linux/drivers/mtd/nand/gpmi-nand/gpmi-nand.c
<<
>>
Prefs
   1/*
   2 * Freescale GPMI NAND Flash Driver
   3 *
   4 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
   5 * Copyright (C) 2008 Embedded Alley Solutions, Inc.
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License as published by
   9 * the Free Software Foundation; either version 2 of the License, or
  10 * (at your option) any later version.
  11 *
  12 * This program is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 * GNU General Public License for more details.
  16 *
  17 * You should have received a copy of the GNU General Public License along
  18 * with this program; if not, write to the Free Software Foundation, Inc.,
  19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  20 */
  21#include <linux/clk.h>
  22#include <linux/slab.h>
  23#include <linux/interrupt.h>
  24#include <linux/module.h>
  25#include <linux/mtd/gpmi-nand.h>
  26#include <linux/mtd/partitions.h>
  27#include "gpmi-nand.h"
  28
  29/* add our owner bbt descriptor */
  30static uint8_t scan_ff_pattern[] = { 0xff };
  31static struct nand_bbt_descr gpmi_bbt_descr = {
  32        .options        = 0,
  33        .offs           = 0,
  34        .len            = 1,
  35        .pattern        = scan_ff_pattern
  36};
  37
  38/*  We will use all the (page + OOB). */
  39static struct nand_ecclayout gpmi_hw_ecclayout = {
  40        .eccbytes = 0,
  41        .eccpos = { 0, },
  42        .oobfree = { {.offset = 0, .length = 0} }
  43};
  44
  45static irqreturn_t bch_irq(int irq, void *cookie)
  46{
  47        struct gpmi_nand_data *this = cookie;
  48
  49        gpmi_clear_bch(this);
  50        complete(&this->bch_done);
  51        return IRQ_HANDLED;
  52}
  53
  54/*
  55 *  Calculate the ECC strength by hand:
  56 *      E : The ECC strength.
  57 *      G : the length of Galois Field.
  58 *      N : The chunk count of per page.
  59 *      O : the oobsize of the NAND chip.
  60 *      M : the metasize of per page.
  61 *
  62 *      The formula is :
  63 *              E * G * N
  64 *            ------------ <= (O - M)
  65 *                  8
  66 *
  67 *      So, we get E by:
  68 *                    (O - M) * 8
  69 *              E <= -------------
  70 *                       G * N
  71 */
  72static inline int get_ecc_strength(struct gpmi_nand_data *this)
  73{
  74        struct bch_geometry *geo = &this->bch_geometry;
  75        struct mtd_info *mtd = &this->mtd;
  76        int ecc_strength;
  77
  78        ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8)
  79                        / (geo->gf_len * geo->ecc_chunk_count);
  80
  81        /* We need the minor even number. */
  82        return round_down(ecc_strength, 2);
  83}
  84
  85int common_nfc_set_geometry(struct gpmi_nand_data *this)
  86{
  87        struct bch_geometry *geo = &this->bch_geometry;
  88        struct mtd_info *mtd = &this->mtd;
  89        unsigned int metadata_size;
  90        unsigned int status_size;
  91        unsigned int block_mark_bit_offset;
  92
  93        /*
  94         * The size of the metadata can be changed, though we set it to 10
  95         * bytes now. But it can't be too large, because we have to save
  96         * enough space for BCH.
  97         */
  98        geo->metadata_size = 10;
  99
 100        /* The default for the length of Galois Field. */
 101        geo->gf_len = 13;
 102
 103        /* The default for chunk size. There is no oobsize greater then 512. */
 104        geo->ecc_chunk_size = 512;
 105        while (geo->ecc_chunk_size < mtd->oobsize)
 106                geo->ecc_chunk_size *= 2; /* keep C >= O */
 107
 108        geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
 109
 110        /* We use the same ECC strength for all chunks. */
 111        geo->ecc_strength = get_ecc_strength(this);
 112        if (!geo->ecc_strength) {
 113                pr_err("We get a wrong ECC strength.\n");
 114                return -EINVAL;
 115        }
 116
 117        geo->page_size = mtd->writesize + mtd->oobsize;
 118        geo->payload_size = mtd->writesize;
 119
 120        /*
 121         * The auxiliary buffer contains the metadata and the ECC status. The
 122         * metadata is padded to the nearest 32-bit boundary. The ECC status
 123         * contains one byte for every ECC chunk, and is also padded to the
 124         * nearest 32-bit boundary.
 125         */
 126        metadata_size = ALIGN(geo->metadata_size, 4);
 127        status_size   = ALIGN(geo->ecc_chunk_count, 4);
 128
 129        geo->auxiliary_size = metadata_size + status_size;
 130        geo->auxiliary_status_offset = metadata_size;
 131
 132        if (!this->swap_block_mark)
 133                return 0;
 134
 135        /*
 136         * We need to compute the byte and bit offsets of
 137         * the physical block mark within the ECC-based view of the page.
 138         *
 139         * NAND chip with 2K page shows below:
 140         *                                             (Block Mark)
 141         *                                                   |      |
 142         *                                                   |  D   |
 143         *                                                   |<---->|
 144         *                                                   V      V
 145         *    +---+----------+-+----------+-+----------+-+----------+-+
 146         *    | M |   data   |E|   data   |E|   data   |E|   data   |E|
 147         *    +---+----------+-+----------+-+----------+-+----------+-+
 148         *
 149         * The position of block mark moves forward in the ECC-based view
 150         * of page, and the delta is:
 151         *
 152         *                   E * G * (N - 1)
 153         *             D = (---------------- + M)
 154         *                          8
 155         *
 156         * With the formula to compute the ECC strength, and the condition
 157         *       : C >= O         (C is the ecc chunk size)
 158         *
 159         * It's easy to deduce to the following result:
 160         *
 161         *         E * G       (O - M)      C - M         C - M
 162         *      ----------- <= ------- <=  --------  <  ---------
 163         *           8            N           N          (N - 1)
 164         *
 165         *  So, we get:
 166         *
 167         *                   E * G * (N - 1)
 168         *             D = (---------------- + M) < C
 169         *                          8
 170         *
 171         *  The above inequality means the position of block mark
 172         *  within the ECC-based view of the page is still in the data chunk,
 173         *  and it's NOT in the ECC bits of the chunk.
 174         *
 175         *  Use the following to compute the bit position of the
 176         *  physical block mark within the ECC-based view of the page:
 177         *          (page_size - D) * 8
 178         *
 179         *  --Huang Shijie
 180         */
 181        block_mark_bit_offset = mtd->writesize * 8 -
 182                (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
 183                                + geo->metadata_size * 8);
 184
 185        geo->block_mark_byte_offset = block_mark_bit_offset / 8;
 186        geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
 187        return 0;
 188}
 189
 190struct dma_chan *get_dma_chan(struct gpmi_nand_data *this)
 191{
 192        int chipnr = this->current_chip;
 193
 194        return this->dma_chans[chipnr];
 195}
 196
 197/* Can we use the upper's buffer directly for DMA? */
 198void prepare_data_dma(struct gpmi_nand_data *this, enum dma_data_direction dr)
 199{
 200        struct scatterlist *sgl = &this->data_sgl;
 201        int ret;
 202
 203        this->direct_dma_map_ok = true;
 204
 205        /* first try to map the upper buffer directly */
 206        sg_init_one(sgl, this->upper_buf, this->upper_len);
 207        ret = dma_map_sg(this->dev, sgl, 1, dr);
 208        if (ret == 0) {
 209                /* We have to use our own DMA buffer. */
 210                sg_init_one(sgl, this->data_buffer_dma, PAGE_SIZE);
 211
 212                if (dr == DMA_TO_DEVICE)
 213                        memcpy(this->data_buffer_dma, this->upper_buf,
 214                                this->upper_len);
 215
 216                ret = dma_map_sg(this->dev, sgl, 1, dr);
 217                if (ret == 0)
 218                        pr_err("map failed.\n");
 219
 220                this->direct_dma_map_ok = false;
 221        }
 222}
 223
 224/* This will be called after the DMA operation is finished. */
 225static void dma_irq_callback(void *param)
 226{
 227        struct gpmi_nand_data *this = param;
 228        struct completion *dma_c = &this->dma_done;
 229
 230        complete(dma_c);
 231
 232        switch (this->dma_type) {
 233        case DMA_FOR_COMMAND:
 234                dma_unmap_sg(this->dev, &this->cmd_sgl, 1, DMA_TO_DEVICE);
 235                break;
 236
 237        case DMA_FOR_READ_DATA:
 238                dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_FROM_DEVICE);
 239                if (this->direct_dma_map_ok == false)
 240                        memcpy(this->upper_buf, this->data_buffer_dma,
 241                                this->upper_len);
 242                break;
 243
 244        case DMA_FOR_WRITE_DATA:
 245                dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_TO_DEVICE);
 246                break;
 247
 248        case DMA_FOR_READ_ECC_PAGE:
 249        case DMA_FOR_WRITE_ECC_PAGE:
 250                /* We have to wait the BCH interrupt to finish. */
 251                break;
 252
 253        default:
 254                pr_err("in wrong DMA operation.\n");
 255        }
 256}
 257
 258int start_dma_without_bch_irq(struct gpmi_nand_data *this,
 259                                struct dma_async_tx_descriptor *desc)
 260{
 261        struct completion *dma_c = &this->dma_done;
 262        int err;
 263
 264        init_completion(dma_c);
 265
 266        desc->callback          = dma_irq_callback;
 267        desc->callback_param    = this;
 268        dmaengine_submit(desc);
 269
 270        /* Wait for the interrupt from the DMA block. */
 271        err = wait_for_completion_timeout(dma_c, msecs_to_jiffies(1000));
 272        if (!err) {
 273                pr_err("DMA timeout, last DMA :%d\n", this->last_dma_type);
 274                gpmi_dump_info(this);
 275                return -ETIMEDOUT;
 276        }
 277        return 0;
 278}
 279
 280/*
 281 * This function is used in BCH reading or BCH writing pages.
 282 * It will wait for the BCH interrupt as long as ONE second.
 283 * Actually, we must wait for two interrupts :
 284 *      [1] firstly the DMA interrupt and
 285 *      [2] secondly the BCH interrupt.
 286 */
 287int start_dma_with_bch_irq(struct gpmi_nand_data *this,
 288                        struct dma_async_tx_descriptor *desc)
 289{
 290        struct completion *bch_c = &this->bch_done;
 291        int err;
 292
 293        /* Prepare to receive an interrupt from the BCH block. */
 294        init_completion(bch_c);
 295
 296        /* start the DMA */
 297        start_dma_without_bch_irq(this, desc);
 298
 299        /* Wait for the interrupt from the BCH block. */
 300        err = wait_for_completion_timeout(bch_c, msecs_to_jiffies(1000));
 301        if (!err) {
 302                pr_err("BCH timeout, last DMA :%d\n", this->last_dma_type);
 303                gpmi_dump_info(this);
 304                return -ETIMEDOUT;
 305        }
 306        return 0;
 307}
 308
 309static int __devinit
 310acquire_register_block(struct gpmi_nand_data *this, const char *res_name)
 311{
 312        struct platform_device *pdev = this->pdev;
 313        struct resources *res = &this->resources;
 314        struct resource *r;
 315        void *p;
 316
 317        r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name);
 318        if (!r) {
 319                pr_err("Can't get resource for %s\n", res_name);
 320                return -ENXIO;
 321        }
 322
 323        p = ioremap(r->start, resource_size(r));
 324        if (!p) {
 325                pr_err("Can't remap %s\n", res_name);
 326                return -ENOMEM;
 327        }
 328
 329        if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME))
 330                res->gpmi_regs = p;
 331        else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME))
 332                res->bch_regs = p;
 333        else
 334                pr_err("unknown resource name : %s\n", res_name);
 335
 336        return 0;
 337}
 338
 339static void release_register_block(struct gpmi_nand_data *this)
 340{
 341        struct resources *res = &this->resources;
 342        if (res->gpmi_regs)
 343                iounmap(res->gpmi_regs);
 344        if (res->bch_regs)
 345                iounmap(res->bch_regs);
 346        res->gpmi_regs = NULL;
 347        res->bch_regs = NULL;
 348}
 349
 350static int __devinit
 351acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h)
 352{
 353        struct platform_device *pdev = this->pdev;
 354        struct resources *res = &this->resources;
 355        const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME;
 356        struct resource *r;
 357        int err;
 358
 359        r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name);
 360        if (!r) {
 361                pr_err("Can't get resource for %s\n", res_name);
 362                return -ENXIO;
 363        }
 364
 365        err = request_irq(r->start, irq_h, 0, res_name, this);
 366        if (err) {
 367                pr_err("Can't own %s\n", res_name);
 368                return err;
 369        }
 370
 371        res->bch_low_interrupt = r->start;
 372        res->bch_high_interrupt = r->end;
 373        return 0;
 374}
 375
 376static void release_bch_irq(struct gpmi_nand_data *this)
 377{
 378        struct resources *res = &this->resources;
 379        int i = res->bch_low_interrupt;
 380
 381        for (; i <= res->bch_high_interrupt; i++)
 382                free_irq(i, this);
 383}
 384
 385static bool gpmi_dma_filter(struct dma_chan *chan, void *param)
 386{
 387        struct gpmi_nand_data *this = param;
 388        struct resource *r = this->private;
 389
 390        if (!mxs_dma_is_apbh(chan))
 391                return false;
 392        /*
 393         * only catch the GPMI dma channels :
 394         *      for mx23 :      MX23_DMA_GPMI0 ~ MX23_DMA_GPMI3
 395         *              (These four channels share the same IRQ!)
 396         *
 397         *      for mx28 :      MX28_DMA_GPMI0 ~ MX28_DMA_GPMI7
 398         *              (These eight channels share the same IRQ!)
 399         */
 400        if (r->start <= chan->chan_id && chan->chan_id <= r->end) {
 401                chan->private = &this->dma_data;
 402                return true;
 403        }
 404        return false;
 405}
 406
 407static void release_dma_channels(struct gpmi_nand_data *this)
 408{
 409        unsigned int i;
 410        for (i = 0; i < DMA_CHANS; i++)
 411                if (this->dma_chans[i]) {
 412                        dma_release_channel(this->dma_chans[i]);
 413                        this->dma_chans[i] = NULL;
 414                }
 415}
 416
 417static int __devinit acquire_dma_channels(struct gpmi_nand_data *this)
 418{
 419        struct platform_device *pdev = this->pdev;
 420        struct gpmi_nand_platform_data *pdata = this->pdata;
 421        struct resources *res = &this->resources;
 422        struct resource *r, *r_dma;
 423        unsigned int i;
 424
 425        r = platform_get_resource_byname(pdev, IORESOURCE_DMA,
 426                                        GPMI_NAND_DMA_CHANNELS_RES_NAME);
 427        r_dma = platform_get_resource_byname(pdev, IORESOURCE_IRQ,
 428                                        GPMI_NAND_DMA_INTERRUPT_RES_NAME);
 429        if (!r || !r_dma) {
 430                pr_err("Can't get resource for DMA\n");
 431                return -ENXIO;
 432        }
 433
 434        /* used in gpmi_dma_filter() */
 435        this->private = r;
 436
 437        for (i = r->start; i <= r->end; i++) {
 438                struct dma_chan *dma_chan;
 439                dma_cap_mask_t mask;
 440
 441                if (i - r->start >= pdata->max_chip_count)
 442                        break;
 443
 444                dma_cap_zero(mask);
 445                dma_cap_set(DMA_SLAVE, mask);
 446
 447                /* get the DMA interrupt */
 448                if (r_dma->start == r_dma->end) {
 449                        /* only register the first. */
 450                        if (i == r->start)
 451                                this->dma_data.chan_irq = r_dma->start;
 452                        else
 453                                this->dma_data.chan_irq = NO_IRQ;
 454                } else
 455                        this->dma_data.chan_irq = r_dma->start + (i - r->start);
 456
 457                dma_chan = dma_request_channel(mask, gpmi_dma_filter, this);
 458                if (!dma_chan)
 459                        goto acquire_err;
 460
 461                /* fill the first empty item */
 462                this->dma_chans[i - r->start] = dma_chan;
 463        }
 464
 465        res->dma_low_channel = r->start;
 466        res->dma_high_channel = i;
 467        return 0;
 468
 469acquire_err:
 470        pr_err("Can't acquire DMA channel %u\n", i);
 471        release_dma_channels(this);
 472        return -EINVAL;
 473}
 474
 475static int __devinit acquire_resources(struct gpmi_nand_data *this)
 476{
 477        struct resources *res = &this->resources;
 478        int ret;
 479
 480        ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME);
 481        if (ret)
 482                goto exit_regs;
 483
 484        ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME);
 485        if (ret)
 486                goto exit_regs;
 487
 488        ret = acquire_bch_irq(this, bch_irq);
 489        if (ret)
 490                goto exit_regs;
 491
 492        ret = acquire_dma_channels(this);
 493        if (ret)
 494                goto exit_dma_channels;
 495
 496        res->clock = clk_get(&this->pdev->dev, NULL);
 497        if (IS_ERR(res->clock)) {
 498                pr_err("can not get the clock\n");
 499                ret = -ENOENT;
 500                goto exit_clock;
 501        }
 502        return 0;
 503
 504exit_clock:
 505        release_dma_channels(this);
 506exit_dma_channels:
 507        release_bch_irq(this);
 508exit_regs:
 509        release_register_block(this);
 510        return ret;
 511}
 512
 513static void release_resources(struct gpmi_nand_data *this)
 514{
 515        struct resources *r = &this->resources;
 516
 517        clk_put(r->clock);
 518        release_register_block(this);
 519        release_bch_irq(this);
 520        release_dma_channels(this);
 521}
 522
 523static int __devinit init_hardware(struct gpmi_nand_data *this)
 524{
 525        int ret;
 526
 527        /*
 528         * This structure contains the "safe" GPMI timing that should succeed
 529         * with any NAND Flash device
 530         * (although, with less-than-optimal performance).
 531         */
 532        struct nand_timing  safe_timing = {
 533                .data_setup_in_ns        = 80,
 534                .data_hold_in_ns         = 60,
 535                .address_setup_in_ns     = 25,
 536                .gpmi_sample_delay_in_ns =  6,
 537                .tREA_in_ns              = -1,
 538                .tRLOH_in_ns             = -1,
 539                .tRHOH_in_ns             = -1,
 540        };
 541
 542        /* Initialize the hardwares. */
 543        ret = gpmi_init(this);
 544        if (ret)
 545                return ret;
 546
 547        this->timing = safe_timing;
 548        return 0;
 549}
 550
 551static int read_page_prepare(struct gpmi_nand_data *this,
 552                        void *destination, unsigned length,
 553                        void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
 554                        void **use_virt, dma_addr_t *use_phys)
 555{
 556        struct device *dev = this->dev;
 557
 558        if (virt_addr_valid(destination)) {
 559                dma_addr_t dest_phys;
 560
 561                dest_phys = dma_map_single(dev, destination,
 562                                                length, DMA_FROM_DEVICE);
 563                if (dma_mapping_error(dev, dest_phys)) {
 564                        if (alt_size < length) {
 565                                pr_err("Alternate buffer is too small\n");
 566                                return -ENOMEM;
 567                        }
 568                        goto map_failed;
 569                }
 570                *use_virt = destination;
 571                *use_phys = dest_phys;
 572                this->direct_dma_map_ok = true;
 573                return 0;
 574        }
 575
 576map_failed:
 577        *use_virt = alt_virt;
 578        *use_phys = alt_phys;
 579        this->direct_dma_map_ok = false;
 580        return 0;
 581}
 582
 583static inline void read_page_end(struct gpmi_nand_data *this,
 584                        void *destination, unsigned length,
 585                        void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
 586                        void *used_virt, dma_addr_t used_phys)
 587{
 588        if (this->direct_dma_map_ok)
 589                dma_unmap_single(this->dev, used_phys, length, DMA_FROM_DEVICE);
 590}
 591
 592static inline void read_page_swap_end(struct gpmi_nand_data *this,
 593                        void *destination, unsigned length,
 594                        void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
 595                        void *used_virt, dma_addr_t used_phys)
 596{
 597        if (!this->direct_dma_map_ok)
 598                memcpy(destination, alt_virt, length);
 599}
 600
 601static int send_page_prepare(struct gpmi_nand_data *this,
 602                        const void *source, unsigned length,
 603                        void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
 604                        const void **use_virt, dma_addr_t *use_phys)
 605{
 606        struct device *dev = this->dev;
 607
 608        if (virt_addr_valid(source)) {
 609                dma_addr_t source_phys;
 610
 611                source_phys = dma_map_single(dev, (void *)source, length,
 612                                                DMA_TO_DEVICE);
 613                if (dma_mapping_error(dev, source_phys)) {
 614                        if (alt_size < length) {
 615                                pr_err("Alternate buffer is too small\n");
 616                                return -ENOMEM;
 617                        }
 618                        goto map_failed;
 619                }
 620                *use_virt = source;
 621                *use_phys = source_phys;
 622                return 0;
 623        }
 624map_failed:
 625        /*
 626         * Copy the content of the source buffer into the alternate
 627         * buffer and set up the return values accordingly.
 628         */
 629        memcpy(alt_virt, source, length);
 630
 631        *use_virt = alt_virt;
 632        *use_phys = alt_phys;
 633        return 0;
 634}
 635
 636static void send_page_end(struct gpmi_nand_data *this,
 637                        const void *source, unsigned length,
 638                        void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
 639                        const void *used_virt, dma_addr_t used_phys)
 640{
 641        struct device *dev = this->dev;
 642        if (used_virt == source)
 643                dma_unmap_single(dev, used_phys, length, DMA_TO_DEVICE);
 644}
 645
 646static void gpmi_free_dma_buffer(struct gpmi_nand_data *this)
 647{
 648        struct device *dev = this->dev;
 649
 650        if (this->page_buffer_virt && virt_addr_valid(this->page_buffer_virt))
 651                dma_free_coherent(dev, this->page_buffer_size,
 652                                        this->page_buffer_virt,
 653                                        this->page_buffer_phys);
 654        kfree(this->cmd_buffer);
 655        kfree(this->data_buffer_dma);
 656
 657        this->cmd_buffer        = NULL;
 658        this->data_buffer_dma   = NULL;
 659        this->page_buffer_virt  = NULL;
 660        this->page_buffer_size  =  0;
 661}
 662
 663/* Allocate the DMA buffers */
 664static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this)
 665{
 666        struct bch_geometry *geo = &this->bch_geometry;
 667        struct device *dev = this->dev;
 668
 669        /* [1] Allocate a command buffer. PAGE_SIZE is enough. */
 670        this->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA);
 671        if (this->cmd_buffer == NULL)
 672                goto error_alloc;
 673
 674        /* [2] Allocate a read/write data buffer. PAGE_SIZE is enough. */
 675        this->data_buffer_dma = kzalloc(PAGE_SIZE, GFP_DMA);
 676        if (this->data_buffer_dma == NULL)
 677                goto error_alloc;
 678
 679        /*
 680         * [3] Allocate the page buffer.
 681         *
 682         * Both the payload buffer and the auxiliary buffer must appear on
 683         * 32-bit boundaries. We presume the size of the payload buffer is a
 684         * power of two and is much larger than four, which guarantees the
 685         * auxiliary buffer will appear on a 32-bit boundary.
 686         */
 687        this->page_buffer_size = geo->payload_size + geo->auxiliary_size;
 688        this->page_buffer_virt = dma_alloc_coherent(dev, this->page_buffer_size,
 689                                        &this->page_buffer_phys, GFP_DMA);
 690        if (!this->page_buffer_virt)
 691                goto error_alloc;
 692
 693
 694        /* Slice up the page buffer. */
 695        this->payload_virt = this->page_buffer_virt;
 696        this->payload_phys = this->page_buffer_phys;
 697        this->auxiliary_virt = this->payload_virt + geo->payload_size;
 698        this->auxiliary_phys = this->payload_phys + geo->payload_size;
 699        return 0;
 700
 701error_alloc:
 702        gpmi_free_dma_buffer(this);
 703        pr_err("allocate DMA buffer ret!!\n");
 704        return -ENOMEM;
 705}
 706
 707static void gpmi_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
 708{
 709        struct nand_chip *chip = mtd->priv;
 710        struct gpmi_nand_data *this = chip->priv;
 711        int ret;
 712
 713        /*
 714         * Every operation begins with a command byte and a series of zero or
 715         * more address bytes. These are distinguished by either the Address
 716         * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
 717         * asserted. When MTD is ready to execute the command, it will deassert
 718         * both latch enables.
 719         *
 720         * Rather than run a separate DMA operation for every single byte, we
 721         * queue them up and run a single DMA operation for the entire series
 722         * of command and data bytes. NAND_CMD_NONE means the END of the queue.
 723         */
 724        if ((ctrl & (NAND_ALE | NAND_CLE))) {
 725                if (data != NAND_CMD_NONE)
 726                        this->cmd_buffer[this->command_length++] = data;
 727                return;
 728        }
 729
 730        if (!this->command_length)
 731                return;
 732
 733        ret = gpmi_send_command(this);
 734        if (ret)
 735                pr_err("Chip: %u, Error %d\n", this->current_chip, ret);
 736
 737        this->command_length = 0;
 738}
 739
 740static int gpmi_dev_ready(struct mtd_info *mtd)
 741{
 742        struct nand_chip *chip = mtd->priv;
 743        struct gpmi_nand_data *this = chip->priv;
 744
 745        return gpmi_is_ready(this, this->current_chip);
 746}
 747
 748static void gpmi_select_chip(struct mtd_info *mtd, int chipnr)
 749{
 750        struct nand_chip *chip = mtd->priv;
 751        struct gpmi_nand_data *this = chip->priv;
 752
 753        if ((this->current_chip < 0) && (chipnr >= 0))
 754                gpmi_begin(this);
 755        else if ((this->current_chip >= 0) && (chipnr < 0))
 756                gpmi_end(this);
 757
 758        this->current_chip = chipnr;
 759}
 760
 761static void gpmi_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
 762{
 763        struct nand_chip *chip = mtd->priv;
 764        struct gpmi_nand_data *this = chip->priv;
 765
 766        pr_debug("len is %d\n", len);
 767        this->upper_buf = buf;
 768        this->upper_len = len;
 769
 770        gpmi_read_data(this);
 771}
 772
 773static void gpmi_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
 774{
 775        struct nand_chip *chip = mtd->priv;
 776        struct gpmi_nand_data *this = chip->priv;
 777
 778        pr_debug("len is %d\n", len);
 779        this->upper_buf = (uint8_t *)buf;
 780        this->upper_len = len;
 781
 782        gpmi_send_data(this);
 783}
 784
 785static uint8_t gpmi_read_byte(struct mtd_info *mtd)
 786{
 787        struct nand_chip *chip = mtd->priv;
 788        struct gpmi_nand_data *this = chip->priv;
 789        uint8_t *buf = this->data_buffer_dma;
 790
 791        gpmi_read_buf(mtd, buf, 1);
 792        return buf[0];
 793}
 794
 795/*
 796 * Handles block mark swapping.
 797 * It can be called in swapping the block mark, or swapping it back,
 798 * because the the operations are the same.
 799 */
 800static void block_mark_swapping(struct gpmi_nand_data *this,
 801                                void *payload, void *auxiliary)
 802{
 803        struct bch_geometry *nfc_geo = &this->bch_geometry;
 804        unsigned char *p;
 805        unsigned char *a;
 806        unsigned int  bit;
 807        unsigned char mask;
 808        unsigned char from_data;
 809        unsigned char from_oob;
 810
 811        if (!this->swap_block_mark)
 812                return;
 813
 814        /*
 815         * If control arrives here, we're swapping. Make some convenience
 816         * variables.
 817         */
 818        bit = nfc_geo->block_mark_bit_offset;
 819        p   = payload + nfc_geo->block_mark_byte_offset;
 820        a   = auxiliary;
 821
 822        /*
 823         * Get the byte from the data area that overlays the block mark. Since
 824         * the ECC engine applies its own view to the bits in the page, the
 825         * physical block mark won't (in general) appear on a byte boundary in
 826         * the data.
 827         */
 828        from_data = (p[0] >> bit) | (p[1] << (8 - bit));
 829
 830        /* Get the byte from the OOB. */
 831        from_oob = a[0];
 832
 833        /* Swap them. */
 834        a[0] = from_data;
 835
 836        mask = (0x1 << bit) - 1;
 837        p[0] = (p[0] & mask) | (from_oob << bit);
 838
 839        mask = ~0 << bit;
 840        p[1] = (p[1] & mask) | (from_oob >> (8 - bit));
 841}
 842
 843static int gpmi_ecc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
 844                                uint8_t *buf, int page)
 845{
 846        struct gpmi_nand_data *this = chip->priv;
 847        struct bch_geometry *nfc_geo = &this->bch_geometry;
 848        void          *payload_virt;
 849        dma_addr_t    payload_phys;
 850        void          *auxiliary_virt;
 851        dma_addr_t    auxiliary_phys;
 852        unsigned int  i;
 853        unsigned char *status;
 854        unsigned int  failed;
 855        unsigned int  corrected;
 856        int           ret;
 857
 858        pr_debug("page number is : %d\n", page);
 859        ret = read_page_prepare(this, buf, mtd->writesize,
 860                                        this->payload_virt, this->payload_phys,
 861                                        nfc_geo->payload_size,
 862                                        &payload_virt, &payload_phys);
 863        if (ret) {
 864                pr_err("Inadequate DMA buffer\n");
 865                ret = -ENOMEM;
 866                return ret;
 867        }
 868        auxiliary_virt = this->auxiliary_virt;
 869        auxiliary_phys = this->auxiliary_phys;
 870
 871        /* go! */
 872        ret = gpmi_read_page(this, payload_phys, auxiliary_phys);
 873        read_page_end(this, buf, mtd->writesize,
 874                        this->payload_virt, this->payload_phys,
 875                        nfc_geo->payload_size,
 876                        payload_virt, payload_phys);
 877        if (ret) {
 878                pr_err("Error in ECC-based read: %d\n", ret);
 879                goto exit_nfc;
 880        }
 881
 882        /* handle the block mark swapping */
 883        block_mark_swapping(this, payload_virt, auxiliary_virt);
 884
 885        /* Loop over status bytes, accumulating ECC status. */
 886        failed          = 0;
 887        corrected       = 0;
 888        status          = auxiliary_virt + nfc_geo->auxiliary_status_offset;
 889
 890        for (i = 0; i < nfc_geo->ecc_chunk_count; i++, status++) {
 891                if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED))
 892                        continue;
 893
 894                if (*status == STATUS_UNCORRECTABLE) {
 895                        failed++;
 896                        continue;
 897                }
 898                corrected += *status;
 899        }
 900
 901        /*
 902         * Propagate ECC status to the owning MTD only when failed or
 903         * corrected times nearly reaches our ECC correction threshold.
 904         */
 905        if (failed || corrected >= (nfc_geo->ecc_strength - 1)) {
 906                mtd->ecc_stats.failed    += failed;
 907                mtd->ecc_stats.corrected += corrected;
 908        }
 909
 910        /*
 911         * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob() for
 912         * details about our policy for delivering the OOB.
 913         *
 914         * We fill the caller's buffer with set bits, and then copy the block
 915         * mark to th caller's buffer. Note that, if block mark swapping was
 916         * necessary, it has already been done, so we can rely on the first
 917         * byte of the auxiliary buffer to contain the block mark.
 918         */
 919        memset(chip->oob_poi, ~0, mtd->oobsize);
 920        chip->oob_poi[0] = ((uint8_t *) auxiliary_virt)[0];
 921
 922        read_page_swap_end(this, buf, mtd->writesize,
 923                        this->payload_virt, this->payload_phys,
 924                        nfc_geo->payload_size,
 925                        payload_virt, payload_phys);
 926exit_nfc:
 927        return ret;
 928}
 929
 930static void gpmi_ecc_write_page(struct mtd_info *mtd,
 931                                struct nand_chip *chip, const uint8_t *buf)
 932{
 933        struct gpmi_nand_data *this = chip->priv;
 934        struct bch_geometry *nfc_geo = &this->bch_geometry;
 935        const void *payload_virt;
 936        dma_addr_t payload_phys;
 937        const void *auxiliary_virt;
 938        dma_addr_t auxiliary_phys;
 939        int        ret;
 940
 941        pr_debug("ecc write page.\n");
 942        if (this->swap_block_mark) {
 943                /*
 944                 * If control arrives here, we're doing block mark swapping.
 945                 * Since we can't modify the caller's buffers, we must copy them
 946                 * into our own.
 947                 */
 948                memcpy(this->payload_virt, buf, mtd->writesize);
 949                payload_virt = this->payload_virt;
 950                payload_phys = this->payload_phys;
 951
 952                memcpy(this->auxiliary_virt, chip->oob_poi,
 953                                nfc_geo->auxiliary_size);
 954                auxiliary_virt = this->auxiliary_virt;
 955                auxiliary_phys = this->auxiliary_phys;
 956
 957                /* Handle block mark swapping. */
 958                block_mark_swapping(this,
 959                                (void *) payload_virt, (void *) auxiliary_virt);
 960        } else {
 961                /*
 962                 * If control arrives here, we're not doing block mark swapping,
 963                 * so we can to try and use the caller's buffers.
 964                 */
 965                ret = send_page_prepare(this,
 966                                buf, mtd->writesize,
 967                                this->payload_virt, this->payload_phys,
 968                                nfc_geo->payload_size,
 969                                &payload_virt, &payload_phys);
 970                if (ret) {
 971                        pr_err("Inadequate payload DMA buffer\n");
 972                        return;
 973                }
 974
 975                ret = send_page_prepare(this,
 976                                chip->oob_poi, mtd->oobsize,
 977                                this->auxiliary_virt, this->auxiliary_phys,
 978                                nfc_geo->auxiliary_size,
 979                                &auxiliary_virt, &auxiliary_phys);
 980                if (ret) {
 981                        pr_err("Inadequate auxiliary DMA buffer\n");
 982                        goto exit_auxiliary;
 983                }
 984        }
 985
 986        /* Ask the NFC. */
 987        ret = gpmi_send_page(this, payload_phys, auxiliary_phys);
 988        if (ret)
 989                pr_err("Error in ECC-based write: %d\n", ret);
 990
 991        if (!this->swap_block_mark) {
 992                send_page_end(this, chip->oob_poi, mtd->oobsize,
 993                                this->auxiliary_virt, this->auxiliary_phys,
 994                                nfc_geo->auxiliary_size,
 995                                auxiliary_virt, auxiliary_phys);
 996exit_auxiliary:
 997                send_page_end(this, buf, mtd->writesize,
 998                                this->payload_virt, this->payload_phys,
 999                                nfc_geo->payload_size,
1000                                payload_virt, payload_phys);
1001        }
1002}
1003
1004/*
1005 * There are several places in this driver where we have to handle the OOB and
1006 * block marks. This is the function where things are the most complicated, so
1007 * this is where we try to explain it all. All the other places refer back to
1008 * here.
1009 *
1010 * These are the rules, in order of decreasing importance:
1011 *
1012 * 1) Nothing the caller does can be allowed to imperil the block mark.
1013 *
1014 * 2) In read operations, the first byte of the OOB we return must reflect the
1015 *    true state of the block mark, no matter where that block mark appears in
1016 *    the physical page.
1017 *
1018 * 3) ECC-based read operations return an OOB full of set bits (since we never
1019 *    allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
1020 *    return).
1021 *
1022 * 4) "Raw" read operations return a direct view of the physical bytes in the
1023 *    page, using the conventional definition of which bytes are data and which
1024 *    are OOB. This gives the caller a way to see the actual, physical bytes
1025 *    in the page, without the distortions applied by our ECC engine.
1026 *
1027 *
1028 * What we do for this specific read operation depends on two questions:
1029 *
1030 * 1) Are we doing a "raw" read, or an ECC-based read?
1031 *
1032 * 2) Are we using block mark swapping or transcription?
1033 *
1034 * There are four cases, illustrated by the following Karnaugh map:
1035 *
1036 *                    |           Raw           |         ECC-based       |
1037 *       -------------+-------------------------+-------------------------+
1038 *                    | Read the conventional   |                         |
1039 *                    | OOB at the end of the   |                         |
1040 *       Swapping     | page and return it. It  |                         |
1041 *                    | contains exactly what   |                         |
1042 *                    | we want.                | Read the block mark and |
1043 *       -------------+-------------------------+ return it in a buffer   |
1044 *                    | Read the conventional   | full of set bits.       |
1045 *                    | OOB at the end of the   |                         |
1046 *                    | page and also the block |                         |
1047 *       Transcribing | mark in the metadata.   |                         |
1048 *                    | Copy the block mark     |                         |
1049 *                    | into the first byte of  |                         |
1050 *                    | the OOB.                |                         |
1051 *       -------------+-------------------------+-------------------------+
1052 *
1053 * Note that we break rule #4 in the Transcribing/Raw case because we're not
1054 * giving an accurate view of the actual, physical bytes in the page (we're
1055 * overwriting the block mark). That's OK because it's more important to follow
1056 * rule #2.
1057 *
1058 * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
1059 * easy. When reading a page, for example, the NAND Flash MTD code calls our
1060 * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
1061 * ECC-based or raw view of the page is implicit in which function it calls
1062 * (there is a similar pair of ECC-based/raw functions for writing).
1063 *
1064 * Since MTD assumes the OOB is not covered by ECC, there is no pair of
1065 * ECC-based/raw functions for reading or or writing the OOB. The fact that the
1066 * caller wants an ECC-based or raw view of the page is not propagated down to
1067 * this driver.
1068 */
1069static int gpmi_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1070                                int page, int sndcmd)
1071{
1072        struct gpmi_nand_data *this = chip->priv;
1073
1074        pr_debug("page number is %d\n", page);
1075        /* clear the OOB buffer */
1076        memset(chip->oob_poi, ~0, mtd->oobsize);
1077
1078        /* Read out the conventional OOB. */
1079        chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
1080        chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1081
1082        /*
1083         * Now, we want to make sure the block mark is correct. In the
1084         * Swapping/Raw case, we already have it. Otherwise, we need to
1085         * explicitly read it.
1086         */
1087        if (!this->swap_block_mark) {
1088                /* Read the block mark into the first byte of the OOB buffer. */
1089                chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1090                chip->oob_poi[0] = chip->read_byte(mtd);
1091        }
1092
1093        /*
1094         * Return true, indicating that the next call to this function must send
1095         * a command.
1096         */
1097        return true;
1098}
1099
1100static int
1101gpmi_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *chip, int page)
1102{
1103        /*
1104         * The BCH will use all the (page + oob).
1105         * Our gpmi_hw_ecclayout can only prohibit the JFFS2 to write the oob.
1106         * But it can not stop some ioctls such MEMWRITEOOB which uses
1107         * MTD_OPS_PLACE_OOB. So We have to implement this function to prohibit
1108         * these ioctls too.
1109         */
1110        return -EPERM;
1111}
1112
1113static int gpmi_block_markbad(struct mtd_info *mtd, loff_t ofs)
1114{
1115        struct nand_chip *chip = mtd->priv;
1116        struct gpmi_nand_data *this = chip->priv;
1117        int block, ret = 0;
1118        uint8_t *block_mark;
1119        int column, page, status, chipnr;
1120
1121        /* Get block number */
1122        block = (int)(ofs >> chip->bbt_erase_shift);
1123        if (chip->bbt)
1124                chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
1125
1126        /* Do we have a flash based bad block table ? */
1127        if (chip->options & NAND_BBT_USE_FLASH)
1128                ret = nand_update_bbt(mtd, ofs);
1129        else {
1130                chipnr = (int)(ofs >> chip->chip_shift);
1131                chip->select_chip(mtd, chipnr);
1132
1133                column = this->swap_block_mark ? mtd->writesize : 0;
1134
1135                /* Write the block mark. */
1136                block_mark = this->data_buffer_dma;
1137                block_mark[0] = 0; /* bad block marker */
1138
1139                /* Shift to get page */
1140                page = (int)(ofs >> chip->page_shift);
1141
1142                chip->cmdfunc(mtd, NAND_CMD_SEQIN, column, page);
1143                chip->write_buf(mtd, block_mark, 1);
1144                chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1145
1146                status = chip->waitfunc(mtd, chip);
1147                if (status & NAND_STATUS_FAIL)
1148                        ret = -EIO;
1149
1150                chip->select_chip(mtd, -1);
1151        }
1152        if (!ret)
1153                mtd->ecc_stats.badblocks++;
1154
1155        return ret;
1156}
1157
1158static int __devinit nand_boot_set_geometry(struct gpmi_nand_data *this)
1159{
1160        struct boot_rom_geometry *geometry = &this->rom_geometry;
1161
1162        /*
1163         * Set the boot block stride size.
1164         *
1165         * In principle, we should be reading this from the OTP bits, since
1166         * that's where the ROM is going to get it. In fact, we don't have any
1167         * way to read the OTP bits, so we go with the default and hope for the
1168         * best.
1169         */
1170        geometry->stride_size_in_pages = 64;
1171
1172        /*
1173         * Set the search area stride exponent.
1174         *
1175         * In principle, we should be reading this from the OTP bits, since
1176         * that's where the ROM is going to get it. In fact, we don't have any
1177         * way to read the OTP bits, so we go with the default and hope for the
1178         * best.
1179         */
1180        geometry->search_area_stride_exponent = 2;
1181        return 0;
1182}
1183
1184static const char  *fingerprint = "STMP";
1185static int __devinit mx23_check_transcription_stamp(struct gpmi_nand_data *this)
1186{
1187        struct boot_rom_geometry *rom_geo = &this->rom_geometry;
1188        struct device *dev = this->dev;
1189        struct mtd_info *mtd = &this->mtd;
1190        struct nand_chip *chip = &this->nand;
1191        unsigned int search_area_size_in_strides;
1192        unsigned int stride;
1193        unsigned int page;
1194        loff_t byte;
1195        uint8_t *buffer = chip->buffers->databuf;
1196        int saved_chip_number;
1197        int found_an_ncb_fingerprint = false;
1198
1199        /* Compute the number of strides in a search area. */
1200        search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
1201
1202        saved_chip_number = this->current_chip;
1203        chip->select_chip(mtd, 0);
1204
1205        /*
1206         * Loop through the first search area, looking for the NCB fingerprint.
1207         */
1208        dev_dbg(dev, "Scanning for an NCB fingerprint...\n");
1209
1210        for (stride = 0; stride < search_area_size_in_strides; stride++) {
1211                /* Compute the page and byte addresses. */
1212                page = stride * rom_geo->stride_size_in_pages;
1213                byte = page   * mtd->writesize;
1214
1215                dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page);
1216
1217                /*
1218                 * Read the NCB fingerprint. The fingerprint is four bytes long
1219                 * and starts in the 12th byte of the page.
1220                 */
1221                chip->cmdfunc(mtd, NAND_CMD_READ0, 12, page);
1222                chip->read_buf(mtd, buffer, strlen(fingerprint));
1223
1224                /* Look for the fingerprint. */
1225                if (!memcmp(buffer, fingerprint, strlen(fingerprint))) {
1226                        found_an_ncb_fingerprint = true;
1227                        break;
1228                }
1229
1230        }
1231
1232        chip->select_chip(mtd, saved_chip_number);
1233
1234        if (found_an_ncb_fingerprint)
1235                dev_dbg(dev, "\tFound a fingerprint\n");
1236        else
1237                dev_dbg(dev, "\tNo fingerprint found\n");
1238        return found_an_ncb_fingerprint;
1239}
1240
1241/* Writes a transcription stamp. */
1242static int __devinit mx23_write_transcription_stamp(struct gpmi_nand_data *this)
1243{
1244        struct device *dev = this->dev;
1245        struct boot_rom_geometry *rom_geo = &this->rom_geometry;
1246        struct mtd_info *mtd = &this->mtd;
1247        struct nand_chip *chip = &this->nand;
1248        unsigned int block_size_in_pages;
1249        unsigned int search_area_size_in_strides;
1250        unsigned int search_area_size_in_pages;
1251        unsigned int search_area_size_in_blocks;
1252        unsigned int block;
1253        unsigned int stride;
1254        unsigned int page;
1255        loff_t       byte;
1256        uint8_t      *buffer = chip->buffers->databuf;
1257        int saved_chip_number;
1258        int status;
1259
1260        /* Compute the search area geometry. */
1261        block_size_in_pages = mtd->erasesize / mtd->writesize;
1262        search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
1263        search_area_size_in_pages = search_area_size_in_strides *
1264                                        rom_geo->stride_size_in_pages;
1265        search_area_size_in_blocks =
1266                  (search_area_size_in_pages + (block_size_in_pages - 1)) /
1267                                    block_size_in_pages;
1268
1269        dev_dbg(dev, "Search Area Geometry :\n");
1270        dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks);
1271        dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides);
1272        dev_dbg(dev, "\tin Pages  : %u\n", search_area_size_in_pages);
1273
1274        /* Select chip 0. */
1275        saved_chip_number = this->current_chip;
1276        chip->select_chip(mtd, 0);
1277
1278        /* Loop over blocks in the first search area, erasing them. */
1279        dev_dbg(dev, "Erasing the search area...\n");
1280
1281        for (block = 0; block < search_area_size_in_blocks; block++) {
1282                /* Compute the page address. */
1283                page = block * block_size_in_pages;
1284
1285                /* Erase this block. */
1286                dev_dbg(dev, "\tErasing block 0x%x\n", block);
1287                chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
1288                chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1289
1290                /* Wait for the erase to finish. */
1291                status = chip->waitfunc(mtd, chip);
1292                if (status & NAND_STATUS_FAIL)
1293                        dev_err(dev, "[%s] Erase failed.\n", __func__);
1294        }
1295
1296        /* Write the NCB fingerprint into the page buffer. */
1297        memset(buffer, ~0, mtd->writesize);
1298        memset(chip->oob_poi, ~0, mtd->oobsize);
1299        memcpy(buffer + 12, fingerprint, strlen(fingerprint));
1300
1301        /* Loop through the first search area, writing NCB fingerprints. */
1302        dev_dbg(dev, "Writing NCB fingerprints...\n");
1303        for (stride = 0; stride < search_area_size_in_strides; stride++) {
1304                /* Compute the page and byte addresses. */
1305                page = stride * rom_geo->stride_size_in_pages;
1306                byte = page   * mtd->writesize;
1307
1308                /* Write the first page of the current stride. */
1309                dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page);
1310                chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
1311                chip->ecc.write_page_raw(mtd, chip, buffer);
1312                chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1313
1314                /* Wait for the write to finish. */
1315                status = chip->waitfunc(mtd, chip);
1316                if (status & NAND_STATUS_FAIL)
1317                        dev_err(dev, "[%s] Write failed.\n", __func__);
1318        }
1319
1320        /* Deselect chip 0. */
1321        chip->select_chip(mtd, saved_chip_number);
1322        return 0;
1323}
1324
1325static int __devinit mx23_boot_init(struct gpmi_nand_data  *this)
1326{
1327        struct device *dev = this->dev;
1328        struct nand_chip *chip = &this->nand;
1329        struct mtd_info *mtd = &this->mtd;
1330        unsigned int block_count;
1331        unsigned int block;
1332        int     chipnr;
1333        int     page;
1334        loff_t  byte;
1335        uint8_t block_mark;
1336        int     ret = 0;
1337
1338        /*
1339         * If control arrives here, we can't use block mark swapping, which
1340         * means we're forced to use transcription. First, scan for the
1341         * transcription stamp. If we find it, then we don't have to do
1342         * anything -- the block marks are already transcribed.
1343         */
1344        if (mx23_check_transcription_stamp(this))
1345                return 0;
1346
1347        /*
1348         * If control arrives here, we couldn't find a transcription stamp, so
1349         * so we presume the block marks are in the conventional location.
1350         */
1351        dev_dbg(dev, "Transcribing bad block marks...\n");
1352
1353        /* Compute the number of blocks in the entire medium. */
1354        block_count = chip->chipsize >> chip->phys_erase_shift;
1355
1356        /*
1357         * Loop over all the blocks in the medium, transcribing block marks as
1358         * we go.
1359         */
1360        for (block = 0; block < block_count; block++) {
1361                /*
1362                 * Compute the chip, page and byte addresses for this block's
1363                 * conventional mark.
1364                 */
1365                chipnr = block >> (chip->chip_shift - chip->phys_erase_shift);
1366                page = block << (chip->phys_erase_shift - chip->page_shift);
1367                byte = block <<  chip->phys_erase_shift;
1368
1369                /* Send the command to read the conventional block mark. */
1370                chip->select_chip(mtd, chipnr);
1371                chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
1372                block_mark = chip->read_byte(mtd);
1373                chip->select_chip(mtd, -1);
1374
1375                /*
1376                 * Check if the block is marked bad. If so, we need to mark it
1377                 * again, but this time the result will be a mark in the
1378                 * location where we transcribe block marks.
1379                 */
1380                if (block_mark != 0xff) {
1381                        dev_dbg(dev, "Transcribing mark in block %u\n", block);
1382                        ret = chip->block_markbad(mtd, byte);
1383                        if (ret)
1384                                dev_err(dev, "Failed to mark block bad with "
1385                                                        "ret %d\n", ret);
1386                }
1387        }
1388
1389        /* Write the stamp that indicates we've transcribed the block marks. */
1390        mx23_write_transcription_stamp(this);
1391        return 0;
1392}
1393
1394static int __devinit nand_boot_init(struct gpmi_nand_data  *this)
1395{
1396        nand_boot_set_geometry(this);
1397
1398        /* This is ROM arch-specific initilization before the BBT scanning. */
1399        if (GPMI_IS_MX23(this))
1400                return mx23_boot_init(this);
1401        return 0;
1402}
1403
1404static int __devinit gpmi_set_geometry(struct gpmi_nand_data *this)
1405{
1406        int ret;
1407
1408        /* Free the temporary DMA memory for reading ID. */
1409        gpmi_free_dma_buffer(this);
1410
1411        /* Set up the NFC geometry which is used by BCH. */
1412        ret = bch_set_geometry(this);
1413        if (ret) {
1414                pr_err("set geometry ret : %d\n", ret);
1415                return ret;
1416        }
1417
1418        /* Alloc the new DMA buffers according to the pagesize and oobsize */
1419        return gpmi_alloc_dma_buffer(this);
1420}
1421
1422static int gpmi_pre_bbt_scan(struct gpmi_nand_data  *this)
1423{
1424        int ret;
1425
1426        /* Set up swap_block_mark, must be set before the gpmi_set_geometry() */
1427        if (GPMI_IS_MX23(this))
1428                this->swap_block_mark = false;
1429        else
1430                this->swap_block_mark = true;
1431
1432        /* Set up the medium geometry */
1433        ret = gpmi_set_geometry(this);
1434        if (ret)
1435                return ret;
1436
1437        /* NAND boot init, depends on the gpmi_set_geometry(). */
1438        return nand_boot_init(this);
1439}
1440
1441static int gpmi_scan_bbt(struct mtd_info *mtd)
1442{
1443        struct nand_chip *chip = mtd->priv;
1444        struct gpmi_nand_data *this = chip->priv;
1445        int ret;
1446
1447        /* Prepare for the BBT scan. */
1448        ret = gpmi_pre_bbt_scan(this);
1449        if (ret)
1450                return ret;
1451
1452        /* use the default BBT implementation */
1453        return nand_default_bbt(mtd);
1454}
1455
1456void gpmi_nfc_exit(struct gpmi_nand_data *this)
1457{
1458        nand_release(&this->mtd);
1459        gpmi_free_dma_buffer(this);
1460}
1461
1462static int __devinit gpmi_nfc_init(struct gpmi_nand_data *this)
1463{
1464        struct gpmi_nand_platform_data *pdata = this->pdata;
1465        struct mtd_info  *mtd = &this->mtd;
1466        struct nand_chip *chip = &this->nand;
1467        int ret;
1468
1469        /* init current chip */
1470        this->current_chip      = -1;
1471
1472        /* init the MTD data structures */
1473        mtd->priv               = chip;
1474        mtd->name               = "gpmi-nand";
1475        mtd->owner              = THIS_MODULE;
1476
1477        /* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */
1478        chip->priv              = this;
1479        chip->select_chip       = gpmi_select_chip;
1480        chip->cmd_ctrl          = gpmi_cmd_ctrl;
1481        chip->dev_ready         = gpmi_dev_ready;
1482        chip->read_byte         = gpmi_read_byte;
1483        chip->read_buf          = gpmi_read_buf;
1484        chip->write_buf         = gpmi_write_buf;
1485        chip->ecc.read_page     = gpmi_ecc_read_page;
1486        chip->ecc.write_page    = gpmi_ecc_write_page;
1487        chip->ecc.read_oob      = gpmi_ecc_read_oob;
1488        chip->ecc.write_oob     = gpmi_ecc_write_oob;
1489        chip->scan_bbt          = gpmi_scan_bbt;
1490        chip->badblock_pattern  = &gpmi_bbt_descr;
1491        chip->block_markbad     = gpmi_block_markbad;
1492        chip->options           |= NAND_NO_SUBPAGE_WRITE;
1493        chip->ecc.mode          = NAND_ECC_HW;
1494        chip->ecc.size          = 1;
1495        chip->ecc.layout        = &gpmi_hw_ecclayout;
1496
1497        /* Allocate a temporary DMA buffer for reading ID in the nand_scan() */
1498        this->bch_geometry.payload_size = 1024;
1499        this->bch_geometry.auxiliary_size = 128;
1500        ret = gpmi_alloc_dma_buffer(this);
1501        if (ret)
1502                goto err_out;
1503
1504        ret = nand_scan(mtd, pdata->max_chip_count);
1505        if (ret) {
1506                pr_err("Chip scan failed\n");
1507                goto err_out;
1508        }
1509
1510        ret = mtd_device_parse_register(mtd, NULL, NULL,
1511                        pdata->partitions, pdata->partition_count);
1512        if (ret)
1513                goto err_out;
1514        return 0;
1515
1516err_out:
1517        gpmi_nfc_exit(this);
1518        return ret;
1519}
1520
1521static int __devinit gpmi_nand_probe(struct platform_device *pdev)
1522{
1523        struct gpmi_nand_platform_data *pdata = pdev->dev.platform_data;
1524        struct gpmi_nand_data *this;
1525        int ret;
1526
1527        this = kzalloc(sizeof(*this), GFP_KERNEL);
1528        if (!this) {
1529                pr_err("Failed to allocate per-device memory\n");
1530                return -ENOMEM;
1531        }
1532
1533        platform_set_drvdata(pdev, this);
1534        this->pdev  = pdev;
1535        this->dev   = &pdev->dev;
1536        this->pdata = pdata;
1537
1538        if (pdata->platform_init) {
1539                ret = pdata->platform_init();
1540                if (ret)
1541                        goto platform_init_error;
1542        }
1543
1544        ret = acquire_resources(this);
1545        if (ret)
1546                goto exit_acquire_resources;
1547
1548        ret = init_hardware(this);
1549        if (ret)
1550                goto exit_nfc_init;
1551
1552        ret = gpmi_nfc_init(this);
1553        if (ret)
1554                goto exit_nfc_init;
1555
1556        return 0;
1557
1558exit_nfc_init:
1559        release_resources(this);
1560platform_init_error:
1561exit_acquire_resources:
1562        platform_set_drvdata(pdev, NULL);
1563        kfree(this);
1564        return ret;
1565}
1566
1567static int __exit gpmi_nand_remove(struct platform_device *pdev)
1568{
1569        struct gpmi_nand_data *this = platform_get_drvdata(pdev);
1570
1571        gpmi_nfc_exit(this);
1572        release_resources(this);
1573        platform_set_drvdata(pdev, NULL);
1574        kfree(this);
1575        return 0;
1576}
1577
1578static const struct platform_device_id gpmi_ids[] = {
1579        {
1580                .name = "imx23-gpmi-nand",
1581                .driver_data = IS_MX23,
1582        }, {
1583                .name = "imx28-gpmi-nand",
1584                .driver_data = IS_MX28,
1585        }, {},
1586};
1587
1588static struct platform_driver gpmi_nand_driver = {
1589        .driver = {
1590                .name = "gpmi-nand",
1591        },
1592        .probe   = gpmi_nand_probe,
1593        .remove  = __exit_p(gpmi_nand_remove),
1594        .id_table = gpmi_ids,
1595};
1596
1597static int __init gpmi_nand_init(void)
1598{
1599        int err;
1600
1601        err = platform_driver_register(&gpmi_nand_driver);
1602        if (err == 0)
1603                printk(KERN_INFO "GPMI NAND driver registered. (IMX)\n");
1604        else
1605                pr_err("i.MX GPMI NAND driver registration failed\n");
1606        return err;
1607}
1608
1609static void __exit gpmi_nand_exit(void)
1610{
1611        platform_driver_unregister(&gpmi_nand_driver);
1612}
1613
1614module_init(gpmi_nand_init);
1615module_exit(gpmi_nand_exit);
1616
1617MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1618MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
1619MODULE_LICENSE("GPL");
1620