linux/drivers/mtd/ubi/upd.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) International Business Machines Corp., 2006
   3 * Copyright (c) Nokia Corporation, 2006
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License as published by
   7 * the Free Software Foundation; either version 2 of the License, or
   8 * (at your option) any later version.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
  13 * the GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, write to the Free Software
  17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18 *
  19 * Author: Artem Bityutskiy (Битюцкий Артём)
  20 *
  21 * Jan 2007: Alexander Schmidt, hacked per-volume update.
  22 */
  23
  24/*
  25 * This file contains implementation of the volume update and atomic LEB change
  26 * functionality.
  27 *
  28 * The update operation is based on the per-volume update marker which is
  29 * stored in the volume table. The update marker is set before the update
  30 * starts, and removed after the update has been finished. So if the update was
  31 * interrupted by an unclean re-boot or due to some other reasons, the update
  32 * marker stays on the flash media and UBI finds it when it attaches the MTD
  33 * device next time. If the update marker is set for a volume, the volume is
  34 * treated as damaged and most I/O operations are prohibited. Only a new update
  35 * operation is allowed.
  36 *
  37 * Note, in general it is possible to implement the update operation as a
  38 * transaction with a roll-back capability.
  39 */
  40
  41#include <linux/err.h>
  42#include <linux/uaccess.h>
  43#include <linux/math64.h>
  44#include "ubi.h"
  45
  46/**
  47 * set_update_marker - set update marker.
  48 * @ubi: UBI device description object
  49 * @vol: volume description object
  50 *
  51 * This function sets the update marker flag for volume @vol. Returns zero
  52 * in case of success and a negative error code in case of failure.
  53 */
  54static int set_update_marker(struct ubi_device *ubi, struct ubi_volume *vol)
  55{
  56        int err;
  57        struct ubi_vtbl_record vtbl_rec;
  58
  59        dbg_gen("set update marker for volume %d", vol->vol_id);
  60
  61        if (vol->upd_marker) {
  62                ubi_assert(ubi->vtbl[vol->vol_id].upd_marker);
  63                dbg_gen("already set");
  64                return 0;
  65        }
  66
  67        memcpy(&vtbl_rec, &ubi->vtbl[vol->vol_id],
  68               sizeof(struct ubi_vtbl_record));
  69        vtbl_rec.upd_marker = 1;
  70
  71        mutex_lock(&ubi->device_mutex);
  72        err = ubi_change_vtbl_record(ubi, vol->vol_id, &vtbl_rec);
  73        vol->upd_marker = 1;
  74        mutex_unlock(&ubi->device_mutex);
  75        return err;
  76}
  77
  78/**
  79 * clear_update_marker - clear update marker.
  80 * @ubi: UBI device description object
  81 * @vol: volume description object
  82 * @bytes: new data size in bytes
  83 *
  84 * This function clears the update marker for volume @vol, sets new volume
  85 * data size and clears the "corrupted" flag (static volumes only). Returns
  86 * zero in case of success and a negative error code in case of failure.
  87 */
  88static int clear_update_marker(struct ubi_device *ubi, struct ubi_volume *vol,
  89                               long long bytes)
  90{
  91        int err;
  92        struct ubi_vtbl_record vtbl_rec;
  93
  94        dbg_gen("clear update marker for volume %d", vol->vol_id);
  95
  96        memcpy(&vtbl_rec, &ubi->vtbl[vol->vol_id],
  97               sizeof(struct ubi_vtbl_record));
  98        ubi_assert(vol->upd_marker && vtbl_rec.upd_marker);
  99        vtbl_rec.upd_marker = 0;
 100
 101        if (vol->vol_type == UBI_STATIC_VOLUME) {
 102                vol->corrupted = 0;
 103                vol->used_bytes = bytes;
 104                vol->used_ebs = div_u64_rem(bytes, vol->usable_leb_size,
 105                                            &vol->last_eb_bytes);
 106                if (vol->last_eb_bytes)
 107                        vol->used_ebs += 1;
 108                else
 109                        vol->last_eb_bytes = vol->usable_leb_size;
 110        }
 111
 112        mutex_lock(&ubi->device_mutex);
 113        err = ubi_change_vtbl_record(ubi, vol->vol_id, &vtbl_rec);
 114        vol->upd_marker = 0;
 115        mutex_unlock(&ubi->device_mutex);
 116        return err;
 117}
 118
 119/**
 120 * ubi_start_update - start volume update.
 121 * @ubi: UBI device description object
 122 * @vol: volume description object
 123 * @bytes: update bytes
 124 *
 125 * This function starts volume update operation. If @bytes is zero, the volume
 126 * is just wiped out. Returns zero in case of success and a negative error code
 127 * in case of failure.
 128 */
 129int ubi_start_update(struct ubi_device *ubi, struct ubi_volume *vol,
 130                     long long bytes)
 131{
 132        int i, err;
 133
 134        dbg_gen("start update of volume %d, %llu bytes", vol->vol_id, bytes);
 135        ubi_assert(!vol->updating && !vol->changing_leb);
 136        vol->updating = 1;
 137
 138        err = set_update_marker(ubi, vol);
 139        if (err)
 140                return err;
 141
 142        /* Before updating - wipe out the volume */
 143        for (i = 0; i < vol->reserved_pebs; i++) {
 144                err = ubi_eba_unmap_leb(ubi, vol, i);
 145                if (err)
 146                        return err;
 147        }
 148
 149        if (bytes == 0) {
 150                err = ubi_wl_flush(ubi);
 151                if (err)
 152                        return err;
 153
 154                err = clear_update_marker(ubi, vol, 0);
 155                if (err)
 156                        return err;
 157                vol->updating = 0;
 158                return 0;
 159        }
 160
 161        vol->upd_buf = vmalloc(ubi->leb_size);
 162        if (!vol->upd_buf)
 163                return -ENOMEM;
 164
 165        vol->upd_ebs = div_u64(bytes + vol->usable_leb_size - 1,
 166                               vol->usable_leb_size);
 167        vol->upd_bytes = bytes;
 168        vol->upd_received = 0;
 169        return 0;
 170}
 171
 172/**
 173 * ubi_start_leb_change - start atomic LEB change.
 174 * @ubi: UBI device description object
 175 * @vol: volume description object
 176 * @req: operation request
 177 *
 178 * This function starts atomic LEB change operation. Returns zero in case of
 179 * success and a negative error code in case of failure.
 180 */
 181int ubi_start_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
 182                         const struct ubi_leb_change_req *req)
 183{
 184        ubi_assert(!vol->updating && !vol->changing_leb);
 185
 186        dbg_gen("start changing LEB %d:%d, %u bytes",
 187                vol->vol_id, req->lnum, req->bytes);
 188        if (req->bytes == 0)
 189                return ubi_eba_atomic_leb_change(ubi, vol, req->lnum, NULL, 0,
 190                                                 req->dtype);
 191
 192        vol->upd_bytes = req->bytes;
 193        vol->upd_received = 0;
 194        vol->changing_leb = 1;
 195        vol->ch_lnum = req->lnum;
 196        vol->ch_dtype = req->dtype;
 197
 198        vol->upd_buf = vmalloc(req->bytes);
 199        if (!vol->upd_buf)
 200                return -ENOMEM;
 201
 202        return 0;
 203}
 204
 205/**
 206 * write_leb - write update data.
 207 * @ubi: UBI device description object
 208 * @vol: volume description object
 209 * @lnum: logical eraseblock number
 210 * @buf: data to write
 211 * @len: data size
 212 * @used_ebs: how many logical eraseblocks will this volume contain (static
 213 * volumes only)
 214 *
 215 * This function writes update data to corresponding logical eraseblock. In
 216 * case of dynamic volume, this function checks if the data contains 0xFF bytes
 217 * at the end. If yes, the 0xFF bytes are cut and not written. So if the whole
 218 * buffer contains only 0xFF bytes, the LEB is left unmapped.
 219 *
 220 * The reason why we skip the trailing 0xFF bytes in case of dynamic volume is
 221 * that we want to make sure that more data may be appended to the logical
 222 * eraseblock in future. Indeed, writing 0xFF bytes may have side effects and
 223 * this PEB won't be writable anymore. So if one writes the file-system image
 224 * to the UBI volume where 0xFFs mean free space - UBI makes sure this free
 225 * space is writable after the update.
 226 *
 227 * We do not do this for static volumes because they are read-only. But this
 228 * also cannot be done because we have to store per-LEB CRC and the correct
 229 * data length.
 230 *
 231 * This function returns zero in case of success and a negative error code in
 232 * case of failure.
 233 */
 234static int write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
 235                     void *buf, int len, int used_ebs)
 236{
 237        int err;
 238
 239        if (vol->vol_type == UBI_DYNAMIC_VOLUME) {
 240                int l = ALIGN(len, ubi->min_io_size);
 241
 242                memset(buf + len, 0xFF, l - len);
 243                len = ubi_calc_data_len(ubi, buf, l);
 244                if (len == 0) {
 245                        dbg_gen("all %d bytes contain 0xFF - skip", len);
 246                        return 0;
 247                }
 248
 249                err = ubi_eba_write_leb(ubi, vol, lnum, buf, 0, len,
 250                                        UBI_UNKNOWN);
 251        } else {
 252                /*
 253                 * When writing static volume, and this is the last logical
 254                 * eraseblock, the length (@len) does not have to be aligned to
 255                 * the minimal flash I/O unit. The 'ubi_eba_write_leb_st()'
 256                 * function accepts exact (unaligned) length and stores it in
 257                 * the VID header. And it takes care of proper alignment by
 258                 * padding the buffer. Here we just make sure the padding will
 259                 * contain zeros, not random trash.
 260                 */
 261                memset(buf + len, 0, vol->usable_leb_size - len);
 262                err = ubi_eba_write_leb_st(ubi, vol, lnum, buf, len,
 263                                           UBI_UNKNOWN, used_ebs);
 264        }
 265
 266        return err;
 267}
 268
 269/**
 270 * ubi_more_update_data - write more update data.
 271 * @ubi: UBI device description object
 272 * @vol: volume description object
 273 * @buf: write data (user-space memory buffer)
 274 * @count: how much bytes to write
 275 *
 276 * This function writes more data to the volume which is being updated. It may
 277 * be called arbitrary number of times until all the update data arriveis. This
 278 * function returns %0 in case of success, number of bytes written during the
 279 * last call if the whole volume update has been successfully finished, and a
 280 * negative error code in case of failure.
 281 */
 282int ubi_more_update_data(struct ubi_device *ubi, struct ubi_volume *vol,
 283                         const void __user *buf, int count)
 284{
 285        int lnum, offs, err = 0, len, to_write = count;
 286
 287        dbg_gen("write %d of %lld bytes, %lld already passed",
 288                count, vol->upd_bytes, vol->upd_received);
 289
 290        if (ubi->ro_mode)
 291                return -EROFS;
 292
 293        lnum = div_u64_rem(vol->upd_received,  vol->usable_leb_size, &offs);
 294        if (vol->upd_received + count > vol->upd_bytes)
 295                to_write = count = vol->upd_bytes - vol->upd_received;
 296
 297        /*
 298         * When updating volumes, we accumulate whole logical eraseblock of
 299         * data and write it at once.
 300         */
 301        if (offs != 0) {
 302                /*
 303                 * This is a write to the middle of the logical eraseblock. We
 304                 * copy the data to our update buffer and wait for more data or
 305                 * flush it if the whole eraseblock is written or the update
 306                 * is finished.
 307                 */
 308
 309                len = vol->usable_leb_size - offs;
 310                if (len > count)
 311                        len = count;
 312
 313                err = copy_from_user(vol->upd_buf + offs, buf, len);
 314                if (err)
 315                        return -EFAULT;
 316
 317                if (offs + len == vol->usable_leb_size ||
 318                    vol->upd_received + len == vol->upd_bytes) {
 319                        int flush_len = offs + len;
 320
 321                        /*
 322                         * OK, we gathered either the whole eraseblock or this
 323                         * is the last chunk, it's time to flush the buffer.
 324                         */
 325                        ubi_assert(flush_len <= vol->usable_leb_size);
 326                        err = write_leb(ubi, vol, lnum, vol->upd_buf, flush_len,
 327                                        vol->upd_ebs);
 328                        if (err)
 329                                return err;
 330                }
 331
 332                vol->upd_received += len;
 333                count -= len;
 334                buf += len;
 335                lnum += 1;
 336        }
 337
 338        /*
 339         * If we've got more to write, let's continue. At this point we know we
 340         * are starting from the beginning of an eraseblock.
 341         */
 342        while (count) {
 343                if (count > vol->usable_leb_size)
 344                        len = vol->usable_leb_size;
 345                else
 346                        len = count;
 347
 348                err = copy_from_user(vol->upd_buf, buf, len);
 349                if (err)
 350                        return -EFAULT;
 351
 352                if (len == vol->usable_leb_size ||
 353                    vol->upd_received + len == vol->upd_bytes) {
 354                        err = write_leb(ubi, vol, lnum, vol->upd_buf,
 355                                        len, vol->upd_ebs);
 356                        if (err)
 357                                break;
 358                }
 359
 360                vol->upd_received += len;
 361                count -= len;
 362                lnum += 1;
 363                buf += len;
 364        }
 365
 366        ubi_assert(vol->upd_received <= vol->upd_bytes);
 367        if (vol->upd_received == vol->upd_bytes) {
 368                err = ubi_wl_flush(ubi);
 369                if (err)
 370                        return err;
 371                /* The update is finished, clear the update marker */
 372                err = clear_update_marker(ubi, vol, vol->upd_bytes);
 373                if (err)
 374                        return err;
 375                vol->updating = 0;
 376                err = to_write;
 377                vfree(vol->upd_buf);
 378        }
 379
 380        return err;
 381}
 382
 383/**
 384 * ubi_more_leb_change_data - accept more data for atomic LEB change.
 385 * @ubi: UBI device description object
 386 * @vol: volume description object
 387 * @buf: write data (user-space memory buffer)
 388 * @count: how much bytes to write
 389 *
 390 * This function accepts more data to the volume which is being under the
 391 * "atomic LEB change" operation. It may be called arbitrary number of times
 392 * until all data arrives. This function returns %0 in case of success, number
 393 * of bytes written during the last call if the whole "atomic LEB change"
 394 * operation has been successfully finished, and a negative error code in case
 395 * of failure.
 396 */
 397int ubi_more_leb_change_data(struct ubi_device *ubi, struct ubi_volume *vol,
 398                             const void __user *buf, int count)
 399{
 400        int err;
 401
 402        dbg_gen("write %d of %lld bytes, %lld already passed",
 403                count, vol->upd_bytes, vol->upd_received);
 404
 405        if (ubi->ro_mode)
 406                return -EROFS;
 407
 408        if (vol->upd_received + count > vol->upd_bytes)
 409                count = vol->upd_bytes - vol->upd_received;
 410
 411        err = copy_from_user(vol->upd_buf + vol->upd_received, buf, count);
 412        if (err)
 413                return -EFAULT;
 414
 415        vol->upd_received += count;
 416
 417        if (vol->upd_received == vol->upd_bytes) {
 418                int len = ALIGN((int)vol->upd_bytes, ubi->min_io_size);
 419
 420                memset(vol->upd_buf + vol->upd_bytes, 0xFF,
 421                       len - vol->upd_bytes);
 422                len = ubi_calc_data_len(ubi, vol->upd_buf, len);
 423                err = ubi_eba_atomic_leb_change(ubi, vol, vol->ch_lnum,
 424                                                vol->upd_buf, len, UBI_UNKNOWN);
 425                if (err)
 426                        return err;
 427        }
 428
 429        ubi_assert(vol->upd_received <= vol->upd_bytes);
 430        if (vol->upd_received == vol->upd_bytes) {
 431                vol->changing_leb = 0;
 432                err = count;
 433                vfree(vol->upd_buf);
 434        }
 435
 436        return err;
 437}
 438