linux/drivers/md/dm-crypt.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
   3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
   4 * Copyright (C) 2006-2009 Red Hat, Inc. All rights reserved.
   5 *
   6 * This file is released under the GPL.
   7 */
   8
   9#include <linux/completion.h>
  10#include <linux/err.h>
  11#include <linux/module.h>
  12#include <linux/init.h>
  13#include <linux/kernel.h>
  14#include <linux/bio.h>
  15#include <linux/blkdev.h>
  16#include <linux/mempool.h>
  17#include <linux/slab.h>
  18#include <linux/crypto.h>
  19#include <linux/workqueue.h>
  20#include <linux/backing-dev.h>
  21#include <linux/percpu.h>
  22#include <linux/atomic.h>
  23#include <linux/scatterlist.h>
  24#include <asm/page.h>
  25#include <asm/unaligned.h>
  26#include <crypto/hash.h>
  27#include <crypto/md5.h>
  28#include <crypto/algapi.h>
  29
  30#include <linux/device-mapper.h>
  31
  32#define DM_MSG_PREFIX "crypt"
  33
  34/*
  35 * context holding the current state of a multi-part conversion
  36 */
  37struct convert_context {
  38        struct completion restart;
  39        struct bio *bio_in;
  40        struct bio *bio_out;
  41        unsigned int offset_in;
  42        unsigned int offset_out;
  43        unsigned int idx_in;
  44        unsigned int idx_out;
  45        sector_t sector;
  46        atomic_t pending;
  47};
  48
  49/*
  50 * per bio private data
  51 */
  52struct dm_crypt_io {
  53        struct dm_target *target;
  54        struct bio *base_bio;
  55        struct work_struct work;
  56
  57        struct convert_context ctx;
  58
  59        atomic_t pending;
  60        int error;
  61        sector_t sector;
  62        struct dm_crypt_io *base_io;
  63};
  64
  65struct dm_crypt_request {
  66        struct convert_context *ctx;
  67        struct scatterlist sg_in;
  68        struct scatterlist sg_out;
  69        sector_t iv_sector;
  70};
  71
  72struct crypt_config;
  73
  74struct crypt_iv_operations {
  75        int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
  76                   const char *opts);
  77        void (*dtr)(struct crypt_config *cc);
  78        int (*init)(struct crypt_config *cc);
  79        int (*wipe)(struct crypt_config *cc);
  80        int (*generator)(struct crypt_config *cc, u8 *iv,
  81                         struct dm_crypt_request *dmreq);
  82        int (*post)(struct crypt_config *cc, u8 *iv,
  83                    struct dm_crypt_request *dmreq);
  84};
  85
  86struct iv_essiv_private {
  87        struct crypto_hash *hash_tfm;
  88        u8 *salt;
  89};
  90
  91struct iv_benbi_private {
  92        int shift;
  93};
  94
  95#define LMK_SEED_SIZE 64 /* hash + 0 */
  96struct iv_lmk_private {
  97        struct crypto_shash *hash_tfm;
  98        u8 *seed;
  99};
 100
 101/*
 102 * Crypt: maps a linear range of a block device
 103 * and encrypts / decrypts at the same time.
 104 */
 105enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
 106
 107/*
 108 * Duplicated per-CPU state for cipher.
 109 */
 110struct crypt_cpu {
 111        struct ablkcipher_request *req;
 112        /* ESSIV: struct crypto_cipher *essiv_tfm */
 113        void *iv_private;
 114        struct crypto_ablkcipher *tfms[0];
 115};
 116
 117/*
 118 * The fields in here must be read only after initialization,
 119 * changing state should be in crypt_cpu.
 120 */
 121struct crypt_config {
 122        struct dm_dev *dev;
 123        sector_t start;
 124
 125        /*
 126         * pool for per bio private data, crypto requests and
 127         * encryption requeusts/buffer pages
 128         */
 129        mempool_t *io_pool;
 130        mempool_t *req_pool;
 131        mempool_t *page_pool;
 132        struct bio_set *bs;
 133
 134        struct workqueue_struct *io_queue;
 135        struct workqueue_struct *crypt_queue;
 136
 137        char *cipher;
 138        char *cipher_string;
 139
 140        struct crypt_iv_operations *iv_gen_ops;
 141        union {
 142                struct iv_essiv_private essiv;
 143                struct iv_benbi_private benbi;
 144                struct iv_lmk_private lmk;
 145        } iv_gen_private;
 146        sector_t iv_offset;
 147        unsigned int iv_size;
 148
 149        /*
 150         * Duplicated per cpu state. Access through
 151         * per_cpu_ptr() only.
 152         */
 153        struct crypt_cpu __percpu *cpu;
 154        unsigned tfms_count;
 155
 156        /*
 157         * Layout of each crypto request:
 158         *
 159         *   struct ablkcipher_request
 160         *      context
 161         *      padding
 162         *   struct dm_crypt_request
 163         *      padding
 164         *   IV
 165         *
 166         * The padding is added so that dm_crypt_request and the IV are
 167         * correctly aligned.
 168         */
 169        unsigned int dmreq_start;
 170
 171        unsigned long flags;
 172        unsigned int key_size;
 173        unsigned int key_parts;
 174        u8 key[0];
 175};
 176
 177#define MIN_IOS        16
 178#define MIN_POOL_PAGES 32
 179#define MIN_BIO_PAGES  8
 180
 181static struct kmem_cache *_crypt_io_pool;
 182
 183static void clone_init(struct dm_crypt_io *, struct bio *);
 184static void kcryptd_queue_crypt(struct dm_crypt_io *io);
 185static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq);
 186
 187static struct crypt_cpu *this_crypt_config(struct crypt_config *cc)
 188{
 189        return this_cpu_ptr(cc->cpu);
 190}
 191
 192/*
 193 * Use this to access cipher attributes that are the same for each CPU.
 194 */
 195static struct crypto_ablkcipher *any_tfm(struct crypt_config *cc)
 196{
 197        return __this_cpu_ptr(cc->cpu)->tfms[0];
 198}
 199
 200/*
 201 * Different IV generation algorithms:
 202 *
 203 * plain: the initial vector is the 32-bit little-endian version of the sector
 204 *        number, padded with zeros if necessary.
 205 *
 206 * plain64: the initial vector is the 64-bit little-endian version of the sector
 207 *        number, padded with zeros if necessary.
 208 *
 209 * essiv: "encrypted sector|salt initial vector", the sector number is
 210 *        encrypted with the bulk cipher using a salt as key. The salt
 211 *        should be derived from the bulk cipher's key via hashing.
 212 *
 213 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
 214 *        (needed for LRW-32-AES and possible other narrow block modes)
 215 *
 216 * null: the initial vector is always zero.  Provides compatibility with
 217 *       obsolete loop_fish2 devices.  Do not use for new devices.
 218 *
 219 * lmk:  Compatible implementation of the block chaining mode used
 220 *       by the Loop-AES block device encryption system
 221 *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
 222 *       It operates on full 512 byte sectors and uses CBC
 223 *       with an IV derived from the sector number, the data and
 224 *       optionally extra IV seed.
 225 *       This means that after decryption the first block
 226 *       of sector must be tweaked according to decrypted data.
 227 *       Loop-AES can use three encryption schemes:
 228 *         version 1: is plain aes-cbc mode
 229 *         version 2: uses 64 multikey scheme with lmk IV generator
 230 *         version 3: the same as version 2 with additional IV seed
 231 *                   (it uses 65 keys, last key is used as IV seed)
 232 *
 233 * plumb: unimplemented, see:
 234 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
 235 */
 236
 237static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
 238                              struct dm_crypt_request *dmreq)
 239{
 240        memset(iv, 0, cc->iv_size);
 241        *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
 242
 243        return 0;
 244}
 245
 246static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
 247                                struct dm_crypt_request *dmreq)
 248{
 249        memset(iv, 0, cc->iv_size);
 250        *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 251
 252        return 0;
 253}
 254
 255/* Initialise ESSIV - compute salt but no local memory allocations */
 256static int crypt_iv_essiv_init(struct crypt_config *cc)
 257{
 258        struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 259        struct hash_desc desc;
 260        struct scatterlist sg;
 261        struct crypto_cipher *essiv_tfm;
 262        int err, cpu;
 263
 264        sg_init_one(&sg, cc->key, cc->key_size);
 265        desc.tfm = essiv->hash_tfm;
 266        desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 267
 268        err = crypto_hash_digest(&desc, &sg, cc->key_size, essiv->salt);
 269        if (err)
 270                return err;
 271
 272        for_each_possible_cpu(cpu) {
 273                essiv_tfm = per_cpu_ptr(cc->cpu, cpu)->iv_private,
 274
 275                err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
 276                                    crypto_hash_digestsize(essiv->hash_tfm));
 277                if (err)
 278                        return err;
 279        }
 280
 281        return 0;
 282}
 283
 284/* Wipe salt and reset key derived from volume key */
 285static int crypt_iv_essiv_wipe(struct crypt_config *cc)
 286{
 287        struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 288        unsigned salt_size = crypto_hash_digestsize(essiv->hash_tfm);
 289        struct crypto_cipher *essiv_tfm;
 290        int cpu, r, err = 0;
 291
 292        memset(essiv->salt, 0, salt_size);
 293
 294        for_each_possible_cpu(cpu) {
 295                essiv_tfm = per_cpu_ptr(cc->cpu, cpu)->iv_private;
 296                r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
 297                if (r)
 298                        err = r;
 299        }
 300
 301        return err;
 302}
 303
 304/* Set up per cpu cipher state */
 305static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
 306                                             struct dm_target *ti,
 307                                             u8 *salt, unsigned saltsize)
 308{
 309        struct crypto_cipher *essiv_tfm;
 310        int err;
 311
 312        /* Setup the essiv_tfm with the given salt */
 313        essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
 314        if (IS_ERR(essiv_tfm)) {
 315                ti->error = "Error allocating crypto tfm for ESSIV";
 316                return essiv_tfm;
 317        }
 318
 319        if (crypto_cipher_blocksize(essiv_tfm) !=
 320            crypto_ablkcipher_ivsize(any_tfm(cc))) {
 321                ti->error = "Block size of ESSIV cipher does "
 322                            "not match IV size of block cipher";
 323                crypto_free_cipher(essiv_tfm);
 324                return ERR_PTR(-EINVAL);
 325        }
 326
 327        err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
 328        if (err) {
 329                ti->error = "Failed to set key for ESSIV cipher";
 330                crypto_free_cipher(essiv_tfm);
 331                return ERR_PTR(err);
 332        }
 333
 334        return essiv_tfm;
 335}
 336
 337static void crypt_iv_essiv_dtr(struct crypt_config *cc)
 338{
 339        int cpu;
 340        struct crypt_cpu *cpu_cc;
 341        struct crypto_cipher *essiv_tfm;
 342        struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 343
 344        crypto_free_hash(essiv->hash_tfm);
 345        essiv->hash_tfm = NULL;
 346
 347        kzfree(essiv->salt);
 348        essiv->salt = NULL;
 349
 350        for_each_possible_cpu(cpu) {
 351                cpu_cc = per_cpu_ptr(cc->cpu, cpu);
 352                essiv_tfm = cpu_cc->iv_private;
 353
 354                if (essiv_tfm)
 355                        crypto_free_cipher(essiv_tfm);
 356
 357                cpu_cc->iv_private = NULL;
 358        }
 359}
 360
 361static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
 362                              const char *opts)
 363{
 364        struct crypto_cipher *essiv_tfm = NULL;
 365        struct crypto_hash *hash_tfm = NULL;
 366        u8 *salt = NULL;
 367        int err, cpu;
 368
 369        if (!opts) {
 370                ti->error = "Digest algorithm missing for ESSIV mode";
 371                return -EINVAL;
 372        }
 373
 374        /* Allocate hash algorithm */
 375        hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
 376        if (IS_ERR(hash_tfm)) {
 377                ti->error = "Error initializing ESSIV hash";
 378                err = PTR_ERR(hash_tfm);
 379                goto bad;
 380        }
 381
 382        salt = kzalloc(crypto_hash_digestsize(hash_tfm), GFP_KERNEL);
 383        if (!salt) {
 384                ti->error = "Error kmallocing salt storage in ESSIV";
 385                err = -ENOMEM;
 386                goto bad;
 387        }
 388
 389        cc->iv_gen_private.essiv.salt = salt;
 390        cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
 391
 392        for_each_possible_cpu(cpu) {
 393                essiv_tfm = setup_essiv_cpu(cc, ti, salt,
 394                                        crypto_hash_digestsize(hash_tfm));
 395                if (IS_ERR(essiv_tfm)) {
 396                        crypt_iv_essiv_dtr(cc);
 397                        return PTR_ERR(essiv_tfm);
 398                }
 399                per_cpu_ptr(cc->cpu, cpu)->iv_private = essiv_tfm;
 400        }
 401
 402        return 0;
 403
 404bad:
 405        if (hash_tfm && !IS_ERR(hash_tfm))
 406                crypto_free_hash(hash_tfm);
 407        kfree(salt);
 408        return err;
 409}
 410
 411static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
 412                              struct dm_crypt_request *dmreq)
 413{
 414        struct crypto_cipher *essiv_tfm = this_crypt_config(cc)->iv_private;
 415
 416        memset(iv, 0, cc->iv_size);
 417        *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 418        crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
 419
 420        return 0;
 421}
 422
 423static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
 424                              const char *opts)
 425{
 426        unsigned bs = crypto_ablkcipher_blocksize(any_tfm(cc));
 427        int log = ilog2(bs);
 428
 429        /* we need to calculate how far we must shift the sector count
 430         * to get the cipher block count, we use this shift in _gen */
 431
 432        if (1 << log != bs) {
 433                ti->error = "cypher blocksize is not a power of 2";
 434                return -EINVAL;
 435        }
 436
 437        if (log > 9) {
 438                ti->error = "cypher blocksize is > 512";
 439                return -EINVAL;
 440        }
 441
 442        cc->iv_gen_private.benbi.shift = 9 - log;
 443
 444        return 0;
 445}
 446
 447static void crypt_iv_benbi_dtr(struct crypt_config *cc)
 448{
 449}
 450
 451static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
 452                              struct dm_crypt_request *dmreq)
 453{
 454        __be64 val;
 455
 456        memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
 457
 458        val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
 459        put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
 460
 461        return 0;
 462}
 463
 464static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
 465                             struct dm_crypt_request *dmreq)
 466{
 467        memset(iv, 0, cc->iv_size);
 468
 469        return 0;
 470}
 471
 472static void crypt_iv_lmk_dtr(struct crypt_config *cc)
 473{
 474        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 475
 476        if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
 477                crypto_free_shash(lmk->hash_tfm);
 478        lmk->hash_tfm = NULL;
 479
 480        kzfree(lmk->seed);
 481        lmk->seed = NULL;
 482}
 483
 484static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
 485                            const char *opts)
 486{
 487        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 488
 489        lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
 490        if (IS_ERR(lmk->hash_tfm)) {
 491                ti->error = "Error initializing LMK hash";
 492                return PTR_ERR(lmk->hash_tfm);
 493        }
 494
 495        /* No seed in LMK version 2 */
 496        if (cc->key_parts == cc->tfms_count) {
 497                lmk->seed = NULL;
 498                return 0;
 499        }
 500
 501        lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
 502        if (!lmk->seed) {
 503                crypt_iv_lmk_dtr(cc);
 504                ti->error = "Error kmallocing seed storage in LMK";
 505                return -ENOMEM;
 506        }
 507
 508        return 0;
 509}
 510
 511static int crypt_iv_lmk_init(struct crypt_config *cc)
 512{
 513        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 514        int subkey_size = cc->key_size / cc->key_parts;
 515
 516        /* LMK seed is on the position of LMK_KEYS + 1 key */
 517        if (lmk->seed)
 518                memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
 519                       crypto_shash_digestsize(lmk->hash_tfm));
 520
 521        return 0;
 522}
 523
 524static int crypt_iv_lmk_wipe(struct crypt_config *cc)
 525{
 526        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 527
 528        if (lmk->seed)
 529                memset(lmk->seed, 0, LMK_SEED_SIZE);
 530
 531        return 0;
 532}
 533
 534static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
 535                            struct dm_crypt_request *dmreq,
 536                            u8 *data)
 537{
 538        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 539        struct {
 540                struct shash_desc desc;
 541                char ctx[crypto_shash_descsize(lmk->hash_tfm)];
 542        } sdesc;
 543        struct md5_state md5state;
 544        u32 buf[4];
 545        int i, r;
 546
 547        sdesc.desc.tfm = lmk->hash_tfm;
 548        sdesc.desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 549
 550        r = crypto_shash_init(&sdesc.desc);
 551        if (r)
 552                return r;
 553
 554        if (lmk->seed) {
 555                r = crypto_shash_update(&sdesc.desc, lmk->seed, LMK_SEED_SIZE);
 556                if (r)
 557                        return r;
 558        }
 559
 560        /* Sector is always 512B, block size 16, add data of blocks 1-31 */
 561        r = crypto_shash_update(&sdesc.desc, data + 16, 16 * 31);
 562        if (r)
 563                return r;
 564
 565        /* Sector is cropped to 56 bits here */
 566        buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
 567        buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
 568        buf[2] = cpu_to_le32(4024);
 569        buf[3] = 0;
 570        r = crypto_shash_update(&sdesc.desc, (u8 *)buf, sizeof(buf));
 571        if (r)
 572                return r;
 573
 574        /* No MD5 padding here */
 575        r = crypto_shash_export(&sdesc.desc, &md5state);
 576        if (r)
 577                return r;
 578
 579        for (i = 0; i < MD5_HASH_WORDS; i++)
 580                __cpu_to_le32s(&md5state.hash[i]);
 581        memcpy(iv, &md5state.hash, cc->iv_size);
 582
 583        return 0;
 584}
 585
 586static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
 587                            struct dm_crypt_request *dmreq)
 588{
 589        u8 *src;
 590        int r = 0;
 591
 592        if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
 593                src = kmap_atomic(sg_page(&dmreq->sg_in), KM_USER0);
 594                r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset);
 595                kunmap_atomic(src, KM_USER0);
 596        } else
 597                memset(iv, 0, cc->iv_size);
 598
 599        return r;
 600}
 601
 602static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
 603                             struct dm_crypt_request *dmreq)
 604{
 605        u8 *dst;
 606        int r;
 607
 608        if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
 609                return 0;
 610
 611        dst = kmap_atomic(sg_page(&dmreq->sg_out), KM_USER0);
 612        r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset);
 613
 614        /* Tweak the first block of plaintext sector */
 615        if (!r)
 616                crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size);
 617
 618        kunmap_atomic(dst, KM_USER0);
 619        return r;
 620}
 621
 622static struct crypt_iv_operations crypt_iv_plain_ops = {
 623        .generator = crypt_iv_plain_gen
 624};
 625
 626static struct crypt_iv_operations crypt_iv_plain64_ops = {
 627        .generator = crypt_iv_plain64_gen
 628};
 629
 630static struct crypt_iv_operations crypt_iv_essiv_ops = {
 631        .ctr       = crypt_iv_essiv_ctr,
 632        .dtr       = crypt_iv_essiv_dtr,
 633        .init      = crypt_iv_essiv_init,
 634        .wipe      = crypt_iv_essiv_wipe,
 635        .generator = crypt_iv_essiv_gen
 636};
 637
 638static struct crypt_iv_operations crypt_iv_benbi_ops = {
 639        .ctr       = crypt_iv_benbi_ctr,
 640        .dtr       = crypt_iv_benbi_dtr,
 641        .generator = crypt_iv_benbi_gen
 642};
 643
 644static struct crypt_iv_operations crypt_iv_null_ops = {
 645        .generator = crypt_iv_null_gen
 646};
 647
 648static struct crypt_iv_operations crypt_iv_lmk_ops = {
 649        .ctr       = crypt_iv_lmk_ctr,
 650        .dtr       = crypt_iv_lmk_dtr,
 651        .init      = crypt_iv_lmk_init,
 652        .wipe      = crypt_iv_lmk_wipe,
 653        .generator = crypt_iv_lmk_gen,
 654        .post      = crypt_iv_lmk_post
 655};
 656
 657static void crypt_convert_init(struct crypt_config *cc,
 658                               struct convert_context *ctx,
 659                               struct bio *bio_out, struct bio *bio_in,
 660                               sector_t sector)
 661{
 662        ctx->bio_in = bio_in;
 663        ctx->bio_out = bio_out;
 664        ctx->offset_in = 0;
 665        ctx->offset_out = 0;
 666        ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
 667        ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
 668        ctx->sector = sector + cc->iv_offset;
 669        init_completion(&ctx->restart);
 670}
 671
 672static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
 673                                             struct ablkcipher_request *req)
 674{
 675        return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
 676}
 677
 678static struct ablkcipher_request *req_of_dmreq(struct crypt_config *cc,
 679                                               struct dm_crypt_request *dmreq)
 680{
 681        return (struct ablkcipher_request *)((char *)dmreq - cc->dmreq_start);
 682}
 683
 684static u8 *iv_of_dmreq(struct crypt_config *cc,
 685                       struct dm_crypt_request *dmreq)
 686{
 687        return (u8 *)ALIGN((unsigned long)(dmreq + 1),
 688                crypto_ablkcipher_alignmask(any_tfm(cc)) + 1);
 689}
 690
 691static int crypt_convert_block(struct crypt_config *cc,
 692                               struct convert_context *ctx,
 693                               struct ablkcipher_request *req)
 694{
 695        struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
 696        struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
 697        struct dm_crypt_request *dmreq;
 698        u8 *iv;
 699        int r = 0;
 700
 701        dmreq = dmreq_of_req(cc, req);
 702        iv = iv_of_dmreq(cc, dmreq);
 703
 704        dmreq->iv_sector = ctx->sector;
 705        dmreq->ctx = ctx;
 706        sg_init_table(&dmreq->sg_in, 1);
 707        sg_set_page(&dmreq->sg_in, bv_in->bv_page, 1 << SECTOR_SHIFT,
 708                    bv_in->bv_offset + ctx->offset_in);
 709
 710        sg_init_table(&dmreq->sg_out, 1);
 711        sg_set_page(&dmreq->sg_out, bv_out->bv_page, 1 << SECTOR_SHIFT,
 712                    bv_out->bv_offset + ctx->offset_out);
 713
 714        ctx->offset_in += 1 << SECTOR_SHIFT;
 715        if (ctx->offset_in >= bv_in->bv_len) {
 716                ctx->offset_in = 0;
 717                ctx->idx_in++;
 718        }
 719
 720        ctx->offset_out += 1 << SECTOR_SHIFT;
 721        if (ctx->offset_out >= bv_out->bv_len) {
 722                ctx->offset_out = 0;
 723                ctx->idx_out++;
 724        }
 725
 726        if (cc->iv_gen_ops) {
 727                r = cc->iv_gen_ops->generator(cc, iv, dmreq);
 728                if (r < 0)
 729                        return r;
 730        }
 731
 732        ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
 733                                     1 << SECTOR_SHIFT, iv);
 734
 735        if (bio_data_dir(ctx->bio_in) == WRITE)
 736                r = crypto_ablkcipher_encrypt(req);
 737        else
 738                r = crypto_ablkcipher_decrypt(req);
 739
 740        if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
 741                r = cc->iv_gen_ops->post(cc, iv, dmreq);
 742
 743        return r;
 744}
 745
 746static void kcryptd_async_done(struct crypto_async_request *async_req,
 747                               int error);
 748
 749static void crypt_alloc_req(struct crypt_config *cc,
 750                            struct convert_context *ctx)
 751{
 752        struct crypt_cpu *this_cc = this_crypt_config(cc);
 753        unsigned key_index = ctx->sector & (cc->tfms_count - 1);
 754
 755        if (!this_cc->req)
 756                this_cc->req = mempool_alloc(cc->req_pool, GFP_NOIO);
 757
 758        ablkcipher_request_set_tfm(this_cc->req, this_cc->tfms[key_index]);
 759        ablkcipher_request_set_callback(this_cc->req,
 760            CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
 761            kcryptd_async_done, dmreq_of_req(cc, this_cc->req));
 762}
 763
 764/*
 765 * Encrypt / decrypt data from one bio to another one (can be the same one)
 766 */
 767static int crypt_convert(struct crypt_config *cc,
 768                         struct convert_context *ctx)
 769{
 770        struct crypt_cpu *this_cc = this_crypt_config(cc);
 771        int r;
 772
 773        atomic_set(&ctx->pending, 1);
 774
 775        while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
 776              ctx->idx_out < ctx->bio_out->bi_vcnt) {
 777
 778                crypt_alloc_req(cc, ctx);
 779
 780                atomic_inc(&ctx->pending);
 781
 782                r = crypt_convert_block(cc, ctx, this_cc->req);
 783
 784                switch (r) {
 785                /* async */
 786                case -EBUSY:
 787                        wait_for_completion(&ctx->restart);
 788                        INIT_COMPLETION(ctx->restart);
 789                        /* fall through*/
 790                case -EINPROGRESS:
 791                        this_cc->req = NULL;
 792                        ctx->sector++;
 793                        continue;
 794
 795                /* sync */
 796                case 0:
 797                        atomic_dec(&ctx->pending);
 798                        ctx->sector++;
 799                        cond_resched();
 800                        continue;
 801
 802                /* error */
 803                default:
 804                        atomic_dec(&ctx->pending);
 805                        return r;
 806                }
 807        }
 808
 809        return 0;
 810}
 811
 812static void dm_crypt_bio_destructor(struct bio *bio)
 813{
 814        struct dm_crypt_io *io = bio->bi_private;
 815        struct crypt_config *cc = io->target->private;
 816
 817        bio_free(bio, cc->bs);
 818}
 819
 820/*
 821 * Generate a new unfragmented bio with the given size
 822 * This should never violate the device limitations
 823 * May return a smaller bio when running out of pages, indicated by
 824 * *out_of_pages set to 1.
 825 */
 826static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size,
 827                                      unsigned *out_of_pages)
 828{
 829        struct crypt_config *cc = io->target->private;
 830        struct bio *clone;
 831        unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
 832        gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
 833        unsigned i, len;
 834        struct page *page;
 835
 836        clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
 837        if (!clone)
 838                return NULL;
 839
 840        clone_init(io, clone);
 841        *out_of_pages = 0;
 842
 843        for (i = 0; i < nr_iovecs; i++) {
 844                page = mempool_alloc(cc->page_pool, gfp_mask);
 845                if (!page) {
 846                        *out_of_pages = 1;
 847                        break;
 848                }
 849
 850                /*
 851                 * if additional pages cannot be allocated without waiting,
 852                 * return a partially allocated bio, the caller will then try
 853                 * to allocate additional bios while submitting this partial bio
 854                 */
 855                if (i == (MIN_BIO_PAGES - 1))
 856                        gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
 857
 858                len = (size > PAGE_SIZE) ? PAGE_SIZE : size;
 859
 860                if (!bio_add_page(clone, page, len, 0)) {
 861                        mempool_free(page, cc->page_pool);
 862                        break;
 863                }
 864
 865                size -= len;
 866        }
 867
 868        if (!clone->bi_size) {
 869                bio_put(clone);
 870                return NULL;
 871        }
 872
 873        return clone;
 874}
 875
 876static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
 877{
 878        unsigned int i;
 879        struct bio_vec *bv;
 880
 881        for (i = 0; i < clone->bi_vcnt; i++) {
 882                bv = bio_iovec_idx(clone, i);
 883                BUG_ON(!bv->bv_page);
 884                mempool_free(bv->bv_page, cc->page_pool);
 885                bv->bv_page = NULL;
 886        }
 887}
 888
 889static struct dm_crypt_io *crypt_io_alloc(struct dm_target *ti,
 890                                          struct bio *bio, sector_t sector)
 891{
 892        struct crypt_config *cc = ti->private;
 893        struct dm_crypt_io *io;
 894
 895        io = mempool_alloc(cc->io_pool, GFP_NOIO);
 896        io->target = ti;
 897        io->base_bio = bio;
 898        io->sector = sector;
 899        io->error = 0;
 900        io->base_io = NULL;
 901        atomic_set(&io->pending, 0);
 902
 903        return io;
 904}
 905
 906static void crypt_inc_pending(struct dm_crypt_io *io)
 907{
 908        atomic_inc(&io->pending);
 909}
 910
 911/*
 912 * One of the bios was finished. Check for completion of
 913 * the whole request and correctly clean up the buffer.
 914 * If base_io is set, wait for the last fragment to complete.
 915 */
 916static void crypt_dec_pending(struct dm_crypt_io *io)
 917{
 918        struct crypt_config *cc = io->target->private;
 919        struct bio *base_bio = io->base_bio;
 920        struct dm_crypt_io *base_io = io->base_io;
 921        int error = io->error;
 922
 923        if (!atomic_dec_and_test(&io->pending))
 924                return;
 925
 926        mempool_free(io, cc->io_pool);
 927
 928        if (likely(!base_io))
 929                bio_endio(base_bio, error);
 930        else {
 931                if (error && !base_io->error)
 932                        base_io->error = error;
 933                crypt_dec_pending(base_io);
 934        }
 935}
 936
 937/*
 938 * kcryptd/kcryptd_io:
 939 *
 940 * Needed because it would be very unwise to do decryption in an
 941 * interrupt context.
 942 *
 943 * kcryptd performs the actual encryption or decryption.
 944 *
 945 * kcryptd_io performs the IO submission.
 946 *
 947 * They must be separated as otherwise the final stages could be
 948 * starved by new requests which can block in the first stages due
 949 * to memory allocation.
 950 *
 951 * The work is done per CPU global for all dm-crypt instances.
 952 * They should not depend on each other and do not block.
 953 */
 954static void crypt_endio(struct bio *clone, int error)
 955{
 956        struct dm_crypt_io *io = clone->bi_private;
 957        struct crypt_config *cc = io->target->private;
 958        unsigned rw = bio_data_dir(clone);
 959
 960        if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
 961                error = -EIO;
 962
 963        /*
 964         * free the processed pages
 965         */
 966        if (rw == WRITE)
 967                crypt_free_buffer_pages(cc, clone);
 968
 969        bio_put(clone);
 970
 971        if (rw == READ && !error) {
 972                kcryptd_queue_crypt(io);
 973                return;
 974        }
 975
 976        if (unlikely(error))
 977                io->error = error;
 978
 979        crypt_dec_pending(io);
 980}
 981
 982static void clone_init(struct dm_crypt_io *io, struct bio *clone)
 983{
 984        struct crypt_config *cc = io->target->private;
 985
 986        clone->bi_private = io;
 987        clone->bi_end_io  = crypt_endio;
 988        clone->bi_bdev    = cc->dev->bdev;
 989        clone->bi_rw      = io->base_bio->bi_rw;
 990        clone->bi_destructor = dm_crypt_bio_destructor;
 991}
 992
 993static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
 994{
 995        struct crypt_config *cc = io->target->private;
 996        struct bio *base_bio = io->base_bio;
 997        struct bio *clone;
 998
 999        /*
1000         * The block layer might modify the bvec array, so always
1001         * copy the required bvecs because we need the original
1002         * one in order to decrypt the whole bio data *afterwards*.
1003         */
1004        clone = bio_alloc_bioset(gfp, bio_segments(base_bio), cc->bs);
1005        if (!clone)
1006                return 1;
1007
1008        crypt_inc_pending(io);
1009
1010        clone_init(io, clone);
1011        clone->bi_idx = 0;
1012        clone->bi_vcnt = bio_segments(base_bio);
1013        clone->bi_size = base_bio->bi_size;
1014        clone->bi_sector = cc->start + io->sector;
1015        memcpy(clone->bi_io_vec, bio_iovec(base_bio),
1016               sizeof(struct bio_vec) * clone->bi_vcnt);
1017
1018        generic_make_request(clone);
1019        return 0;
1020}
1021
1022static void kcryptd_io_write(struct dm_crypt_io *io)
1023{
1024        struct bio *clone = io->ctx.bio_out;
1025        generic_make_request(clone);
1026}
1027
1028static void kcryptd_io(struct work_struct *work)
1029{
1030        struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1031
1032        if (bio_data_dir(io->base_bio) == READ) {
1033                crypt_inc_pending(io);
1034                if (kcryptd_io_read(io, GFP_NOIO))
1035                        io->error = -ENOMEM;
1036                crypt_dec_pending(io);
1037        } else
1038                kcryptd_io_write(io);
1039}
1040
1041static void kcryptd_queue_io(struct dm_crypt_io *io)
1042{
1043        struct crypt_config *cc = io->target->private;
1044
1045        INIT_WORK(&io->work, kcryptd_io);
1046        queue_work(cc->io_queue, &io->work);
1047}
1048
1049static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io,
1050                                          int error, int async)
1051{
1052        struct bio *clone = io->ctx.bio_out;
1053        struct crypt_config *cc = io->target->private;
1054
1055        if (unlikely(error < 0)) {
1056                crypt_free_buffer_pages(cc, clone);
1057                bio_put(clone);
1058                io->error = -EIO;
1059                crypt_dec_pending(io);
1060                return;
1061        }
1062
1063        /* crypt_convert should have filled the clone bio */
1064        BUG_ON(io->ctx.idx_out < clone->bi_vcnt);
1065
1066        clone->bi_sector = cc->start + io->sector;
1067
1068        if (async)
1069                kcryptd_queue_io(io);
1070        else
1071                generic_make_request(clone);
1072}
1073
1074static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1075{
1076        struct crypt_config *cc = io->target->private;
1077        struct bio *clone;
1078        struct dm_crypt_io *new_io;
1079        int crypt_finished;
1080        unsigned out_of_pages = 0;
1081        unsigned remaining = io->base_bio->bi_size;
1082        sector_t sector = io->sector;
1083        int r;
1084
1085        /*
1086         * Prevent io from disappearing until this function completes.
1087         */
1088        crypt_inc_pending(io);
1089        crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1090
1091        /*
1092         * The allocated buffers can be smaller than the whole bio,
1093         * so repeat the whole process until all the data can be handled.
1094         */
1095        while (remaining) {
1096                clone = crypt_alloc_buffer(io, remaining, &out_of_pages);
1097                if (unlikely(!clone)) {
1098                        io->error = -ENOMEM;
1099                        break;
1100                }
1101
1102                io->ctx.bio_out = clone;
1103                io->ctx.idx_out = 0;
1104
1105                remaining -= clone->bi_size;
1106                sector += bio_sectors(clone);
1107
1108                crypt_inc_pending(io);
1109                r = crypt_convert(cc, &io->ctx);
1110                crypt_finished = atomic_dec_and_test(&io->ctx.pending);
1111
1112                /* Encryption was already finished, submit io now */
1113                if (crypt_finished) {
1114                        kcryptd_crypt_write_io_submit(io, r, 0);
1115
1116                        /*
1117                         * If there was an error, do not try next fragments.
1118                         * For async, error is processed in async handler.
1119                         */
1120                        if (unlikely(r < 0))
1121                                break;
1122
1123                        io->sector = sector;
1124                }
1125
1126                /*
1127                 * Out of memory -> run queues
1128                 * But don't wait if split was due to the io size restriction
1129                 */
1130                if (unlikely(out_of_pages))
1131                        congestion_wait(BLK_RW_ASYNC, HZ/100);
1132
1133                /*
1134                 * With async crypto it is unsafe to share the crypto context
1135                 * between fragments, so switch to a new dm_crypt_io structure.
1136                 */
1137                if (unlikely(!crypt_finished && remaining)) {
1138                        new_io = crypt_io_alloc(io->target, io->base_bio,
1139                                                sector);
1140                        crypt_inc_pending(new_io);
1141                        crypt_convert_init(cc, &new_io->ctx, NULL,
1142                                           io->base_bio, sector);
1143                        new_io->ctx.idx_in = io->ctx.idx_in;
1144                        new_io->ctx.offset_in = io->ctx.offset_in;
1145
1146                        /*
1147                         * Fragments after the first use the base_io
1148                         * pending count.
1149                         */
1150                        if (!io->base_io)
1151                                new_io->base_io = io;
1152                        else {
1153                                new_io->base_io = io->base_io;
1154                                crypt_inc_pending(io->base_io);
1155                                crypt_dec_pending(io);
1156                        }
1157
1158                        io = new_io;
1159                }
1160        }
1161
1162        crypt_dec_pending(io);
1163}
1164
1165static void kcryptd_crypt_read_done(struct dm_crypt_io *io, int error)
1166{
1167        if (unlikely(error < 0))
1168                io->error = -EIO;
1169
1170        crypt_dec_pending(io);
1171}
1172
1173static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1174{
1175        struct crypt_config *cc = io->target->private;
1176        int r = 0;
1177
1178        crypt_inc_pending(io);
1179
1180        crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1181                           io->sector);
1182
1183        r = crypt_convert(cc, &io->ctx);
1184
1185        if (atomic_dec_and_test(&io->ctx.pending))
1186                kcryptd_crypt_read_done(io, r);
1187
1188        crypt_dec_pending(io);
1189}
1190
1191static void kcryptd_async_done(struct crypto_async_request *async_req,
1192                               int error)
1193{
1194        struct dm_crypt_request *dmreq = async_req->data;
1195        struct convert_context *ctx = dmreq->ctx;
1196        struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1197        struct crypt_config *cc = io->target->private;
1198
1199        if (error == -EINPROGRESS) {
1200                complete(&ctx->restart);
1201                return;
1202        }
1203
1204        if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1205                error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq);
1206
1207        mempool_free(req_of_dmreq(cc, dmreq), cc->req_pool);
1208
1209        if (!atomic_dec_and_test(&ctx->pending))
1210                return;
1211
1212        if (bio_data_dir(io->base_bio) == READ)
1213                kcryptd_crypt_read_done(io, error);
1214        else
1215                kcryptd_crypt_write_io_submit(io, error, 1);
1216}
1217
1218static void kcryptd_crypt(struct work_struct *work)
1219{
1220        struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1221
1222        if (bio_data_dir(io->base_bio) == READ)
1223                kcryptd_crypt_read_convert(io);
1224        else
1225                kcryptd_crypt_write_convert(io);
1226}
1227
1228static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1229{
1230        struct crypt_config *cc = io->target->private;
1231
1232        INIT_WORK(&io->work, kcryptd_crypt);
1233        queue_work(cc->crypt_queue, &io->work);
1234}
1235
1236/*
1237 * Decode key from its hex representation
1238 */
1239static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
1240{
1241        char buffer[3];
1242        char *endp;
1243        unsigned int i;
1244
1245        buffer[2] = '\0';
1246
1247        for (i = 0; i < size; i++) {
1248                buffer[0] = *hex++;
1249                buffer[1] = *hex++;
1250
1251                key[i] = (u8)simple_strtoul(buffer, &endp, 16);
1252
1253                if (endp != &buffer[2])
1254                        return -EINVAL;
1255        }
1256
1257        if (*hex != '\0')
1258                return -EINVAL;
1259
1260        return 0;
1261}
1262
1263/*
1264 * Encode key into its hex representation
1265 */
1266static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
1267{
1268        unsigned int i;
1269
1270        for (i = 0; i < size; i++) {
1271                sprintf(hex, "%02x", *key);
1272                hex += 2;
1273                key++;
1274        }
1275}
1276
1277static void crypt_free_tfms(struct crypt_config *cc, int cpu)
1278{
1279        struct crypt_cpu *cpu_cc = per_cpu_ptr(cc->cpu, cpu);
1280        unsigned i;
1281
1282        for (i = 0; i < cc->tfms_count; i++)
1283                if (cpu_cc->tfms[i] && !IS_ERR(cpu_cc->tfms[i])) {
1284                        crypto_free_ablkcipher(cpu_cc->tfms[i]);
1285                        cpu_cc->tfms[i] = NULL;
1286                }
1287}
1288
1289static int crypt_alloc_tfms(struct crypt_config *cc, int cpu, char *ciphermode)
1290{
1291        struct crypt_cpu *cpu_cc = per_cpu_ptr(cc->cpu, cpu);
1292        unsigned i;
1293        int err;
1294
1295        for (i = 0; i < cc->tfms_count; i++) {
1296                cpu_cc->tfms[i] = crypto_alloc_ablkcipher(ciphermode, 0, 0);
1297                if (IS_ERR(cpu_cc->tfms[i])) {
1298                        err = PTR_ERR(cpu_cc->tfms[i]);
1299                        crypt_free_tfms(cc, cpu);
1300                        return err;
1301                }
1302        }
1303
1304        return 0;
1305}
1306
1307static int crypt_setkey_allcpus(struct crypt_config *cc)
1308{
1309        unsigned subkey_size = cc->key_size >> ilog2(cc->tfms_count);
1310        int cpu, err = 0, i, r;
1311
1312        for_each_possible_cpu(cpu) {
1313                for (i = 0; i < cc->tfms_count; i++) {
1314                        r = crypto_ablkcipher_setkey(per_cpu_ptr(cc->cpu, cpu)->tfms[i],
1315                                                     cc->key + (i * subkey_size), subkey_size);
1316                        if (r)
1317                                err = r;
1318                }
1319        }
1320
1321        return err;
1322}
1323
1324static int crypt_set_key(struct crypt_config *cc, char *key)
1325{
1326        int r = -EINVAL;
1327        int key_string_len = strlen(key);
1328
1329        /* The key size may not be changed. */
1330        if (cc->key_size != (key_string_len >> 1))
1331                goto out;
1332
1333        /* Hyphen (which gives a key_size of zero) means there is no key. */
1334        if (!cc->key_size && strcmp(key, "-"))
1335                goto out;
1336
1337        if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
1338                goto out;
1339
1340        set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1341
1342        r = crypt_setkey_allcpus(cc);
1343
1344out:
1345        /* Hex key string not needed after here, so wipe it. */
1346        memset(key, '0', key_string_len);
1347
1348        return r;
1349}
1350
1351static int crypt_wipe_key(struct crypt_config *cc)
1352{
1353        clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1354        memset(&cc->key, 0, cc->key_size * sizeof(u8));
1355
1356        return crypt_setkey_allcpus(cc);
1357}
1358
1359static void crypt_dtr(struct dm_target *ti)
1360{
1361        struct crypt_config *cc = ti->private;
1362        struct crypt_cpu *cpu_cc;
1363        int cpu;
1364
1365        ti->private = NULL;
1366
1367        if (!cc)
1368                return;
1369
1370        if (cc->io_queue)
1371                destroy_workqueue(cc->io_queue);
1372        if (cc->crypt_queue)
1373                destroy_workqueue(cc->crypt_queue);
1374
1375        if (cc->cpu)
1376                for_each_possible_cpu(cpu) {
1377                        cpu_cc = per_cpu_ptr(cc->cpu, cpu);
1378                        if (cpu_cc->req)
1379                                mempool_free(cpu_cc->req, cc->req_pool);
1380                        crypt_free_tfms(cc, cpu);
1381                }
1382
1383        if (cc->bs)
1384                bioset_free(cc->bs);
1385
1386        if (cc->page_pool)
1387                mempool_destroy(cc->page_pool);
1388        if (cc->req_pool)
1389                mempool_destroy(cc->req_pool);
1390        if (cc->io_pool)
1391                mempool_destroy(cc->io_pool);
1392
1393        if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1394                cc->iv_gen_ops->dtr(cc);
1395
1396        if (cc->dev)
1397                dm_put_device(ti, cc->dev);
1398
1399        if (cc->cpu)
1400                free_percpu(cc->cpu);
1401
1402        kzfree(cc->cipher);
1403        kzfree(cc->cipher_string);
1404
1405        /* Must zero key material before freeing */
1406        kzfree(cc);
1407}
1408
1409static int crypt_ctr_cipher(struct dm_target *ti,
1410                            char *cipher_in, char *key)
1411{
1412        struct crypt_config *cc = ti->private;
1413        char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount;
1414        char *cipher_api = NULL;
1415        int cpu, ret = -EINVAL;
1416
1417        /* Convert to crypto api definition? */
1418        if (strchr(cipher_in, '(')) {
1419                ti->error = "Bad cipher specification";
1420                return -EINVAL;
1421        }
1422
1423        cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
1424        if (!cc->cipher_string)
1425                goto bad_mem;
1426
1427        /*
1428         * Legacy dm-crypt cipher specification
1429         * cipher[:keycount]-mode-iv:ivopts
1430         */
1431        tmp = cipher_in;
1432        keycount = strsep(&tmp, "-");
1433        cipher = strsep(&keycount, ":");
1434
1435        if (!keycount)
1436                cc->tfms_count = 1;
1437        else if (sscanf(keycount, "%u", &cc->tfms_count) != 1 ||
1438                 !is_power_of_2(cc->tfms_count)) {
1439                ti->error = "Bad cipher key count specification";
1440                return -EINVAL;
1441        }
1442        cc->key_parts = cc->tfms_count;
1443
1444        cc->cipher = kstrdup(cipher, GFP_KERNEL);
1445        if (!cc->cipher)
1446                goto bad_mem;
1447
1448        chainmode = strsep(&tmp, "-");
1449        ivopts = strsep(&tmp, "-");
1450        ivmode = strsep(&ivopts, ":");
1451
1452        if (tmp)
1453                DMWARN("Ignoring unexpected additional cipher options");
1454
1455        cc->cpu = __alloc_percpu(sizeof(*(cc->cpu)) +
1456                                 cc->tfms_count * sizeof(*(cc->cpu->tfms)),
1457                                 __alignof__(struct crypt_cpu));
1458        if (!cc->cpu) {
1459                ti->error = "Cannot allocate per cpu state";
1460                goto bad_mem;
1461        }
1462
1463        /*
1464         * For compatibility with the original dm-crypt mapping format, if
1465         * only the cipher name is supplied, use cbc-plain.
1466         */
1467        if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
1468                chainmode = "cbc";
1469                ivmode = "plain";
1470        }
1471
1472        if (strcmp(chainmode, "ecb") && !ivmode) {
1473                ti->error = "IV mechanism required";
1474                return -EINVAL;
1475        }
1476
1477        cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
1478        if (!cipher_api)
1479                goto bad_mem;
1480
1481        ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
1482                       "%s(%s)", chainmode, cipher);
1483        if (ret < 0) {
1484                kfree(cipher_api);
1485                goto bad_mem;
1486        }
1487
1488        /* Allocate cipher */
1489        for_each_possible_cpu(cpu) {
1490                ret = crypt_alloc_tfms(cc, cpu, cipher_api);
1491                if (ret < 0) {
1492                        ti->error = "Error allocating crypto tfm";
1493                        goto bad;
1494                }
1495        }
1496
1497        /* Initialize and set key */
1498        ret = crypt_set_key(cc, key);
1499        if (ret < 0) {
1500                ti->error = "Error decoding and setting key";
1501                goto bad;
1502        }
1503
1504        /* Initialize IV */
1505        cc->iv_size = crypto_ablkcipher_ivsize(any_tfm(cc));
1506        if (cc->iv_size)
1507                /* at least a 64 bit sector number should fit in our buffer */
1508                cc->iv_size = max(cc->iv_size,
1509                                  (unsigned int)(sizeof(u64) / sizeof(u8)));
1510        else if (ivmode) {
1511                DMWARN("Selected cipher does not support IVs");
1512                ivmode = NULL;
1513        }
1514
1515        /* Choose ivmode, see comments at iv code. */
1516        if (ivmode == NULL)
1517                cc->iv_gen_ops = NULL;
1518        else if (strcmp(ivmode, "plain") == 0)
1519                cc->iv_gen_ops = &crypt_iv_plain_ops;
1520        else if (strcmp(ivmode, "plain64") == 0)
1521                cc->iv_gen_ops = &crypt_iv_plain64_ops;
1522        else if (strcmp(ivmode, "essiv") == 0)
1523                cc->iv_gen_ops = &crypt_iv_essiv_ops;
1524        else if (strcmp(ivmode, "benbi") == 0)
1525                cc->iv_gen_ops = &crypt_iv_benbi_ops;
1526        else if (strcmp(ivmode, "null") == 0)
1527                cc->iv_gen_ops = &crypt_iv_null_ops;
1528        else if (strcmp(ivmode, "lmk") == 0) {
1529                cc->iv_gen_ops = &crypt_iv_lmk_ops;
1530                /* Version 2 and 3 is recognised according
1531                 * to length of provided multi-key string.
1532                 * If present (version 3), last key is used as IV seed.
1533                 */
1534                if (cc->key_size % cc->key_parts)
1535                        cc->key_parts++;
1536        } else {
1537                ret = -EINVAL;
1538                ti->error = "Invalid IV mode";
1539                goto bad;
1540        }
1541
1542        /* Allocate IV */
1543        if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
1544                ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
1545                if (ret < 0) {
1546                        ti->error = "Error creating IV";
1547                        goto bad;
1548                }
1549        }
1550
1551        /* Initialize IV (set keys for ESSIV etc) */
1552        if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
1553                ret = cc->iv_gen_ops->init(cc);
1554                if (ret < 0) {
1555                        ti->error = "Error initialising IV";
1556                        goto bad;
1557                }
1558        }
1559
1560        ret = 0;
1561bad:
1562        kfree(cipher_api);
1563        return ret;
1564
1565bad_mem:
1566        ti->error = "Cannot allocate cipher strings";
1567        return -ENOMEM;
1568}
1569
1570/*
1571 * Construct an encryption mapping:
1572 * <cipher> <key> <iv_offset> <dev_path> <start>
1573 */
1574static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1575{
1576        struct crypt_config *cc;
1577        unsigned int key_size, opt_params;
1578        unsigned long long tmpll;
1579        int ret;
1580        struct dm_arg_set as;
1581        const char *opt_string;
1582
1583        static struct dm_arg _args[] = {
1584                {0, 1, "Invalid number of feature args"},
1585        };
1586
1587        if (argc < 5) {
1588                ti->error = "Not enough arguments";
1589                return -EINVAL;
1590        }
1591
1592        key_size = strlen(argv[1]) >> 1;
1593
1594        cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1595        if (!cc) {
1596                ti->error = "Cannot allocate encryption context";
1597                return -ENOMEM;
1598        }
1599        cc->key_size = key_size;
1600
1601        ti->private = cc;
1602        ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
1603        if (ret < 0)
1604                goto bad;
1605
1606        ret = -ENOMEM;
1607        cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
1608        if (!cc->io_pool) {
1609                ti->error = "Cannot allocate crypt io mempool";
1610                goto bad;
1611        }
1612
1613        cc->dmreq_start = sizeof(struct ablkcipher_request);
1614        cc->dmreq_start += crypto_ablkcipher_reqsize(any_tfm(cc));
1615        cc->dmreq_start = ALIGN(cc->dmreq_start, crypto_tfm_ctx_alignment());
1616        cc->dmreq_start += crypto_ablkcipher_alignmask(any_tfm(cc)) &
1617                           ~(crypto_tfm_ctx_alignment() - 1);
1618
1619        cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1620                        sizeof(struct dm_crypt_request) + cc->iv_size);
1621        if (!cc->req_pool) {
1622                ti->error = "Cannot allocate crypt request mempool";
1623                goto bad;
1624        }
1625
1626        cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
1627        if (!cc->page_pool) {
1628                ti->error = "Cannot allocate page mempool";
1629                goto bad;
1630        }
1631
1632        cc->bs = bioset_create(MIN_IOS, 0);
1633        if (!cc->bs) {
1634                ti->error = "Cannot allocate crypt bioset";
1635                goto bad;
1636        }
1637
1638        ret = -EINVAL;
1639        if (sscanf(argv[2], "%llu", &tmpll) != 1) {
1640                ti->error = "Invalid iv_offset sector";
1641                goto bad;
1642        }
1643        cc->iv_offset = tmpll;
1644
1645        if (dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev)) {
1646                ti->error = "Device lookup failed";
1647                goto bad;
1648        }
1649
1650        if (sscanf(argv[4], "%llu", &tmpll) != 1) {
1651                ti->error = "Invalid device sector";
1652                goto bad;
1653        }
1654        cc->start = tmpll;
1655
1656        argv += 5;
1657        argc -= 5;
1658
1659        /* Optional parameters */
1660        if (argc) {
1661                as.argc = argc;
1662                as.argv = argv;
1663
1664                ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
1665                if (ret)
1666                        goto bad;
1667
1668                opt_string = dm_shift_arg(&as);
1669
1670                if (opt_params == 1 && opt_string &&
1671                    !strcasecmp(opt_string, "allow_discards"))
1672                        ti->num_discard_requests = 1;
1673                else if (opt_params) {
1674                        ret = -EINVAL;
1675                        ti->error = "Invalid feature arguments";
1676                        goto bad;
1677                }
1678        }
1679
1680        ret = -ENOMEM;
1681        cc->io_queue = alloc_workqueue("kcryptd_io",
1682                                       WQ_NON_REENTRANT|
1683                                       WQ_MEM_RECLAIM,
1684                                       1);
1685        if (!cc->io_queue) {
1686                ti->error = "Couldn't create kcryptd io queue";
1687                goto bad;
1688        }
1689
1690        cc->crypt_queue = alloc_workqueue("kcryptd",
1691                                          WQ_NON_REENTRANT|
1692                                          WQ_CPU_INTENSIVE|
1693                                          WQ_MEM_RECLAIM,
1694                                          1);
1695        if (!cc->crypt_queue) {
1696                ti->error = "Couldn't create kcryptd queue";
1697                goto bad;
1698        }
1699
1700        ti->num_flush_requests = 1;
1701        ti->discard_zeroes_data_unsupported = 1;
1702
1703        return 0;
1704
1705bad:
1706        crypt_dtr(ti);
1707        return ret;
1708}
1709
1710static int crypt_map(struct dm_target *ti, struct bio *bio,
1711                     union map_info *map_context)
1712{
1713        struct dm_crypt_io *io;
1714        struct crypt_config *cc;
1715
1716        /*
1717         * If bio is REQ_FLUSH or REQ_DISCARD, just bypass crypt queues.
1718         * - for REQ_FLUSH device-mapper core ensures that no IO is in-flight
1719         * - for REQ_DISCARD caller must use flush if IO ordering matters
1720         */
1721        if (unlikely(bio->bi_rw & (REQ_FLUSH | REQ_DISCARD))) {
1722                cc = ti->private;
1723                bio->bi_bdev = cc->dev->bdev;
1724                if (bio_sectors(bio))
1725                        bio->bi_sector = cc->start + dm_target_offset(ti, bio->bi_sector);
1726                return DM_MAPIO_REMAPPED;
1727        }
1728
1729        io = crypt_io_alloc(ti, bio, dm_target_offset(ti, bio->bi_sector));
1730
1731        if (bio_data_dir(io->base_bio) == READ) {
1732                if (kcryptd_io_read(io, GFP_NOWAIT))
1733                        kcryptd_queue_io(io);
1734        } else
1735                kcryptd_queue_crypt(io);
1736
1737        return DM_MAPIO_SUBMITTED;
1738}
1739
1740static int crypt_status(struct dm_target *ti, status_type_t type,
1741                        char *result, unsigned int maxlen)
1742{
1743        struct crypt_config *cc = ti->private;
1744        unsigned int sz = 0;
1745
1746        switch (type) {
1747        case STATUSTYPE_INFO:
1748                result[0] = '\0';
1749                break;
1750
1751        case STATUSTYPE_TABLE:
1752                DMEMIT("%s ", cc->cipher_string);
1753
1754                if (cc->key_size > 0) {
1755                        if ((maxlen - sz) < ((cc->key_size << 1) + 1))
1756                                return -ENOMEM;
1757
1758                        crypt_encode_key(result + sz, cc->key, cc->key_size);
1759                        sz += cc->key_size << 1;
1760                } else {
1761                        if (sz >= maxlen)
1762                                return -ENOMEM;
1763                        result[sz++] = '-';
1764                }
1765
1766                DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1767                                cc->dev->name, (unsigned long long)cc->start);
1768
1769                if (ti->num_discard_requests)
1770                        DMEMIT(" 1 allow_discards");
1771
1772                break;
1773        }
1774        return 0;
1775}
1776
1777static void crypt_postsuspend(struct dm_target *ti)
1778{
1779        struct crypt_config *cc = ti->private;
1780
1781        set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1782}
1783
1784static int crypt_preresume(struct dm_target *ti)
1785{
1786        struct crypt_config *cc = ti->private;
1787
1788        if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1789                DMERR("aborting resume - crypt key is not set.");
1790                return -EAGAIN;
1791        }
1792
1793        return 0;
1794}
1795
1796static void crypt_resume(struct dm_target *ti)
1797{
1798        struct crypt_config *cc = ti->private;
1799
1800        clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1801}
1802
1803/* Message interface
1804 *      key set <key>
1805 *      key wipe
1806 */
1807static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1808{
1809        struct crypt_config *cc = ti->private;
1810        int ret = -EINVAL;
1811
1812        if (argc < 2)
1813                goto error;
1814
1815        if (!strcasecmp(argv[0], "key")) {
1816                if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1817                        DMWARN("not suspended during key manipulation.");
1818                        return -EINVAL;
1819                }
1820                if (argc == 3 && !strcasecmp(argv[1], "set")) {
1821                        ret = crypt_set_key(cc, argv[2]);
1822                        if (ret)
1823                                return ret;
1824                        if (cc->iv_gen_ops && cc->iv_gen_ops->init)
1825                                ret = cc->iv_gen_ops->init(cc);
1826                        return ret;
1827                }
1828                if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
1829                        if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
1830                                ret = cc->iv_gen_ops->wipe(cc);
1831                                if (ret)
1832                                        return ret;
1833                        }
1834                        return crypt_wipe_key(cc);
1835                }
1836        }
1837
1838error:
1839        DMWARN("unrecognised message received.");
1840        return -EINVAL;
1841}
1842
1843static int crypt_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
1844                       struct bio_vec *biovec, int max_size)
1845{
1846        struct crypt_config *cc = ti->private;
1847        struct request_queue *q = bdev_get_queue(cc->dev->bdev);
1848
1849        if (!q->merge_bvec_fn)
1850                return max_size;
1851
1852        bvm->bi_bdev = cc->dev->bdev;
1853        bvm->bi_sector = cc->start + dm_target_offset(ti, bvm->bi_sector);
1854
1855        return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
1856}
1857
1858static int crypt_iterate_devices(struct dm_target *ti,
1859                                 iterate_devices_callout_fn fn, void *data)
1860{
1861        struct crypt_config *cc = ti->private;
1862
1863        return fn(ti, cc->dev, cc->start, ti->len, data);
1864}
1865
1866static struct target_type crypt_target = {
1867        .name   = "crypt",
1868        .version = {1, 11, 0},
1869        .module = THIS_MODULE,
1870        .ctr    = crypt_ctr,
1871        .dtr    = crypt_dtr,
1872        .map    = crypt_map,
1873        .status = crypt_status,
1874        .postsuspend = crypt_postsuspend,
1875        .preresume = crypt_preresume,
1876        .resume = crypt_resume,
1877        .message = crypt_message,
1878        .merge  = crypt_merge,
1879        .iterate_devices = crypt_iterate_devices,
1880};
1881
1882static int __init dm_crypt_init(void)
1883{
1884        int r;
1885
1886        _crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
1887        if (!_crypt_io_pool)
1888                return -ENOMEM;
1889
1890        r = dm_register_target(&crypt_target);
1891        if (r < 0) {
1892                DMERR("register failed %d", r);
1893                kmem_cache_destroy(_crypt_io_pool);
1894        }
1895
1896        return r;
1897}
1898
1899static void __exit dm_crypt_exit(void)
1900{
1901        dm_unregister_target(&crypt_target);
1902        kmem_cache_destroy(_crypt_io_pool);
1903}
1904
1905module_init(dm_crypt_init);
1906module_exit(dm_crypt_exit);
1907
1908MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
1909MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
1910MODULE_LICENSE("GPL");
1911