linux/drivers/mtd/nand/davinci_nand.c
<<
>>
Prefs
   1/*
   2 * davinci_nand.c - NAND Flash Driver for DaVinci family chips
   3 *
   4 * Copyright © 2006 Texas Instruments.
   5 *
   6 * Port to 2.6.23 Copyright © 2008 by:
   7 *   Sander Huijsen <Shuijsen@optelecom-nkf.com>
   8 *   Troy Kisky <troy.kisky@boundarydevices.com>
   9 *   Dirk Behme <Dirk.Behme@gmail.com>
  10 *
  11 * This program is free software; you can redistribute it and/or modify
  12 * it under the terms of the GNU General Public License as published by
  13 * the Free Software Foundation; either version 2 of the License, or
  14 * (at your option) any later version.
  15 *
  16 * This program is distributed in the hope that it will be useful,
  17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  19 * GNU General Public License for more details.
  20 *
  21 * You should have received a copy of the GNU General Public License
  22 * along with this program; if not, write to the Free Software
  23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  24 */
  25
  26#include <linux/kernel.h>
  27#include <linux/init.h>
  28#include <linux/module.h>
  29#include <linux/platform_device.h>
  30#include <linux/err.h>
  31#include <linux/clk.h>
  32#include <linux/io.h>
  33#include <linux/mtd/nand.h>
  34#include <linux/mtd/partitions.h>
  35#include <linux/slab.h>
  36
  37#include <mach/nand.h>
  38#include <mach/aemif.h>
  39
  40/*
  41 * This is a device driver for the NAND flash controller found on the
  42 * various DaVinci family chips.  It handles up to four SoC chipselects,
  43 * and some flavors of secondary chipselect (e.g. based on A12) as used
  44 * with multichip packages.
  45 *
  46 * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
  47 * available on chips like the DM355 and OMAP-L137 and needed with the
  48 * more error-prone MLC NAND chips.
  49 *
  50 * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
  51 * outputs in a "wire-AND" configuration, with no per-chip signals.
  52 */
  53struct davinci_nand_info {
  54        struct mtd_info         mtd;
  55        struct nand_chip        chip;
  56        struct nand_ecclayout   ecclayout;
  57
  58        struct device           *dev;
  59        struct clk              *clk;
  60
  61        bool                    is_readmode;
  62
  63        void __iomem            *base;
  64        void __iomem            *vaddr;
  65
  66        uint32_t                ioaddr;
  67        uint32_t                current_cs;
  68
  69        uint32_t                mask_chipsel;
  70        uint32_t                mask_ale;
  71        uint32_t                mask_cle;
  72
  73        uint32_t                core_chipsel;
  74
  75        struct davinci_aemif_timing     *timing;
  76};
  77
  78static DEFINE_SPINLOCK(davinci_nand_lock);
  79static bool ecc4_busy;
  80
  81#define to_davinci_nand(m) container_of(m, struct davinci_nand_info, mtd)
  82
  83
  84static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info,
  85                int offset)
  86{
  87        return __raw_readl(info->base + offset);
  88}
  89
  90static inline void davinci_nand_writel(struct davinci_nand_info *info,
  91                int offset, unsigned long value)
  92{
  93        __raw_writel(value, info->base + offset);
  94}
  95
  96/*----------------------------------------------------------------------*/
  97
  98/*
  99 * Access to hardware control lines:  ALE, CLE, secondary chipselect.
 100 */
 101
 102static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd,
 103                                   unsigned int ctrl)
 104{
 105        struct davinci_nand_info        *info = to_davinci_nand(mtd);
 106        uint32_t                        addr = info->current_cs;
 107        struct nand_chip                *nand = mtd->priv;
 108
 109        /* Did the control lines change? */
 110        if (ctrl & NAND_CTRL_CHANGE) {
 111                if ((ctrl & NAND_CTRL_CLE) == NAND_CTRL_CLE)
 112                        addr |= info->mask_cle;
 113                else if ((ctrl & NAND_CTRL_ALE) == NAND_CTRL_ALE)
 114                        addr |= info->mask_ale;
 115
 116                nand->IO_ADDR_W = (void __iomem __force *)addr;
 117        }
 118
 119        if (cmd != NAND_CMD_NONE)
 120                iowrite8(cmd, nand->IO_ADDR_W);
 121}
 122
 123static void nand_davinci_select_chip(struct mtd_info *mtd, int chip)
 124{
 125        struct davinci_nand_info        *info = to_davinci_nand(mtd);
 126        uint32_t                        addr = info->ioaddr;
 127
 128        /* maybe kick in a second chipselect */
 129        if (chip > 0)
 130                addr |= info->mask_chipsel;
 131        info->current_cs = addr;
 132
 133        info->chip.IO_ADDR_W = (void __iomem __force *)addr;
 134        info->chip.IO_ADDR_R = info->chip.IO_ADDR_W;
 135}
 136
 137/*----------------------------------------------------------------------*/
 138
 139/*
 140 * 1-bit hardware ECC ... context maintained for each core chipselect
 141 */
 142
 143static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd)
 144{
 145        struct davinci_nand_info *info = to_davinci_nand(mtd);
 146
 147        return davinci_nand_readl(info, NANDF1ECC_OFFSET
 148                        + 4 * info->core_chipsel);
 149}
 150
 151static void nand_davinci_hwctl_1bit(struct mtd_info *mtd, int mode)
 152{
 153        struct davinci_nand_info *info;
 154        uint32_t nandcfr;
 155        unsigned long flags;
 156
 157        info = to_davinci_nand(mtd);
 158
 159        /* Reset ECC hardware */
 160        nand_davinci_readecc_1bit(mtd);
 161
 162        spin_lock_irqsave(&davinci_nand_lock, flags);
 163
 164        /* Restart ECC hardware */
 165        nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET);
 166        nandcfr |= BIT(8 + info->core_chipsel);
 167        davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr);
 168
 169        spin_unlock_irqrestore(&davinci_nand_lock, flags);
 170}
 171
 172/*
 173 * Read hardware ECC value and pack into three bytes
 174 */
 175static int nand_davinci_calculate_1bit(struct mtd_info *mtd,
 176                                      const u_char *dat, u_char *ecc_code)
 177{
 178        unsigned int ecc_val = nand_davinci_readecc_1bit(mtd);
 179        unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);
 180
 181        /* invert so that erased block ecc is correct */
 182        ecc24 = ~ecc24;
 183        ecc_code[0] = (u_char)(ecc24);
 184        ecc_code[1] = (u_char)(ecc24 >> 8);
 185        ecc_code[2] = (u_char)(ecc24 >> 16);
 186
 187        return 0;
 188}
 189
 190static int nand_davinci_correct_1bit(struct mtd_info *mtd, u_char *dat,
 191                                     u_char *read_ecc, u_char *calc_ecc)
 192{
 193        struct nand_chip *chip = mtd->priv;
 194        uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
 195                                          (read_ecc[2] << 16);
 196        uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
 197                                          (calc_ecc[2] << 16);
 198        uint32_t diff = eccCalc ^ eccNand;
 199
 200        if (diff) {
 201                if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
 202                        /* Correctable error */
 203                        if ((diff >> (12 + 3)) < chip->ecc.size) {
 204                                dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7);
 205                                return 1;
 206                        } else {
 207                                return -1;
 208                        }
 209                } else if (!(diff & (diff - 1))) {
 210                        /* Single bit ECC error in the ECC itself,
 211                         * nothing to fix */
 212                        return 1;
 213                } else {
 214                        /* Uncorrectable error */
 215                        return -1;
 216                }
 217
 218        }
 219        return 0;
 220}
 221
 222/*----------------------------------------------------------------------*/
 223
 224/*
 225 * 4-bit hardware ECC ... context maintained over entire AEMIF
 226 *
 227 * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME
 228 * since that forces use of a problematic "infix OOB" layout.
 229 * Among other things, it trashes manufacturer bad block markers.
 230 * Also, and specific to this hardware, it ECC-protects the "prepad"
 231 * in the OOB ... while having ECC protection for parts of OOB would
 232 * seem useful, the current MTD stack sometimes wants to update the
 233 * OOB without recomputing ECC.
 234 */
 235
 236static void nand_davinci_hwctl_4bit(struct mtd_info *mtd, int mode)
 237{
 238        struct davinci_nand_info *info = to_davinci_nand(mtd);
 239        unsigned long flags;
 240        u32 val;
 241
 242        spin_lock_irqsave(&davinci_nand_lock, flags);
 243
 244        /* Start 4-bit ECC calculation for read/write */
 245        val = davinci_nand_readl(info, NANDFCR_OFFSET);
 246        val &= ~(0x03 << 4);
 247        val |= (info->core_chipsel << 4) | BIT(12);
 248        davinci_nand_writel(info, NANDFCR_OFFSET, val);
 249
 250        info->is_readmode = (mode == NAND_ECC_READ);
 251
 252        spin_unlock_irqrestore(&davinci_nand_lock, flags);
 253}
 254
 255/* Read raw ECC code after writing to NAND. */
 256static void
 257nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
 258{
 259        const u32 mask = 0x03ff03ff;
 260
 261        code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
 262        code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
 263        code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
 264        code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
 265}
 266
 267/* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
 268static int nand_davinci_calculate_4bit(struct mtd_info *mtd,
 269                const u_char *dat, u_char *ecc_code)
 270{
 271        struct davinci_nand_info *info = to_davinci_nand(mtd);
 272        u32 raw_ecc[4], *p;
 273        unsigned i;
 274
 275        /* After a read, terminate ECC calculation by a dummy read
 276         * of some 4-bit ECC register.  ECC covers everything that
 277         * was read; correct() just uses the hardware state, so
 278         * ecc_code is not needed.
 279         */
 280        if (info->is_readmode) {
 281                davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
 282                return 0;
 283        }
 284
 285        /* Pack eight raw 10-bit ecc values into ten bytes, making
 286         * two passes which each convert four values (in upper and
 287         * lower halves of two 32-bit words) into five bytes.  The
 288         * ROM boot loader uses this same packing scheme.
 289         */
 290        nand_davinci_readecc_4bit(info, raw_ecc);
 291        for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
 292                *ecc_code++ =   p[0]        & 0xff;
 293                *ecc_code++ = ((p[0] >>  8) & 0x03) | ((p[0] >> 14) & 0xfc);
 294                *ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] <<  4) & 0xf0);
 295                *ecc_code++ = ((p[1] >>  4) & 0x3f) | ((p[1] >> 10) & 0xc0);
 296                *ecc_code++ =  (p[1] >> 18) & 0xff;
 297        }
 298
 299        return 0;
 300}
 301
 302/* Correct up to 4 bits in data we just read, using state left in the
 303 * hardware plus the ecc_code computed when it was first written.
 304 */
 305static int nand_davinci_correct_4bit(struct mtd_info *mtd,
 306                u_char *data, u_char *ecc_code, u_char *null)
 307{
 308        int i;
 309        struct davinci_nand_info *info = to_davinci_nand(mtd);
 310        unsigned short ecc10[8];
 311        unsigned short *ecc16;
 312        u32 syndrome[4];
 313        u32 ecc_state;
 314        unsigned num_errors, corrected;
 315        unsigned long timeo;
 316
 317        /* All bytes 0xff?  It's an erased page; ignore its ECC. */
 318        for (i = 0; i < 10; i++) {
 319                if (ecc_code[i] != 0xff)
 320                        goto compare;
 321        }
 322        return 0;
 323
 324compare:
 325        /* Unpack ten bytes into eight 10 bit values.  We know we're
 326         * little-endian, and use type punning for less shifting/masking.
 327         */
 328        if (WARN_ON(0x01 & (unsigned) ecc_code))
 329                return -EINVAL;
 330        ecc16 = (unsigned short *)ecc_code;
 331
 332        ecc10[0] =  (ecc16[0] >>  0) & 0x3ff;
 333        ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
 334        ecc10[2] =  (ecc16[1] >>  4) & 0x3ff;
 335        ecc10[3] = ((ecc16[1] >> 14) & 0x3)  | ((ecc16[2] << 2) & 0x3fc);
 336        ecc10[4] =  (ecc16[2] >>  8)         | ((ecc16[3] << 8) & 0x300);
 337        ecc10[5] =  (ecc16[3] >>  2) & 0x3ff;
 338        ecc10[6] = ((ecc16[3] >> 12) & 0xf)  | ((ecc16[4] << 4) & 0x3f0);
 339        ecc10[7] =  (ecc16[4] >>  6) & 0x3ff;
 340
 341        /* Tell ECC controller about the expected ECC codes. */
 342        for (i = 7; i >= 0; i--)
 343                davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]);
 344
 345        /* Allow time for syndrome calculation ... then read it.
 346         * A syndrome of all zeroes 0 means no detected errors.
 347         */
 348        davinci_nand_readl(info, NANDFSR_OFFSET);
 349        nand_davinci_readecc_4bit(info, syndrome);
 350        if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
 351                return 0;
 352
 353        /*
 354         * Clear any previous address calculation by doing a dummy read of an
 355         * error address register.
 356         */
 357        davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET);
 358
 359        /* Start address calculation, and wait for it to complete.
 360         * We _could_ start reading more data while this is working,
 361         * to speed up the overall page read.
 362         */
 363        davinci_nand_writel(info, NANDFCR_OFFSET,
 364                        davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
 365
 366        /*
 367         * ECC_STATE field reads 0x3 (Error correction complete) immediately
 368         * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately
 369         * begin trying to poll for the state, you may fall right out of your
 370         * loop without any of the correction calculations having taken place.
 371         * The recommendation from the hardware team is to initially delay as
 372         * long as ECC_STATE reads less than 4. After that, ECC HW has entered
 373         * correction state.
 374         */
 375        timeo = jiffies + usecs_to_jiffies(100);
 376        do {
 377                ecc_state = (davinci_nand_readl(info,
 378                                NANDFSR_OFFSET) >> 8) & 0x0f;
 379                cpu_relax();
 380        } while ((ecc_state < 4) && time_before(jiffies, timeo));
 381
 382        for (;;) {
 383                u32     fsr = davinci_nand_readl(info, NANDFSR_OFFSET);
 384
 385                switch ((fsr >> 8) & 0x0f) {
 386                case 0:         /* no error, should not happen */
 387                        davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
 388                        return 0;
 389                case 1:         /* five or more errors detected */
 390                        davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
 391                        return -EIO;
 392                case 2:         /* error addresses computed */
 393                case 3:
 394                        num_errors = 1 + ((fsr >> 16) & 0x03);
 395                        goto correct;
 396                default:        /* still working on it */
 397                        cpu_relax();
 398                        continue;
 399                }
 400        }
 401
 402correct:
 403        /* correct each error */
 404        for (i = 0, corrected = 0; i < num_errors; i++) {
 405                int error_address, error_value;
 406
 407                if (i > 1) {
 408                        error_address = davinci_nand_readl(info,
 409                                                NAND_ERR_ADD2_OFFSET);
 410                        error_value = davinci_nand_readl(info,
 411                                                NAND_ERR_ERRVAL2_OFFSET);
 412                } else {
 413                        error_address = davinci_nand_readl(info,
 414                                                NAND_ERR_ADD1_OFFSET);
 415                        error_value = davinci_nand_readl(info,
 416                                                NAND_ERR_ERRVAL1_OFFSET);
 417                }
 418
 419                if (i & 1) {
 420                        error_address >>= 16;
 421                        error_value >>= 16;
 422                }
 423                error_address &= 0x3ff;
 424                error_address = (512 + 7) - error_address;
 425
 426                if (error_address < 512) {
 427                        data[error_address] ^= error_value;
 428                        corrected++;
 429                }
 430        }
 431
 432        return corrected;
 433}
 434
 435/*----------------------------------------------------------------------*/
 436
 437/*
 438 * NOTE:  NAND boot requires ALE == EM_A[1], CLE == EM_A[2], so that's
 439 * how these chips are normally wired.  This translates to both 8 and 16
 440 * bit busses using ALE == BIT(3) in byte addresses, and CLE == BIT(4).
 441 *
 442 * For now we assume that configuration, or any other one which ignores
 443 * the two LSBs for NAND access ... so we can issue 32-bit reads/writes
 444 * and have that transparently morphed into multiple NAND operations.
 445 */
 446static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
 447{
 448        struct nand_chip *chip = mtd->priv;
 449
 450        if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
 451                ioread32_rep(chip->IO_ADDR_R, buf, len >> 2);
 452        else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
 453                ioread16_rep(chip->IO_ADDR_R, buf, len >> 1);
 454        else
 455                ioread8_rep(chip->IO_ADDR_R, buf, len);
 456}
 457
 458static void nand_davinci_write_buf(struct mtd_info *mtd,
 459                const uint8_t *buf, int len)
 460{
 461        struct nand_chip *chip = mtd->priv;
 462
 463        if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
 464                iowrite32_rep(chip->IO_ADDR_R, buf, len >> 2);
 465        else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
 466                iowrite16_rep(chip->IO_ADDR_R, buf, len >> 1);
 467        else
 468                iowrite8_rep(chip->IO_ADDR_R, buf, len);
 469}
 470
 471/*
 472 * Check hardware register for wait status. Returns 1 if device is ready,
 473 * 0 if it is still busy.
 474 */
 475static int nand_davinci_dev_ready(struct mtd_info *mtd)
 476{
 477        struct davinci_nand_info *info = to_davinci_nand(mtd);
 478
 479        return davinci_nand_readl(info, NANDFSR_OFFSET) & BIT(0);
 480}
 481
 482/*----------------------------------------------------------------------*/
 483
 484/* An ECC layout for using 4-bit ECC with small-page flash, storing
 485 * ten ECC bytes plus the manufacturer's bad block marker byte, and
 486 * and not overlapping the default BBT markers.
 487 */
 488static struct nand_ecclayout hwecc4_small __initconst = {
 489        .eccbytes = 10,
 490        .eccpos = { 0, 1, 2, 3, 4,
 491                /* offset 5 holds the badblock marker */
 492                6, 7,
 493                13, 14, 15, },
 494        .oobfree = {
 495                {.offset = 8, .length = 5, },
 496                {.offset = 16, },
 497        },
 498};
 499
 500/* An ECC layout for using 4-bit ECC with large-page (2048bytes) flash,
 501 * storing ten ECC bytes plus the manufacturer's bad block marker byte,
 502 * and not overlapping the default BBT markers.
 503 */
 504static struct nand_ecclayout hwecc4_2048 __initconst = {
 505        .eccbytes = 40,
 506        .eccpos = {
 507                /* at the end of spare sector */
 508                24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
 509                34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
 510                44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
 511                54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
 512                },
 513        .oobfree = {
 514                /* 2 bytes at offset 0 hold manufacturer badblock markers */
 515                {.offset = 2, .length = 22, },
 516                /* 5 bytes at offset 8 hold BBT markers */
 517                /* 8 bytes at offset 16 hold JFFS2 clean markers */
 518        },
 519};
 520
 521static int __init nand_davinci_probe(struct platform_device *pdev)
 522{
 523        struct davinci_nand_pdata       *pdata = pdev->dev.platform_data;
 524        struct davinci_nand_info        *info;
 525        struct resource                 *res1;
 526        struct resource                 *res2;
 527        void __iomem                    *vaddr;
 528        void __iomem                    *base;
 529        int                             ret;
 530        uint32_t                        val;
 531        nand_ecc_modes_t                ecc_mode;
 532
 533        /* insist on board-specific configuration */
 534        if (!pdata)
 535                return -ENODEV;
 536
 537        /* which external chipselect will we be managing? */
 538        if (pdev->id < 0 || pdev->id > 3)
 539                return -ENODEV;
 540
 541        info = kzalloc(sizeof(*info), GFP_KERNEL);
 542        if (!info) {
 543                dev_err(&pdev->dev, "unable to allocate memory\n");
 544                ret = -ENOMEM;
 545                goto err_nomem;
 546        }
 547
 548        platform_set_drvdata(pdev, info);
 549
 550        res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 551        res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
 552        if (!res1 || !res2) {
 553                dev_err(&pdev->dev, "resource missing\n");
 554                ret = -EINVAL;
 555                goto err_nomem;
 556        }
 557
 558        vaddr = ioremap(res1->start, resource_size(res1));
 559        base = ioremap(res2->start, resource_size(res2));
 560        if (!vaddr || !base) {
 561                dev_err(&pdev->dev, "ioremap failed\n");
 562                ret = -EINVAL;
 563                goto err_ioremap;
 564        }
 565
 566        info->dev               = &pdev->dev;
 567        info->base              = base;
 568        info->vaddr             = vaddr;
 569
 570        info->mtd.priv          = &info->chip;
 571        info->mtd.name          = dev_name(&pdev->dev);
 572        info->mtd.owner         = THIS_MODULE;
 573
 574        info->mtd.dev.parent    = &pdev->dev;
 575
 576        info->chip.IO_ADDR_R    = vaddr;
 577        info->chip.IO_ADDR_W    = vaddr;
 578        info->chip.chip_delay   = 0;
 579        info->chip.select_chip  = nand_davinci_select_chip;
 580
 581        /* options such as NAND_BBT_USE_FLASH */
 582        info->chip.bbt_options  = pdata->bbt_options;
 583        /* options such as 16-bit widths */
 584        info->chip.options      = pdata->options;
 585        info->chip.bbt_td       = pdata->bbt_td;
 586        info->chip.bbt_md       = pdata->bbt_md;
 587        info->timing            = pdata->timing;
 588
 589        info->ioaddr            = (uint32_t __force) vaddr;
 590
 591        info->current_cs        = info->ioaddr;
 592        info->core_chipsel      = pdev->id;
 593        info->mask_chipsel      = pdata->mask_chipsel;
 594
 595        /* use nandboot-capable ALE/CLE masks by default */
 596        info->mask_ale          = pdata->mask_ale ? : MASK_ALE;
 597        info->mask_cle          = pdata->mask_cle ? : MASK_CLE;
 598
 599        /* Set address of hardware control function */
 600        info->chip.cmd_ctrl     = nand_davinci_hwcontrol;
 601        info->chip.dev_ready    = nand_davinci_dev_ready;
 602
 603        /* Speed up buffer I/O */
 604        info->chip.read_buf     = nand_davinci_read_buf;
 605        info->chip.write_buf    = nand_davinci_write_buf;
 606
 607        /* Use board-specific ECC config */
 608        ecc_mode                = pdata->ecc_mode;
 609
 610        ret = -EINVAL;
 611        switch (ecc_mode) {
 612        case NAND_ECC_NONE:
 613        case NAND_ECC_SOFT:
 614                pdata->ecc_bits = 0;
 615                break;
 616        case NAND_ECC_HW:
 617                if (pdata->ecc_bits == 4) {
 618                        /* No sanity checks:  CPUs must support this,
 619                         * and the chips may not use NAND_BUSWIDTH_16.
 620                         */
 621
 622                        /* No sharing 4-bit hardware between chipselects yet */
 623                        spin_lock_irq(&davinci_nand_lock);
 624                        if (ecc4_busy)
 625                                ret = -EBUSY;
 626                        else
 627                                ecc4_busy = true;
 628                        spin_unlock_irq(&davinci_nand_lock);
 629
 630                        if (ret == -EBUSY)
 631                                goto err_ecc;
 632
 633                        info->chip.ecc.calculate = nand_davinci_calculate_4bit;
 634                        info->chip.ecc.correct = nand_davinci_correct_4bit;
 635                        info->chip.ecc.hwctl = nand_davinci_hwctl_4bit;
 636                        info->chip.ecc.bytes = 10;
 637                } else {
 638                        info->chip.ecc.calculate = nand_davinci_calculate_1bit;
 639                        info->chip.ecc.correct = nand_davinci_correct_1bit;
 640                        info->chip.ecc.hwctl = nand_davinci_hwctl_1bit;
 641                        info->chip.ecc.bytes = 3;
 642                }
 643                info->chip.ecc.size = 512;
 644                break;
 645        default:
 646                ret = -EINVAL;
 647                goto err_ecc;
 648        }
 649        info->chip.ecc.mode = ecc_mode;
 650
 651        info->clk = clk_get(&pdev->dev, "aemif");
 652        if (IS_ERR(info->clk)) {
 653                ret = PTR_ERR(info->clk);
 654                dev_dbg(&pdev->dev, "unable to get AEMIF clock, err %d\n", ret);
 655                goto err_clk;
 656        }
 657
 658        ret = clk_enable(info->clk);
 659        if (ret < 0) {
 660                dev_dbg(&pdev->dev, "unable to enable AEMIF clock, err %d\n",
 661                        ret);
 662                goto err_clk_enable;
 663        }
 664
 665        /*
 666         * Setup Async configuration register in case we did not boot from
 667         * NAND and so bootloader did not bother to set it up.
 668         */
 669        val = davinci_nand_readl(info, A1CR_OFFSET + info->core_chipsel * 4);
 670
 671        /* Extended Wait is not valid and Select Strobe mode is not used */
 672        val &= ~(ACR_ASIZE_MASK | ACR_EW_MASK | ACR_SS_MASK);
 673        if (info->chip.options & NAND_BUSWIDTH_16)
 674                val |= 0x1;
 675
 676        davinci_nand_writel(info, A1CR_OFFSET + info->core_chipsel * 4, val);
 677
 678        ret = 0;
 679        if (info->timing)
 680                ret = davinci_aemif_setup_timing(info->timing, info->base,
 681                                                        info->core_chipsel);
 682        if (ret < 0) {
 683                dev_dbg(&pdev->dev, "NAND timing values setup fail\n");
 684                goto err_timing;
 685        }
 686
 687        spin_lock_irq(&davinci_nand_lock);
 688
 689        /* put CSxNAND into NAND mode */
 690        val = davinci_nand_readl(info, NANDFCR_OFFSET);
 691        val |= BIT(info->core_chipsel);
 692        davinci_nand_writel(info, NANDFCR_OFFSET, val);
 693
 694        spin_unlock_irq(&davinci_nand_lock);
 695
 696        /* Scan to find existence of the device(s) */
 697        ret = nand_scan_ident(&info->mtd, pdata->mask_chipsel ? 2 : 1, NULL);
 698        if (ret < 0) {
 699                dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
 700                goto err_scan;
 701        }
 702
 703        /* Update ECC layout if needed ... for 1-bit HW ECC, the default
 704         * is OK, but it allocates 6 bytes when only 3 are needed (for
 705         * each 512 bytes).  For the 4-bit HW ECC, that default is not
 706         * usable:  10 bytes are needed, not 6.
 707         */
 708        if (pdata->ecc_bits == 4) {
 709                int     chunks = info->mtd.writesize / 512;
 710
 711                if (!chunks || info->mtd.oobsize < 16) {
 712                        dev_dbg(&pdev->dev, "too small\n");
 713                        ret = -EINVAL;
 714                        goto err_scan;
 715                }
 716
 717                /* For small page chips, preserve the manufacturer's
 718                 * badblock marking data ... and make sure a flash BBT
 719                 * table marker fits in the free bytes.
 720                 */
 721                if (chunks == 1) {
 722                        info->ecclayout = hwecc4_small;
 723                        info->ecclayout.oobfree[1].length =
 724                                info->mtd.oobsize - 16;
 725                        goto syndrome_done;
 726                }
 727                if (chunks == 4) {
 728                        info->ecclayout = hwecc4_2048;
 729                        info->chip.ecc.mode = NAND_ECC_HW_OOB_FIRST;
 730                        goto syndrome_done;
 731                }
 732
 733                /* 4KiB page chips are not yet supported. The eccpos from
 734                 * nand_ecclayout cannot hold 80 bytes and change to eccpos[]
 735                 * breaks userspace ioctl interface with mtd-utils. Once we
 736                 * resolve this issue, NAND_ECC_HW_OOB_FIRST mode can be used
 737                 * for the 4KiB page chips.
 738                 *
 739                 * TODO: Note that nand_ecclayout has now been expanded and can
 740                 *  hold plenty of OOB entries.
 741                 */
 742                dev_warn(&pdev->dev, "no 4-bit ECC support yet "
 743                                "for 4KiB-page NAND\n");
 744                ret = -EIO;
 745                goto err_scan;
 746
 747syndrome_done:
 748                info->chip.ecc.layout = &info->ecclayout;
 749        }
 750
 751        ret = nand_scan_tail(&info->mtd);
 752        if (ret < 0)
 753                goto err_scan;
 754
 755        ret = mtd_device_parse_register(&info->mtd, NULL, 0,
 756                        pdata->parts, pdata->nr_parts);
 757
 758        if (ret < 0)
 759                goto err_scan;
 760
 761        val = davinci_nand_readl(info, NRCSR_OFFSET);
 762        dev_info(&pdev->dev, "controller rev. %d.%d\n",
 763               (val >> 8) & 0xff, val & 0xff);
 764
 765        return 0;
 766
 767err_scan:
 768err_timing:
 769        clk_disable(info->clk);
 770
 771err_clk_enable:
 772        clk_put(info->clk);
 773
 774        spin_lock_irq(&davinci_nand_lock);
 775        if (ecc_mode == NAND_ECC_HW_SYNDROME)
 776                ecc4_busy = false;
 777        spin_unlock_irq(&davinci_nand_lock);
 778
 779err_ecc:
 780err_clk:
 781err_ioremap:
 782        if (base)
 783                iounmap(base);
 784        if (vaddr)
 785                iounmap(vaddr);
 786
 787err_nomem:
 788        kfree(info);
 789        return ret;
 790}
 791
 792static int __exit nand_davinci_remove(struct platform_device *pdev)
 793{
 794        struct davinci_nand_info *info = platform_get_drvdata(pdev);
 795
 796        spin_lock_irq(&davinci_nand_lock);
 797        if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME)
 798                ecc4_busy = false;
 799        spin_unlock_irq(&davinci_nand_lock);
 800
 801        iounmap(info->base);
 802        iounmap(info->vaddr);
 803
 804        nand_release(&info->mtd);
 805
 806        clk_disable(info->clk);
 807        clk_put(info->clk);
 808
 809        kfree(info);
 810
 811        return 0;
 812}
 813
 814static struct platform_driver nand_davinci_driver = {
 815        .remove         = __exit_p(nand_davinci_remove),
 816        .driver         = {
 817                .name   = "davinci_nand",
 818        },
 819};
 820MODULE_ALIAS("platform:davinci_nand");
 821
 822static int __init nand_davinci_init(void)
 823{
 824        return platform_driver_probe(&nand_davinci_driver, nand_davinci_probe);
 825}
 826module_init(nand_davinci_init);
 827
 828static void __exit nand_davinci_exit(void)
 829{
 830        platform_driver_unregister(&nand_davinci_driver);
 831}
 832module_exit(nand_davinci_exit);
 833
 834MODULE_LICENSE("GPL");
 835MODULE_AUTHOR("Texas Instruments");
 836MODULE_DESCRIPTION("Davinci NAND flash driver");
 837
 838