirk {
8955        int device;
8956        int subsystem_vendor;
8957        int subsystem_device;
8958        void (*hook)(struct drm_device *dev);
8959};
8960
8961struct intel_quirk intel_quirks[] = {
8962        /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
8963        { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
8964        /* HP Mini needs pipe A force quirk (LP: #322104) */
8965        { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8966
8967        /* Thinkpad R31 needs pipe A force quirk */
8968        { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
8969        /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8970        { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8971
8972        /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
8973        { 0x3577,  0x1014, 0x0513, quirk_pipea_force },
8974        /* ThinkPad X40 needs pipe A force quirk */
8975
8976        /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8977        { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8978
8979        /* 855 & before need to leave pipe A & dpll A up */
8980        { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8981        { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8982
8983        /* Lenovo U160 cannot use SSC on LVDS */
8984        { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8985
8986        /* Sony Vaio Y cannot use SSC on LVDS */
8987        { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8988};
8989
8990static void intel_init_quirks(struct drm_device *dev)
8991{
8992        struct pci_dev *d = dev->pdev;
8993        int i;
8994
8995        for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8996                struct intel_quirk *q = &intel_quirks[i];
8997
8998                if (d->device == q->device &&
8999                    (d->subsystem_vendor == q->subsystem_vendor ||
9000                     q->subsystem_vendor == PCI_ANY_ID) &&
9001                    (d->subsystem_device == q->subsystem_device ||
9002                     q->subsystem_device == PCI_ANY_ID))
9003                        q->hook(dev);
9004        }
9005}
9006
9007/* Disable the VGA plane that we never use */
9008static void i915_disable_vga(struct drm_device *dev)
9009{
9010        struct drm_i915_private *dev_priv = dev->dev_private;
9011        u8 sr1;
9012        u32 vga_reg;
9013
9014        if (HAS_PCH_SPLIT(dev))
9015                vga_reg = CPU_VGACNTRL;
9016        else
9017                vga_reg = VGACNTRL;
9018
9019        vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
9020        outb(1, VGA_SR_INDEX);
9021        sr1 = inb(VGA_SR_DATA);
9022        outb(sr1 | 1<<5, VGA_SR_DATA);
9023        vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
9024        udelay(300);
9025
9026        I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9027        POSTING_READ(vga_reg);
9028}
9029
9030void intel_modeset_init(struct drm_device *dev)
9031{
9032        struct drm_i915_private *dev_priv = dev->dev_private;
9033        int i, ret;
9034
9035        drm_mode_config_init(dev);
9036
9037        dev->mode_config.min_width = 0;
9038        dev->mode_config.min_height = 0;
9039
9040        dev->mode_config.funcs = (void *)&intel_mode_funcs;
9041
9042        intel_init_quirks(dev);
9043
9044        intel_init_display(dev);
9045
9046        if (IS_GEN2(dev)) {
9047                dev->mode_config.max_width = 2048;
9048                dev->mode_config.max_height = 2048;
9049        } else if (IS_GEN3(dev)) {
9050                dev->mode_config.max_width = 4096;
9051                dev->mode_config.max_height = 4096;
9052        } else {
9053                dev->mode_config.max_width = 8192;
9054                dev->mode_config.max_height = 8192;
9055        }
9056        dev->mode_config.fb_base = dev->agp->base;
9057
9058        DRM_DEBUG_KMS("%d display pipe%s available.\n",
9059                      dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
9060
9061        for (i = 0; i < dev_priv->num_pipe; i++) {
9062                intel_crtc_init(dev, i);
9063                ret = intel_plane_init(dev, i);
9064                if (ret)
9065                        DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
9066        }
9067
9068        /* Just disable it once at startup */
9069        i915_disable_vga(dev);
9070        intel_setup_outputs(dev);
9071
9072        intel_init_clock_gating(dev);
9073
9074        if (IS_IRONLAKE_M(dev)) {
9075                ironlake_enable_drps(dev);
9076                intel_init_emon(dev);
9077        }
9078
9079        if (IS_GEN6(dev) || IS_GEN7(dev)) {
9080                gen6_enable_rps(dev_priv);
9081                gen6_update_ring_freq(dev_priv);
9082        }
9083
9084        INIT_WORK(&dev_priv->idle_work, intel_idle_update);
9085        setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
9086                    (unsigned long)dev);
9087}
9088
9089void intel_modeset_gem_init(struct drm_device *dev)
9090{
9091        if (IS_IRONLAKE_M(dev))
9092                ironlake_enable_rc6(dev);
9093
9094        intel_setup_overlay(dev);
9095}
9096
9097void intel_modeset_cleanup(struct drm_device *dev)
9098{
9099        struct drm_i915_private *dev_priv = dev->dev_private;
9100        struct drm_crtc *crtc;
9101        struct intel_crtc *intel_crtc;
9102
9103        drm_kms_helper_poll_fini(dev);
9104        mutex_lock(&dev->struct_mutex);
9105
9106        intel_unregister_dsm_handler();
9107
9108
9109        list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9110                /* Skip inactive CRTCs */
9111                if (!crtc->fb)
9112                        continue;
9113
9114                intel_crtc = to_intel_crtc(crtc);
9115                intel_increase_pllclock(crtc);
9116        }
9117
9118        intel_disable_fbc(dev);
9119
9120        if (IS_IRONLAKE_M(dev))
9121                ironlake_disable_drps(dev);
9122        if (IS_GEN6(dev) || IS_GEN7(dev))
9123                gen6_disable_rps(dev);
9124
9125        if (IS_IRONLAKE_M(dev))
9126                ironlake_disable_rc6(dev);
9127
9128        mutex_unlock(&dev->struct_mutex);
9129
9130        /* Disable the irq before mode object teardown, for the irq might
9131         * enqueue unpin/hotplug work. */
9132        drm_irq_uninstall(dev);
9133        cancel_work_sync(&dev_priv->hotplug_work);
9134        cancel_work_sync(&dev_priv->rps_work);
9135
9136        /* flush any delayed tasks or pending work */
9137        flush_scheduled_work();
9138
9139        /* Shut off idle work before the crtcs get freed. */
9140        list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9141                intel_crtc = to_intel_crtc(crtc);
9142                del_timer_sync(&intel_crtc->idle_timer);
9143        }
9144        del_timer_sync(&dev_priv->idle_timer);
9145        cancel_work_sync(&dev_priv->idle_work);
9146
9147        drm_mode_config_cleanup(dev);
9148}
9149
9150/*
9151 * Return which encoder is currently attached for connector.
9152 */
9153struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9154{
9155        return &intel_attached_encoder(connector)->base;
9156}
9157
9158void intel_connector_attach_encoder(struct intel_connector *connector,
9159                                    struct intel_encoder *encoder)
9160{
9161        connector->encoder = encoder;
9162        drm_mode_connector_attach_encoder(&connector->base,
9163                                          &encoder->base);
9164}
9165
9166/*
9167 * set vga decode state - true == enable VGA decode
9168 */
9169int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9170{
9171        struct drm_i915_private *dev_priv = dev->dev_private;
9172        u16 gmch_ctrl;
9173
9174        pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9175        if (state)
9176                gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9177        else
9178                gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9179        pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9180        return 0;
9181}
9182
9183#ifdef CONFIG_DEBUG_FS
9184#include <linux/seq_file.h>
9185
9186struct intel_display_error_state {
9187        struct intel_cursor_error_state {
9188                u32 control;
9189                u32 position;
9190                u32 base;
9191                u32 size;
9192        } cursor[2];
9193
9194        struct intel_pipe_error_state {
9195                u32 conf;
9196                u32 source;
9197
9198                u32 htotal;
9199                u32 hblank;
9200                u32 hsync;
9201                u32 vtotal;
9202                u32 vblank;
9203                u32 vsync;
9204        } pipe[2];
9205
9206        struct intel_plane_error_state {
9207                u32 control;
9208                u32 stride;
9209                u32 size;
9210                u32 pos;
9211                u32 addr;
9212                u32 surface;
9213                u32 tile_offset;
9214        } plane[2];
9215};
9216
9217struct intel_display_error_state *
9218intel_display_capture_error_state(struct drm_device *dev)
9219{
9220        drm_i915_private_t *dev_priv = dev->dev_private;
9221        struct intel_display_error_state *error;
9222        int i;
9223
9224        error = kmalloc(sizeof(*error), GFP_ATOMIC);
9225        if (error == NULL)
9226                return NULL;
9227
9228        for (i = 0; i < 2; i++) {
9229                error->cursor[i].control = I915_READ(CURCNTR(i));
9230                error->cursor[i].position = I915_READ(CURPOS(i));
9231                error->cursor[i].base = I915_READ(CURBASE(i));
9232
9233                error->plane[i].control = I915_READ(DSPCNTR(i));
9234                error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9235                error->plane[i].size = I915_READ(DSPSIZE(i));
9236                error->plane[i].pos = I915_READ(DSPPOS(i));
9237                error->plane[i].addr = I915_READ(DSPADDR(i));
9238                if (INTEL_INFO(dev)->gen >= 4) {
9239                        error->plane[i].surface = I915_READ(DSPSURF(i));
9240                        error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9241                }
9242
9243                error->pipe[i].conf = I915_READ(PIPECONF(i));
9244                error->pipe[i].source = I915_READ(PIPESRC(i));
9245                error->pipe[i].htotal = I915_READ(HTOTAL(i));
9246                error->pipe[i].hblank = I915_READ(HBLANK(i));
9247                error->pipe[i].hsync = I915_READ(HSYNC(i));
9248                error->pipe[i].vtotal = I915_READ(VTOTAL(i));
9249                error->pipe[i].vblank = I915_READ(VBLANK(i));
9250                error->pipe[i].vsync = I915_READ(VSYNC(i));
9251        }
9252
9253        return error;
9254}
9255
9256void
9257intel_display_print_error_state(struct seq_file *m,
9258                                struct drm_device *dev,
9259                                struct intel_display_error_state *error)
9260{
9261        int i;
9262
9263        for (i = 0; i < 2; i++) {
9264                seq_printf(m, "Pipe [%d]:\n", i);
9265                seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
9266                seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
9267                seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
9268                seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
9269                seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
9270                seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
9271                seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
9272                seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
9273
9274                seq_printf(m, "Plane [%d]:\n", i);
9275                seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
9276                seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
9277                seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
9278                seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
9279                seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
9280                if (INTEL_INFO(dev)->gen >= 4) {
9281                        seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
9282                        seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
9283                }
9284
9285                seq_printf(m, "Cursor [%d]:\n", i);
9286                seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
9287                seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
9288                seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
9289        }
9290}
9291#endif
9292