linux/include/linux/mmzone.h
<<
>>
Prefs
   1#ifndef _LINUX_MMZONE_H
   2#define _LINUX_MMZONE_H
   3
   4#ifndef __ASSEMBLY__
   5#ifndef __GENERATING_BOUNDS_H
   6
   7#include <linux/spinlock.h>
   8#include <linux/list.h>
   9#include <linux/wait.h>
  10#include <linux/bitops.h>
  11#include <linux/cache.h>
  12#include <linux/threads.h>
  13#include <linux/numa.h>
  14#include <linux/init.h>
  15#include <linux/seqlock.h>
  16#include <linux/nodemask.h>
  17#include <linux/pageblock-flags.h>
  18#include <generated/bounds.h>
  19#include <linux/atomic.h>
  20#include <asm/page.h>
  21
  22/* Free memory management - zoned buddy allocator.  */
  23#ifndef CONFIG_FORCE_MAX_ZONEORDER
  24#define MAX_ORDER 11
  25#else
  26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
  27#endif
  28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
  29
  30/*
  31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
  32 * costly to service.  That is between allocation orders which should
  33 * coelesce naturally under reasonable reclaim pressure and those which
  34 * will not.
  35 */
  36#define PAGE_ALLOC_COSTLY_ORDER 3
  37
  38#define MIGRATE_UNMOVABLE     0
  39#define MIGRATE_RECLAIMABLE   1
  40#define MIGRATE_MOVABLE       2
  41#define MIGRATE_PCPTYPES      3 /* the number of types on the pcp lists */
  42#define MIGRATE_RESERVE       3
  43#define MIGRATE_ISOLATE       4 /* can't allocate from here */
  44#define MIGRATE_TYPES         5
  45
  46#define for_each_migratetype_order(order, type) \
  47        for (order = 0; order < MAX_ORDER; order++) \
  48                for (type = 0; type < MIGRATE_TYPES; type++)
  49
  50extern int page_group_by_mobility_disabled;
  51
  52static inline int get_pageblock_migratetype(struct page *page)
  53{
  54        return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
  55}
  56
  57struct free_area {
  58        struct list_head        free_list[MIGRATE_TYPES];
  59        unsigned long           nr_free;
  60};
  61
  62struct pglist_data;
  63
  64/*
  65 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
  66 * So add a wild amount of padding here to ensure that they fall into separate
  67 * cachelines.  There are very few zone structures in the machine, so space
  68 * consumption is not a concern here.
  69 */
  70#if defined(CONFIG_SMP)
  71struct zone_padding {
  72        char x[0];
  73} ____cacheline_internodealigned_in_smp;
  74#define ZONE_PADDING(name)      struct zone_padding name;
  75#else
  76#define ZONE_PADDING(name)
  77#endif
  78
  79enum zone_stat_item {
  80        /* First 128 byte cacheline (assuming 64 bit words) */
  81        NR_FREE_PAGES,
  82        NR_LRU_BASE,
  83        NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
  84        NR_ACTIVE_ANON,         /*  "     "     "   "       "         */
  85        NR_INACTIVE_FILE,       /*  "     "     "   "       "         */
  86        NR_ACTIVE_FILE,         /*  "     "     "   "       "         */
  87        NR_UNEVICTABLE,         /*  "     "     "   "       "         */
  88        NR_MLOCK,               /* mlock()ed pages found and moved off LRU */
  89        NR_ANON_PAGES,  /* Mapped anonymous pages */
  90        NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
  91                           only modified from process context */
  92        NR_FILE_PAGES,
  93        NR_FILE_DIRTY,
  94        NR_WRITEBACK,
  95        NR_SLAB_RECLAIMABLE,
  96        NR_SLAB_UNRECLAIMABLE,
  97        NR_PAGETABLE,           /* used for pagetables */
  98        NR_KERNEL_STACK,
  99        /* Second 128 byte cacheline */
 100        NR_UNSTABLE_NFS,        /* NFS unstable pages */
 101        NR_BOUNCE,
 102        NR_VMSCAN_WRITE,
 103        NR_VMSCAN_IMMEDIATE,    /* Prioritise for reclaim when writeback ends */
 104        NR_WRITEBACK_TEMP,      /* Writeback using temporary buffers */
 105        NR_ISOLATED_ANON,       /* Temporary isolated pages from anon lru */
 106        NR_ISOLATED_FILE,       /* Temporary isolated pages from file lru */
 107        NR_SHMEM,               /* shmem pages (included tmpfs/GEM pages) */
 108        NR_DIRTIED,             /* page dirtyings since bootup */
 109        NR_WRITTEN,             /* page writings since bootup */
 110#ifdef CONFIG_NUMA
 111        NUMA_HIT,               /* allocated in intended node */
 112        NUMA_MISS,              /* allocated in non intended node */
 113        NUMA_FOREIGN,           /* was intended here, hit elsewhere */
 114        NUMA_INTERLEAVE_HIT,    /* interleaver preferred this zone */
 115        NUMA_LOCAL,             /* allocation from local node */
 116        NUMA_OTHER,             /* allocation from other node */
 117#endif
 118        NR_ANON_TRANSPARENT_HUGEPAGES,
 119        NR_VM_ZONE_STAT_ITEMS };
 120
 121/*
 122 * We do arithmetic on the LRU lists in various places in the code,
 123 * so it is important to keep the active lists LRU_ACTIVE higher in
 124 * the array than the corresponding inactive lists, and to keep
 125 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
 126 *
 127 * This has to be kept in sync with the statistics in zone_stat_item
 128 * above and the descriptions in vmstat_text in mm/vmstat.c
 129 */
 130#define LRU_BASE 0
 131#define LRU_ACTIVE 1
 132#define LRU_FILE 2
 133
 134enum lru_list {
 135        LRU_INACTIVE_ANON = LRU_BASE,
 136        LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
 137        LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
 138        LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
 139        LRU_UNEVICTABLE,
 140        NR_LRU_LISTS
 141};
 142
 143#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
 144
 145#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
 146
 147static inline int is_file_lru(enum lru_list lru)
 148{
 149        return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
 150}
 151
 152static inline int is_active_lru(enum lru_list lru)
 153{
 154        return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
 155}
 156
 157static inline int is_unevictable_lru(enum lru_list lru)
 158{
 159        return (lru == LRU_UNEVICTABLE);
 160}
 161
 162struct lruvec {
 163        struct list_head lists[NR_LRU_LISTS];
 164};
 165
 166/* Mask used at gathering information at once (see memcontrol.c) */
 167#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
 168#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
 169#define LRU_ALL_EVICTABLE (LRU_ALL_FILE | LRU_ALL_ANON)
 170#define LRU_ALL      ((1 << NR_LRU_LISTS) - 1)
 171
 172/* Isolate inactive pages */
 173#define ISOLATE_INACTIVE        ((__force isolate_mode_t)0x1)
 174/* Isolate active pages */
 175#define ISOLATE_ACTIVE          ((__force isolate_mode_t)0x2)
 176/* Isolate clean file */
 177#define ISOLATE_CLEAN           ((__force isolate_mode_t)0x4)
 178/* Isolate unmapped file */
 179#define ISOLATE_UNMAPPED        ((__force isolate_mode_t)0x8)
 180/* Isolate for asynchronous migration */
 181#define ISOLATE_ASYNC_MIGRATE   ((__force isolate_mode_t)0x10)
 182
 183/* LRU Isolation modes. */
 184typedef unsigned __bitwise__ isolate_mode_t;
 185
 186enum zone_watermarks {
 187        WMARK_MIN,
 188        WMARK_LOW,
 189        WMARK_HIGH,
 190        NR_WMARK
 191};
 192
 193#define min_wmark_pages(z) (z->watermark[WMARK_MIN])
 194#define low_wmark_pages(z) (z->watermark[WMARK_LOW])
 195#define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
 196
 197struct per_cpu_pages {
 198        int count;              /* number of pages in the list */
 199        int high;               /* high watermark, emptying needed */
 200        int batch;              /* chunk size for buddy add/remove */
 201
 202        /* Lists of pages, one per migrate type stored on the pcp-lists */
 203        struct list_head lists[MIGRATE_PCPTYPES];
 204};
 205
 206struct per_cpu_pageset {
 207        struct per_cpu_pages pcp;
 208#ifdef CONFIG_NUMA
 209        s8 expire;
 210#endif
 211#ifdef CONFIG_SMP
 212        s8 stat_threshold;
 213        s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
 214#endif
 215};
 216
 217#endif /* !__GENERATING_BOUNDS.H */
 218
 219enum zone_type {
 220#ifdef CONFIG_ZONE_DMA
 221        /*
 222         * ZONE_DMA is used when there are devices that are not able
 223         * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
 224         * carve out the portion of memory that is needed for these devices.
 225         * The range is arch specific.
 226         *
 227         * Some examples
 228         *
 229         * Architecture         Limit
 230         * ---------------------------
 231         * parisc, ia64, sparc  <4G
 232         * s390                 <2G
 233         * arm                  Various
 234         * alpha                Unlimited or 0-16MB.
 235         *
 236         * i386, x86_64 and multiple other arches
 237         *                      <16M.
 238         */
 239        ZONE_DMA,
 240#endif
 241#ifdef CONFIG_ZONE_DMA32
 242        /*
 243         * x86_64 needs two ZONE_DMAs because it supports devices that are
 244         * only able to do DMA to the lower 16M but also 32 bit devices that
 245         * can only do DMA areas below 4G.
 246         */
 247        ZONE_DMA32,
 248#endif
 249        /*
 250         * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
 251         * performed on pages in ZONE_NORMAL if the DMA devices support
 252         * transfers to all addressable memory.
 253         */
 254        ZONE_NORMAL,
 255#ifdef CONFIG_HIGHMEM
 256        /*
 257         * A memory area that is only addressable by the kernel through
 258         * mapping portions into its own address space. This is for example
 259         * used by i386 to allow the kernel to address the memory beyond
 260         * 900MB. The kernel will set up special mappings (page
 261         * table entries on i386) for each page that the kernel needs to
 262         * access.
 263         */
 264        ZONE_HIGHMEM,
 265#endif
 266        ZONE_MOVABLE,
 267        __MAX_NR_ZONES
 268};
 269
 270#ifndef __GENERATING_BOUNDS_H
 271
 272/*
 273 * When a memory allocation must conform to specific limitations (such
 274 * as being suitable for DMA) the caller will pass in hints to the
 275 * allocator in the gfp_mask, in the zone modifier bits.  These bits
 276 * are used to select a priority ordered list of memory zones which
 277 * match the requested limits. See gfp_zone() in include/linux/gfp.h
 278 */
 279
 280#if MAX_NR_ZONES < 2
 281#define ZONES_SHIFT 0
 282#elif MAX_NR_ZONES <= 2
 283#define ZONES_SHIFT 1
 284#elif MAX_NR_ZONES <= 4
 285#define ZONES_SHIFT 2
 286#else
 287#error ZONES_SHIFT -- too many zones configured adjust calculation
 288#endif
 289
 290struct zone_reclaim_stat {
 291        /*
 292         * The pageout code in vmscan.c keeps track of how many of the
 293         * mem/swap backed and file backed pages are refeferenced.
 294         * The higher the rotated/scanned ratio, the more valuable
 295         * that cache is.
 296         *
 297         * The anon LRU stats live in [0], file LRU stats in [1]
 298         */
 299        unsigned long           recent_rotated[2];
 300        unsigned long           recent_scanned[2];
 301};
 302
 303struct zone {
 304        /* Fields commonly accessed by the page allocator */
 305
 306        /* zone watermarks, access with *_wmark_pages(zone) macros */
 307        unsigned long watermark[NR_WMARK];
 308
 309        /*
 310         * When free pages are below this point, additional steps are taken
 311         * when reading the number of free pages to avoid per-cpu counter
 312         * drift allowing watermarks to be breached
 313         */
 314        unsigned long percpu_drift_mark;
 315
 316        /*
 317         * We don't know if the memory that we're going to allocate will be freeable
 318         * or/and it will be released eventually, so to avoid totally wasting several
 319         * GB of ram we must reserve some of the lower zone memory (otherwise we risk
 320         * to run OOM on the lower zones despite there's tons of freeable ram
 321         * on the higher zones). This array is recalculated at runtime if the
 322         * sysctl_lowmem_reserve_ratio sysctl changes.
 323         */
 324        unsigned long           lowmem_reserve[MAX_NR_ZONES];
 325
 326        /*
 327         * This is a per-zone reserve of pages that should not be
 328         * considered dirtyable memory.
 329         */
 330        unsigned long           dirty_balance_reserve;
 331
 332#ifdef CONFIG_NUMA
 333        int node;
 334        /*
 335         * zone reclaim becomes active if more unmapped pages exist.
 336         */
 337        unsigned long           min_unmapped_pages;
 338        unsigned long           min_slab_pages;
 339#endif
 340        struct per_cpu_pageset __percpu *pageset;
 341        /*
 342         * free areas of different sizes
 343         */
 344        spinlock_t              lock;
 345        int                     all_unreclaimable; /* All pages pinned */
 346#ifdef CONFIG_MEMORY_HOTPLUG
 347        /* see spanned/present_pages for more description */
 348        seqlock_t               span_seqlock;
 349#endif
 350        struct free_area        free_area[MAX_ORDER];
 351
 352#ifndef CONFIG_SPARSEMEM
 353        /*
 354         * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
 355         * In SPARSEMEM, this map is stored in struct mem_section
 356         */
 357        unsigned long           *pageblock_flags;
 358#endif /* CONFIG_SPARSEMEM */
 359
 360#ifdef CONFIG_COMPACTION
 361        /*
 362         * On compaction failure, 1<<compact_defer_shift compactions
 363         * are skipped before trying again. The number attempted since
 364         * last failure is tracked with compact_considered.
 365         */
 366        unsigned int            compact_considered;
 367        unsigned int            compact_defer_shift;
 368#endif
 369
 370        ZONE_PADDING(_pad1_)
 371
 372        /* Fields commonly accessed by the page reclaim scanner */
 373        spinlock_t              lru_lock;
 374        struct lruvec           lruvec;
 375
 376        struct zone_reclaim_stat reclaim_stat;
 377
 378        unsigned long           pages_scanned;     /* since last reclaim */
 379        unsigned long           flags;             /* zone flags, see below */
 380
 381        /* Zone statistics */
 382        atomic_long_t           vm_stat[NR_VM_ZONE_STAT_ITEMS];
 383
 384        /*
 385         * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
 386         * this zone's LRU.  Maintained by the pageout code.
 387         */
 388        unsigned int inactive_ratio;
 389
 390
 391        ZONE_PADDING(_pad2_)
 392        /* Rarely used or read-mostly fields */
 393
 394        /*
 395         * wait_table           -- the array holding the hash table
 396         * wait_table_hash_nr_entries   -- the size of the hash table array
 397         * wait_table_bits      -- wait_table_size == (1 << wait_table_bits)
 398         *
 399         * The purpose of all these is to keep track of the people
 400         * waiting for a page to become available and make them
 401         * runnable again when possible. The trouble is that this
 402         * consumes a lot of space, especially when so few things
 403         * wait on pages at a given time. So instead of using
 404         * per-page waitqueues, we use a waitqueue hash table.
 405         *
 406         * The bucket discipline is to sleep on the same queue when
 407         * colliding and wake all in that wait queue when removing.
 408         * When something wakes, it must check to be sure its page is
 409         * truly available, a la thundering herd. The cost of a
 410         * collision is great, but given the expected load of the
 411         * table, they should be so rare as to be outweighed by the
 412         * benefits from the saved space.
 413         *
 414         * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
 415         * primary users of these fields, and in mm/page_alloc.c
 416         * free_area_init_core() performs the initialization of them.
 417         */
 418        wait_queue_head_t       * wait_table;
 419        unsigned long           wait_table_hash_nr_entries;
 420        unsigned long           wait_table_bits;
 421
 422        /*
 423         * Discontig memory support fields.
 424         */
 425        struct pglist_data      *zone_pgdat;
 426        /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
 427        unsigned long           zone_start_pfn;
 428
 429        /*
 430         * zone_start_pfn, spanned_pages and present_pages are all
 431         * protected by span_seqlock.  It is a seqlock because it has
 432         * to be read outside of zone->lock, and it is done in the main
 433         * allocator path.  But, it is written quite infrequently.
 434         *
 435         * The lock is declared along with zone->lock because it is
 436         * frequently read in proximity to zone->lock.  It's good to
 437         * give them a chance of being in the same cacheline.
 438         */
 439        unsigned long           spanned_pages;  /* total size, including holes */
 440        unsigned long           present_pages;  /* amount of memory (excluding holes) */
 441
 442        /*
 443         * rarely used fields:
 444         */
 445        const char              *name;
 446} ____cacheline_internodealigned_in_smp;
 447
 448typedef enum {
 449        ZONE_RECLAIM_LOCKED,            /* prevents concurrent reclaim */
 450        ZONE_OOM_LOCKED,                /* zone is in OOM killer zonelist */
 451        ZONE_CONGESTED,                 /* zone has many dirty pages backed by
 452                                         * a congested BDI
 453                                         */
 454} zone_flags_t;
 455
 456static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
 457{
 458        set_bit(flag, &zone->flags);
 459}
 460
 461static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
 462{
 463        return test_and_set_bit(flag, &zone->flags);
 464}
 465
 466static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
 467{
 468        clear_bit(flag, &zone->flags);
 469}
 470
 471static inline int zone_is_reclaim_congested(const struct zone *zone)
 472{
 473        return test_bit(ZONE_CONGESTED, &zone->flags);
 474}
 475
 476static inline int zone_is_reclaim_locked(const struct zone *zone)
 477{
 478        return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
 479}
 480
 481static inline int zone_is_oom_locked(const struct zone *zone)
 482{
 483        return test_bit(ZONE_OOM_LOCKED, &zone->flags);
 484}
 485
 486/*
 487 * The "priority" of VM scanning is how much of the queues we will scan in one
 488 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
 489 * queues ("queue_length >> 12") during an aging round.
 490 */
 491#define DEF_PRIORITY 12
 492
 493/* Maximum number of zones on a zonelist */
 494#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
 495
 496#ifdef CONFIG_NUMA
 497
 498/*
 499 * The NUMA zonelists are doubled because we need zonelists that restrict the
 500 * allocations to a single node for GFP_THISNODE.
 501 *
 502 * [0]  : Zonelist with fallback
 503 * [1]  : No fallback (GFP_THISNODE)
 504 */
 505#define MAX_ZONELISTS 2
 506
 507
 508/*
 509 * We cache key information from each zonelist for smaller cache
 510 * footprint when scanning for free pages in get_page_from_freelist().
 511 *
 512 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
 513 *    up short of free memory since the last time (last_fullzone_zap)
 514 *    we zero'd fullzones.
 515 * 2) The array z_to_n[] maps each zone in the zonelist to its node
 516 *    id, so that we can efficiently evaluate whether that node is
 517 *    set in the current tasks mems_allowed.
 518 *
 519 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
 520 * indexed by a zones offset in the zonelist zones[] array.
 521 *
 522 * The get_page_from_freelist() routine does two scans.  During the
 523 * first scan, we skip zones whose corresponding bit in 'fullzones'
 524 * is set or whose corresponding node in current->mems_allowed (which
 525 * comes from cpusets) is not set.  During the second scan, we bypass
 526 * this zonelist_cache, to ensure we look methodically at each zone.
 527 *
 528 * Once per second, we zero out (zap) fullzones, forcing us to
 529 * reconsider nodes that might have regained more free memory.
 530 * The field last_full_zap is the time we last zapped fullzones.
 531 *
 532 * This mechanism reduces the amount of time we waste repeatedly
 533 * reexaming zones for free memory when they just came up low on
 534 * memory momentarilly ago.
 535 *
 536 * The zonelist_cache struct members logically belong in struct
 537 * zonelist.  However, the mempolicy zonelists constructed for
 538 * MPOL_BIND are intentionally variable length (and usually much
 539 * shorter).  A general purpose mechanism for handling structs with
 540 * multiple variable length members is more mechanism than we want
 541 * here.  We resort to some special case hackery instead.
 542 *
 543 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
 544 * part because they are shorter), so we put the fixed length stuff
 545 * at the front of the zonelist struct, ending in a variable length
 546 * zones[], as is needed by MPOL_BIND.
 547 *
 548 * Then we put the optional zonelist cache on the end of the zonelist
 549 * struct.  This optional stuff is found by a 'zlcache_ptr' pointer in
 550 * the fixed length portion at the front of the struct.  This pointer
 551 * both enables us to find the zonelist cache, and in the case of
 552 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
 553 * to know that the zonelist cache is not there.
 554 *
 555 * The end result is that struct zonelists come in two flavors:
 556 *  1) The full, fixed length version, shown below, and
 557 *  2) The custom zonelists for MPOL_BIND.
 558 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
 559 *
 560 * Even though there may be multiple CPU cores on a node modifying
 561 * fullzones or last_full_zap in the same zonelist_cache at the same
 562 * time, we don't lock it.  This is just hint data - if it is wrong now
 563 * and then, the allocator will still function, perhaps a bit slower.
 564 */
 565
 566
 567struct zonelist_cache {
 568        unsigned short z_to_n[MAX_ZONES_PER_ZONELIST];          /* zone->nid */
 569        DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST);      /* zone full? */
 570        unsigned long last_full_zap;            /* when last zap'd (jiffies) */
 571};
 572#else
 573#define MAX_ZONELISTS 1
 574struct zonelist_cache;
 575#endif
 576
 577/*
 578 * This struct contains information about a zone in a zonelist. It is stored
 579 * here to avoid dereferences into large structures and lookups of tables
 580 */
 581struct zoneref {
 582        struct zone *zone;      /* Pointer to actual zone */
 583        int zone_idx;           /* zone_idx(zoneref->zone) */
 584};
 585
 586/*
 587 * One allocation request operates on a zonelist. A zonelist
 588 * is a list of zones, the first one is the 'goal' of the
 589 * allocation, the other zones are fallback zones, in decreasing
 590 * priority.
 591 *
 592 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
 593 * as explained above.  If zlcache_ptr is NULL, there is no zlcache.
 594 * *
 595 * To speed the reading of the zonelist, the zonerefs contain the zone index
 596 * of the entry being read. Helper functions to access information given
 597 * a struct zoneref are
 598 *
 599 * zonelist_zone()      - Return the struct zone * for an entry in _zonerefs
 600 * zonelist_zone_idx()  - Return the index of the zone for an entry
 601 * zonelist_node_idx()  - Return the index of the node for an entry
 602 */
 603struct zonelist {
 604        struct zonelist_cache *zlcache_ptr;                  // NULL or &zlcache
 605        struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
 606#ifdef CONFIG_NUMA
 607        struct zonelist_cache zlcache;                       // optional ...
 608#endif
 609};
 610
 611#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 612struct node_active_region {
 613        unsigned long start_pfn;
 614        unsigned long end_pfn;
 615        int nid;
 616};
 617#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
 618
 619#ifndef CONFIG_DISCONTIGMEM
 620/* The array of struct pages - for discontigmem use pgdat->lmem_map */
 621extern struct page *mem_map;
 622#endif
 623
 624/*
 625 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
 626 * (mostly NUMA machines?) to denote a higher-level memory zone than the
 627 * zone denotes.
 628 *
 629 * On NUMA machines, each NUMA node would have a pg_data_t to describe
 630 * it's memory layout.
 631 *
 632 * Memory statistics and page replacement data structures are maintained on a
 633 * per-zone basis.
 634 */
 635struct bootmem_data;
 636typedef struct pglist_data {
 637        struct zone node_zones[MAX_NR_ZONES];
 638        struct zonelist node_zonelists[MAX_ZONELISTS];
 639        int nr_zones;
 640#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
 641        struct page *node_mem_map;
 642#ifdef CONFIG_CGROUP_MEM_RES_CTLR
 643        struct page_cgroup *node_page_cgroup;
 644#endif
 645#endif
 646#ifndef CONFIG_NO_BOOTMEM
 647        struct bootmem_data *bdata;
 648#endif
 649#ifdef CONFIG_MEMORY_HOTPLUG
 650        /*
 651         * Must be held any time you expect node_start_pfn, node_present_pages
 652         * or node_spanned_pages stay constant.  Holding this will also
 653         * guarantee that any pfn_valid() stays that way.
 654         *
 655         * Nests above zone->lock and zone->size_seqlock.
 656         */
 657        spinlock_t node_size_lock;
 658#endif
 659        unsigned long node_start_pfn;
 660        unsigned long node_present_pages; /* total number of physical pages */
 661        unsigned long node_spanned_pages; /* total size of physical page
 662                                             range, including holes */
 663        int node_id;
 664        wait_queue_head_t kswapd_wait;
 665        struct task_struct *kswapd;
 666        int kswapd_max_order;
 667        enum zone_type classzone_idx;
 668} pg_data_t;
 669
 670#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
 671#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
 672#ifdef CONFIG_FLAT_NODE_MEM_MAP
 673#define pgdat_page_nr(pgdat, pagenr)    ((pgdat)->node_mem_map + (pagenr))
 674#else
 675#define pgdat_page_nr(pgdat, pagenr)    pfn_to_page((pgdat)->node_start_pfn + (pagenr))
 676#endif
 677#define nid_page_nr(nid, pagenr)        pgdat_page_nr(NODE_DATA(nid),(pagenr))
 678
 679#define node_start_pfn(nid)     (NODE_DATA(nid)->node_start_pfn)
 680
 681#define node_end_pfn(nid) ({\
 682        pg_data_t *__pgdat = NODE_DATA(nid);\
 683        __pgdat->node_start_pfn + __pgdat->node_spanned_pages;\
 684})
 685
 686#include <linux/memory_hotplug.h>
 687
 688extern struct mutex zonelists_mutex;
 689void build_all_zonelists(void *data);
 690void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
 691bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
 692                int classzone_idx, int alloc_flags);
 693bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
 694                int classzone_idx, int alloc_flags);
 695enum memmap_context {
 696        MEMMAP_EARLY,
 697        MEMMAP_HOTPLUG,
 698};
 699extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
 700                                     unsigned long size,
 701                                     enum memmap_context context);
 702
 703#ifdef CONFIG_HAVE_MEMORY_PRESENT
 704void memory_present(int nid, unsigned long start, unsigned long end);
 705#else
 706static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
 707#endif
 708
 709#ifdef CONFIG_HAVE_MEMORYLESS_NODES
 710int local_memory_node(int node_id);
 711#else
 712static inline int local_memory_node(int node_id) { return node_id; };
 713#endif
 714
 715#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
 716unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
 717#endif
 718
 719/*
 720 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
 721 */
 722#define zone_idx(zone)          ((zone) - (zone)->zone_pgdat->node_zones)
 723
 724static inline int populated_zone(struct zone *zone)
 725{
 726        return (!!zone->present_pages);
 727}
 728
 729extern int movable_zone;
 730
 731static inline int zone_movable_is_highmem(void)
 732{
 733#if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE)
 734        return movable_zone == ZONE_HIGHMEM;
 735#else
 736        return 0;
 737#endif
 738}
 739
 740static inline int is_highmem_idx(enum zone_type idx)
 741{
 742#ifdef CONFIG_HIGHMEM
 743        return (idx == ZONE_HIGHMEM ||
 744                (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
 745#else
 746        return 0;
 747#endif
 748}
 749
 750static inline int is_normal_idx(enum zone_type idx)
 751{
 752        return (idx == ZONE_NORMAL);
 753}
 754
 755/**
 756 * is_highmem - helper function to quickly check if a struct zone is a 
 757 *              highmem zone or not.  This is an attempt to keep references
 758 *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
 759 * @zone - pointer to struct zone variable
 760 */
 761static inline int is_highmem(struct zone *zone)
 762{
 763#ifdef CONFIG_HIGHMEM
 764        int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
 765        return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
 766               (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
 767                zone_movable_is_highmem());
 768#else
 769        return 0;
 770#endif
 771}
 772
 773static inline int is_normal(struct zone *zone)
 774{
 775        return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
 776}
 777
 778static inline int is_dma32(struct zone *zone)
 779{
 780#ifdef CONFIG_ZONE_DMA32
 781        return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
 782#else
 783        return 0;
 784#endif
 785}
 786
 787static inline int is_dma(struct zone *zone)
 788{
 789#ifdef CONFIG_ZONE_DMA
 790        return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
 791#else
 792        return 0;
 793#endif
 794}
 795
 796/* These two functions are used to setup the per zone pages min values */
 797struct ctl_table;
 798int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
 799                                        void __user *, size_t *, loff_t *);
 800extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
 801int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
 802                                        void __user *, size_t *, loff_t *);
 803int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
 804                                        void __user *, size_t *, loff_t *);
 805int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
 806                        void __user *, size_t *, loff_t *);
 807int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
 808                        void __user *, size_t *, loff_t *);
 809
 810extern int numa_zonelist_order_handler(struct ctl_table *, int,
 811                        void __user *, size_t *, loff_t *);
 812extern char numa_zonelist_order[];
 813#define NUMA_ZONELIST_ORDER_LEN 16      /* string buffer size */
 814
 815#ifndef CONFIG_NEED_MULTIPLE_NODES
 816
 817extern struct pglist_data contig_page_data;
 818#define NODE_DATA(nid)          (&contig_page_data)
 819#define NODE_MEM_MAP(nid)       mem_map
 820
 821#else /* CONFIG_NEED_MULTIPLE_NODES */
 822
 823#include <asm/mmzone.h>
 824
 825#endif /* !CONFIG_NEED_MULTIPLE_NODES */
 826
 827extern struct pglist_data *first_online_pgdat(void);
 828extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
 829extern struct zone *next_zone(struct zone *zone);
 830
 831/**
 832 * for_each_online_pgdat - helper macro to iterate over all online nodes
 833 * @pgdat - pointer to a pg_data_t variable
 834 */
 835#define for_each_online_pgdat(pgdat)                    \
 836        for (pgdat = first_online_pgdat();              \
 837             pgdat;                                     \
 838             pgdat = next_online_pgdat(pgdat))
 839/**
 840 * for_each_zone - helper macro to iterate over all memory zones
 841 * @zone - pointer to struct zone variable
 842 *
 843 * The user only needs to declare the zone variable, for_each_zone
 844 * fills it in.
 845 */
 846#define for_each_zone(zone)                             \
 847        for (zone = (first_online_pgdat())->node_zones; \
 848             zone;                                      \
 849             zone = next_zone(zone))
 850
 851#define for_each_populated_zone(zone)                   \
 852        for (zone = (first_online_pgdat())->node_zones; \
 853             zone;                                      \
 854             zone = next_zone(zone))                    \
 855                if (!populated_zone(zone))              \
 856                        ; /* do nothing */              \
 857                else
 858
 859static inline struct zone *zonelist_zone(struct zoneref *zoneref)
 860{
 861        return zoneref->zone;
 862}
 863
 864static inline int zonelist_zone_idx(struct zoneref *zoneref)
 865{
 866        return zoneref->zone_idx;
 867}
 868
 869static inline int zonelist_node_idx(struct zoneref *zoneref)
 870{
 871#ifdef CONFIG_NUMA
 872        /* zone_to_nid not available in this context */
 873        return zoneref->zone->node;
 874#else
 875        return 0;
 876#endif /* CONFIG_NUMA */
 877}
 878
 879/**
 880 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
 881 * @z - The cursor used as a starting point for the search
 882 * @highest_zoneidx - The zone index of the highest zone to return
 883 * @nodes - An optional nodemask to filter the zonelist with
 884 * @zone - The first suitable zone found is returned via this parameter
 885 *
 886 * This function returns the next zone at or below a given zone index that is
 887 * within the allowed nodemask using a cursor as the starting point for the
 888 * search. The zoneref returned is a cursor that represents the current zone
 889 * being examined. It should be advanced by one before calling
 890 * next_zones_zonelist again.
 891 */
 892struct zoneref *next_zones_zonelist(struct zoneref *z,
 893                                        enum zone_type highest_zoneidx,
 894                                        nodemask_t *nodes,
 895                                        struct zone **zone);
 896
 897/**
 898 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
 899 * @zonelist - The zonelist to search for a suitable zone
 900 * @highest_zoneidx - The zone index of the highest zone to return
 901 * @nodes - An optional nodemask to filter the zonelist with
 902 * @zone - The first suitable zone found is returned via this parameter
 903 *
 904 * This function returns the first zone at or below a given zone index that is
 905 * within the allowed nodemask. The zoneref returned is a cursor that can be
 906 * used to iterate the zonelist with next_zones_zonelist by advancing it by
 907 * one before calling.
 908 */
 909static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
 910                                        enum zone_type highest_zoneidx,
 911                                        nodemask_t *nodes,
 912                                        struct zone **zone)
 913{
 914        return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
 915                                                                zone);
 916}
 917
 918/**
 919 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
 920 * @zone - The current zone in the iterator
 921 * @z - The current pointer within zonelist->zones being iterated
 922 * @zlist - The zonelist being iterated
 923 * @highidx - The zone index of the highest zone to return
 924 * @nodemask - Nodemask allowed by the allocator
 925 *
 926 * This iterator iterates though all zones at or below a given zone index and
 927 * within a given nodemask
 928 */
 929#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
 930        for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
 931                zone;                                                   \
 932                z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
 933
 934/**
 935 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
 936 * @zone - The current zone in the iterator
 937 * @z - The current pointer within zonelist->zones being iterated
 938 * @zlist - The zonelist being iterated
 939 * @highidx - The zone index of the highest zone to return
 940 *
 941 * This iterator iterates though all zones at or below a given zone index.
 942 */
 943#define for_each_zone_zonelist(zone, z, zlist, highidx) \
 944        for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
 945
 946#ifdef CONFIG_SPARSEMEM
 947#include <asm/sparsemem.h>
 948#endif
 949
 950#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
 951        !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
 952static inline unsigned long early_pfn_to_nid(unsigned long pfn)
 953{
 954        return 0;
 955}
 956#endif
 957
 958#ifdef CONFIG_FLATMEM
 959#define pfn_to_nid(pfn)         (0)
 960#endif
 961
 962#ifdef CONFIG_SPARSEMEM
 963
 964/*
 965 * SECTION_SHIFT                #bits space required to store a section #
 966 *
 967 * PA_SECTION_SHIFT             physical address to/from section number
 968 * PFN_SECTION_SHIFT            pfn to/from section number
 969 */
 970#define SECTIONS_SHIFT          (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
 971
 972#define PA_SECTION_SHIFT        (SECTION_SIZE_BITS)
 973#define PFN_SECTION_SHIFT       (SECTION_SIZE_BITS - PAGE_SHIFT)
 974
 975#define NR_MEM_SECTIONS         (1UL << SECTIONS_SHIFT)
 976
 977#define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
 978#define PAGE_SECTION_MASK       (~(PAGES_PER_SECTION-1))
 979
 980#define SECTION_BLOCKFLAGS_BITS \
 981        ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
 982
 983#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
 984#error Allocator MAX_ORDER exceeds SECTION_SIZE
 985#endif
 986
 987#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
 988#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
 989
 990#define SECTION_ALIGN_UP(pfn)   (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
 991#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
 992
 993struct page;
 994struct page_cgroup;
 995struct mem_section {
 996        /*
 997         * This is, logically, a pointer to an array of struct
 998         * pages.  However, it is stored with some other magic.
 999         * (see sparse.c::sparse_init_one_section())
1000         *
1001         * Additionally during early boot we encode node id of
1002         * the location of the section here to guide allocation.
1003         * (see sparse.c::memory_present())
1004         *
1005         * Making it a UL at least makes someone do a cast
1006         * before using it wrong.
1007         */
1008        unsigned long section_mem_map;
1009
1010        /* See declaration of similar field in struct zone */
1011        unsigned long *pageblock_flags;
1012#ifdef CONFIG_CGROUP_MEM_RES_CTLR
1013        /*
1014         * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
1015         * section. (see memcontrol.h/page_cgroup.h about this.)
1016         */
1017        struct page_cgroup *page_cgroup;
1018        unsigned long pad;
1019#endif
1020};
1021
1022#ifdef CONFIG_SPARSEMEM_EXTREME
1023#define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1024#else
1025#define SECTIONS_PER_ROOT       1
1026#endif
1027
1028#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1029#define NR_SECTION_ROOTS        DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1030#define SECTION_ROOT_MASK       (SECTIONS_PER_ROOT - 1)
1031
1032#ifdef CONFIG_SPARSEMEM_EXTREME
1033extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1034#else
1035extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1036#endif
1037
1038static inline struct mem_section *__nr_to_section(unsigned long nr)
1039{
1040        if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1041                return NULL;
1042        return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1043}
1044extern int __section_nr(struct mem_section* ms);
1045extern unsigned long usemap_size(void);
1046
1047/*
1048 * We use the lower bits of the mem_map pointer to store
1049 * a little bit of information.  There should be at least
1050 * 3 bits here due to 32-bit alignment.
1051 */
1052#define SECTION_MARKED_PRESENT  (1UL<<0)
1053#define SECTION_HAS_MEM_MAP     (1UL<<1)
1054#define SECTION_MAP_LAST_BIT    (1UL<<2)
1055#define SECTION_MAP_MASK        (~(SECTION_MAP_LAST_BIT-1))
1056#define SECTION_NID_SHIFT       2
1057
1058static inline struct page *__section_mem_map_addr(struct mem_section *section)
1059{
1060        unsigned long map = section->section_mem_map;
1061        map &= SECTION_MAP_MASK;
1062        return (struct page *)map;
1063}
1064
1065static inline int present_section(struct mem_section *section)
1066{
1067        return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1068}
1069
1070static inline int present_section_nr(unsigned long nr)
1071{
1072        return present_section(__nr_to_section(nr));
1073}
1074
1075static inline int valid_section(struct mem_section *section)
1076{
1077        return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1078}
1079
1080static inline int valid_section_nr(unsigned long nr)
1081{
1082        return valid_section(__nr_to_section(nr));
1083}
1084
1085static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1086{
1087        return __nr_to_section(pfn_to_section_nr(pfn));
1088}
1089
1090#ifndef CONFIG_HAVE_ARCH_PFN_VALID
1091static inline int pfn_valid(unsigned long pfn)
1092{
1093        if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1094                return 0;
1095        return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1096}
1097#endif
1098
1099static inline int pfn_present(unsigned long pfn)
1100{
1101        if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1102                return 0;
1103        return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1104}
1105
1106/*
1107 * These are _only_ used during initialisation, therefore they
1108 * can use __initdata ...  They could have names to indicate
1109 * this restriction.
1110 */
1111#ifdef CONFIG_NUMA
1112#define pfn_to_nid(pfn)                                                 \
1113({                                                                      \
1114        unsigned long __pfn_to_nid_pfn = (pfn);                         \
1115        page_to_nid(pfn_to_page(__pfn_to_nid_pfn));                     \
1116})
1117#else
1118#define pfn_to_nid(pfn)         (0)
1119#endif
1120
1121#define early_pfn_valid(pfn)    pfn_valid(pfn)
1122void sparse_init(void);
1123#else
1124#define sparse_init()   do {} while (0)
1125#define sparse_index_init(_sec, _nid)  do {} while (0)
1126#endif /* CONFIG_SPARSEMEM */
1127
1128#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1129bool early_pfn_in_nid(unsigned long pfn, int nid);
1130#else
1131#define early_pfn_in_nid(pfn, nid)      (1)
1132#endif
1133
1134#ifndef early_pfn_valid
1135#define early_pfn_valid(pfn)    (1)
1136#endif
1137
1138void memory_present(int nid, unsigned long start, unsigned long end);
1139unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1140
1141/*
1142 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1143 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1144 * pfn_valid_within() should be used in this case; we optimise this away
1145 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1146 */
1147#ifdef CONFIG_HOLES_IN_ZONE
1148#define pfn_valid_within(pfn) pfn_valid(pfn)
1149#else
1150#define pfn_valid_within(pfn) (1)
1151#endif
1152
1153#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1154/*
1155 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1156 * associated with it or not. In FLATMEM, it is expected that holes always
1157 * have valid memmap as long as there is valid PFNs either side of the hole.
1158 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1159 * entire section.
1160 *
1161 * However, an ARM, and maybe other embedded architectures in the future
1162 * free memmap backing holes to save memory on the assumption the memmap is
1163 * never used. The page_zone linkages are then broken even though pfn_valid()
1164 * returns true. A walker of the full memmap must then do this additional
1165 * check to ensure the memmap they are looking at is sane by making sure
1166 * the zone and PFN linkages are still valid. This is expensive, but walkers
1167 * of the full memmap are extremely rare.
1168 */
1169int memmap_valid_within(unsigned long pfn,
1170                                        struct page *page, struct zone *zone);
1171#else
1172static inline int memmap_valid_within(unsigned long pfn,
1173                                        struct page *page, struct zone *zone)
1174{
1175        return 1;
1176}
1177#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1178
1179#endif /* !__GENERATING_BOUNDS.H */
1180#endif /* !__ASSEMBLY__ */
1181#endif /* _LINUX_MMZONE_H */
1182