linux/drivers/md/raid1.c
<<
>>
Prefs
   1/*
   2 * raid1.c : Multiple Devices driver for Linux
   3 *
   4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
   5 *
   6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
   7 *
   8 * RAID-1 management functions.
   9 *
  10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
  11 *
  12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
  13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
  14 *
  15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
  16 * bitmapped intelligence in resync:
  17 *
  18 *      - bitmap marked during normal i/o
  19 *      - bitmap used to skip nondirty blocks during sync
  20 *
  21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
  22 * - persistent bitmap code
  23 *
  24 * This program is free software; you can redistribute it and/or modify
  25 * it under the terms of the GNU General Public License as published by
  26 * the Free Software Foundation; either version 2, or (at your option)
  27 * any later version.
  28 *
  29 * You should have received a copy of the GNU General Public License
  30 * (for example /usr/src/linux/COPYING); if not, write to the Free
  31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  32 */
  33
  34#include <linux/slab.h>
  35#include <linux/delay.h>
  36#include <linux/blkdev.h>
  37#include <linux/module.h>
  38#include <linux/seq_file.h>
  39#include <linux/ratelimit.h>
  40#include "md.h"
  41#include "raid1.h"
  42#include "bitmap.h"
  43
  44/*
  45 * Number of guaranteed r1bios in case of extreme VM load:
  46 */
  47#define NR_RAID1_BIOS 256
  48
  49/* When there are this many requests queue to be written by
  50 * the raid1 thread, we become 'congested' to provide back-pressure
  51 * for writeback.
  52 */
  53static int max_queued_requests = 1024;
  54
  55static void allow_barrier(struct r1conf *conf);
  56static void lower_barrier(struct r1conf *conf);
  57
  58static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
  59{
  60        struct pool_info *pi = data;
  61        int size = offsetof(struct r1bio, bios[pi->raid_disks]);
  62
  63        /* allocate a r1bio with room for raid_disks entries in the bios array */
  64        return kzalloc(size, gfp_flags);
  65}
  66
  67static void r1bio_pool_free(void *r1_bio, void *data)
  68{
  69        kfree(r1_bio);
  70}
  71
  72#define RESYNC_BLOCK_SIZE (64*1024)
  73//#define RESYNC_BLOCK_SIZE PAGE_SIZE
  74#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
  75#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
  76#define RESYNC_WINDOW (2048*1024)
  77
  78static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
  79{
  80        struct pool_info *pi = data;
  81        struct page *page;
  82        struct r1bio *r1_bio;
  83        struct bio *bio;
  84        int i, j;
  85
  86        r1_bio = r1bio_pool_alloc(gfp_flags, pi);
  87        if (!r1_bio)
  88                return NULL;
  89
  90        /*
  91         * Allocate bios : 1 for reading, n-1 for writing
  92         */
  93        for (j = pi->raid_disks ; j-- ; ) {
  94                bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
  95                if (!bio)
  96                        goto out_free_bio;
  97                r1_bio->bios[j] = bio;
  98        }
  99        /*
 100         * Allocate RESYNC_PAGES data pages and attach them to
 101         * the first bio.
 102         * If this is a user-requested check/repair, allocate
 103         * RESYNC_PAGES for each bio.
 104         */
 105        if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
 106                j = pi->raid_disks;
 107        else
 108                j = 1;
 109        while(j--) {
 110                bio = r1_bio->bios[j];
 111                for (i = 0; i < RESYNC_PAGES; i++) {
 112                        page = alloc_page(gfp_flags);
 113                        if (unlikely(!page))
 114                                goto out_free_pages;
 115
 116                        bio->bi_io_vec[i].bv_page = page;
 117                        bio->bi_vcnt = i+1;
 118                }
 119        }
 120        /* If not user-requests, copy the page pointers to all bios */
 121        if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
 122                for (i=0; i<RESYNC_PAGES ; i++)
 123                        for (j=1; j<pi->raid_disks; j++)
 124                                r1_bio->bios[j]->bi_io_vec[i].bv_page =
 125                                        r1_bio->bios[0]->bi_io_vec[i].bv_page;
 126        }
 127
 128        r1_bio->master_bio = NULL;
 129
 130        return r1_bio;
 131
 132out_free_pages:
 133        for (j=0 ; j < pi->raid_disks; j++)
 134                for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
 135                        put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
 136        j = -1;
 137out_free_bio:
 138        while (++j < pi->raid_disks)
 139                bio_put(r1_bio->bios[j]);
 140        r1bio_pool_free(r1_bio, data);
 141        return NULL;
 142}
 143
 144static void r1buf_pool_free(void *__r1_bio, void *data)
 145{
 146        struct pool_info *pi = data;
 147        int i,j;
 148        struct r1bio *r1bio = __r1_bio;
 149
 150        for (i = 0; i < RESYNC_PAGES; i++)
 151                for (j = pi->raid_disks; j-- ;) {
 152                        if (j == 0 ||
 153                            r1bio->bios[j]->bi_io_vec[i].bv_page !=
 154                            r1bio->bios[0]->bi_io_vec[i].bv_page)
 155                                safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
 156                }
 157        for (i=0 ; i < pi->raid_disks; i++)
 158                bio_put(r1bio->bios[i]);
 159
 160        r1bio_pool_free(r1bio, data);
 161}
 162
 163static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
 164{
 165        int i;
 166
 167        for (i = 0; i < conf->raid_disks * 2; i++) {
 168                struct bio **bio = r1_bio->bios + i;
 169                if (!BIO_SPECIAL(*bio))
 170                        bio_put(*bio);
 171                *bio = NULL;
 172        }
 173}
 174
 175static void free_r1bio(struct r1bio *r1_bio)
 176{
 177        struct r1conf *conf = r1_bio->mddev->private;
 178
 179        put_all_bios(conf, r1_bio);
 180        mempool_free(r1_bio, conf->r1bio_pool);
 181}
 182
 183static void put_buf(struct r1bio *r1_bio)
 184{
 185        struct r1conf *conf = r1_bio->mddev->private;
 186        int i;
 187
 188        for (i = 0; i < conf->raid_disks * 2; i++) {
 189                struct bio *bio = r1_bio->bios[i];
 190                if (bio->bi_end_io)
 191                        rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
 192        }
 193
 194        mempool_free(r1_bio, conf->r1buf_pool);
 195
 196        lower_barrier(conf);
 197}
 198
 199static void reschedule_retry(struct r1bio *r1_bio)
 200{
 201        unsigned long flags;
 202        struct mddev *mddev = r1_bio->mddev;
 203        struct r1conf *conf = mddev->private;
 204
 205        spin_lock_irqsave(&conf->device_lock, flags);
 206        list_add(&r1_bio->retry_list, &conf->retry_list);
 207        conf->nr_queued ++;
 208        spin_unlock_irqrestore(&conf->device_lock, flags);
 209
 210        wake_up(&conf->wait_barrier);
 211        md_wakeup_thread(mddev->thread);
 212}
 213
 214/*
 215 * raid_end_bio_io() is called when we have finished servicing a mirrored
 216 * operation and are ready to return a success/failure code to the buffer
 217 * cache layer.
 218 */
 219static void call_bio_endio(struct r1bio *r1_bio)
 220{
 221        struct bio *bio = r1_bio->master_bio;
 222        int done;
 223        struct r1conf *conf = r1_bio->mddev->private;
 224
 225        if (bio->bi_phys_segments) {
 226                unsigned long flags;
 227                spin_lock_irqsave(&conf->device_lock, flags);
 228                bio->bi_phys_segments--;
 229                done = (bio->bi_phys_segments == 0);
 230                spin_unlock_irqrestore(&conf->device_lock, flags);
 231        } else
 232                done = 1;
 233
 234        if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
 235                clear_bit(BIO_UPTODATE, &bio->bi_flags);
 236        if (done) {
 237                bio_endio(bio, 0);
 238                /*
 239                 * Wake up any possible resync thread that waits for the device
 240                 * to go idle.
 241                 */
 242                allow_barrier(conf);
 243        }
 244}
 245
 246static void raid_end_bio_io(struct r1bio *r1_bio)
 247{
 248        struct bio *bio = r1_bio->master_bio;
 249
 250        /* if nobody has done the final endio yet, do it now */
 251        if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 252                pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
 253                         (bio_data_dir(bio) == WRITE) ? "write" : "read",
 254                         (unsigned long long) bio->bi_sector,
 255                         (unsigned long long) bio->bi_sector +
 256                         (bio->bi_size >> 9) - 1);
 257
 258                call_bio_endio(r1_bio);
 259        }
 260        free_r1bio(r1_bio);
 261}
 262
 263/*
 264 * Update disk head position estimator based on IRQ completion info.
 265 */
 266static inline void update_head_pos(int disk, struct r1bio *r1_bio)
 267{
 268        struct r1conf *conf = r1_bio->mddev->private;
 269
 270        conf->mirrors[disk].head_position =
 271                r1_bio->sector + (r1_bio->sectors);
 272}
 273
 274/*
 275 * Find the disk number which triggered given bio
 276 */
 277static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
 278{
 279        int mirror;
 280        struct r1conf *conf = r1_bio->mddev->private;
 281        int raid_disks = conf->raid_disks;
 282
 283        for (mirror = 0; mirror < raid_disks * 2; mirror++)
 284                if (r1_bio->bios[mirror] == bio)
 285                        break;
 286
 287        BUG_ON(mirror == raid_disks * 2);
 288        update_head_pos(mirror, r1_bio);
 289
 290        return mirror;
 291}
 292
 293static void raid1_end_read_request(struct bio *bio, int error)
 294{
 295        int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 296        struct r1bio *r1_bio = bio->bi_private;
 297        int mirror;
 298        struct r1conf *conf = r1_bio->mddev->private;
 299
 300        mirror = r1_bio->read_disk;
 301        /*
 302         * this branch is our 'one mirror IO has finished' event handler:
 303         */
 304        update_head_pos(mirror, r1_bio);
 305
 306        if (uptodate)
 307                set_bit(R1BIO_Uptodate, &r1_bio->state);
 308        else {
 309                /* If all other devices have failed, we want to return
 310                 * the error upwards rather than fail the last device.
 311                 * Here we redefine "uptodate" to mean "Don't want to retry"
 312                 */
 313                unsigned long flags;
 314                spin_lock_irqsave(&conf->device_lock, flags);
 315                if (r1_bio->mddev->degraded == conf->raid_disks ||
 316                    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
 317                     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
 318                        uptodate = 1;
 319                spin_unlock_irqrestore(&conf->device_lock, flags);
 320        }
 321
 322        if (uptodate)
 323                raid_end_bio_io(r1_bio);
 324        else {
 325                /*
 326                 * oops, read error:
 327                 */
 328                char b[BDEVNAME_SIZE];
 329                printk_ratelimited(
 330                        KERN_ERR "md/raid1:%s: %s: "
 331                        "rescheduling sector %llu\n",
 332                        mdname(conf->mddev),
 333                        bdevname(conf->mirrors[mirror].rdev->bdev,
 334                                 b),
 335                        (unsigned long long)r1_bio->sector);
 336                set_bit(R1BIO_ReadError, &r1_bio->state);
 337                reschedule_retry(r1_bio);
 338        }
 339
 340        rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
 341}
 342
 343static void close_write(struct r1bio *r1_bio)
 344{
 345        /* it really is the end of this request */
 346        if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
 347                /* free extra copy of the data pages */
 348                int i = r1_bio->behind_page_count;
 349                while (i--)
 350                        safe_put_page(r1_bio->behind_bvecs[i].bv_page);
 351                kfree(r1_bio->behind_bvecs);
 352                r1_bio->behind_bvecs = NULL;
 353        }
 354        /* clear the bitmap if all writes complete successfully */
 355        bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
 356                        r1_bio->sectors,
 357                        !test_bit(R1BIO_Degraded, &r1_bio->state),
 358                        test_bit(R1BIO_BehindIO, &r1_bio->state));
 359        md_write_end(r1_bio->mddev);
 360}
 361
 362static void r1_bio_write_done(struct r1bio *r1_bio)
 363{
 364        if (!atomic_dec_and_test(&r1_bio->remaining))
 365                return;
 366
 367        if (test_bit(R1BIO_WriteError, &r1_bio->state))
 368                reschedule_retry(r1_bio);
 369        else {
 370                close_write(r1_bio);
 371                if (test_bit(R1BIO_MadeGood, &r1_bio->state))
 372                        reschedule_retry(r1_bio);
 373                else
 374                        raid_end_bio_io(r1_bio);
 375        }
 376}
 377
 378static void raid1_end_write_request(struct bio *bio, int error)
 379{
 380        int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 381        struct r1bio *r1_bio = bio->bi_private;
 382        int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
 383        struct r1conf *conf = r1_bio->mddev->private;
 384        struct bio *to_put = NULL;
 385
 386        mirror = find_bio_disk(r1_bio, bio);
 387
 388        /*
 389         * 'one mirror IO has finished' event handler:
 390         */
 391        if (!uptodate) {
 392                set_bit(WriteErrorSeen,
 393                        &conf->mirrors[mirror].rdev->flags);
 394                if (!test_and_set_bit(WantReplacement,
 395                                      &conf->mirrors[mirror].rdev->flags))
 396                        set_bit(MD_RECOVERY_NEEDED, &
 397                                conf->mddev->recovery);
 398
 399                set_bit(R1BIO_WriteError, &r1_bio->state);
 400        } else {
 401                /*
 402                 * Set R1BIO_Uptodate in our master bio, so that we
 403                 * will return a good error code for to the higher
 404                 * levels even if IO on some other mirrored buffer
 405                 * fails.
 406                 *
 407                 * The 'master' represents the composite IO operation
 408                 * to user-side. So if something waits for IO, then it
 409                 * will wait for the 'master' bio.
 410                 */
 411                sector_t first_bad;
 412                int bad_sectors;
 413
 414                r1_bio->bios[mirror] = NULL;
 415                to_put = bio;
 416                set_bit(R1BIO_Uptodate, &r1_bio->state);
 417
 418                /* Maybe we can clear some bad blocks. */
 419                if (is_badblock(conf->mirrors[mirror].rdev,
 420                                r1_bio->sector, r1_bio->sectors,
 421                                &first_bad, &bad_sectors)) {
 422                        r1_bio->bios[mirror] = IO_MADE_GOOD;
 423                        set_bit(R1BIO_MadeGood, &r1_bio->state);
 424                }
 425        }
 426
 427        if (behind) {
 428                if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
 429                        atomic_dec(&r1_bio->behind_remaining);
 430
 431                /*
 432                 * In behind mode, we ACK the master bio once the I/O
 433                 * has safely reached all non-writemostly
 434                 * disks. Setting the Returned bit ensures that this
 435                 * gets done only once -- we don't ever want to return
 436                 * -EIO here, instead we'll wait
 437                 */
 438                if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
 439                    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
 440                        /* Maybe we can return now */
 441                        if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 442                                struct bio *mbio = r1_bio->master_bio;
 443                                pr_debug("raid1: behind end write sectors"
 444                                         " %llu-%llu\n",
 445                                         (unsigned long long) mbio->bi_sector,
 446                                         (unsigned long long) mbio->bi_sector +
 447                                         (mbio->bi_size >> 9) - 1);
 448                                call_bio_endio(r1_bio);
 449                        }
 450                }
 451        }
 452        if (r1_bio->bios[mirror] == NULL)
 453                rdev_dec_pending(conf->mirrors[mirror].rdev,
 454                                 conf->mddev);
 455
 456        /*
 457         * Let's see if all mirrored write operations have finished
 458         * already.
 459         */
 460        r1_bio_write_done(r1_bio);
 461
 462        if (to_put)
 463                bio_put(to_put);
 464}
 465
 466
 467/*
 468 * This routine returns the disk from which the requested read should
 469 * be done. There is a per-array 'next expected sequential IO' sector
 470 * number - if this matches on the next IO then we use the last disk.
 471 * There is also a per-disk 'last know head position' sector that is
 472 * maintained from IRQ contexts, both the normal and the resync IO
 473 * completion handlers update this position correctly. If there is no
 474 * perfect sequential match then we pick the disk whose head is closest.
 475 *
 476 * If there are 2 mirrors in the same 2 devices, performance degrades
 477 * because position is mirror, not device based.
 478 *
 479 * The rdev for the device selected will have nr_pending incremented.
 480 */
 481static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
 482{
 483        const sector_t this_sector = r1_bio->sector;
 484        int sectors;
 485        int best_good_sectors;
 486        int start_disk;
 487        int best_disk;
 488        int i;
 489        sector_t best_dist;
 490        struct md_rdev *rdev;
 491        int choose_first;
 492
 493        rcu_read_lock();
 494        /*
 495         * Check if we can balance. We can balance on the whole
 496         * device if no resync is going on, or below the resync window.
 497         * We take the first readable disk when above the resync window.
 498         */
 499 retry:
 500        sectors = r1_bio->sectors;
 501        best_disk = -1;
 502        best_dist = MaxSector;
 503        best_good_sectors = 0;
 504
 505        if (conf->mddev->recovery_cp < MaxSector &&
 506            (this_sector + sectors >= conf->next_resync)) {
 507                choose_first = 1;
 508                start_disk = 0;
 509        } else {
 510                choose_first = 0;
 511                start_disk = conf->last_used;
 512        }
 513
 514        for (i = 0 ; i < conf->raid_disks * 2 ; i++) {
 515                sector_t dist;
 516                sector_t first_bad;
 517                int bad_sectors;
 518
 519                int disk = start_disk + i;
 520                if (disk >= conf->raid_disks)
 521                        disk -= conf->raid_disks;
 522
 523                rdev = rcu_dereference(conf->mirrors[disk].rdev);
 524                if (r1_bio->bios[disk] == IO_BLOCKED
 525                    || rdev == NULL
 526                    || test_bit(Faulty, &rdev->flags))
 527                        continue;
 528                if (!test_bit(In_sync, &rdev->flags) &&
 529                    rdev->recovery_offset < this_sector + sectors)
 530                        continue;
 531                if (test_bit(WriteMostly, &rdev->flags)) {
 532                        /* Don't balance among write-mostly, just
 533                         * use the first as a last resort */
 534                        if (best_disk < 0) {
 535                                if (is_badblock(rdev, this_sector, sectors,
 536                                                &first_bad, &bad_sectors)) {
 537                                        if (first_bad < this_sector)
 538                                                /* Cannot use this */
 539                                                continue;
 540                                        best_good_sectors = first_bad - this_sector;
 541                                } else
 542                                        best_good_sectors = sectors;
 543                                best_disk = disk;
 544                        }
 545                        continue;
 546                }
 547                /* This is a reasonable device to use.  It might
 548                 * even be best.
 549                 */
 550                if (is_badblock(rdev, this_sector, sectors,
 551                                &first_bad, &bad_sectors)) {
 552                        if (best_dist < MaxSector)
 553                                /* already have a better device */
 554                                continue;
 555                        if (first_bad <= this_sector) {
 556                                /* cannot read here. If this is the 'primary'
 557                                 * device, then we must not read beyond
 558                                 * bad_sectors from another device..
 559                                 */
 560                                bad_sectors -= (this_sector - first_bad);
 561                                if (choose_first && sectors > bad_sectors)
 562                                        sectors = bad_sectors;
 563                                if (best_good_sectors > sectors)
 564                                        best_good_sectors = sectors;
 565
 566                        } else {
 567                                sector_t good_sectors = first_bad - this_sector;
 568                                if (good_sectors > best_good_sectors) {
 569                                        best_good_sectors = good_sectors;
 570                                        best_disk = disk;
 571                                }
 572                                if (choose_first)
 573                                        break;
 574                        }
 575                        continue;
 576                } else
 577                        best_good_sectors = sectors;
 578
 579                dist = abs(this_sector - conf->mirrors[disk].head_position);
 580                if (choose_first
 581                    /* Don't change to another disk for sequential reads */
 582                    || conf->next_seq_sect == this_sector
 583                    || dist == 0
 584                    /* If device is idle, use it */
 585                    || atomic_read(&rdev->nr_pending) == 0) {
 586                        best_disk = disk;
 587                        break;
 588                }
 589                if (dist < best_dist) {
 590                        best_dist = dist;
 591                        best_disk = disk;
 592                }
 593        }
 594
 595        if (best_disk >= 0) {
 596                rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
 597                if (!rdev)
 598                        goto retry;
 599                atomic_inc(&rdev->nr_pending);
 600                if (test_bit(Faulty, &rdev->flags)) {
 601                        /* cannot risk returning a device that failed
 602                         * before we inc'ed nr_pending
 603                         */
 604                        rdev_dec_pending(rdev, conf->mddev);
 605                        goto retry;
 606                }
 607                sectors = best_good_sectors;
 608                conf->next_seq_sect = this_sector + sectors;
 609                conf->last_used = best_disk;
 610        }
 611        rcu_read_unlock();
 612        *max_sectors = sectors;
 613
 614        return best_disk;
 615}
 616
 617int md_raid1_congested(struct mddev *mddev, int bits)
 618{
 619        struct r1conf *conf = mddev->private;
 620        int i, ret = 0;
 621
 622        if ((bits & (1 << BDI_async_congested)) &&
 623            conf->pending_count >= max_queued_requests)
 624                return 1;
 625
 626        rcu_read_lock();
 627        for (i = 0; i < conf->raid_disks * 2; i++) {
 628                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 629                if (rdev && !test_bit(Faulty, &rdev->flags)) {
 630                        struct request_queue *q = bdev_get_queue(rdev->bdev);
 631
 632                        BUG_ON(!q);
 633
 634                        /* Note the '|| 1' - when read_balance prefers
 635                         * non-congested targets, it can be removed
 636                         */
 637                        if ((bits & (1<<BDI_async_congested)) || 1)
 638                                ret |= bdi_congested(&q->backing_dev_info, bits);
 639                        else
 640                                ret &= bdi_congested(&q->backing_dev_info, bits);
 641                }
 642        }
 643        rcu_read_unlock();
 644        return ret;
 645}
 646EXPORT_SYMBOL_GPL(md_raid1_congested);
 647
 648static int raid1_congested(void *data, int bits)
 649{
 650        struct mddev *mddev = data;
 651
 652        return mddev_congested(mddev, bits) ||
 653                md_raid1_congested(mddev, bits);
 654}
 655
 656static void flush_pending_writes(struct r1conf *conf)
 657{
 658        /* Any writes that have been queued but are awaiting
 659         * bitmap updates get flushed here.
 660         */
 661        spin_lock_irq(&conf->device_lock);
 662
 663        if (conf->pending_bio_list.head) {
 664                struct bio *bio;
 665                bio = bio_list_get(&conf->pending_bio_list);
 666                conf->pending_count = 0;
 667                spin_unlock_irq(&conf->device_lock);
 668                /* flush any pending bitmap writes to
 669                 * disk before proceeding w/ I/O */
 670                bitmap_unplug(conf->mddev->bitmap);
 671                wake_up(&conf->wait_barrier);
 672
 673                while (bio) { /* submit pending writes */
 674                        struct bio *next = bio->bi_next;
 675                        bio->bi_next = NULL;
 676                        generic_make_request(bio);
 677                        bio = next;
 678                }
 679        } else
 680                spin_unlock_irq(&conf->device_lock);
 681}
 682
 683/* Barriers....
 684 * Sometimes we need to suspend IO while we do something else,
 685 * either some resync/recovery, or reconfigure the array.
 686 * To do this we raise a 'barrier'.
 687 * The 'barrier' is a counter that can be raised multiple times
 688 * to count how many activities are happening which preclude
 689 * normal IO.
 690 * We can only raise the barrier if there is no pending IO.
 691 * i.e. if nr_pending == 0.
 692 * We choose only to raise the barrier if no-one is waiting for the
 693 * barrier to go down.  This means that as soon as an IO request
 694 * is ready, no other operations which require a barrier will start
 695 * until the IO request has had a chance.
 696 *
 697 * So: regular IO calls 'wait_barrier'.  When that returns there
 698 *    is no backgroup IO happening,  It must arrange to call
 699 *    allow_barrier when it has finished its IO.
 700 * backgroup IO calls must call raise_barrier.  Once that returns
 701 *    there is no normal IO happeing.  It must arrange to call
 702 *    lower_barrier when the particular background IO completes.
 703 */
 704#define RESYNC_DEPTH 32
 705
 706static void raise_barrier(struct r1conf *conf)
 707{
 708        spin_lock_irq(&conf->resync_lock);
 709
 710        /* Wait until no block IO is waiting */
 711        wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
 712                            conf->resync_lock, );
 713
 714        /* block any new IO from starting */
 715        conf->barrier++;
 716
 717        /* Now wait for all pending IO to complete */
 718        wait_event_lock_irq(conf->wait_barrier,
 719                            !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
 720                            conf->resync_lock, );
 721
 722        spin_unlock_irq(&conf->resync_lock);
 723}
 724
 725static void lower_barrier(struct r1conf *conf)
 726{
 727        unsigned long flags;
 728        BUG_ON(conf->barrier <= 0);
 729        spin_lock_irqsave(&conf->resync_lock, flags);
 730        conf->barrier--;
 731        spin_unlock_irqrestore(&conf->resync_lock, flags);
 732        wake_up(&conf->wait_barrier);
 733}
 734
 735static void wait_barrier(struct r1conf *conf)
 736{
 737        spin_lock_irq(&conf->resync_lock);
 738        if (conf->barrier) {
 739                conf->nr_waiting++;
 740                wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
 741                                    conf->resync_lock,
 742                                    );
 743                conf->nr_waiting--;
 744        }
 745        conf->nr_pending++;
 746        spin_unlock_irq(&conf->resync_lock);
 747}
 748
 749static void allow_barrier(struct r1conf *conf)
 750{
 751        unsigned long flags;
 752        spin_lock_irqsave(&conf->resync_lock, flags);
 753        conf->nr_pending--;
 754        spin_unlock_irqrestore(&conf->resync_lock, flags);
 755        wake_up(&conf->wait_barrier);
 756}
 757
 758static void freeze_array(struct r1conf *conf)
 759{
 760        /* stop syncio and normal IO and wait for everything to
 761         * go quite.
 762         * We increment barrier and nr_waiting, and then
 763         * wait until nr_pending match nr_queued+1
 764         * This is called in the context of one normal IO request
 765         * that has failed. Thus any sync request that might be pending
 766         * will be blocked by nr_pending, and we need to wait for
 767         * pending IO requests to complete or be queued for re-try.
 768         * Thus the number queued (nr_queued) plus this request (1)
 769         * must match the number of pending IOs (nr_pending) before
 770         * we continue.
 771         */
 772        spin_lock_irq(&conf->resync_lock);
 773        conf->barrier++;
 774        conf->nr_waiting++;
 775        wait_event_lock_irq(conf->wait_barrier,
 776                            conf->nr_pending == conf->nr_queued+1,
 777                            conf->resync_lock,
 778                            flush_pending_writes(conf));
 779        spin_unlock_irq(&conf->resync_lock);
 780}
 781static void unfreeze_array(struct r1conf *conf)
 782{
 783        /* reverse the effect of the freeze */
 784        spin_lock_irq(&conf->resync_lock);
 785        conf->barrier--;
 786        conf->nr_waiting--;
 787        wake_up(&conf->wait_barrier);
 788        spin_unlock_irq(&conf->resync_lock);
 789}
 790
 791
 792/* duplicate the data pages for behind I/O 
 793 */
 794static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
 795{
 796        int i;
 797        struct bio_vec *bvec;
 798        struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
 799                                        GFP_NOIO);
 800        if (unlikely(!bvecs))
 801                return;
 802
 803        bio_for_each_segment(bvec, bio, i) {
 804                bvecs[i] = *bvec;
 805                bvecs[i].bv_page = alloc_page(GFP_NOIO);
 806                if (unlikely(!bvecs[i].bv_page))
 807                        goto do_sync_io;
 808                memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
 809                       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
 810                kunmap(bvecs[i].bv_page);
 811                kunmap(bvec->bv_page);
 812        }
 813        r1_bio->behind_bvecs = bvecs;
 814        r1_bio->behind_page_count = bio->bi_vcnt;
 815        set_bit(R1BIO_BehindIO, &r1_bio->state);
 816        return;
 817
 818do_sync_io:
 819        for (i = 0; i < bio->bi_vcnt; i++)
 820                if (bvecs[i].bv_page)
 821                        put_page(bvecs[i].bv_page);
 822        kfree(bvecs);
 823        pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
 824}
 825
 826static void make_request(struct mddev *mddev, struct bio * bio)
 827{
 828        struct r1conf *conf = mddev->private;
 829        struct mirror_info *mirror;
 830        struct r1bio *r1_bio;
 831        struct bio *read_bio;
 832        int i, disks;
 833        struct bitmap *bitmap;
 834        unsigned long flags;
 835        const int rw = bio_data_dir(bio);
 836        const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
 837        const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
 838        struct md_rdev *blocked_rdev;
 839        int plugged;
 840        int first_clone;
 841        int sectors_handled;
 842        int max_sectors;
 843
 844        /*
 845         * Register the new request and wait if the reconstruction
 846         * thread has put up a bar for new requests.
 847         * Continue immediately if no resync is active currently.
 848         */
 849
 850        md_write_start(mddev, bio); /* wait on superblock update early */
 851
 852        if (bio_data_dir(bio) == WRITE &&
 853            bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
 854            bio->bi_sector < mddev->suspend_hi) {
 855                /* As the suspend_* range is controlled by
 856                 * userspace, we want an interruptible
 857                 * wait.
 858                 */
 859                DEFINE_WAIT(w);
 860                for (;;) {
 861                        flush_signals(current);
 862                        prepare_to_wait(&conf->wait_barrier,
 863                                        &w, TASK_INTERRUPTIBLE);
 864                        if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
 865                            bio->bi_sector >= mddev->suspend_hi)
 866                                break;
 867                        schedule();
 868                }
 869                finish_wait(&conf->wait_barrier, &w);
 870        }
 871
 872        wait_barrier(conf);
 873
 874        bitmap = mddev->bitmap;
 875
 876        /*
 877         * make_request() can abort the operation when READA is being
 878         * used and no empty request is available.
 879         *
 880         */
 881        r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
 882
 883        r1_bio->master_bio = bio;
 884        r1_bio->sectors = bio->bi_size >> 9;
 885        r1_bio->state = 0;
 886        r1_bio->mddev = mddev;
 887        r1_bio->sector = bio->bi_sector;
 888
 889        /* We might need to issue multiple reads to different
 890         * devices if there are bad blocks around, so we keep
 891         * track of the number of reads in bio->bi_phys_segments.
 892         * If this is 0, there is only one r1_bio and no locking
 893         * will be needed when requests complete.  If it is
 894         * non-zero, then it is the number of not-completed requests.
 895         */
 896        bio->bi_phys_segments = 0;
 897        clear_bit(BIO_SEG_VALID, &bio->bi_flags);
 898
 899        if (rw == READ) {
 900                /*
 901                 * read balancing logic:
 902                 */
 903                int rdisk;
 904
 905read_again:
 906                rdisk = read_balance(conf, r1_bio, &max_sectors);
 907
 908                if (rdisk < 0) {
 909                        /* couldn't find anywhere to read from */
 910                        raid_end_bio_io(r1_bio);
 911                        return;
 912                }
 913                mirror = conf->mirrors + rdisk;
 914
 915                if (test_bit(WriteMostly, &mirror->rdev->flags) &&
 916                    bitmap) {
 917                        /* Reading from a write-mostly device must
 918                         * take care not to over-take any writes
 919                         * that are 'behind'
 920                         */
 921                        wait_event(bitmap->behind_wait,
 922                                   atomic_read(&bitmap->behind_writes) == 0);
 923                }
 924                r1_bio->read_disk = rdisk;
 925
 926                read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
 927                md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
 928                            max_sectors);
 929
 930                r1_bio->bios[rdisk] = read_bio;
 931
 932                read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
 933                read_bio->bi_bdev = mirror->rdev->bdev;
 934                read_bio->bi_end_io = raid1_end_read_request;
 935                read_bio->bi_rw = READ | do_sync;
 936                read_bio->bi_private = r1_bio;
 937
 938                if (max_sectors < r1_bio->sectors) {
 939                        /* could not read all from this device, so we will
 940                         * need another r1_bio.
 941                         */
 942
 943                        sectors_handled = (r1_bio->sector + max_sectors
 944                                           - bio->bi_sector);
 945                        r1_bio->sectors = max_sectors;
 946                        spin_lock_irq(&conf->device_lock);
 947                        if (bio->bi_phys_segments == 0)
 948                                bio->bi_phys_segments = 2;
 949                        else
 950                                bio->bi_phys_segments++;
 951                        spin_unlock_irq(&conf->device_lock);
 952                        /* Cannot call generic_make_request directly
 953                         * as that will be queued in __make_request
 954                         * and subsequent mempool_alloc might block waiting
 955                         * for it.  So hand bio over to raid1d.
 956                         */
 957                        reschedule_retry(r1_bio);
 958
 959                        r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
 960
 961                        r1_bio->master_bio = bio;
 962                        r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
 963                        r1_bio->state = 0;
 964                        r1_bio->mddev = mddev;
 965                        r1_bio->sector = bio->bi_sector + sectors_handled;
 966                        goto read_again;
 967                } else
 968                        generic_make_request(read_bio);
 969                return;
 970        }
 971
 972        /*
 973         * WRITE:
 974         */
 975        if (conf->pending_count >= max_queued_requests) {
 976                md_wakeup_thread(mddev->thread);
 977                wait_event(conf->wait_barrier,
 978                           conf->pending_count < max_queued_requests);
 979        }
 980        /* first select target devices under rcu_lock and
 981         * inc refcount on their rdev.  Record them by setting
 982         * bios[x] to bio
 983         * If there are known/acknowledged bad blocks on any device on
 984         * which we have seen a write error, we want to avoid writing those
 985         * blocks.
 986         * This potentially requires several writes to write around
 987         * the bad blocks.  Each set of writes gets it's own r1bio
 988         * with a set of bios attached.
 989         */
 990        plugged = mddev_check_plugged(mddev);
 991
 992        disks = conf->raid_disks * 2;
 993 retry_write:
 994        blocked_rdev = NULL;
 995        rcu_read_lock();
 996        max_sectors = r1_bio->sectors;
 997        for (i = 0;  i < disks; i++) {
 998                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 999                if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1000                        atomic_inc(&rdev->nr_pending);
1001                        blocked_rdev = rdev;
1002                        break;
1003                }
1004                r1_bio->bios[i] = NULL;
1005                if (!rdev || test_bit(Faulty, &rdev->flags)) {
1006                        if (i < conf->raid_disks)
1007                                set_bit(R1BIO_Degraded, &r1_bio->state);
1008                        continue;
1009                }
1010
1011                atomic_inc(&rdev->nr_pending);
1012                if (test_bit(WriteErrorSeen, &rdev->flags)) {
1013                        sector_t first_bad;
1014                        int bad_sectors;
1015                        int is_bad;
1016
1017                        is_bad = is_badblock(rdev, r1_bio->sector,
1018                                             max_sectors,
1019                                             &first_bad, &bad_sectors);
1020                        if (is_bad < 0) {
1021                                /* mustn't write here until the bad block is
1022                                 * acknowledged*/
1023                                set_bit(BlockedBadBlocks, &rdev->flags);
1024                                blocked_rdev = rdev;
1025                                break;
1026                        }
1027                        if (is_bad && first_bad <= r1_bio->sector) {
1028                                /* Cannot write here at all */
1029                                bad_sectors -= (r1_bio->sector - first_bad);
1030                                if (bad_sectors < max_sectors)
1031                                        /* mustn't write more than bad_sectors
1032                                         * to other devices yet
1033                                         */
1034                                        max_sectors = bad_sectors;
1035                                rdev_dec_pending(rdev, mddev);
1036                                /* We don't set R1BIO_Degraded as that
1037                                 * only applies if the disk is
1038                                 * missing, so it might be re-added,
1039                                 * and we want to know to recover this
1040                                 * chunk.
1041                                 * In this case the device is here,
1042                                 * and the fact that this chunk is not
1043                                 * in-sync is recorded in the bad
1044                                 * block log
1045                                 */
1046                                continue;
1047                        }
1048                        if (is_bad) {
1049                                int good_sectors = first_bad - r1_bio->sector;
1050                                if (good_sectors < max_sectors)
1051                                        max_sectors = good_sectors;
1052                        }
1053                }
1054                r1_bio->bios[i] = bio;
1055        }
1056        rcu_read_unlock();
1057
1058        if (unlikely(blocked_rdev)) {
1059                /* Wait for this device to become unblocked */
1060                int j;
1061
1062                for (j = 0; j < i; j++)
1063                        if (r1_bio->bios[j])
1064                                rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1065                r1_bio->state = 0;
1066                allow_barrier(conf);
1067                md_wait_for_blocked_rdev(blocked_rdev, mddev);
1068                wait_barrier(conf);
1069                goto retry_write;
1070        }
1071
1072        if (max_sectors < r1_bio->sectors) {
1073                /* We are splitting this write into multiple parts, so
1074                 * we need to prepare for allocating another r1_bio.
1075                 */
1076                r1_bio->sectors = max_sectors;
1077                spin_lock_irq(&conf->device_lock);
1078                if (bio->bi_phys_segments == 0)
1079                        bio->bi_phys_segments = 2;
1080                else
1081                        bio->bi_phys_segments++;
1082                spin_unlock_irq(&conf->device_lock);
1083        }
1084        sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
1085
1086        atomic_set(&r1_bio->remaining, 1);
1087        atomic_set(&r1_bio->behind_remaining, 0);
1088
1089        first_clone = 1;
1090        for (i = 0; i < disks; i++) {
1091                struct bio *mbio;
1092                if (!r1_bio->bios[i])
1093                        continue;
1094
1095                mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1096                md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1097
1098                if (first_clone) {
1099                        /* do behind I/O ?
1100                         * Not if there are too many, or cannot
1101                         * allocate memory, or a reader on WriteMostly
1102                         * is waiting for behind writes to flush */
1103                        if (bitmap &&
1104                            (atomic_read(&bitmap->behind_writes)
1105                             < mddev->bitmap_info.max_write_behind) &&
1106                            !waitqueue_active(&bitmap->behind_wait))
1107                                alloc_behind_pages(mbio, r1_bio);
1108
1109                        bitmap_startwrite(bitmap, r1_bio->sector,
1110                                          r1_bio->sectors,
1111                                          test_bit(R1BIO_BehindIO,
1112                                                   &r1_bio->state));
1113                        first_clone = 0;
1114                }
1115                if (r1_bio->behind_bvecs) {
1116                        struct bio_vec *bvec;
1117                        int j;
1118
1119                        /* Yes, I really want the '__' version so that
1120                         * we clear any unused pointer in the io_vec, rather
1121                         * than leave them unchanged.  This is important
1122                         * because when we come to free the pages, we won't
1123                         * know the original bi_idx, so we just free
1124                         * them all
1125                         */
1126                        __bio_for_each_segment(bvec, mbio, j, 0)
1127                                bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1128                        if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1129                                atomic_inc(&r1_bio->behind_remaining);
1130                }
1131
1132                r1_bio->bios[i] = mbio;
1133
1134                mbio->bi_sector = (r1_bio->sector +
1135                                   conf->mirrors[i].rdev->data_offset);
1136                mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1137                mbio->bi_end_io = raid1_end_write_request;
1138                mbio->bi_rw = WRITE | do_flush_fua | do_sync;
1139                mbio->bi_private = r1_bio;
1140
1141                atomic_inc(&r1_bio->remaining);
1142                spin_lock_irqsave(&conf->device_lock, flags);
1143                bio_list_add(&conf->pending_bio_list, mbio);
1144                conf->pending_count++;
1145                spin_unlock_irqrestore(&conf->device_lock, flags);
1146        }
1147        /* Mustn't call r1_bio_write_done before this next test,
1148         * as it could result in the bio being freed.
1149         */
1150        if (sectors_handled < (bio->bi_size >> 9)) {
1151                r1_bio_write_done(r1_bio);
1152                /* We need another r1_bio.  It has already been counted
1153                 * in bio->bi_phys_segments
1154                 */
1155                r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1156                r1_bio->master_bio = bio;
1157                r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1158                r1_bio->state = 0;
1159                r1_bio->mddev = mddev;
1160                r1_bio->sector = bio->bi_sector + sectors_handled;
1161                goto retry_write;
1162        }
1163
1164        r1_bio_write_done(r1_bio);
1165
1166        /* In case raid1d snuck in to freeze_array */
1167        wake_up(&conf->wait_barrier);
1168
1169        if (do_sync || !bitmap || !plugged)
1170                md_wakeup_thread(mddev->thread);
1171}
1172
1173static void status(struct seq_file *seq, struct mddev *mddev)
1174{
1175        struct r1conf *conf = mddev->private;
1176        int i;
1177
1178        seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1179                   conf->raid_disks - mddev->degraded);
1180        rcu_read_lock();
1181        for (i = 0; i < conf->raid_disks; i++) {
1182                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1183                seq_printf(seq, "%s",
1184                           rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1185        }
1186        rcu_read_unlock();
1187        seq_printf(seq, "]");
1188}
1189
1190
1191static void error(struct mddev *mddev, struct md_rdev *rdev)
1192{
1193        char b[BDEVNAME_SIZE];
1194        struct r1conf *conf = mddev->private;
1195
1196        /*
1197         * If it is not operational, then we have already marked it as dead
1198         * else if it is the last working disks, ignore the error, let the
1199         * next level up know.
1200         * else mark the drive as failed
1201         */
1202        if (test_bit(In_sync, &rdev->flags)
1203            && (conf->raid_disks - mddev->degraded) == 1) {
1204                /*
1205                 * Don't fail the drive, act as though we were just a
1206                 * normal single drive.
1207                 * However don't try a recovery from this drive as
1208                 * it is very likely to fail.
1209                 */
1210                conf->recovery_disabled = mddev->recovery_disabled;
1211                return;
1212        }
1213        set_bit(Blocked, &rdev->flags);
1214        if (test_and_clear_bit(In_sync, &rdev->flags)) {
1215                unsigned long flags;
1216                spin_lock_irqsave(&conf->device_lock, flags);
1217                mddev->degraded++;
1218                set_bit(Faulty, &rdev->flags);
1219                spin_unlock_irqrestore(&conf->device_lock, flags);
1220                /*
1221                 * if recovery is running, make sure it aborts.
1222                 */
1223                set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1224        } else
1225                set_bit(Faulty, &rdev->flags);
1226        set_bit(MD_CHANGE_DEVS, &mddev->flags);
1227        printk(KERN_ALERT
1228               "md/raid1:%s: Disk failure on %s, disabling device.\n"
1229               "md/raid1:%s: Operation continuing on %d devices.\n",
1230               mdname(mddev), bdevname(rdev->bdev, b),
1231               mdname(mddev), conf->raid_disks - mddev->degraded);
1232}
1233
1234static void print_conf(struct r1conf *conf)
1235{
1236        int i;
1237
1238        printk(KERN_DEBUG "RAID1 conf printout:\n");
1239        if (!conf) {
1240                printk(KERN_DEBUG "(!conf)\n");
1241                return;
1242        }
1243        printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1244                conf->raid_disks);
1245
1246        rcu_read_lock();
1247        for (i = 0; i < conf->raid_disks; i++) {
1248                char b[BDEVNAME_SIZE];
1249                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1250                if (rdev)
1251                        printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1252                               i, !test_bit(In_sync, &rdev->flags),
1253                               !test_bit(Faulty, &rdev->flags),
1254                               bdevname(rdev->bdev,b));
1255        }
1256        rcu_read_unlock();
1257}
1258
1259static void close_sync(struct r1conf *conf)
1260{
1261        wait_barrier(conf);
1262        allow_barrier(conf);
1263
1264        mempool_destroy(conf->r1buf_pool);
1265        conf->r1buf_pool = NULL;
1266}
1267
1268static int raid1_spare_active(struct mddev *mddev)
1269{
1270        int i;
1271        struct r1conf *conf = mddev->private;
1272        int count = 0;
1273        unsigned long flags;
1274
1275        /*
1276         * Find all failed disks within the RAID1 configuration 
1277         * and mark them readable.
1278         * Called under mddev lock, so rcu protection not needed.
1279         */
1280        for (i = 0; i < conf->raid_disks; i++) {
1281                struct md_rdev *rdev = conf->mirrors[i].rdev;
1282                struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1283                if (repl
1284                    && repl->recovery_offset == MaxSector
1285                    && !test_bit(Faulty, &repl->flags)
1286                    && !test_and_set_bit(In_sync, &repl->flags)) {
1287                        /* replacement has just become active */
1288                        if (!rdev ||
1289                            !test_and_clear_bit(In_sync, &rdev->flags))
1290                                count++;
1291                        if (rdev) {
1292                                /* Replaced device not technically
1293                                 * faulty, but we need to be sure
1294                                 * it gets removed and never re-added
1295                                 */
1296                                set_bit(Faulty, &rdev->flags);
1297                                sysfs_notify_dirent_safe(
1298                                        rdev->sysfs_state);
1299                        }
1300                }
1301                if (rdev
1302                    && !test_bit(Faulty, &rdev->flags)
1303                    && !test_and_set_bit(In_sync, &rdev->flags)) {
1304                        count++;
1305                        sysfs_notify_dirent_safe(rdev->sysfs_state);
1306                }
1307        }
1308        spin_lock_irqsave(&conf->device_lock, flags);
1309        mddev->degraded -= count;
1310        spin_unlock_irqrestore(&conf->device_lock, flags);
1311
1312        print_conf(conf);
1313        return count;
1314}
1315
1316
1317static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1318{
1319        struct r1conf *conf = mddev->private;
1320        int err = -EEXIST;
1321        int mirror = 0;
1322        struct mirror_info *p;
1323        int first = 0;
1324        int last = conf->raid_disks - 1;
1325
1326        if (mddev->recovery_disabled == conf->recovery_disabled)
1327                return -EBUSY;
1328
1329        if (rdev->raid_disk >= 0)
1330                first = last = rdev->raid_disk;
1331
1332        for (mirror = first; mirror <= last; mirror++) {
1333                p = conf->mirrors+mirror;
1334                if (!p->rdev) {
1335
1336                        disk_stack_limits(mddev->gendisk, rdev->bdev,
1337                                          rdev->data_offset << 9);
1338                        /* as we don't honour merge_bvec_fn, we must
1339                         * never risk violating it, so limit
1340                         * ->max_segments to one lying with a single
1341                         * page, as a one page request is never in
1342                         * violation.
1343                         */
1344                        if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1345                                blk_queue_max_segments(mddev->queue, 1);
1346                                blk_queue_segment_boundary(mddev->queue,
1347                                                           PAGE_CACHE_SIZE - 1);
1348                        }
1349
1350                        p->head_position = 0;
1351                        rdev->raid_disk = mirror;
1352                        err = 0;
1353                        /* As all devices are equivalent, we don't need a full recovery
1354                         * if this was recently any drive of the array
1355                         */
1356                        if (rdev->saved_raid_disk < 0)
1357                                conf->fullsync = 1;
1358                        rcu_assign_pointer(p->rdev, rdev);
1359                        break;
1360                }
1361                if (test_bit(WantReplacement, &p->rdev->flags) &&
1362                    p[conf->raid_disks].rdev == NULL) {
1363                        /* Add this device as a replacement */
1364                        clear_bit(In_sync, &rdev->flags);
1365                        set_bit(Replacement, &rdev->flags);
1366                        rdev->raid_disk = mirror;
1367                        err = 0;
1368                        conf->fullsync = 1;
1369                        rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1370                        break;
1371                }
1372        }
1373        md_integrity_add_rdev(rdev, mddev);
1374        print_conf(conf);
1375        return err;
1376}
1377
1378static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1379{
1380        struct r1conf *conf = mddev->private;
1381        int err = 0;
1382        int number = rdev->raid_disk;
1383        struct mirror_info *p = conf->mirrors+ number;
1384
1385        if (rdev != p->rdev)
1386                p = conf->mirrors + conf->raid_disks + number;
1387
1388        print_conf(conf);
1389        if (rdev == p->rdev) {
1390                if (test_bit(In_sync, &rdev->flags) ||
1391                    atomic_read(&rdev->nr_pending)) {
1392                        err = -EBUSY;
1393                        goto abort;
1394                }
1395                /* Only remove non-faulty devices if recovery
1396                 * is not possible.
1397                 */
1398                if (!test_bit(Faulty, &rdev->flags) &&
1399                    mddev->recovery_disabled != conf->recovery_disabled &&
1400                    mddev->degraded < conf->raid_disks) {
1401                        err = -EBUSY;
1402                        goto abort;
1403                }
1404                p->rdev = NULL;
1405                synchronize_rcu();
1406                if (atomic_read(&rdev->nr_pending)) {
1407                        /* lost the race, try later */
1408                        err = -EBUSY;
1409                        p->rdev = rdev;
1410                        goto abort;
1411                } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1412                        /* We just removed a device that is being replaced.
1413                         * Move down the replacement.  We drain all IO before
1414                         * doing this to avoid confusion.
1415                         */
1416                        struct md_rdev *repl =
1417                                conf->mirrors[conf->raid_disks + number].rdev;
1418                        raise_barrier(conf);
1419                        clear_bit(Replacement, &repl->flags);
1420                        p->rdev = repl;
1421                        conf->mirrors[conf->raid_disks + number].rdev = NULL;
1422                        lower_barrier(conf);
1423                        clear_bit(WantReplacement, &rdev->flags);
1424                } else
1425                        clear_bit(WantReplacement, &rdev->flags);
1426                err = md_integrity_register(mddev);
1427        }
1428abort:
1429
1430        print_conf(conf);
1431        return err;
1432}
1433
1434
1435static void end_sync_read(struct bio *bio, int error)
1436{
1437        struct r1bio *r1_bio = bio->bi_private;
1438
1439        update_head_pos(r1_bio->read_disk, r1_bio);
1440
1441        /*
1442         * we have read a block, now it needs to be re-written,
1443         * or re-read if the read failed.
1444         * We don't do much here, just schedule handling by raid1d
1445         */
1446        if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1447                set_bit(R1BIO_Uptodate, &r1_bio->state);
1448
1449        if (atomic_dec_and_test(&r1_bio->remaining))
1450                reschedule_retry(r1_bio);
1451}
1452
1453static void end_sync_write(struct bio *bio, int error)
1454{
1455        int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1456        struct r1bio *r1_bio = bio->bi_private;
1457        struct mddev *mddev = r1_bio->mddev;
1458        struct r1conf *conf = mddev->private;
1459        int mirror=0;
1460        sector_t first_bad;
1461        int bad_sectors;
1462
1463        mirror = find_bio_disk(r1_bio, bio);
1464
1465        if (!uptodate) {
1466                sector_t sync_blocks = 0;
1467                sector_t s = r1_bio->sector;
1468                long sectors_to_go = r1_bio->sectors;
1469                /* make sure these bits doesn't get cleared. */
1470                do {
1471                        bitmap_end_sync(mddev->bitmap, s,
1472                                        &sync_blocks, 1);
1473                        s += sync_blocks;
1474                        sectors_to_go -= sync_blocks;
1475                } while (sectors_to_go > 0);
1476                set_bit(WriteErrorSeen,
1477                        &conf->mirrors[mirror].rdev->flags);
1478                if (!test_and_set_bit(WantReplacement,
1479                                      &conf->mirrors[mirror].rdev->flags))
1480                        set_bit(MD_RECOVERY_NEEDED, &
1481                                mddev->recovery);
1482                set_bit(R1BIO_WriteError, &r1_bio->state);
1483        } else if (is_badblock(conf->mirrors[mirror].rdev,
1484                               r1_bio->sector,
1485                               r1_bio->sectors,
1486                               &first_bad, &bad_sectors) &&
1487                   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1488                                r1_bio->sector,
1489                                r1_bio->sectors,
1490                                &first_bad, &bad_sectors)
1491                )
1492                set_bit(R1BIO_MadeGood, &r1_bio->state);
1493
1494        if (atomic_dec_and_test(&r1_bio->remaining)) {
1495                int s = r1_bio->sectors;
1496                if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1497                    test_bit(R1BIO_WriteError, &r1_bio->state))
1498                        reschedule_retry(r1_bio);
1499                else {
1500                        put_buf(r1_bio);
1501                        md_done_sync(mddev, s, uptodate);
1502                }
1503        }
1504}
1505
1506static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1507                            int sectors, struct page *page, int rw)
1508{
1509        if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1510                /* success */
1511                return 1;
1512        if (rw == WRITE) {
1513                set_bit(WriteErrorSeen, &rdev->flags);
1514                if (!test_and_set_bit(WantReplacement,
1515                                      &rdev->flags))
1516                        set_bit(MD_RECOVERY_NEEDED, &
1517                                rdev->mddev->recovery);
1518        }
1519        /* need to record an error - either for the block or the device */
1520        if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1521                md_error(rdev->mddev, rdev);
1522        return 0;
1523}
1524
1525static int fix_sync_read_error(struct r1bio *r1_bio)
1526{
1527        /* Try some synchronous reads of other devices to get
1528         * good data, much like with normal read errors.  Only
1529         * read into the pages we already have so we don't
1530         * need to re-issue the read request.
1531         * We don't need to freeze the array, because being in an
1532         * active sync request, there is no normal IO, and
1533         * no overlapping syncs.
1534         * We don't need to check is_badblock() again as we
1535         * made sure that anything with a bad block in range
1536         * will have bi_end_io clear.
1537         */
1538        struct mddev *mddev = r1_bio->mddev;
1539        struct r1conf *conf = mddev->private;
1540        struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1541        sector_t sect = r1_bio->sector;
1542        int sectors = r1_bio->sectors;
1543        int idx = 0;
1544
1545        while(sectors) {
1546                int s = sectors;
1547                int d = r1_bio->read_disk;
1548                int success = 0;
1549                struct md_rdev *rdev;
1550                int start;
1551
1552                if (s > (PAGE_SIZE>>9))
1553                        s = PAGE_SIZE >> 9;
1554                do {
1555                        if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1556                                /* No rcu protection needed here devices
1557                                 * can only be removed when no resync is
1558                                 * active, and resync is currently active
1559                                 */
1560                                rdev = conf->mirrors[d].rdev;
1561                                if (sync_page_io(rdev, sect, s<<9,
1562                                                 bio->bi_io_vec[idx].bv_page,
1563                                                 READ, false)) {
1564                                        success = 1;
1565                                        break;
1566                                }
1567                        }
1568                        d++;
1569                        if (d == conf->raid_disks * 2)
1570                                d = 0;
1571                } while (!success && d != r1_bio->read_disk);
1572
1573                if (!success) {
1574                        char b[BDEVNAME_SIZE];
1575                        int abort = 0;
1576                        /* Cannot read from anywhere, this block is lost.
1577                         * Record a bad block on each device.  If that doesn't
1578                         * work just disable and interrupt the recovery.
1579                         * Don't fail devices as that won't really help.
1580                         */
1581                        printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1582                               " for block %llu\n",
1583                               mdname(mddev),
1584                               bdevname(bio->bi_bdev, b),
1585                               (unsigned long long)r1_bio->sector);
1586                        for (d = 0; d < conf->raid_disks * 2; d++) {
1587                                rdev = conf->mirrors[d].rdev;
1588                                if (!rdev || test_bit(Faulty, &rdev->flags))
1589                                        continue;
1590                                if (!rdev_set_badblocks(rdev, sect, s, 0))
1591                                        abort = 1;
1592                        }
1593                        if (abort) {
1594                                conf->recovery_disabled =
1595                                        mddev->recovery_disabled;
1596                                set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1597                                md_done_sync(mddev, r1_bio->sectors, 0);
1598                                put_buf(r1_bio);
1599                                return 0;
1600                        }
1601                        /* Try next page */
1602                        sectors -= s;
1603                        sect += s;
1604                        idx++;
1605                        continue;
1606                }
1607
1608                start = d;
1609                /* write it back and re-read */
1610                while (d != r1_bio->read_disk) {
1611                        if (d == 0)
1612                                d = conf->raid_disks * 2;
1613                        d--;
1614                        if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1615                                continue;
1616                        rdev = conf->mirrors[d].rdev;
1617                        if (r1_sync_page_io(rdev, sect, s,
1618                                            bio->bi_io_vec[idx].bv_page,
1619                                            WRITE) == 0) {
1620                                r1_bio->bios[d]->bi_end_io = NULL;
1621                                rdev_dec_pending(rdev, mddev);
1622                        }
1623                }
1624                d = start;
1625                while (d != r1_bio->read_disk) {
1626                        if (d == 0)
1627                                d = conf->raid_disks * 2;
1628                        d--;
1629                        if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1630                                continue;
1631                        rdev = conf->mirrors[d].rdev;
1632                        if (r1_sync_page_io(rdev, sect, s,
1633                                            bio->bi_io_vec[idx].bv_page,
1634                                            READ) != 0)
1635                                atomic_add(s, &rdev->corrected_errors);
1636                }
1637                sectors -= s;
1638                sect += s;
1639                idx ++;
1640        }
1641        set_bit(R1BIO_Uptodate, &r1_bio->state);
1642        set_bit(BIO_UPTODATE, &bio->bi_flags);
1643        return 1;
1644}
1645
1646static int process_checks(struct r1bio *r1_bio)
1647{
1648        /* We have read all readable devices.  If we haven't
1649         * got the block, then there is no hope left.
1650         * If we have, then we want to do a comparison
1651         * and skip the write if everything is the same.
1652         * If any blocks failed to read, then we need to
1653         * attempt an over-write
1654         */
1655        struct mddev *mddev = r1_bio->mddev;
1656        struct r1conf *conf = mddev->private;
1657        int primary;
1658        int i;
1659
1660        for (primary = 0; primary < conf->raid_disks * 2; primary++)
1661                if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1662                    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1663                        r1_bio->bios[primary]->bi_end_io = NULL;
1664                        rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1665                        break;
1666                }
1667        r1_bio->read_disk = primary;
1668        for (i = 0; i < conf->raid_disks * 2; i++) {
1669                int j;
1670                int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1671                struct bio *pbio = r1_bio->bios[primary];
1672                struct bio *sbio = r1_bio->bios[i];
1673                int size;
1674
1675                if (r1_bio->bios[i]->bi_end_io != end_sync_read)
1676                        continue;
1677
1678                if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1679                        for (j = vcnt; j-- ; ) {
1680                                struct page *p, *s;
1681                                p = pbio->bi_io_vec[j].bv_page;
1682                                s = sbio->bi_io_vec[j].bv_page;
1683                                if (memcmp(page_address(p),
1684                                           page_address(s),
1685                                           PAGE_SIZE))
1686                                        break;
1687                        }
1688                } else
1689                        j = 0;
1690                if (j >= 0)
1691                        mddev->resync_mismatches += r1_bio->sectors;
1692                if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1693                              && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1694                        /* No need to write to this device. */
1695                        sbio->bi_end_io = NULL;
1696                        rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1697                        continue;
1698                }
1699                /* fixup the bio for reuse */
1700                sbio->bi_vcnt = vcnt;
1701                sbio->bi_size = r1_bio->sectors << 9;
1702                sbio->bi_idx = 0;
1703                sbio->bi_phys_segments = 0;
1704                sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1705                sbio->bi_flags |= 1 << BIO_UPTODATE;
1706                sbio->bi_next = NULL;
1707                sbio->bi_sector = r1_bio->sector +
1708                        conf->mirrors[i].rdev->data_offset;
1709                sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1710                size = sbio->bi_size;
1711                for (j = 0; j < vcnt ; j++) {
1712                        struct bio_vec *bi;
1713                        bi = &sbio->bi_io_vec[j];
1714                        bi->bv_offset = 0;
1715                        if (size > PAGE_SIZE)
1716                                bi->bv_len = PAGE_SIZE;
1717                        else
1718                                bi->bv_len = size;
1719                        size -= PAGE_SIZE;
1720                        memcpy(page_address(bi->bv_page),
1721                               page_address(pbio->bi_io_vec[j].bv_page),
1722                               PAGE_SIZE);
1723                }
1724        }
1725        return 0;
1726}
1727
1728static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
1729{
1730        struct r1conf *conf = mddev->private;
1731        int i;
1732        int disks = conf->raid_disks * 2;
1733        struct bio *bio, *wbio;
1734
1735        bio = r1_bio->bios[r1_bio->read_disk];
1736
1737        if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1738                /* ouch - failed to read all of that. */
1739                if (!fix_sync_read_error(r1_bio))
1740                        return;
1741
1742        if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1743                if (process_checks(r1_bio) < 0)
1744                        return;
1745        /*
1746         * schedule writes
1747         */
1748        atomic_set(&r1_bio->remaining, 1);
1749        for (i = 0; i < disks ; i++) {
1750                wbio = r1_bio->bios[i];
1751                if (wbio->bi_end_io == NULL ||
1752                    (wbio->bi_end_io == end_sync_read &&
1753                     (i == r1_bio->read_disk ||
1754                      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1755                        continue;
1756
1757                wbio->bi_rw = WRITE;
1758                wbio->bi_end_io = end_sync_write;
1759                atomic_inc(&r1_bio->remaining);
1760                md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1761
1762                generic_make_request(wbio);
1763        }
1764
1765        if (atomic_dec_and_test(&r1_bio->remaining)) {
1766                /* if we're here, all write(s) have completed, so clean up */
1767                md_done_sync(mddev, r1_bio->sectors, 1);
1768                put_buf(r1_bio);
1769        }
1770}
1771
1772/*
1773 * This is a kernel thread which:
1774 *
1775 *      1.      Retries failed read operations on working mirrors.
1776 *      2.      Updates the raid superblock when problems encounter.
1777 *      3.      Performs writes following reads for array synchronising.
1778 */
1779
1780static void fix_read_error(struct r1conf *conf, int read_disk,
1781                           sector_t sect, int sectors)
1782{
1783        struct mddev *mddev = conf->mddev;
1784        while(sectors) {
1785                int s = sectors;
1786                int d = read_disk;
1787                int success = 0;
1788                int start;
1789                struct md_rdev *rdev;
1790
1791                if (s > (PAGE_SIZE>>9))
1792                        s = PAGE_SIZE >> 9;
1793
1794                do {
1795                        /* Note: no rcu protection needed here
1796                         * as this is synchronous in the raid1d thread
1797                         * which is the thread that might remove
1798                         * a device.  If raid1d ever becomes multi-threaded....
1799                         */
1800                        sector_t first_bad;
1801                        int bad_sectors;
1802
1803                        rdev = conf->mirrors[d].rdev;
1804                        if (rdev &&
1805                            test_bit(In_sync, &rdev->flags) &&
1806                            is_badblock(rdev, sect, s,
1807                                        &first_bad, &bad_sectors) == 0 &&
1808                            sync_page_io(rdev, sect, s<<9,
1809                                         conf->tmppage, READ, false))
1810                                success = 1;
1811                        else {
1812                                d++;
1813                                if (d == conf->raid_disks * 2)
1814                                        d = 0;
1815                        }
1816                } while (!success && d != read_disk);
1817
1818                if (!success) {
1819                        /* Cannot read from anywhere - mark it bad */
1820                        struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
1821                        if (!rdev_set_badblocks(rdev, sect, s, 0))
1822                                md_error(mddev, rdev);
1823                        break;
1824                }
1825                /* write it back and re-read */
1826                start = d;
1827                while (d != read_disk) {
1828                        if (d==0)
1829                                d = conf->raid_disks * 2;
1830                        d--;
1831                        rdev = conf->mirrors[d].rdev;
1832                        if (rdev &&
1833                            test_bit(In_sync, &rdev->flags))
1834                                r1_sync_page_io(rdev, sect, s,
1835                                                conf->tmppage, WRITE);
1836                }
1837                d = start;
1838                while (d != read_disk) {
1839                        char b[BDEVNAME_SIZE];
1840                        if (d==0)
1841                                d = conf->raid_disks * 2;
1842                        d--;
1843                        rdev = conf->mirrors[d].rdev;
1844                        if (rdev &&
1845                            test_bit(In_sync, &rdev->flags)) {
1846                                if (r1_sync_page_io(rdev, sect, s,
1847                                                    conf->tmppage, READ)) {
1848                                        atomic_add(s, &rdev->corrected_errors);
1849                                        printk(KERN_INFO
1850                                               "md/raid1:%s: read error corrected "
1851                                               "(%d sectors at %llu on %s)\n",
1852                                               mdname(mddev), s,
1853                                               (unsigned long long)(sect +
1854                                                   rdev->data_offset),
1855                                               bdevname(rdev->bdev, b));
1856                                }
1857                        }
1858                }
1859                sectors -= s;
1860                sect += s;
1861        }
1862}
1863
1864static void bi_complete(struct bio *bio, int error)
1865{
1866        complete((struct completion *)bio->bi_private);
1867}
1868
1869static int submit_bio_wait(int rw, struct bio *bio)
1870{
1871        struct completion event;
1872        rw |= REQ_SYNC;
1873
1874        init_completion(&event);
1875        bio->bi_private = &event;
1876        bio->bi_end_io = bi_complete;
1877        submit_bio(rw, bio);
1878        wait_for_completion(&event);
1879
1880        return test_bit(BIO_UPTODATE, &bio->bi_flags);
1881}
1882
1883static int narrow_write_error(struct r1bio *r1_bio, int i)
1884{
1885        struct mddev *mddev = r1_bio->mddev;
1886        struct r1conf *conf = mddev->private;
1887        struct md_rdev *rdev = conf->mirrors[i].rdev;
1888        int vcnt, idx;
1889        struct bio_vec *vec;
1890
1891        /* bio has the data to be written to device 'i' where
1892         * we just recently had a write error.
1893         * We repeatedly clone the bio and trim down to one block,
1894         * then try the write.  Where the write fails we record
1895         * a bad block.
1896         * It is conceivable that the bio doesn't exactly align with
1897         * blocks.  We must handle this somehow.
1898         *
1899         * We currently own a reference on the rdev.
1900         */
1901
1902        int block_sectors;
1903        sector_t sector;
1904        int sectors;
1905        int sect_to_write = r1_bio->sectors;
1906        int ok = 1;
1907
1908        if (rdev->badblocks.shift < 0)
1909                return 0;
1910
1911        block_sectors = 1 << rdev->badblocks.shift;
1912        sector = r1_bio->sector;
1913        sectors = ((sector + block_sectors)
1914                   & ~(sector_t)(block_sectors - 1))
1915                - sector;
1916
1917        if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
1918                vcnt = r1_bio->behind_page_count;
1919                vec = r1_bio->behind_bvecs;
1920                idx = 0;
1921                while (vec[idx].bv_page == NULL)
1922                        idx++;
1923        } else {
1924                vcnt = r1_bio->master_bio->bi_vcnt;
1925                vec = r1_bio->master_bio->bi_io_vec;
1926                idx = r1_bio->master_bio->bi_idx;
1927        }
1928        while (sect_to_write) {
1929                struct bio *wbio;
1930                if (sectors > sect_to_write)
1931                        sectors = sect_to_write;
1932                /* Write at 'sector' for 'sectors'*/
1933
1934                wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
1935                memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
1936                wbio->bi_sector = r1_bio->sector;
1937                wbio->bi_rw = WRITE;
1938                wbio->bi_vcnt = vcnt;
1939                wbio->bi_size = r1_bio->sectors << 9;
1940                wbio->bi_idx = idx;
1941
1942                md_trim_bio(wbio, sector - r1_bio->sector, sectors);
1943                wbio->bi_sector += rdev->data_offset;
1944                wbio->bi_bdev = rdev->bdev;
1945                if (submit_bio_wait(WRITE, wbio) == 0)
1946                        /* failure! */
1947                        ok = rdev_set_badblocks(rdev, sector,
1948                                                sectors, 0)
1949                                && ok;
1950
1951                bio_put(wbio);
1952                sect_to_write -= sectors;
1953                sector += sectors;
1954                sectors = block_sectors;
1955        }
1956        return ok;
1957}
1958
1959static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
1960{
1961        int m;
1962        int s = r1_bio->sectors;
1963        for (m = 0; m < conf->raid_disks * 2 ; m++) {
1964                struct md_rdev *rdev = conf->mirrors[m].rdev;
1965                struct bio *bio = r1_bio->bios[m];
1966                if (bio->bi_end_io == NULL)
1967                        continue;
1968                if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
1969                    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
1970                        rdev_clear_badblocks(rdev, r1_bio->sector, s);
1971                }
1972                if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
1973                    test_bit(R1BIO_WriteError, &r1_bio->state)) {
1974                        if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
1975                                md_error(conf->mddev, rdev);
1976                }
1977        }
1978        put_buf(r1_bio);
1979        md_done_sync(conf->mddev, s, 1);
1980}
1981
1982static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
1983{
1984        int m;
1985        for (m = 0; m < conf->raid_disks * 2 ; m++)
1986                if (r1_bio->bios[m] == IO_MADE_GOOD) {
1987                        struct md_rdev *rdev = conf->mirrors[m].rdev;
1988                        rdev_clear_badblocks(rdev,
1989                                             r1_bio->sector,
1990                                             r1_bio->sectors);
1991                        rdev_dec_pending(rdev, conf->mddev);
1992                } else if (r1_bio->bios[m] != NULL) {
1993                        /* This drive got a write error.  We need to
1994                         * narrow down and record precise write
1995                         * errors.
1996                         */
1997                        if (!narrow_write_error(r1_bio, m)) {
1998                                md_error(conf->mddev,
1999                                         conf->mirrors[m].rdev);
2000                                /* an I/O failed, we can't clear the bitmap */
2001                                set_bit(R1BIO_Degraded, &r1_bio->state);
2002                        }
2003                        rdev_dec_pending(conf->mirrors[m].rdev,
2004                                         conf->mddev);
2005                }
2006        if (test_bit(R1BIO_WriteError, &r1_bio->state))
2007                close_write(r1_bio);
2008        raid_end_bio_io(r1_bio);
2009}
2010
2011static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2012{
2013        int disk;
2014        int max_sectors;
2015        struct mddev *mddev = conf->mddev;
2016        struct bio *bio;
2017        char b[BDEVNAME_SIZE];
2018        struct md_rdev *rdev;
2019
2020        clear_bit(R1BIO_ReadError, &r1_bio->state);
2021        /* we got a read error. Maybe the drive is bad.  Maybe just
2022         * the block and we can fix it.
2023         * We freeze all other IO, and try reading the block from
2024         * other devices.  When we find one, we re-write
2025         * and check it that fixes the read error.
2026         * This is all done synchronously while the array is
2027         * frozen
2028         */
2029        if (mddev->ro == 0) {
2030                freeze_array(conf);
2031                fix_read_error(conf, r1_bio->read_disk,
2032                               r1_bio->sector, r1_bio->sectors);
2033                unfreeze_array(conf);
2034        } else
2035                md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2036
2037        bio = r1_bio->bios[r1_bio->read_disk];
2038        bdevname(bio->bi_bdev, b);
2039read_more:
2040        disk = read_balance(conf, r1_bio, &max_sectors);
2041        if (disk == -1) {
2042                printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2043                       " read error for block %llu\n",
2044                       mdname(mddev), b, (unsigned long long)r1_bio->sector);
2045                raid_end_bio_io(r1_bio);
2046        } else {
2047                const unsigned long do_sync
2048                        = r1_bio->master_bio->bi_rw & REQ_SYNC;
2049                if (bio) {
2050                        r1_bio->bios[r1_bio->read_disk] =
2051                                mddev->ro ? IO_BLOCKED : NULL;
2052                        bio_put(bio);
2053                }
2054                r1_bio->read_disk = disk;
2055                bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2056                md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
2057                r1_bio->bios[r1_bio->read_disk] = bio;
2058                rdev = conf->mirrors[disk].rdev;
2059                printk_ratelimited(KERN_ERR
2060                                   "md/raid1:%s: redirecting sector %llu"
2061                                   " to other mirror: %s\n",
2062                                   mdname(mddev),
2063                                   (unsigned long long)r1_bio->sector,
2064                                   bdevname(rdev->bdev, b));
2065                bio->bi_sector = r1_bio->sector + rdev->data_offset;
2066                bio->bi_bdev = rdev->bdev;
2067                bio->bi_end_io = raid1_end_read_request;
2068                bio->bi_rw = READ | do_sync;
2069                bio->bi_private = r1_bio;
2070                if (max_sectors < r1_bio->sectors) {
2071                        /* Drat - have to split this up more */
2072                        struct bio *mbio = r1_bio->master_bio;
2073                        int sectors_handled = (r1_bio->sector + max_sectors
2074                                               - mbio->bi_sector);
2075                        r1_bio->sectors = max_sectors;
2076                        spin_lock_irq(&conf->device_lock);
2077                        if (mbio->bi_phys_segments == 0)
2078                                mbio->bi_phys_segments = 2;
2079                        else
2080                                mbio->bi_phys_segments++;
2081                        spin_unlock_irq(&conf->device_lock);
2082                        generic_make_request(bio);
2083                        bio = NULL;
2084
2085                        r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2086
2087                        r1_bio->master_bio = mbio;
2088                        r1_bio->sectors = (mbio->bi_size >> 9)
2089                                          - sectors_handled;
2090                        r1_bio->state = 0;
2091                        set_bit(R1BIO_ReadError, &r1_bio->state);
2092                        r1_bio->mddev = mddev;
2093                        r1_bio->sector = mbio->bi_sector + sectors_handled;
2094
2095                        goto read_more;
2096                } else
2097                        generic_make_request(bio);
2098        }
2099}
2100
2101static void raid1d(struct mddev *mddev)
2102{
2103        struct r1bio *r1_bio;
2104        unsigned long flags;
2105        struct r1conf *conf = mddev->private;
2106        struct list_head *head = &conf->retry_list;
2107        struct blk_plug plug;
2108
2109        md_check_recovery(mddev);
2110
2111        blk_start_plug(&plug);
2112        for (;;) {
2113
2114                if (atomic_read(&mddev->plug_cnt) == 0)
2115                        flush_pending_writes(conf);
2116
2117                spin_lock_irqsave(&conf->device_lock, flags);
2118                if (list_empty(head)) {
2119                        spin_unlock_irqrestore(&conf->device_lock, flags);
2120                        break;
2121                }
2122                r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2123                list_del(head->prev);
2124                conf->nr_queued--;
2125                spin_unlock_irqrestore(&conf->device_lock, flags);
2126
2127                mddev = r1_bio->mddev;
2128                conf = mddev->private;
2129                if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2130                        if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2131                            test_bit(R1BIO_WriteError, &r1_bio->state))
2132                                handle_sync_write_finished(conf, r1_bio);
2133                        else
2134                                sync_request_write(mddev, r1_bio);
2135                } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2136                           test_bit(R1BIO_WriteError, &r1_bio->state))
2137                        handle_write_finished(conf, r1_bio);
2138                else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2139                        handle_read_error(conf, r1_bio);
2140                else
2141                        /* just a partial read to be scheduled from separate
2142                         * context
2143                         */
2144                        generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2145
2146                cond_resched();
2147                if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2148                        md_check_recovery(mddev);
2149        }
2150        blk_finish_plug(&plug);
2151}
2152
2153
2154static int init_resync(struct r1conf *conf)
2155{
2156        int buffs;
2157
2158        buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2159        BUG_ON(conf->r1buf_pool);
2160        conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2161                                          conf->poolinfo);
2162        if (!conf->r1buf_pool)
2163                return -ENOMEM;
2164        conf->next_resync = 0;
2165        return 0;
2166}
2167
2168/*
2169 * perform a "sync" on one "block"
2170 *
2171 * We need to make sure that no normal I/O request - particularly write
2172 * requests - conflict with active sync requests.
2173 *
2174 * This is achieved by tracking pending requests and a 'barrier' concept
2175 * that can be installed to exclude normal IO requests.
2176 */
2177
2178static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2179{
2180        struct r1conf *conf = mddev->private;
2181        struct r1bio *r1_bio;
2182        struct bio *bio;
2183        sector_t max_sector, nr_sectors;
2184        int disk = -1;
2185        int i;
2186        int wonly = -1;
2187        int write_targets = 0, read_targets = 0;
2188        sector_t sync_blocks;
2189        int still_degraded = 0;
2190        int good_sectors = RESYNC_SECTORS;
2191        int min_bad = 0; /* number of sectors that are bad in all devices */
2192
2193        if (!conf->r1buf_pool)
2194                if (init_resync(conf))
2195                        return 0;
2196
2197        max_sector = mddev->dev_sectors;
2198        if (sector_nr >= max_sector) {
2199                /* If we aborted, we need to abort the
2200                 * sync on the 'current' bitmap chunk (there will
2201                 * only be one in raid1 resync.
2202                 * We can find the current addess in mddev->curr_resync
2203                 */
2204                if (mddev->curr_resync < max_sector) /* aborted */
2205                        bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2206                                                &sync_blocks, 1);
2207                else /* completed sync */
2208                        conf->fullsync = 0;
2209
2210                bitmap_close_sync(mddev->bitmap);
2211                close_sync(conf);
2212                return 0;
2213        }
2214
2215        if (mddev->bitmap == NULL &&
2216            mddev->recovery_cp == MaxSector &&
2217            !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2218            conf->fullsync == 0) {
2219                *skipped = 1;
2220                return max_sector - sector_nr;
2221        }
2222        /* before building a request, check if we can skip these blocks..
2223         * This call the bitmap_start_sync doesn't actually record anything
2224         */
2225        if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2226            !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2227                /* We can skip this block, and probably several more */
2228                *skipped = 1;
2229                return sync_blocks;
2230        }
2231        /*
2232         * If there is non-resync activity waiting for a turn,
2233         * and resync is going fast enough,
2234         * then let it though before starting on this new sync request.
2235         */
2236        if (!go_faster && conf->nr_waiting)
2237                msleep_interruptible(1000);
2238
2239        bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2240        r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2241        raise_barrier(conf);
2242
2243        conf->next_resync = sector_nr;
2244
2245        rcu_read_lock();
2246        /*
2247         * If we get a correctably read error during resync or recovery,
2248         * we might want to read from a different device.  So we
2249         * flag all drives that could conceivably be read from for READ,
2250         * and any others (which will be non-In_sync devices) for WRITE.
2251         * If a read fails, we try reading from something else for which READ
2252         * is OK.
2253         */
2254
2255        r1_bio->mddev = mddev;
2256        r1_bio->sector = sector_nr;
2257        r1_bio->state = 0;
2258        set_bit(R1BIO_IsSync, &r1_bio->state);
2259
2260        for (i = 0; i < conf->raid_disks * 2; i++) {
2261                struct md_rdev *rdev;
2262                bio = r1_bio->bios[i];
2263
2264                /* take from bio_init */
2265                bio->bi_next = NULL;
2266                bio->bi_flags &= ~(BIO_POOL_MASK-1);
2267                bio->bi_flags |= 1 << BIO_UPTODATE;
2268                bio->bi_rw = READ;
2269                bio->bi_vcnt = 0;
2270                bio->bi_idx = 0;
2271                bio->bi_phys_segments = 0;
2272                bio->bi_size = 0;
2273                bio->bi_end_io = NULL;
2274                bio->bi_private = NULL;
2275
2276                rdev = rcu_dereference(conf->mirrors[i].rdev);
2277                if (rdev == NULL ||
2278                    test_bit(Faulty, &rdev->flags)) {
2279                        if (i < conf->raid_disks)
2280                                still_degraded = 1;
2281                } else if (!test_bit(In_sync, &rdev->flags)) {
2282                        bio->bi_rw = WRITE;
2283                        bio->bi_end_io = end_sync_write;
2284                        write_targets ++;
2285                } else {
2286                        /* may need to read from here */
2287                        sector_t first_bad = MaxSector;
2288                        int bad_sectors;
2289
2290                        if (is_badblock(rdev, sector_nr, good_sectors,
2291                                        &first_bad, &bad_sectors)) {
2292                                if (first_bad > sector_nr)
2293                                        good_sectors = first_bad - sector_nr;
2294                                else {
2295                                        bad_sectors -= (sector_nr - first_bad);
2296                                        if (min_bad == 0 ||
2297                                            min_bad > bad_sectors)
2298                                                min_bad = bad_sectors;
2299                                }
2300                        }
2301                        if (sector_nr < first_bad) {
2302                                if (test_bit(WriteMostly, &rdev->flags)) {
2303                                        if (wonly < 0)
2304                                                wonly = i;
2305                                } else {
2306                                        if (disk < 0)
2307                                                disk = i;
2308                                }
2309                                bio->bi_rw = READ;
2310                                bio->bi_end_io = end_sync_read;
2311                                read_targets++;
2312                        }
2313                }
2314                if (bio->bi_end_io) {
2315                        atomic_inc(&rdev->nr_pending);
2316                        bio->bi_sector = sector_nr + rdev->data_offset;
2317                        bio->bi_bdev = rdev->bdev;
2318                        bio->bi_private = r1_bio;
2319                }
2320        }
2321        rcu_read_unlock();
2322        if (disk < 0)
2323                disk = wonly;
2324        r1_bio->read_disk = disk;
2325
2326        if (read_targets == 0 && min_bad > 0) {
2327                /* These sectors are bad on all InSync devices, so we
2328                 * need to mark them bad on all write targets
2329                 */
2330                int ok = 1;
2331                for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2332                        if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2333                                struct md_rdev *rdev =
2334                                        rcu_dereference(conf->mirrors[i].rdev);
2335                                ok = rdev_set_badblocks(rdev, sector_nr,
2336                                                        min_bad, 0
2337                                        ) && ok;
2338                        }
2339                set_bit(MD_CHANGE_DEVS, &mddev->flags);
2340                *skipped = 1;
2341                put_buf(r1_bio);
2342
2343                if (!ok) {
2344                        /* Cannot record the badblocks, so need to
2345                         * abort the resync.
2346                         * If there are multiple read targets, could just
2347                         * fail the really bad ones ???
2348                         */
2349                        conf->recovery_disabled = mddev->recovery_disabled;
2350                        set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2351                        return 0;
2352                } else
2353                        return min_bad;
2354
2355        }
2356        if (min_bad > 0 && min_bad < good_sectors) {
2357                /* only resync enough to reach the next bad->good
2358                 * transition */
2359                good_sectors = min_bad;
2360        }
2361
2362        if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2363                /* extra read targets are also write targets */
2364                write_targets += read_targets-1;
2365
2366        if (write_targets == 0 || read_targets == 0) {
2367                /* There is nowhere to write, so all non-sync
2368                 * drives must be failed - so we are finished
2369                 */
2370                sector_t rv = max_sector - sector_nr;
2371                *skipped = 1;
2372                put_buf(r1_bio);
2373                return rv;
2374        }
2375
2376        if (max_sector > mddev->resync_max)
2377                max_sector = mddev->resync_max; /* Don't do IO beyond here */
2378        if (max_sector > sector_nr + good_sectors)
2379                max_sector = sector_nr + good_sectors;
2380        nr_sectors = 0;
2381        sync_blocks = 0;
2382        do {
2383                struct page *page;
2384                int len = PAGE_SIZE;
2385                if (sector_nr + (len>>9) > max_sector)
2386                        len = (max_sector - sector_nr) << 9;
2387                if (len == 0)
2388                        break;
2389                if (sync_blocks == 0) {
2390                        if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2391                                               &sync_blocks, still_degraded) &&
2392                            !conf->fullsync &&
2393                            !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2394                                break;
2395                        BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2396                        if ((len >> 9) > sync_blocks)
2397                                len = sync_blocks<<9;
2398                }
2399
2400                for (i = 0 ; i < conf->raid_disks * 2; i++) {
2401                        bio = r1_bio->bios[i];
2402                        if (bio->bi_end_io) {
2403                                page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2404                                if (bio_add_page(bio, page, len, 0) == 0) {
2405                                        /* stop here */
2406                                        bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2407                                        while (i > 0) {
2408                                                i--;
2409                                                bio = r1_bio->bios[i];
2410                                                if (bio->bi_end_io==NULL)
2411                                                        continue;
2412                                                /* remove last page from this bio */
2413                                                bio->bi_vcnt--;
2414                                                bio->bi_size -= len;
2415                                                bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2416                                        }
2417                                        goto bio_full;
2418                                }
2419                        }
2420                }
2421                nr_sectors += len>>9;
2422                sector_nr += len>>9;
2423                sync_blocks -= (len>>9);
2424        } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2425 bio_full:
2426        r1_bio->sectors = nr_sectors;
2427
2428        /* For a user-requested sync, we read all readable devices and do a
2429         * compare
2430         */
2431        if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2432                atomic_set(&r1_bio->remaining, read_targets);
2433                for (i = 0; i < conf->raid_disks * 2; i++) {
2434                        bio = r1_bio->bios[i];
2435                        if (bio->bi_end_io == end_sync_read) {
2436                                md_sync_acct(bio->bi_bdev, nr_sectors);
2437                                generic_make_request(bio);
2438                        }
2439                }
2440        } else {
2441                atomic_set(&r1_bio->remaining, 1);
2442                bio = r1_bio->bios[r1_bio->read_disk];
2443                md_sync_acct(bio->bi_bdev, nr_sectors);
2444                generic_make_request(bio);
2445
2446        }
2447        return nr_sectors;
2448}
2449
2450static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2451{
2452        if (sectors)
2453                return sectors;
2454
2455        return mddev->dev_sectors;
2456}
2457
2458static struct r1conf *setup_conf(struct mddev *mddev)
2459{
2460        struct r1conf *conf;
2461        int i;
2462        struct mirror_info *disk;
2463        struct md_rdev *rdev;
2464        int err = -ENOMEM;
2465
2466        conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2467        if (!conf)
2468                goto abort;
2469
2470        conf->mirrors = kzalloc(sizeof(struct mirror_info)
2471                                * mddev->raid_disks * 2,
2472                                 GFP_KERNEL);
2473        if (!conf->mirrors)
2474                goto abort;
2475
2476        conf->tmppage = alloc_page(GFP_KERNEL);
2477        if (!conf->tmppage)
2478                goto abort;
2479
2480        conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2481        if (!conf->poolinfo)
2482                goto abort;
2483        conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2484        conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2485                                          r1bio_pool_free,
2486                                          conf->poolinfo);
2487        if (!conf->r1bio_pool)
2488                goto abort;
2489
2490        conf->poolinfo->mddev = mddev;
2491
2492        err = -EINVAL;
2493        spin_lock_init(&conf->device_lock);
2494        list_for_each_entry(rdev, &mddev->disks, same_set) {
2495                int disk_idx = rdev->raid_disk;
2496                if (disk_idx >= mddev->raid_disks
2497                    || disk_idx < 0)
2498                        continue;
2499                if (test_bit(Replacement, &rdev->flags))
2500                        disk = conf->mirrors + conf->raid_disks + disk_idx;
2501                else
2502                        disk = conf->mirrors + disk_idx;
2503
2504                if (disk->rdev)
2505                        goto abort;
2506                disk->rdev = rdev;
2507
2508                disk->head_position = 0;
2509        }
2510        conf->raid_disks = mddev->raid_disks;
2511        conf->mddev = mddev;
2512        INIT_LIST_HEAD(&conf->retry_list);
2513
2514        spin_lock_init(&conf->resync_lock);
2515        init_waitqueue_head(&conf->wait_barrier);
2516
2517        bio_list_init(&conf->pending_bio_list);
2518        conf->pending_count = 0;
2519        conf->recovery_disabled = mddev->recovery_disabled - 1;
2520
2521        err = -EIO;
2522        conf->last_used = -1;
2523        for (i = 0; i < conf->raid_disks * 2; i++) {
2524
2525                disk = conf->mirrors + i;
2526
2527                if (i < conf->raid_disks &&
2528                    disk[conf->raid_disks].rdev) {
2529                        /* This slot has a replacement. */
2530                        if (!disk->rdev) {
2531                                /* No original, just make the replacement
2532                                 * a recovering spare
2533                                 */
2534                                disk->rdev =
2535                                        disk[conf->raid_disks].rdev;
2536                                disk[conf->raid_disks].rdev = NULL;
2537                        } else if (!test_bit(In_sync, &disk->rdev->flags))
2538                                /* Original is not in_sync - bad */
2539                                goto abort;
2540                }
2541
2542                if (!disk->rdev ||
2543                    !test_bit(In_sync, &disk->rdev->flags)) {
2544                        disk->head_position = 0;
2545                        if (disk->rdev)
2546                                conf->fullsync = 1;
2547                } else if (conf->last_used < 0)
2548                        /*
2549                         * The first working device is used as a
2550                         * starting point to read balancing.
2551                         */
2552                        conf->last_used = i;
2553        }
2554
2555        if (conf->last_used < 0) {
2556                printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
2557                       mdname(mddev));
2558                goto abort;
2559        }
2560        err = -ENOMEM;
2561        conf->thread = md_register_thread(raid1d, mddev, NULL);
2562        if (!conf->thread) {
2563                printk(KERN_ERR
2564                       "md/raid1:%s: couldn't allocate thread\n",
2565                       mdname(mddev));
2566                goto abort;
2567        }
2568
2569        return conf;
2570
2571 abort:
2572        if (conf) {
2573                if (conf->r1bio_pool)
2574                        mempool_destroy(conf->r1bio_pool);
2575                kfree(conf->mirrors);
2576                safe_put_page(conf->tmppage);
2577                kfree(conf->poolinfo);
2578                kfree(conf);
2579        }
2580        return ERR_PTR(err);
2581}
2582
2583static int run(struct mddev *mddev)
2584{
2585        struct r1conf *conf;
2586        int i;
2587        struct md_rdev *rdev;
2588
2589        if (mddev->level != 1) {
2590                printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2591                       mdname(mddev), mddev->level);
2592                return -EIO;
2593        }
2594        if (mddev->reshape_position != MaxSector) {
2595                printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2596                       mdname(mddev));
2597                return -EIO;
2598        }
2599        /*
2600         * copy the already verified devices into our private RAID1
2601         * bookkeeping area. [whatever we allocate in run(),
2602         * should be freed in stop()]
2603         */
2604        if (mddev->private == NULL)
2605                conf = setup_conf(mddev);
2606        else
2607                conf = mddev->private;
2608
2609        if (IS_ERR(conf))
2610                return PTR_ERR(conf);
2611
2612        list_for_each_entry(rdev, &mddev->disks, same_set) {
2613                if (!mddev->gendisk)
2614                        continue;
2615                disk_stack_limits(mddev->gendisk, rdev->bdev,
2616                                  rdev->data_offset << 9);
2617                /* as we don't honour merge_bvec_fn, we must never risk
2618                 * violating it, so limit ->max_segments to 1 lying within
2619                 * a single page, as a one page request is never in violation.
2620                 */
2621                if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2622                        blk_queue_max_segments(mddev->queue, 1);
2623                        blk_queue_segment_boundary(mddev->queue,
2624                                                   PAGE_CACHE_SIZE - 1);
2625                }
2626        }
2627
2628        mddev->degraded = 0;
2629        for (i=0; i < conf->raid_disks; i++)
2630                if (conf->mirrors[i].rdev == NULL ||
2631                    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2632                    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2633                        mddev->degraded++;
2634
2635        if (conf->raid_disks - mddev->degraded == 1)
2636                mddev->recovery_cp = MaxSector;
2637
2638        if (mddev->recovery_cp != MaxSector)
2639                printk(KERN_NOTICE "md/raid1:%s: not clean"
2640                       " -- starting background reconstruction\n",
2641                       mdname(mddev));
2642        printk(KERN_INFO 
2643                "md/raid1:%s: active with %d out of %d mirrors\n",
2644                mdname(mddev), mddev->raid_disks - mddev->degraded, 
2645                mddev->raid_disks);
2646
2647        /*
2648         * Ok, everything is just fine now
2649         */
2650        mddev->thread = conf->thread;
2651        conf->thread = NULL;
2652        mddev->private = conf;
2653
2654        md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2655
2656        if (mddev->queue) {
2657                mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2658                mddev->queue->backing_dev_info.congested_data = mddev;
2659        }
2660        return md_integrity_register(mddev);
2661}
2662
2663static int stop(struct mddev *mddev)
2664{
2665        struct r1conf *conf = mddev->private;
2666        struct bitmap *bitmap = mddev->bitmap;
2667
2668        /* wait for behind writes to complete */
2669        if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2670                printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2671                       mdname(mddev));
2672                /* need to kick something here to make sure I/O goes? */
2673                wait_event(bitmap->behind_wait,
2674                           atomic_read(&bitmap->behind_writes) == 0);
2675        }
2676
2677        raise_barrier(conf);
2678        lower_barrier(conf);
2679
2680        md_unregister_thread(&mddev->thread);
2681        if (conf->r1bio_pool)
2682                mempool_destroy(conf->r1bio_pool);
2683        kfree(conf->mirrors);
2684        kfree(conf->poolinfo);
2685        kfree(conf);
2686        mddev->private = NULL;
2687        return 0;
2688}
2689
2690static int raid1_resize(struct mddev *mddev, sector_t sectors)
2691{
2692        /* no resync is happening, and there is enough space
2693         * on all devices, so we can resize.
2694         * We need to make sure resync covers any new space.
2695         * If the array is shrinking we should possibly wait until
2696         * any io in the removed space completes, but it hardly seems
2697         * worth it.
2698         */
2699        md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
2700        if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
2701                return -EINVAL;
2702        set_capacity(mddev->gendisk, mddev->array_sectors);
2703        revalidate_disk(mddev->gendisk);
2704        if (sectors > mddev->dev_sectors &&
2705            mddev->recovery_cp > mddev->dev_sectors) {
2706                mddev->recovery_cp = mddev->dev_sectors;
2707                set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2708        }
2709        mddev->dev_sectors = sectors;
2710        mddev->resync_max_sectors = sectors;
2711        return 0;
2712}
2713
2714static int raid1_reshape(struct mddev *mddev)
2715{
2716        /* We need to:
2717         * 1/ resize the r1bio_pool
2718         * 2/ resize conf->mirrors
2719         *
2720         * We allocate a new r1bio_pool if we can.
2721         * Then raise a device barrier and wait until all IO stops.
2722         * Then resize conf->mirrors and swap in the new r1bio pool.
2723         *
2724         * At the same time, we "pack" the devices so that all the missing
2725         * devices have the higher raid_disk numbers.
2726         */
2727        mempool_t *newpool, *oldpool;
2728        struct pool_info *newpoolinfo;
2729        struct mirror_info *newmirrors;
2730        struct r1conf *conf = mddev->private;
2731        int cnt, raid_disks;
2732        unsigned long flags;
2733        int d, d2, err;
2734
2735        /* Cannot change chunk_size, layout, or level */
2736        if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2737            mddev->layout != mddev->new_layout ||
2738            mddev->level != mddev->new_level) {
2739                mddev->new_chunk_sectors = mddev->chunk_sectors;
2740                mddev->new_layout = mddev->layout;
2741                mddev->new_level = mddev->level;
2742                return -EINVAL;
2743        }
2744
2745        err = md_allow_write(mddev);
2746        if (err)
2747                return err;
2748
2749        raid_disks = mddev->raid_disks + mddev->delta_disks;
2750
2751        if (raid_disks < conf->raid_disks) {
2752                cnt=0;
2753                for (d= 0; d < conf->raid_disks; d++)
2754                        if (conf->mirrors[d].rdev)
2755                                cnt++;
2756                if (cnt > raid_disks)
2757                        return -EBUSY;
2758        }
2759
2760        newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2761        if (!newpoolinfo)
2762                return -ENOMEM;
2763        newpoolinfo->mddev = mddev;
2764        newpoolinfo->raid_disks = raid_disks * 2;
2765
2766        newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2767                                 r1bio_pool_free, newpoolinfo);
2768        if (!newpool) {
2769                kfree(newpoolinfo);
2770                return -ENOMEM;
2771        }
2772        newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks * 2,
2773                             GFP_KERNEL);
2774        if (!newmirrors) {
2775                kfree(newpoolinfo);
2776                mempool_destroy(newpool);
2777                return -ENOMEM;
2778        }
2779
2780        raise_barrier(conf);
2781
2782        /* ok, everything is stopped */
2783        oldpool = conf->r1bio_pool;
2784        conf->r1bio_pool = newpool;
2785
2786        for (d = d2 = 0; d < conf->raid_disks; d++) {
2787                struct md_rdev *rdev = conf->mirrors[d].rdev;
2788                if (rdev && rdev->raid_disk != d2) {
2789                        sysfs_unlink_rdev(mddev, rdev);
2790                        rdev->raid_disk = d2;
2791                        sysfs_unlink_rdev(mddev, rdev);
2792                        if (sysfs_link_rdev(mddev, rdev))
2793                                printk(KERN_WARNING
2794                                       "md/raid1:%s: cannot register rd%d\n",
2795                                       mdname(mddev), rdev->raid_disk);
2796                }
2797                if (rdev)
2798                        newmirrors[d2++].rdev = rdev;
2799        }
2800        kfree(conf->mirrors);
2801        conf->mirrors = newmirrors;
2802        kfree(conf->poolinfo);
2803        conf->poolinfo = newpoolinfo;
2804
2805        spin_lock_irqsave(&conf->device_lock, flags);
2806        mddev->degraded += (raid_disks - conf->raid_disks);
2807        spin_unlock_irqrestore(&conf->device_lock, flags);
2808        conf->raid_disks = mddev->raid_disks = raid_disks;
2809        mddev->delta_disks = 0;
2810
2811        conf->last_used = 0; /* just make sure it is in-range */
2812        lower_barrier(conf);
2813
2814        set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2815        md_wakeup_thread(mddev->thread);
2816
2817        mempool_destroy(oldpool);
2818        return 0;
2819}
2820
2821static void raid1_quiesce(struct mddev *mddev, int state)
2822{
2823        struct r1conf *conf = mddev->private;
2824
2825        switch(state) {
2826        case 2: /* wake for suspend */
2827                wake_up(&conf->wait_barrier);
2828                break;
2829        case 1:
2830                raise_barrier(conf);
2831                break;
2832        case 0:
2833                lower_barrier(conf);
2834                break;
2835        }
2836}
2837
2838static void *raid1_takeover(struct mddev *mddev)
2839{
2840        /* raid1 can take over:
2841         *  raid5 with 2 devices, any layout or chunk size
2842         */
2843        if (mddev->level == 5 && mddev->raid_disks == 2) {
2844                struct r1conf *conf;
2845                mddev->new_level = 1;
2846                mddev->new_layout = 0;
2847                mddev->new_chunk_sectors = 0;
2848                conf = setup_conf(mddev);
2849                if (!IS_ERR(conf))
2850                        conf->barrier = 1;
2851                return conf;
2852        }
2853        return ERR_PTR(-EINVAL);
2854}
2855
2856static struct md_personality raid1_personality =
2857{
2858        .name           = "raid1",
2859        .level          = 1,
2860        .owner          = THIS_MODULE,
2861        .make_request   = make_request,
2862        .run            = run,
2863        .stop           = stop,
2864        .status         = status,
2865        .error_handler  = error,
2866        .hot_add_disk   = raid1_add_disk,
2867        .hot_remove_disk= raid1_remove_disk,
2868        .spare_active   = raid1_spare_active,
2869        .sync_request   = sync_request,
2870        .resize         = raid1_resize,
2871        .size           = raid1_size,
2872        .check_reshape  = raid1_reshape,
2873        .quiesce        = raid1_quiesce,
2874        .takeover       = raid1_takeover,
2875};
2876
2877static int __init raid_init(void)
2878{
2879        return register_md_personality(&raid1_personality);
2880}
2881
2882static void raid_exit(void)
2883{
2884        unregister_md_personality(&raid1_personality);
2885}
2886
2887module_init(raid_init);
2888module_exit(raid_exit);
2889MODULE_LICENSE("GPL");
2890MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2891MODULE_ALIAS("md-personality-3"); /* RAID1 */
2892MODULE_ALIAS("md-raid1");
2893MODULE_ALIAS("md-level-1");
2894
2895module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
2896