linux/fs/ubifs/replay.c
<<
>>
Prefs
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published by
   8 * the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc., 51
  17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18 *
  19 * Authors: Adrian Hunter
  20 *          Artem Bityutskiy (Битюцкий Артём)
  21 */
  22
  23/*
  24 * This file contains journal replay code. It runs when the file-system is being
  25 * mounted and requires no locking.
  26 *
  27 * The larger is the journal, the longer it takes to scan it, so the longer it
  28 * takes to mount UBIFS. This is why the journal has limited size which may be
  29 * changed depending on the system requirements. But a larger journal gives
  30 * faster I/O speed because it writes the index less frequently. So this is a
  31 * trade-off. Also, the journal is indexed by the in-memory index (TNC), so the
  32 * larger is the journal, the more memory its index may consume.
  33 */
  34
  35#include "ubifs.h"
  36#include <linux/list_sort.h>
  37
  38/**
  39 * struct replay_entry - replay list entry.
  40 * @lnum: logical eraseblock number of the node
  41 * @offs: node offset
  42 * @len: node length
  43 * @deletion: non-zero if this entry corresponds to a node deletion
  44 * @sqnum: node sequence number
  45 * @list: links the replay list
  46 * @key: node key
  47 * @nm: directory entry name
  48 * @old_size: truncation old size
  49 * @new_size: truncation new size
  50 *
  51 * The replay process first scans all buds and builds the replay list, then
  52 * sorts the replay list in nodes sequence number order, and then inserts all
  53 * the replay entries to the TNC.
  54 */
  55struct replay_entry {
  56        int lnum;
  57        int offs;
  58        int len;
  59        unsigned int deletion:1;
  60        unsigned long long sqnum;
  61        struct list_head list;
  62        union ubifs_key key;
  63        union {
  64                struct qstr nm;
  65                struct {
  66                        loff_t old_size;
  67                        loff_t new_size;
  68                };
  69        };
  70};
  71
  72/**
  73 * struct bud_entry - entry in the list of buds to replay.
  74 * @list: next bud in the list
  75 * @bud: bud description object
  76 * @sqnum: reference node sequence number
  77 * @free: free bytes in the bud
  78 * @dirty: dirty bytes in the bud
  79 */
  80struct bud_entry {
  81        struct list_head list;
  82        struct ubifs_bud *bud;
  83        unsigned long long sqnum;
  84        int free;
  85        int dirty;
  86};
  87
  88/**
  89 * set_bud_lprops - set free and dirty space used by a bud.
  90 * @c: UBIFS file-system description object
  91 * @b: bud entry which describes the bud
  92 *
  93 * This function makes sure the LEB properties of bud @b are set correctly
  94 * after the replay. Returns zero in case of success and a negative error code
  95 * in case of failure.
  96 */
  97static int set_bud_lprops(struct ubifs_info *c, struct bud_entry *b)
  98{
  99        const struct ubifs_lprops *lp;
 100        int err = 0, dirty;
 101
 102        ubifs_get_lprops(c);
 103
 104        lp = ubifs_lpt_lookup_dirty(c, b->bud->lnum);
 105        if (IS_ERR(lp)) {
 106                err = PTR_ERR(lp);
 107                goto out;
 108        }
 109
 110        dirty = lp->dirty;
 111        if (b->bud->start == 0 && (lp->free != c->leb_size || lp->dirty != 0)) {
 112                /*
 113                 * The LEB was added to the journal with a starting offset of
 114                 * zero which means the LEB must have been empty. The LEB
 115                 * property values should be @lp->free == @c->leb_size and
 116                 * @lp->dirty == 0, but that is not the case. The reason is that
 117                 * the LEB had been garbage collected before it became the bud,
 118                 * and there was not commit inbetween. The garbage collector
 119                 * resets the free and dirty space without recording it
 120                 * anywhere except lprops, so if there was no commit then
 121                 * lprops does not have that information.
 122                 *
 123                 * We do not need to adjust free space because the scan has told
 124                 * us the exact value which is recorded in the replay entry as
 125                 * @b->free.
 126                 *
 127                 * However we do need to subtract from the dirty space the
 128                 * amount of space that the garbage collector reclaimed, which
 129                 * is the whole LEB minus the amount of space that was free.
 130                 */
 131                dbg_mnt("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
 132                        lp->free, lp->dirty);
 133                dbg_gc("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
 134                        lp->free, lp->dirty);
 135                dirty -= c->leb_size - lp->free;
 136                /*
 137                 * If the replay order was perfect the dirty space would now be
 138                 * zero. The order is not perfect because the journal heads
 139                 * race with each other. This is not a problem but is does mean
 140                 * that the dirty space may temporarily exceed c->leb_size
 141                 * during the replay.
 142                 */
 143                if (dirty != 0)
 144                        dbg_msg("LEB %d lp: %d free %d dirty "
 145                                "replay: %d free %d dirty", b->bud->lnum,
 146                                lp->free, lp->dirty, b->free, b->dirty);
 147        }
 148        lp = ubifs_change_lp(c, lp, b->free, dirty + b->dirty,
 149                             lp->flags | LPROPS_TAKEN, 0);
 150        if (IS_ERR(lp)) {
 151                err = PTR_ERR(lp);
 152                goto out;
 153        }
 154
 155        /* Make sure the journal head points to the latest bud */
 156        err = ubifs_wbuf_seek_nolock(&c->jheads[b->bud->jhead].wbuf,
 157                                     b->bud->lnum, c->leb_size - b->free,
 158                                     UBI_SHORTTERM);
 159
 160out:
 161        ubifs_release_lprops(c);
 162        return err;
 163}
 164
 165/**
 166 * set_buds_lprops - set free and dirty space for all replayed buds.
 167 * @c: UBIFS file-system description object
 168 *
 169 * This function sets LEB properties for all replayed buds. Returns zero in
 170 * case of success and a negative error code in case of failure.
 171 */
 172static int set_buds_lprops(struct ubifs_info *c)
 173{
 174        struct bud_entry *b;
 175        int err;
 176
 177        list_for_each_entry(b, &c->replay_buds, list) {
 178                err = set_bud_lprops(c, b);
 179                if (err)
 180                        return err;
 181        }
 182
 183        return 0;
 184}
 185
 186/**
 187 * trun_remove_range - apply a replay entry for a truncation to the TNC.
 188 * @c: UBIFS file-system description object
 189 * @r: replay entry of truncation
 190 */
 191static int trun_remove_range(struct ubifs_info *c, struct replay_entry *r)
 192{
 193        unsigned min_blk, max_blk;
 194        union ubifs_key min_key, max_key;
 195        ino_t ino;
 196
 197        min_blk = r->new_size / UBIFS_BLOCK_SIZE;
 198        if (r->new_size & (UBIFS_BLOCK_SIZE - 1))
 199                min_blk += 1;
 200
 201        max_blk = r->old_size / UBIFS_BLOCK_SIZE;
 202        if ((r->old_size & (UBIFS_BLOCK_SIZE - 1)) == 0)
 203                max_blk -= 1;
 204
 205        ino = key_inum(c, &r->key);
 206
 207        data_key_init(c, &min_key, ino, min_blk);
 208        data_key_init(c, &max_key, ino, max_blk);
 209
 210        return ubifs_tnc_remove_range(c, &min_key, &max_key);
 211}
 212
 213/**
 214 * apply_replay_entry - apply a replay entry to the TNC.
 215 * @c: UBIFS file-system description object
 216 * @r: replay entry to apply
 217 *
 218 * Apply a replay entry to the TNC.
 219 */
 220static int apply_replay_entry(struct ubifs_info *c, struct replay_entry *r)
 221{
 222        int err;
 223
 224        dbg_mntk(&r->key, "LEB %d:%d len %d deletion %d sqnum %llu key ",
 225                 r->lnum, r->offs, r->len, r->deletion, r->sqnum);
 226
 227        /* Set c->replay_sqnum to help deal with dangling branches. */
 228        c->replay_sqnum = r->sqnum;
 229
 230        if (is_hash_key(c, &r->key)) {
 231                if (r->deletion)
 232                        err = ubifs_tnc_remove_nm(c, &r->key, &r->nm);
 233                else
 234                        err = ubifs_tnc_add_nm(c, &r->key, r->lnum, r->offs,
 235                                               r->len, &r->nm);
 236        } else {
 237                if (r->deletion)
 238                        switch (key_type(c, &r->key)) {
 239                        case UBIFS_INO_KEY:
 240                        {
 241                                ino_t inum = key_inum(c, &r->key);
 242
 243                                err = ubifs_tnc_remove_ino(c, inum);
 244                                break;
 245                        }
 246                        case UBIFS_TRUN_KEY:
 247                                err = trun_remove_range(c, r);
 248                                break;
 249                        default:
 250                                err = ubifs_tnc_remove(c, &r->key);
 251                                break;
 252                        }
 253                else
 254                        err = ubifs_tnc_add(c, &r->key, r->lnum, r->offs,
 255                                            r->len);
 256                if (err)
 257                        return err;
 258
 259                if (c->need_recovery)
 260                        err = ubifs_recover_size_accum(c, &r->key, r->deletion,
 261                                                       r->new_size);
 262        }
 263
 264        return err;
 265}
 266
 267/**
 268 * replay_entries_cmp - compare 2 replay entries.
 269 * @priv: UBIFS file-system description object
 270 * @a: first replay entry
 271 * @a: second replay entry
 272 *
 273 * This is a comparios function for 'list_sort()' which compares 2 replay
 274 * entries @a and @b by comparing their sequence numer.  Returns %1 if @a has
 275 * greater sequence number and %-1 otherwise.
 276 */
 277static int replay_entries_cmp(void *priv, struct list_head *a,
 278                              struct list_head *b)
 279{
 280        struct replay_entry *ra, *rb;
 281
 282        cond_resched();
 283        if (a == b)
 284                return 0;
 285
 286        ra = list_entry(a, struct replay_entry, list);
 287        rb = list_entry(b, struct replay_entry, list);
 288        ubifs_assert(ra->sqnum != rb->sqnum);
 289        if (ra->sqnum > rb->sqnum)
 290                return 1;
 291        return -1;
 292}
 293
 294/**
 295 * apply_replay_list - apply the replay list to the TNC.
 296 * @c: UBIFS file-system description object
 297 *
 298 * Apply all entries in the replay list to the TNC. Returns zero in case of
 299 * success and a negative error code in case of failure.
 300 */
 301static int apply_replay_list(struct ubifs_info *c)
 302{
 303        struct replay_entry *r;
 304        int err;
 305
 306        list_sort(c, &c->replay_list, &replay_entries_cmp);
 307
 308        list_for_each_entry(r, &c->replay_list, list) {
 309                cond_resched();
 310
 311                err = apply_replay_entry(c, r);
 312                if (err)
 313                        return err;
 314        }
 315
 316        return 0;
 317}
 318
 319/**
 320 * destroy_replay_list - destroy the replay.
 321 * @c: UBIFS file-system description object
 322 *
 323 * Destroy the replay list.
 324 */
 325static void destroy_replay_list(struct ubifs_info *c)
 326{
 327        struct replay_entry *r, *tmp;
 328
 329        list_for_each_entry_safe(r, tmp, &c->replay_list, list) {
 330                if (is_hash_key(c, &r->key))
 331                        kfree(r->nm.name);
 332                list_del(&r->list);
 333                kfree(r);
 334        }
 335}
 336
 337/**
 338 * insert_node - insert a node to the replay list
 339 * @c: UBIFS file-system description object
 340 * @lnum: node logical eraseblock number
 341 * @offs: node offset
 342 * @len: node length
 343 * @key: node key
 344 * @sqnum: sequence number
 345 * @deletion: non-zero if this is a deletion
 346 * @used: number of bytes in use in a LEB
 347 * @old_size: truncation old size
 348 * @new_size: truncation new size
 349 *
 350 * This function inserts a scanned non-direntry node to the replay list. The
 351 * replay list contains @struct replay_entry elements, and we sort this list in
 352 * sequence number order before applying it. The replay list is applied at the
 353 * very end of the replay process. Since the list is sorted in sequence number
 354 * order, the older modifications are applied first. This function returns zero
 355 * in case of success and a negative error code in case of failure.
 356 */
 357static int insert_node(struct ubifs_info *c, int lnum, int offs, int len,
 358                       union ubifs_key *key, unsigned long long sqnum,
 359                       int deletion, int *used, loff_t old_size,
 360                       loff_t new_size)
 361{
 362        struct replay_entry *r;
 363
 364        dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
 365
 366        if (key_inum(c, key) >= c->highest_inum)
 367                c->highest_inum = key_inum(c, key);
 368
 369        r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
 370        if (!r)
 371                return -ENOMEM;
 372
 373        if (!deletion)
 374                *used += ALIGN(len, 8);
 375        r->lnum = lnum;
 376        r->offs = offs;
 377        r->len = len;
 378        r->deletion = !!deletion;
 379        r->sqnum = sqnum;
 380        key_copy(c, key, &r->key);
 381        r->old_size = old_size;
 382        r->new_size = new_size;
 383
 384        list_add_tail(&r->list, &c->replay_list);
 385        return 0;
 386}
 387
 388/**
 389 * insert_dent - insert a directory entry node into the replay list.
 390 * @c: UBIFS file-system description object
 391 * @lnum: node logical eraseblock number
 392 * @offs: node offset
 393 * @len: node length
 394 * @key: node key
 395 * @name: directory entry name
 396 * @nlen: directory entry name length
 397 * @sqnum: sequence number
 398 * @deletion: non-zero if this is a deletion
 399 * @used: number of bytes in use in a LEB
 400 *
 401 * This function inserts a scanned directory entry node or an extended
 402 * attribute entry to the replay list. Returns zero in case of success and a
 403 * negative error code in case of failure.
 404 */
 405static int insert_dent(struct ubifs_info *c, int lnum, int offs, int len,
 406                       union ubifs_key *key, const char *name, int nlen,
 407                       unsigned long long sqnum, int deletion, int *used)
 408{
 409        struct replay_entry *r;
 410        char *nbuf;
 411
 412        dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
 413        if (key_inum(c, key) >= c->highest_inum)
 414                c->highest_inum = key_inum(c, key);
 415
 416        r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
 417        if (!r)
 418                return -ENOMEM;
 419
 420        nbuf = kmalloc(nlen + 1, GFP_KERNEL);
 421        if (!nbuf) {
 422                kfree(r);
 423                return -ENOMEM;
 424        }
 425
 426        if (!deletion)
 427                *used += ALIGN(len, 8);
 428        r->lnum = lnum;
 429        r->offs = offs;
 430        r->len = len;
 431        r->deletion = !!deletion;
 432        r->sqnum = sqnum;
 433        key_copy(c, key, &r->key);
 434        r->nm.len = nlen;
 435        memcpy(nbuf, name, nlen);
 436        nbuf[nlen] = '\0';
 437        r->nm.name = nbuf;
 438
 439        list_add_tail(&r->list, &c->replay_list);
 440        return 0;
 441}
 442
 443/**
 444 * ubifs_validate_entry - validate directory or extended attribute entry node.
 445 * @c: UBIFS file-system description object
 446 * @dent: the node to validate
 447 *
 448 * This function validates directory or extended attribute entry node @dent.
 449 * Returns zero if the node is all right and a %-EINVAL if not.
 450 */
 451int ubifs_validate_entry(struct ubifs_info *c,
 452                         const struct ubifs_dent_node *dent)
 453{
 454        int key_type = key_type_flash(c, dent->key);
 455        int nlen = le16_to_cpu(dent->nlen);
 456
 457        if (le32_to_cpu(dent->ch.len) != nlen + UBIFS_DENT_NODE_SZ + 1 ||
 458            dent->type >= UBIFS_ITYPES_CNT ||
 459            nlen > UBIFS_MAX_NLEN || dent->name[nlen] != 0 ||
 460            strnlen(dent->name, nlen) != nlen ||
 461            le64_to_cpu(dent->inum) > MAX_INUM) {
 462                ubifs_err("bad %s node", key_type == UBIFS_DENT_KEY ?
 463                          "directory entry" : "extended attribute entry");
 464                return -EINVAL;
 465        }
 466
 467        if (key_type != UBIFS_DENT_KEY && key_type != UBIFS_XENT_KEY) {
 468                ubifs_err("bad key type %d", key_type);
 469                return -EINVAL;
 470        }
 471
 472        return 0;
 473}
 474
 475/**
 476 * is_last_bud - check if the bud is the last in the journal head.
 477 * @c: UBIFS file-system description object
 478 * @bud: bud description object
 479 *
 480 * This function checks if bud @bud is the last bud in its journal head. This
 481 * information is then used by 'replay_bud()' to decide whether the bud can
 482 * have corruptions or not. Indeed, only last buds can be corrupted by power
 483 * cuts. Returns %1 if this is the last bud, and %0 if not.
 484 */
 485static int is_last_bud(struct ubifs_info *c, struct ubifs_bud *bud)
 486{
 487        struct ubifs_jhead *jh = &c->jheads[bud->jhead];
 488        struct ubifs_bud *next;
 489        uint32_t data;
 490        int err;
 491
 492        if (list_is_last(&bud->list, &jh->buds_list))
 493                return 1;
 494
 495        /*
 496         * The following is a quirk to make sure we work correctly with UBIFS
 497         * images used with older UBIFS.
 498         *
 499         * Normally, the last bud will be the last in the journal head's list
 500         * of bud. However, there is one exception if the UBIFS image belongs
 501         * to older UBIFS. This is fairly unlikely: one would need to use old
 502         * UBIFS, then have a power cut exactly at the right point, and then
 503         * try to mount this image with new UBIFS.
 504         *
 505         * The exception is: it is possible to have 2 buds A and B, A goes
 506         * before B, and B is the last, bud B is contains no data, and bud A is
 507         * corrupted at the end. The reason is that in older versions when the
 508         * journal code switched the next bud (from A to B), it first added a
 509         * log reference node for the new bud (B), and only after this it
 510         * synchronized the write-buffer of current bud (A). But later this was
 511         * changed and UBIFS started to always synchronize the write-buffer of
 512         * the bud (A) before writing the log reference for the new bud (B).
 513         *
 514         * But because older UBIFS always synchronized A's write-buffer before
 515         * writing to B, we can recognize this exceptional situation but
 516         * checking the contents of bud B - if it is empty, then A can be
 517         * treated as the last and we can recover it.
 518         *
 519         * TODO: remove this piece of code in a couple of years (today it is
 520         * 16.05.2011).
 521         */
 522        next = list_entry(bud->list.next, struct ubifs_bud, list);
 523        if (!list_is_last(&next->list, &jh->buds_list))
 524                return 0;
 525
 526        err = ubifs_leb_read(c, next->lnum, (char *)&data, next->start, 4, 1);
 527        if (err)
 528                return 0;
 529
 530        return data == 0xFFFFFFFF;
 531}
 532
 533/**
 534 * replay_bud - replay a bud logical eraseblock.
 535 * @c: UBIFS file-system description object
 536 * @b: bud entry which describes the bud
 537 *
 538 * This function replays bud @bud, recovers it if needed, and adds all nodes
 539 * from this bud to the replay list. Returns zero in case of success and a
 540 * negative error code in case of failure.
 541 */
 542static int replay_bud(struct ubifs_info *c, struct bud_entry *b)
 543{
 544        int is_last = is_last_bud(c, b->bud);
 545        int err = 0, used = 0, lnum = b->bud->lnum, offs = b->bud->start;
 546        struct ubifs_scan_leb *sleb;
 547        struct ubifs_scan_node *snod;
 548
 549        dbg_mnt("replay bud LEB %d, head %d, offs %d, is_last %d",
 550                lnum, b->bud->jhead, offs, is_last);
 551
 552        if (c->need_recovery && is_last)
 553                /*
 554                 * Recover only last LEBs in the journal heads, because power
 555                 * cuts may cause corruptions only in these LEBs, because only
 556                 * these LEBs could possibly be written to at the power cut
 557                 * time.
 558                 */
 559                sleb = ubifs_recover_leb(c, lnum, offs, c->sbuf, b->bud->jhead);
 560        else
 561                sleb = ubifs_scan(c, lnum, offs, c->sbuf, 0);
 562        if (IS_ERR(sleb))
 563                return PTR_ERR(sleb);
 564
 565        /*
 566         * The bud does not have to start from offset zero - the beginning of
 567         * the 'lnum' LEB may contain previously committed data. One of the
 568         * things we have to do in replay is to correctly update lprops with
 569         * newer information about this LEB.
 570         *
 571         * At this point lprops thinks that this LEB has 'c->leb_size - offs'
 572         * bytes of free space because it only contain information about
 573         * committed data.
 574         *
 575         * But we know that real amount of free space is 'c->leb_size -
 576         * sleb->endpt', and the space in the 'lnum' LEB between 'offs' and
 577         * 'sleb->endpt' is used by bud data. We have to correctly calculate
 578         * how much of these data are dirty and update lprops with this
 579         * information.
 580         *
 581         * The dirt in that LEB region is comprised of padding nodes, deletion
 582         * nodes, truncation nodes and nodes which are obsoleted by subsequent
 583         * nodes in this LEB. So instead of calculating clean space, we
 584         * calculate used space ('used' variable).
 585         */
 586
 587        list_for_each_entry(snod, &sleb->nodes, list) {
 588                int deletion = 0;
 589
 590                cond_resched();
 591
 592                if (snod->sqnum >= SQNUM_WATERMARK) {
 593                        ubifs_err("file system's life ended");
 594                        goto out_dump;
 595                }
 596
 597                if (snod->sqnum > c->max_sqnum)
 598                        c->max_sqnum = snod->sqnum;
 599
 600                switch (snod->type) {
 601                case UBIFS_INO_NODE:
 602                {
 603                        struct ubifs_ino_node *ino = snod->node;
 604                        loff_t new_size = le64_to_cpu(ino->size);
 605
 606                        if (le32_to_cpu(ino->nlink) == 0)
 607                                deletion = 1;
 608                        err = insert_node(c, lnum, snod->offs, snod->len,
 609                                          &snod->key, snod->sqnum, deletion,
 610                                          &used, 0, new_size);
 611                        break;
 612                }
 613                case UBIFS_DATA_NODE:
 614                {
 615                        struct ubifs_data_node *dn = snod->node;
 616                        loff_t new_size = le32_to_cpu(dn->size) +
 617                                          key_block(c, &snod->key) *
 618                                          UBIFS_BLOCK_SIZE;
 619
 620                        err = insert_node(c, lnum, snod->offs, snod->len,
 621                                          &snod->key, snod->sqnum, deletion,
 622                                          &used, 0, new_size);
 623                        break;
 624                }
 625                case UBIFS_DENT_NODE:
 626                case UBIFS_XENT_NODE:
 627                {
 628                        struct ubifs_dent_node *dent = snod->node;
 629
 630                        err = ubifs_validate_entry(c, dent);
 631                        if (err)
 632                                goto out_dump;
 633
 634                        err = insert_dent(c, lnum, snod->offs, snod->len,
 635                                          &snod->key, dent->name,
 636                                          le16_to_cpu(dent->nlen), snod->sqnum,
 637                                          !le64_to_cpu(dent->inum), &used);
 638                        break;
 639                }
 640                case UBIFS_TRUN_NODE:
 641                {
 642                        struct ubifs_trun_node *trun = snod->node;
 643                        loff_t old_size = le64_to_cpu(trun->old_size);
 644                        loff_t new_size = le64_to_cpu(trun->new_size);
 645                        union ubifs_key key;
 646
 647                        /* Validate truncation node */
 648                        if (old_size < 0 || old_size > c->max_inode_sz ||
 649                            new_size < 0 || new_size > c->max_inode_sz ||
 650                            old_size <= new_size) {
 651                                ubifs_err("bad truncation node");
 652                                goto out_dump;
 653                        }
 654
 655                        /*
 656                         * Create a fake truncation key just to use the same
 657                         * functions which expect nodes to have keys.
 658                         */
 659                        trun_key_init(c, &key, le32_to_cpu(trun->inum));
 660                        err = insert_node(c, lnum, snod->offs, snod->len,
 661                                          &key, snod->sqnum, 1, &used,
 662                                          old_size, new_size);
 663                        break;
 664                }
 665                default:
 666                        ubifs_err("unexpected node type %d in bud LEB %d:%d",
 667                                  snod->type, lnum, snod->offs);
 668                        err = -EINVAL;
 669                        goto out_dump;
 670                }
 671                if (err)
 672                        goto out;
 673        }
 674
 675        ubifs_assert(ubifs_search_bud(c, lnum));
 676        ubifs_assert(sleb->endpt - offs >= used);
 677        ubifs_assert(sleb->endpt % c->min_io_size == 0);
 678
 679        b->dirty = sleb->endpt - offs - used;
 680        b->free = c->leb_size - sleb->endpt;
 681        dbg_mnt("bud LEB %d replied: dirty %d, free %d", lnum, b->dirty, b->free);
 682
 683out:
 684        ubifs_scan_destroy(sleb);
 685        return err;
 686
 687out_dump:
 688        ubifs_err("bad node is at LEB %d:%d", lnum, snod->offs);
 689        dbg_dump_node(c, snod->node);
 690        ubifs_scan_destroy(sleb);
 691        return -EINVAL;
 692}
 693
 694/**
 695 * replay_buds - replay all buds.
 696 * @c: UBIFS file-system description object
 697 *
 698 * This function returns zero in case of success and a negative error code in
 699 * case of failure.
 700 */
 701static int replay_buds(struct ubifs_info *c)
 702{
 703        struct bud_entry *b;
 704        int err;
 705        unsigned long long prev_sqnum = 0;
 706
 707        list_for_each_entry(b, &c->replay_buds, list) {
 708                err = replay_bud(c, b);
 709                if (err)
 710                        return err;
 711
 712                ubifs_assert(b->sqnum > prev_sqnum);
 713                prev_sqnum = b->sqnum;
 714        }
 715
 716        return 0;
 717}
 718
 719/**
 720 * destroy_bud_list - destroy the list of buds to replay.
 721 * @c: UBIFS file-system description object
 722 */
 723static void destroy_bud_list(struct ubifs_info *c)
 724{
 725        struct bud_entry *b;
 726
 727        while (!list_empty(&c->replay_buds)) {
 728                b = list_entry(c->replay_buds.next, struct bud_entry, list);
 729                list_del(&b->list);
 730                kfree(b);
 731        }
 732}
 733
 734/**
 735 * add_replay_bud - add a bud to the list of buds to replay.
 736 * @c: UBIFS file-system description object
 737 * @lnum: bud logical eraseblock number to replay
 738 * @offs: bud start offset
 739 * @jhead: journal head to which this bud belongs
 740 * @sqnum: reference node sequence number
 741 *
 742 * This function returns zero in case of success and a negative error code in
 743 * case of failure.
 744 */
 745static int add_replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead,
 746                          unsigned long long sqnum)
 747{
 748        struct ubifs_bud *bud;
 749        struct bud_entry *b;
 750
 751        dbg_mnt("add replay bud LEB %d:%d, head %d", lnum, offs, jhead);
 752
 753        bud = kmalloc(sizeof(struct ubifs_bud), GFP_KERNEL);
 754        if (!bud)
 755                return -ENOMEM;
 756
 757        b = kmalloc(sizeof(struct bud_entry), GFP_KERNEL);
 758        if (!b) {
 759                kfree(bud);
 760                return -ENOMEM;
 761        }
 762
 763        bud->lnum = lnum;
 764        bud->start = offs;
 765        bud->jhead = jhead;
 766        ubifs_add_bud(c, bud);
 767
 768        b->bud = bud;
 769        b->sqnum = sqnum;
 770        list_add_tail(&b->list, &c->replay_buds);
 771
 772        return 0;
 773}
 774
 775/**
 776 * validate_ref - validate a reference node.
 777 * @c: UBIFS file-system description object
 778 * @ref: the reference node to validate
 779 * @ref_lnum: LEB number of the reference node
 780 * @ref_offs: reference node offset
 781 *
 782 * This function returns %1 if a bud reference already exists for the LEB. %0 is
 783 * returned if the reference node is new, otherwise %-EINVAL is returned if
 784 * validation failed.
 785 */
 786static int validate_ref(struct ubifs_info *c, const struct ubifs_ref_node *ref)
 787{
 788        struct ubifs_bud *bud;
 789        int lnum = le32_to_cpu(ref->lnum);
 790        unsigned int offs = le32_to_cpu(ref->offs);
 791        unsigned int jhead = le32_to_cpu(ref->jhead);
 792
 793        /*
 794         * ref->offs may point to the end of LEB when the journal head points
 795         * to the end of LEB and we write reference node for it during commit.
 796         * So this is why we require 'offs > c->leb_size'.
 797         */
 798        if (jhead >= c->jhead_cnt || lnum >= c->leb_cnt ||
 799            lnum < c->main_first || offs > c->leb_size ||
 800            offs & (c->min_io_size - 1))
 801                return -EINVAL;
 802
 803        /* Make sure we have not already looked at this bud */
 804        bud = ubifs_search_bud(c, lnum);
 805        if (bud) {
 806                if (bud->jhead == jhead && bud->start <= offs)
 807                        return 1;
 808                ubifs_err("bud at LEB %d:%d was already referred", lnum, offs);
 809                return -EINVAL;
 810        }
 811
 812        return 0;
 813}
 814
 815/**
 816 * replay_log_leb - replay a log logical eraseblock.
 817 * @c: UBIFS file-system description object
 818 * @lnum: log logical eraseblock to replay
 819 * @offs: offset to start replaying from
 820 * @sbuf: scan buffer
 821 *
 822 * This function replays a log LEB and returns zero in case of success, %1 if
 823 * this is the last LEB in the log, and a negative error code in case of
 824 * failure.
 825 */
 826static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf)
 827{
 828        int err;
 829        struct ubifs_scan_leb *sleb;
 830        struct ubifs_scan_node *snod;
 831        const struct ubifs_cs_node *node;
 832
 833        dbg_mnt("replay log LEB %d:%d", lnum, offs);
 834        sleb = ubifs_scan(c, lnum, offs, sbuf, c->need_recovery);
 835        if (IS_ERR(sleb)) {
 836                if (PTR_ERR(sleb) != -EUCLEAN || !c->need_recovery)
 837                        return PTR_ERR(sleb);
 838                /*
 839                 * Note, the below function will recover this log LEB only if
 840                 * it is the last, because unclean reboots can possibly corrupt
 841                 * only the tail of the log.
 842                 */
 843                sleb = ubifs_recover_log_leb(c, lnum, offs, sbuf);
 844                if (IS_ERR(sleb))
 845                        return PTR_ERR(sleb);
 846        }
 847
 848        if (sleb->nodes_cnt == 0) {
 849                err = 1;
 850                goto out;
 851        }
 852
 853        node = sleb->buf;
 854        snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
 855        if (c->cs_sqnum == 0) {
 856                /*
 857                 * This is the first log LEB we are looking at, make sure that
 858                 * the first node is a commit start node. Also record its
 859                 * sequence number so that UBIFS can determine where the log
 860                 * ends, because all nodes which were have higher sequence
 861                 * numbers.
 862                 */
 863                if (snod->type != UBIFS_CS_NODE) {
 864                        dbg_err("first log node at LEB %d:%d is not CS node",
 865                                lnum, offs);
 866                        goto out_dump;
 867                }
 868                if (le64_to_cpu(node->cmt_no) != c->cmt_no) {
 869                        dbg_err("first CS node at LEB %d:%d has wrong "
 870                                "commit number %llu expected %llu",
 871                                lnum, offs,
 872                                (unsigned long long)le64_to_cpu(node->cmt_no),
 873                                c->cmt_no);
 874                        goto out_dump;
 875                }
 876
 877                c->cs_sqnum = le64_to_cpu(node->ch.sqnum);
 878                dbg_mnt("commit start sqnum %llu", c->cs_sqnum);
 879        }
 880
 881        if (snod->sqnum < c->cs_sqnum) {
 882                /*
 883                 * This means that we reached end of log and now
 884                 * look to the older log data, which was already
 885                 * committed but the eraseblock was not erased (UBIFS
 886                 * only un-maps it). So this basically means we have to
 887                 * exit with "end of log" code.
 888                 */
 889                err = 1;
 890                goto out;
 891        }
 892
 893        /* Make sure the first node sits at offset zero of the LEB */
 894        if (snod->offs != 0) {
 895                dbg_err("first node is not at zero offset");
 896                goto out_dump;
 897        }
 898
 899        list_for_each_entry(snod, &sleb->nodes, list) {
 900                cond_resched();
 901
 902                if (snod->sqnum >= SQNUM_WATERMARK) {
 903                        ubifs_err("file system's life ended");
 904                        goto out_dump;
 905                }
 906
 907                if (snod->sqnum < c->cs_sqnum) {
 908                        dbg_err("bad sqnum %llu, commit sqnum %llu",
 909                                snod->sqnum, c->cs_sqnum);
 910                        goto out_dump;
 911                }
 912
 913                if (snod->sqnum > c->max_sqnum)
 914                        c->max_sqnum = snod->sqnum;
 915
 916                switch (snod->type) {
 917                case UBIFS_REF_NODE: {
 918                        const struct ubifs_ref_node *ref = snod->node;
 919
 920                        err = validate_ref(c, ref);
 921                        if (err == 1)
 922                                break; /* Already have this bud */
 923                        if (err)
 924                                goto out_dump;
 925
 926                        err = add_replay_bud(c, le32_to_cpu(ref->lnum),
 927                                             le32_to_cpu(ref->offs),
 928                                             le32_to_cpu(ref->jhead),
 929                                             snod->sqnum);
 930                        if (err)
 931                                goto out;
 932
 933                        break;
 934                }
 935                case UBIFS_CS_NODE:
 936                        /* Make sure it sits at the beginning of LEB */
 937                        if (snod->offs != 0) {
 938                                ubifs_err("unexpected node in log");
 939                                goto out_dump;
 940                        }
 941                        break;
 942                default:
 943                        ubifs_err("unexpected node in log");
 944                        goto out_dump;
 945                }
 946        }
 947
 948        if (sleb->endpt || c->lhead_offs >= c->leb_size) {
 949                c->lhead_lnum = lnum;
 950                c->lhead_offs = sleb->endpt;
 951        }
 952
 953        err = !sleb->endpt;
 954out:
 955        ubifs_scan_destroy(sleb);
 956        return err;
 957
 958out_dump:
 959        ubifs_err("log error detected while replaying the log at LEB %d:%d",
 960                  lnum, offs + snod->offs);
 961        dbg_dump_node(c, snod->node);
 962        ubifs_scan_destroy(sleb);
 963        return -EINVAL;
 964}
 965
 966/**
 967 * take_ihead - update the status of the index head in lprops to 'taken'.
 968 * @c: UBIFS file-system description object
 969 *
 970 * This function returns the amount of free space in the index head LEB or a
 971 * negative error code.
 972 */
 973static int take_ihead(struct ubifs_info *c)
 974{
 975        const struct ubifs_lprops *lp;
 976        int err, free;
 977
 978        ubifs_get_lprops(c);
 979
 980        lp = ubifs_lpt_lookup_dirty(c, c->ihead_lnum);
 981        if (IS_ERR(lp)) {
 982                err = PTR_ERR(lp);
 983                goto out;
 984        }
 985
 986        free = lp->free;
 987
 988        lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC,
 989                             lp->flags | LPROPS_TAKEN, 0);
 990        if (IS_ERR(lp)) {
 991                err = PTR_ERR(lp);
 992                goto out;
 993        }
 994
 995        err = free;
 996out:
 997        ubifs_release_lprops(c);
 998        return err;
 999}
1000
1001/**
1002 * ubifs_replay_journal - replay journal.
1003 * @c: UBIFS file-system description object
1004 *
1005 * This function scans the journal, replays and cleans it up. It makes sure all
1006 * memory data structures related to uncommitted journal are built (dirty TNC
1007 * tree, tree of buds, modified lprops, etc).
1008 */
1009int ubifs_replay_journal(struct ubifs_info *c)
1010{
1011        int err, i, lnum, offs, free;
1012
1013        BUILD_BUG_ON(UBIFS_TRUN_KEY > 5);
1014
1015        /* Update the status of the index head in lprops to 'taken' */
1016        free = take_ihead(c);
1017        if (free < 0)
1018                return free; /* Error code */
1019
1020        if (c->ihead_offs != c->leb_size - free) {
1021                ubifs_err("bad index head LEB %d:%d", c->ihead_lnum,
1022                          c->ihead_offs);
1023                return -EINVAL;
1024        }
1025
1026        dbg_mnt("start replaying the journal");
1027        c->replaying = 1;
1028        lnum = c->ltail_lnum = c->lhead_lnum;
1029        offs = c->lhead_offs;
1030
1031        for (i = 0; i < c->log_lebs; i++, lnum++) {
1032                if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) {
1033                        /*
1034                         * The log is logically circular, we reached the last
1035                         * LEB, switch to the first one.
1036                         */
1037                        lnum = UBIFS_LOG_LNUM;
1038                        offs = 0;
1039                }
1040                err = replay_log_leb(c, lnum, offs, c->sbuf);
1041                if (err == 1)
1042                        /* We hit the end of the log */
1043                        break;
1044                if (err)
1045                        goto out;
1046                offs = 0;
1047        }
1048
1049        err = replay_buds(c);
1050        if (err)
1051                goto out;
1052
1053        err = apply_replay_list(c);
1054        if (err)
1055                goto out;
1056
1057        err = set_buds_lprops(c);
1058        if (err)
1059                goto out;
1060
1061        /*
1062         * UBIFS budgeting calculations use @c->bi.uncommitted_idx variable
1063         * to roughly estimate index growth. Things like @c->bi.min_idx_lebs
1064         * depend on it. This means we have to initialize it to make sure
1065         * budgeting works properly.
1066         */
1067        c->bi.uncommitted_idx = atomic_long_read(&c->dirty_zn_cnt);
1068        c->bi.uncommitted_idx *= c->max_idx_node_sz;
1069
1070        ubifs_assert(c->bud_bytes <= c->max_bud_bytes || c->need_recovery);
1071        dbg_mnt("finished, log head LEB %d:%d, max_sqnum %llu, "
1072                "highest_inum %lu", c->lhead_lnum, c->lhead_offs, c->max_sqnum,
1073                (unsigned long)c->highest_inum);
1074out:
1075        destroy_replay_list(c);
1076        destroy_bud_list(c);
1077        c->replaying = 0;
1078        return err;
1079}
1080