linux/drivers/mtd/ubi/vtbl.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) International Business Machines Corp., 2006
   3 * Copyright (c) Nokia Corporation, 2006, 2007
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License as published by
   7 * the Free Software Foundation; either version 2 of the License, or
   8 * (at your option) any later version.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
  13 * the GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, write to the Free Software
  17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18 *
  19 * Author: Artem Bityutskiy (Битюцкий Артём)
  20 */
  21
  22/*
  23 * This file includes volume table manipulation code. The volume table is an
  24 * on-flash table containing volume meta-data like name, number of reserved
  25 * physical eraseblocks, type, etc. The volume table is stored in the so-called
  26 * "layout volume".
  27 *
  28 * The layout volume is an internal volume which is organized as follows. It
  29 * consists of two logical eraseblocks - LEB 0 and LEB 1. Each logical
  30 * eraseblock stores one volume table copy, i.e. LEB 0 and LEB 1 duplicate each
  31 * other. This redundancy guarantees robustness to unclean reboots. The volume
  32 * table is basically an array of volume table records. Each record contains
  33 * full information about the volume and protected by a CRC checksum.
  34 *
  35 * The volume table is changed, it is first changed in RAM. Then LEB 0 is
  36 * erased, and the updated volume table is written back to LEB 0. Then same for
  37 * LEB 1. This scheme guarantees recoverability from unclean reboots.
  38 *
  39 * In this UBI implementation the on-flash volume table does not contain any
  40 * information about how many data static volumes contain. This information may
  41 * be found from the scanning data.
  42 *
  43 * But it would still be beneficial to store this information in the volume
  44 * table. For example, suppose we have a static volume X, and all its physical
  45 * eraseblocks became bad for some reasons. Suppose we are attaching the
  46 * corresponding MTD device, the scanning has found no logical eraseblocks
  47 * corresponding to the volume X. According to the volume table volume X does
  48 * exist. So we don't know whether it is just empty or all its physical
  49 * eraseblocks went bad. So we cannot alarm the user about this corruption.
  50 *
  51 * The volume table also stores so-called "update marker", which is used for
  52 * volume updates. Before updating the volume, the update marker is set, and
  53 * after the update operation is finished, the update marker is cleared. So if
  54 * the update operation was interrupted (e.g. by an unclean reboot) - the
  55 * update marker is still there and we know that the volume's contents is
  56 * damaged.
  57 */
  58
  59#include <linux/crc32.h>
  60#include <linux/err.h>
  61#include <linux/slab.h>
  62#include <asm/div64.h>
  63#include "ubi.h"
  64
  65#ifdef CONFIG_MTD_UBI_DEBUG
  66static void paranoid_vtbl_check(const struct ubi_device *ubi);
  67#else
  68#define paranoid_vtbl_check(ubi)
  69#endif
  70
  71/* Empty volume table record */
  72static struct ubi_vtbl_record empty_vtbl_record;
  73
  74/**
  75 * ubi_change_vtbl_record - change volume table record.
  76 * @ubi: UBI device description object
  77 * @idx: table index to change
  78 * @vtbl_rec: new volume table record
  79 *
  80 * This function changes volume table record @idx. If @vtbl_rec is %NULL, empty
  81 * volume table record is written. The caller does not have to calculate CRC of
  82 * the record as it is done by this function. Returns zero in case of success
  83 * and a negative error code in case of failure.
  84 */
  85int ubi_change_vtbl_record(struct ubi_device *ubi, int idx,
  86                           struct ubi_vtbl_record *vtbl_rec)
  87{
  88        int i, err;
  89        uint32_t crc;
  90        struct ubi_volume *layout_vol;
  91
  92        ubi_assert(idx >= 0 && idx < ubi->vtbl_slots);
  93        layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOLUME_ID)];
  94
  95        if (!vtbl_rec)
  96                vtbl_rec = &empty_vtbl_record;
  97        else {
  98                crc = crc32(UBI_CRC32_INIT, vtbl_rec, UBI_VTBL_RECORD_SIZE_CRC);
  99                vtbl_rec->crc = cpu_to_be32(crc);
 100        }
 101
 102        memcpy(&ubi->vtbl[idx], vtbl_rec, sizeof(struct ubi_vtbl_record));
 103        for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
 104                err = ubi_eba_unmap_leb(ubi, layout_vol, i);
 105                if (err)
 106                        return err;
 107
 108                err = ubi_eba_write_leb(ubi, layout_vol, i, ubi->vtbl, 0,
 109                                        ubi->vtbl_size, UBI_LONGTERM);
 110                if (err)
 111                        return err;
 112        }
 113
 114        paranoid_vtbl_check(ubi);
 115        return 0;
 116}
 117
 118/**
 119 * ubi_vtbl_rename_volumes - rename UBI volumes in the volume table.
 120 * @ubi: UBI device description object
 121 * @rename_list: list of &struct ubi_rename_entry objects
 122 *
 123 * This function re-names multiple volumes specified in @req in the volume
 124 * table. Returns zero in case of success and a negative error code in case of
 125 * failure.
 126 */
 127int ubi_vtbl_rename_volumes(struct ubi_device *ubi,
 128                            struct list_head *rename_list)
 129{
 130        int i, err;
 131        struct ubi_rename_entry *re;
 132        struct ubi_volume *layout_vol;
 133
 134        list_for_each_entry(re, rename_list, list) {
 135                uint32_t crc;
 136                struct ubi_volume *vol = re->desc->vol;
 137                struct ubi_vtbl_record *vtbl_rec = &ubi->vtbl[vol->vol_id];
 138
 139                if (re->remove) {
 140                        memcpy(vtbl_rec, &empty_vtbl_record,
 141                               sizeof(struct ubi_vtbl_record));
 142                        continue;
 143                }
 144
 145                vtbl_rec->name_len = cpu_to_be16(re->new_name_len);
 146                memcpy(vtbl_rec->name, re->new_name, re->new_name_len);
 147                memset(vtbl_rec->name + re->new_name_len, 0,
 148                       UBI_VOL_NAME_MAX + 1 - re->new_name_len);
 149                crc = crc32(UBI_CRC32_INIT, vtbl_rec,
 150                            UBI_VTBL_RECORD_SIZE_CRC);
 151                vtbl_rec->crc = cpu_to_be32(crc);
 152        }
 153
 154        layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOLUME_ID)];
 155        for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
 156                err = ubi_eba_unmap_leb(ubi, layout_vol, i);
 157                if (err)
 158                        return err;
 159
 160                err = ubi_eba_write_leb(ubi, layout_vol, i, ubi->vtbl, 0,
 161                                        ubi->vtbl_size, UBI_LONGTERM);
 162                if (err)
 163                        return err;
 164        }
 165
 166        return 0;
 167}
 168
 169/**
 170 * vtbl_check - check if volume table is not corrupted and sensible.
 171 * @ubi: UBI device description object
 172 * @vtbl: volume table
 173 *
 174 * This function returns zero if @vtbl is all right, %1 if CRC is incorrect,
 175 * and %-EINVAL if it contains inconsistent data.
 176 */
 177static int vtbl_check(const struct ubi_device *ubi,
 178                      const struct ubi_vtbl_record *vtbl)
 179{
 180        int i, n, reserved_pebs, alignment, data_pad, vol_type, name_len;
 181        int upd_marker, err;
 182        uint32_t crc;
 183        const char *name;
 184
 185        for (i = 0; i < ubi->vtbl_slots; i++) {
 186                cond_resched();
 187
 188                reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
 189                alignment = be32_to_cpu(vtbl[i].alignment);
 190                data_pad = be32_to_cpu(vtbl[i].data_pad);
 191                upd_marker = vtbl[i].upd_marker;
 192                vol_type = vtbl[i].vol_type;
 193                name_len = be16_to_cpu(vtbl[i].name_len);
 194                name = &vtbl[i].name[0];
 195
 196                crc = crc32(UBI_CRC32_INIT, &vtbl[i], UBI_VTBL_RECORD_SIZE_CRC);
 197                if (be32_to_cpu(vtbl[i].crc) != crc) {
 198                        ubi_err("bad CRC at record %u: %#08x, not %#08x",
 199                                 i, crc, be32_to_cpu(vtbl[i].crc));
 200                        ubi_dbg_dump_vtbl_record(&vtbl[i], i);
 201                        return 1;
 202                }
 203
 204                if (reserved_pebs == 0) {
 205                        if (memcmp(&vtbl[i], &empty_vtbl_record,
 206                                                UBI_VTBL_RECORD_SIZE)) {
 207                                err = 2;
 208                                goto bad;
 209                        }
 210                        continue;
 211                }
 212
 213                if (reserved_pebs < 0 || alignment < 0 || data_pad < 0 ||
 214                    name_len < 0) {
 215                        err = 3;
 216                        goto bad;
 217                }
 218
 219                if (alignment > ubi->leb_size || alignment == 0) {
 220                        err = 4;
 221                        goto bad;
 222                }
 223
 224                n = alignment & (ubi->min_io_size - 1);
 225                if (alignment != 1 && n) {
 226                        err = 5;
 227                        goto bad;
 228                }
 229
 230                n = ubi->leb_size % alignment;
 231                if (data_pad != n) {
 232                        dbg_err("bad data_pad, has to be %d", n);
 233                        err = 6;
 234                        goto bad;
 235                }
 236
 237                if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
 238                        err = 7;
 239                        goto bad;
 240                }
 241
 242                if (upd_marker != 0 && upd_marker != 1) {
 243                        err = 8;
 244                        goto bad;
 245                }
 246
 247                if (reserved_pebs > ubi->good_peb_count) {
 248                        dbg_err("too large reserved_pebs %d, good PEBs %d",
 249                                reserved_pebs, ubi->good_peb_count);
 250                        err = 9;
 251                        goto bad;
 252                }
 253
 254                if (name_len > UBI_VOL_NAME_MAX) {
 255                        err = 10;
 256                        goto bad;
 257                }
 258
 259                if (name[0] == '\0') {
 260                        err = 11;
 261                        goto bad;
 262                }
 263
 264                if (name_len != strnlen(name, name_len + 1)) {
 265                        err = 12;
 266                        goto bad;
 267                }
 268        }
 269
 270        /* Checks that all names are unique */
 271        for (i = 0; i < ubi->vtbl_slots - 1; i++) {
 272                for (n = i + 1; n < ubi->vtbl_slots; n++) {
 273                        int len1 = be16_to_cpu(vtbl[i].name_len);
 274                        int len2 = be16_to_cpu(vtbl[n].name_len);
 275
 276                        if (len1 > 0 && len1 == len2 &&
 277                            !strncmp(vtbl[i].name, vtbl[n].name, len1)) {
 278                                ubi_err("volumes %d and %d have the same name"
 279                                        " \"%s\"", i, n, vtbl[i].name);
 280                                ubi_dbg_dump_vtbl_record(&vtbl[i], i);
 281                                ubi_dbg_dump_vtbl_record(&vtbl[n], n);
 282                                return -EINVAL;
 283                        }
 284                }
 285        }
 286
 287        return 0;
 288
 289bad:
 290        ubi_err("volume table check failed: record %d, error %d", i, err);
 291        ubi_dbg_dump_vtbl_record(&vtbl[i], i);
 292        return -EINVAL;
 293}
 294
 295/**
 296 * create_vtbl - create a copy of volume table.
 297 * @ubi: UBI device description object
 298 * @si: scanning information
 299 * @copy: number of the volume table copy
 300 * @vtbl: contents of the volume table
 301 *
 302 * This function returns zero in case of success and a negative error code in
 303 * case of failure.
 304 */
 305static int create_vtbl(struct ubi_device *ubi, struct ubi_scan_info *si,
 306                       int copy, void *vtbl)
 307{
 308        int err, tries = 0;
 309        struct ubi_vid_hdr *vid_hdr;
 310        struct ubi_scan_leb *new_seb;
 311
 312        ubi_msg("create volume table (copy #%d)", copy + 1);
 313
 314        vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
 315        if (!vid_hdr)
 316                return -ENOMEM;
 317
 318retry:
 319        new_seb = ubi_scan_get_free_peb(ubi, si);
 320        if (IS_ERR(new_seb)) {
 321                err = PTR_ERR(new_seb);
 322                goto out_free;
 323        }
 324
 325        vid_hdr->vol_type = UBI_LAYOUT_VOLUME_TYPE;
 326        vid_hdr->vol_id = cpu_to_be32(UBI_LAYOUT_VOLUME_ID);
 327        vid_hdr->compat = UBI_LAYOUT_VOLUME_COMPAT;
 328        vid_hdr->data_size = vid_hdr->used_ebs =
 329                             vid_hdr->data_pad = cpu_to_be32(0);
 330        vid_hdr->lnum = cpu_to_be32(copy);
 331        vid_hdr->sqnum = cpu_to_be64(++si->max_sqnum);
 332
 333        /* The EC header is already there, write the VID header */
 334        err = ubi_io_write_vid_hdr(ubi, new_seb->pnum, vid_hdr);
 335        if (err)
 336                goto write_error;
 337
 338        /* Write the layout volume contents */
 339        err = ubi_io_write_data(ubi, vtbl, new_seb->pnum, 0, ubi->vtbl_size);
 340        if (err)
 341                goto write_error;
 342
 343        /*
 344         * And add it to the scanning information. Don't delete the old version
 345         * of this LEB as it will be deleted and freed in 'ubi_scan_add_used()'.
 346         */
 347        err = ubi_scan_add_used(ubi, si, new_seb->pnum, new_seb->ec,
 348                                vid_hdr, 0);
 349        kfree(new_seb);
 350        ubi_free_vid_hdr(ubi, vid_hdr);
 351        return err;
 352
 353write_error:
 354        if (err == -EIO && ++tries <= 5) {
 355                /*
 356                 * Probably this physical eraseblock went bad, try to pick
 357                 * another one.
 358                 */
 359                list_add(&new_seb->u.list, &si->erase);
 360                goto retry;
 361        }
 362        kfree(new_seb);
 363out_free:
 364        ubi_free_vid_hdr(ubi, vid_hdr);
 365        return err;
 366
 367}
 368
 369/**
 370 * process_lvol - process the layout volume.
 371 * @ubi: UBI device description object
 372 * @si: scanning information
 373 * @sv: layout volume scanning information
 374 *
 375 * This function is responsible for reading the layout volume, ensuring it is
 376 * not corrupted, and recovering from corruptions if needed. Returns volume
 377 * table in case of success and a negative error code in case of failure.
 378 */
 379static struct ubi_vtbl_record *process_lvol(struct ubi_device *ubi,
 380                                            struct ubi_scan_info *si,
 381                                            struct ubi_scan_volume *sv)
 382{
 383        int err;
 384        struct rb_node *rb;
 385        struct ubi_scan_leb *seb;
 386        struct ubi_vtbl_record *leb[UBI_LAYOUT_VOLUME_EBS] = { NULL, NULL };
 387        int leb_corrupted[UBI_LAYOUT_VOLUME_EBS] = {1, 1};
 388
 389        /*
 390         * UBI goes through the following steps when it changes the layout
 391         * volume:
 392         * a. erase LEB 0;
 393         * b. write new data to LEB 0;
 394         * c. erase LEB 1;
 395         * d. write new data to LEB 1.
 396         *
 397         * Before the change, both LEBs contain the same data.
 398         *
 399         * Due to unclean reboots, the contents of LEB 0 may be lost, but there
 400         * should LEB 1. So it is OK if LEB 0 is corrupted while LEB 1 is not.
 401         * Similarly, LEB 1 may be lost, but there should be LEB 0. And
 402         * finally, unclean reboots may result in a situation when neither LEB
 403         * 0 nor LEB 1 are corrupted, but they are different. In this case, LEB
 404         * 0 contains more recent information.
 405         *
 406         * So the plan is to first check LEB 0. Then
 407         * a. if LEB 0 is OK, it must be containing the most recent data; then
 408         *    we compare it with LEB 1, and if they are different, we copy LEB
 409         *    0 to LEB 1;
 410         * b. if LEB 0 is corrupted, but LEB 1 has to be OK, and we copy LEB 1
 411         *    to LEB 0.
 412         */
 413
 414        dbg_gen("check layout volume");
 415
 416        /* Read both LEB 0 and LEB 1 into memory */
 417        ubi_rb_for_each_entry(rb, seb, &sv->root, u.rb) {
 418                leb[seb->lnum] = vzalloc(ubi->vtbl_size);
 419                if (!leb[seb->lnum]) {
 420                        err = -ENOMEM;
 421                        goto out_free;
 422                }
 423
 424                err = ubi_io_read_data(ubi, leb[seb->lnum], seb->pnum, 0,
 425                                       ubi->vtbl_size);
 426                if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err))
 427                        /*
 428                         * Scrub the PEB later. Note, -EBADMSG indicates an
 429                         * uncorrectable ECC error, but we have our own CRC and
 430                         * the data will be checked later. If the data is OK,
 431                         * the PEB will be scrubbed (because we set
 432                         * seb->scrub). If the data is not OK, the contents of
 433                         * the PEB will be recovered from the second copy, and
 434                         * seb->scrub will be cleared in
 435                         * 'ubi_scan_add_used()'.
 436                         */
 437                        seb->scrub = 1;
 438                else if (err)
 439                        goto out_free;
 440        }
 441
 442        err = -EINVAL;
 443        if (leb[0]) {
 444                leb_corrupted[0] = vtbl_check(ubi, leb[0]);
 445                if (leb_corrupted[0] < 0)
 446                        goto out_free;
 447        }
 448
 449        if (!leb_corrupted[0]) {
 450                /* LEB 0 is OK */
 451                if (leb[1])
 452                        leb_corrupted[1] = memcmp(leb[0], leb[1],
 453                                                  ubi->vtbl_size);
 454                if (leb_corrupted[1]) {
 455                        ubi_warn("volume table copy #2 is corrupted");
 456                        err = create_vtbl(ubi, si, 1, leb[0]);
 457                        if (err)
 458                                goto out_free;
 459                        ubi_msg("volume table was restored");
 460                }
 461
 462                /* Both LEB 1 and LEB 2 are OK and consistent */
 463                vfree(leb[1]);
 464                return leb[0];
 465        } else {
 466                /* LEB 0 is corrupted or does not exist */
 467                if (leb[1]) {
 468                        leb_corrupted[1] = vtbl_check(ubi, leb[1]);
 469                        if (leb_corrupted[1] < 0)
 470                                goto out_free;
 471                }
 472                if (leb_corrupted[1]) {
 473                        /* Both LEB 0 and LEB 1 are corrupted */
 474                        ubi_err("both volume tables are corrupted");
 475                        goto out_free;
 476                }
 477
 478                ubi_warn("volume table copy #1 is corrupted");
 479                err = create_vtbl(ubi, si, 0, leb[1]);
 480                if (err)
 481                        goto out_free;
 482                ubi_msg("volume table was restored");
 483
 484                vfree(leb[0]);
 485                return leb[1];
 486        }
 487
 488out_free:
 489        vfree(leb[0]);
 490        vfree(leb[1]);
 491        return ERR_PTR(err);
 492}
 493
 494/**
 495 * create_empty_lvol - create empty layout volume.
 496 * @ubi: UBI device description object
 497 * @si: scanning information
 498 *
 499 * This function returns volume table contents in case of success and a
 500 * negative error code in case of failure.
 501 */
 502static struct ubi_vtbl_record *create_empty_lvol(struct ubi_device *ubi,
 503                                                 struct ubi_scan_info *si)
 504{
 505        int i;
 506        struct ubi_vtbl_record *vtbl;
 507
 508        vtbl = vzalloc(ubi->vtbl_size);
 509        if (!vtbl)
 510                return ERR_PTR(-ENOMEM);
 511
 512        for (i = 0; i < ubi->vtbl_slots; i++)
 513                memcpy(&vtbl[i], &empty_vtbl_record, UBI_VTBL_RECORD_SIZE);
 514
 515        for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
 516                int err;
 517
 518                err = create_vtbl(ubi, si, i, vtbl);
 519                if (err) {
 520                        vfree(vtbl);
 521                        return ERR_PTR(err);
 522                }
 523        }
 524
 525        return vtbl;
 526}
 527
 528/**
 529 * init_volumes - initialize volume information for existing volumes.
 530 * @ubi: UBI device description object
 531 * @si: scanning information
 532 * @vtbl: volume table
 533 *
 534 * This function allocates volume description objects for existing volumes.
 535 * Returns zero in case of success and a negative error code in case of
 536 * failure.
 537 */
 538static int init_volumes(struct ubi_device *ubi, const struct ubi_scan_info *si,
 539                        const struct ubi_vtbl_record *vtbl)
 540{
 541        int i, reserved_pebs = 0;
 542        struct ubi_scan_volume *sv;
 543        struct ubi_volume *vol;
 544
 545        for (i = 0; i < ubi->vtbl_slots; i++) {
 546                cond_resched();
 547
 548                if (be32_to_cpu(vtbl[i].reserved_pebs) == 0)
 549                        continue; /* Empty record */
 550
 551                vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
 552                if (!vol)
 553                        return -ENOMEM;
 554
 555                vol->reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
 556                vol->alignment = be32_to_cpu(vtbl[i].alignment);
 557                vol->data_pad = be32_to_cpu(vtbl[i].data_pad);
 558                vol->upd_marker = vtbl[i].upd_marker;
 559                vol->vol_type = vtbl[i].vol_type == UBI_VID_DYNAMIC ?
 560                                        UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
 561                vol->name_len = be16_to_cpu(vtbl[i].name_len);
 562                vol->usable_leb_size = ubi->leb_size - vol->data_pad;
 563                memcpy(vol->name, vtbl[i].name, vol->name_len);
 564                vol->name[vol->name_len] = '\0';
 565                vol->vol_id = i;
 566
 567                if (vtbl[i].flags & UBI_VTBL_AUTORESIZE_FLG) {
 568                        /* Auto re-size flag may be set only for one volume */
 569                        if (ubi->autoresize_vol_id != -1) {
 570                                ubi_err("more than one auto-resize volume (%d "
 571                                        "and %d)", ubi->autoresize_vol_id, i);
 572                                kfree(vol);
 573                                return -EINVAL;
 574                        }
 575
 576                        ubi->autoresize_vol_id = i;
 577                }
 578
 579                ubi_assert(!ubi->volumes[i]);
 580                ubi->volumes[i] = vol;
 581                ubi->vol_count += 1;
 582                vol->ubi = ubi;
 583                reserved_pebs += vol->reserved_pebs;
 584
 585                /*
 586                 * In case of dynamic volume UBI knows nothing about how many
 587                 * data is stored there. So assume the whole volume is used.
 588                 */
 589                if (vol->vol_type == UBI_DYNAMIC_VOLUME) {
 590                        vol->used_ebs = vol->reserved_pebs;
 591                        vol->last_eb_bytes = vol->usable_leb_size;
 592                        vol->used_bytes =
 593                                (long long)vol->used_ebs * vol->usable_leb_size;
 594                        continue;
 595                }
 596
 597                /* Static volumes only */
 598                sv = ubi_scan_find_sv(si, i);
 599                if (!sv) {
 600                        /*
 601                         * No eraseblocks belonging to this volume found. We
 602                         * don't actually know whether this static volume is
 603                         * completely corrupted or just contains no data. And
 604                         * we cannot know this as long as data size is not
 605                         * stored on flash. So we just assume the volume is
 606                         * empty. FIXME: this should be handled.
 607                         */
 608                        continue;
 609                }
 610
 611                if (sv->leb_count != sv->used_ebs) {
 612                        /*
 613                         * We found a static volume which misses several
 614                         * eraseblocks. Treat it as corrupted.
 615                         */
 616                        ubi_warn("static volume %d misses %d LEBs - corrupted",
 617                                 sv->vol_id, sv->used_ebs - sv->leb_count);
 618                        vol->corrupted = 1;
 619                        continue;
 620                }
 621
 622                vol->used_ebs = sv->used_ebs;
 623                vol->used_bytes =
 624                        (long long)(vol->used_ebs - 1) * vol->usable_leb_size;
 625                vol->used_bytes += sv->last_data_size;
 626                vol->last_eb_bytes = sv->last_data_size;
 627        }
 628
 629        /* And add the layout volume */
 630        vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
 631        if (!vol)
 632                return -ENOMEM;
 633
 634        vol->reserved_pebs = UBI_LAYOUT_VOLUME_EBS;
 635        vol->alignment = UBI_LAYOUT_VOLUME_ALIGN;
 636        vol->vol_type = UBI_DYNAMIC_VOLUME;
 637        vol->name_len = sizeof(UBI_LAYOUT_VOLUME_NAME) - 1;
 638        memcpy(vol->name, UBI_LAYOUT_VOLUME_NAME, vol->name_len + 1);
 639        vol->usable_leb_size = ubi->leb_size;
 640        vol->used_ebs = vol->reserved_pebs;
 641        vol->last_eb_bytes = vol->reserved_pebs;
 642        vol->used_bytes =
 643                (long long)vol->used_ebs * (ubi->leb_size - vol->data_pad);
 644        vol->vol_id = UBI_LAYOUT_VOLUME_ID;
 645        vol->ref_count = 1;
 646
 647        ubi_assert(!ubi->volumes[i]);
 648        ubi->volumes[vol_id2idx(ubi, vol->vol_id)] = vol;
 649        reserved_pebs += vol->reserved_pebs;
 650        ubi->vol_count += 1;
 651        vol->ubi = ubi;
 652
 653        if (reserved_pebs > ubi->avail_pebs) {
 654                ubi_err("not enough PEBs, required %d, available %d",
 655                        reserved_pebs, ubi->avail_pebs);
 656                if (ubi->corr_peb_count)
 657                        ubi_err("%d PEBs are corrupted and not used",
 658                                ubi->corr_peb_count);
 659        }
 660        ubi->rsvd_pebs += reserved_pebs;
 661        ubi->avail_pebs -= reserved_pebs;
 662
 663        return 0;
 664}
 665
 666/**
 667 * check_sv - check volume scanning information.
 668 * @vol: UBI volume description object
 669 * @sv: volume scanning information
 670 *
 671 * This function returns zero if the volume scanning information is consistent
 672 * to the data read from the volume tabla, and %-EINVAL if not.
 673 */
 674static int check_sv(const struct ubi_volume *vol,
 675                    const struct ubi_scan_volume *sv)
 676{
 677        int err;
 678
 679        if (sv->highest_lnum >= vol->reserved_pebs) {
 680                err = 1;
 681                goto bad;
 682        }
 683        if (sv->leb_count > vol->reserved_pebs) {
 684                err = 2;
 685                goto bad;
 686        }
 687        if (sv->vol_type != vol->vol_type) {
 688                err = 3;
 689                goto bad;
 690        }
 691        if (sv->used_ebs > vol->reserved_pebs) {
 692                err = 4;
 693                goto bad;
 694        }
 695        if (sv->data_pad != vol->data_pad) {
 696                err = 5;
 697                goto bad;
 698        }
 699        return 0;
 700
 701bad:
 702        ubi_err("bad scanning information, error %d", err);
 703        ubi_dbg_dump_sv(sv);
 704        ubi_dbg_dump_vol_info(vol);
 705        return -EINVAL;
 706}
 707
 708/**
 709 * check_scanning_info - check that scanning information.
 710 * @ubi: UBI device description object
 711 * @si: scanning information
 712 *
 713 * Even though we protect on-flash data by CRC checksums, we still don't trust
 714 * the media. This function ensures that scanning information is consistent to
 715 * the information read from the volume table. Returns zero if the scanning
 716 * information is OK and %-EINVAL if it is not.
 717 */
 718static int check_scanning_info(const struct ubi_device *ubi,
 719                               struct ubi_scan_info *si)
 720{
 721        int err, i;
 722        struct ubi_scan_volume *sv;
 723        struct ubi_volume *vol;
 724
 725        if (si->vols_found > UBI_INT_VOL_COUNT + ubi->vtbl_slots) {
 726                ubi_err("scanning found %d volumes, maximum is %d + %d",
 727                        si->vols_found, UBI_INT_VOL_COUNT, ubi->vtbl_slots);
 728                return -EINVAL;
 729        }
 730
 731        if (si->highest_vol_id >= ubi->vtbl_slots + UBI_INT_VOL_COUNT &&
 732            si->highest_vol_id < UBI_INTERNAL_VOL_START) {
 733                ubi_err("too large volume ID %d found by scanning",
 734                        si->highest_vol_id);
 735                return -EINVAL;
 736        }
 737
 738        for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
 739                cond_resched();
 740
 741                sv = ubi_scan_find_sv(si, i);
 742                vol = ubi->volumes[i];
 743                if (!vol) {
 744                        if (sv)
 745                                ubi_scan_rm_volume(si, sv);
 746                        continue;
 747                }
 748
 749                if (vol->reserved_pebs == 0) {
 750                        ubi_assert(i < ubi->vtbl_slots);
 751
 752                        if (!sv)
 753                                continue;
 754
 755                        /*
 756                         * During scanning we found a volume which does not
 757                         * exist according to the information in the volume
 758                         * table. This must have happened due to an unclean
 759                         * reboot while the volume was being removed. Discard
 760                         * these eraseblocks.
 761                         */
 762                        ubi_msg("finish volume %d removal", sv->vol_id);
 763                        ubi_scan_rm_volume(si, sv);
 764                } else if (sv) {
 765                        err = check_sv(vol, sv);
 766                        if (err)
 767                                return err;
 768                }
 769        }
 770
 771        return 0;
 772}
 773
 774/**
 775 * ubi_read_volume_table - read the volume table.
 776 * @ubi: UBI device description object
 777 * @si: scanning information
 778 *
 779 * This function reads volume table, checks it, recover from errors if needed,
 780 * or creates it if needed. Returns zero in case of success and a negative
 781 * error code in case of failure.
 782 */
 783int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_scan_info *si)
 784{
 785        int i, err;
 786        struct ubi_scan_volume *sv;
 787
 788        empty_vtbl_record.crc = cpu_to_be32(0xf116c36b);
 789
 790        /*
 791         * The number of supported volumes is limited by the eraseblock size
 792         * and by the UBI_MAX_VOLUMES constant.
 793         */
 794        ubi->vtbl_slots = ubi->leb_size / UBI_VTBL_RECORD_SIZE;
 795        if (ubi->vtbl_slots > UBI_MAX_VOLUMES)
 796                ubi->vtbl_slots = UBI_MAX_VOLUMES;
 797
 798        ubi->vtbl_size = ubi->vtbl_slots * UBI_VTBL_RECORD_SIZE;
 799        ubi->vtbl_size = ALIGN(ubi->vtbl_size, ubi->min_io_size);
 800
 801        sv = ubi_scan_find_sv(si, UBI_LAYOUT_VOLUME_ID);
 802        if (!sv) {
 803                /*
 804                 * No logical eraseblocks belonging to the layout volume were
 805                 * found. This could mean that the flash is just empty. In
 806                 * this case we create empty layout volume.
 807                 *
 808                 * But if flash is not empty this must be a corruption or the
 809                 * MTD device just contains garbage.
 810                 */
 811                if (si->is_empty) {
 812                        ubi->vtbl = create_empty_lvol(ubi, si);
 813                        if (IS_ERR(ubi->vtbl))
 814                                return PTR_ERR(ubi->vtbl);
 815                } else {
 816                        ubi_err("the layout volume was not found");
 817                        return -EINVAL;
 818                }
 819        } else {
 820                if (sv->leb_count > UBI_LAYOUT_VOLUME_EBS) {
 821                        /* This must not happen with proper UBI images */
 822                        dbg_err("too many LEBs (%d) in layout volume",
 823                                sv->leb_count);
 824                        return -EINVAL;
 825                }
 826
 827                ubi->vtbl = process_lvol(ubi, si, sv);
 828                if (IS_ERR(ubi->vtbl))
 829                        return PTR_ERR(ubi->vtbl);
 830        }
 831
 832        ubi->avail_pebs = ubi->good_peb_count - ubi->corr_peb_count;
 833
 834        /*
 835         * The layout volume is OK, initialize the corresponding in-RAM data
 836         * structures.
 837         */
 838        err = init_volumes(ubi, si, ubi->vtbl);
 839        if (err)
 840                goto out_free;
 841
 842        /*
 843         * Make sure that the scanning information is consistent to the
 844         * information stored in the volume table.
 845         */
 846        err = check_scanning_info(ubi, si);
 847        if (err)
 848                goto out_free;
 849
 850        return 0;
 851
 852out_free:
 853        vfree(ubi->vtbl);
 854        for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
 855                kfree(ubi->volumes[i]);
 856                ubi->volumes[i] = NULL;
 857        }
 858        return err;
 859}
 860
 861#ifdef CONFIG_MTD_UBI_DEBUG
 862
 863/**
 864 * paranoid_vtbl_check - check volume table.
 865 * @ubi: UBI device description object
 866 */
 867static void paranoid_vtbl_check(const struct ubi_device *ubi)
 868{
 869        if (!ubi->dbg->chk_gen)
 870                return;
 871
 872        if (vtbl_check(ubi, ubi->vtbl)) {
 873                ubi_err("paranoid check failed");
 874                BUG();
 875        }
 876}
 877
 878#endif /* CONFIG_MTD_UBI_DEBUG */
 879