1/* 2 * Read-Copy Update mechanism for mutual exclusion 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright IBM Corporation, 2001 19 * 20 * Author: Dipankar Sarma <dipankar@in.ibm.com> 21 * 22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com> 23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 24 * Papers: 25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf 26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) 27 * 28 * For detailed explanation of Read-Copy Update mechanism see - 29 * http://lse.sourceforge.net/locking/rcupdate.html 30 * 31 */ 32 33#ifndef __LINUX_RCUPDATE_H 34#define __LINUX_RCUPDATE_H 35 36#include <linux/types.h> 37#include <linux/cache.h> 38#include <linux/spinlock.h> 39#include <linux/threads.h> 40#include <linux/cpumask.h> 41#include <linux/seqlock.h> 42#include <linux/lockdep.h> 43#include <linux/completion.h> 44#include <linux/debugobjects.h> 45#include <linux/compiler.h> 46 47#ifdef CONFIG_RCU_TORTURE_TEST 48extern int rcutorture_runnable; /* for sysctl */ 49#endif /* #ifdef CONFIG_RCU_TORTURE_TEST */ 50 51#if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU) 52extern void rcutorture_record_test_transition(void); 53extern void rcutorture_record_progress(unsigned long vernum); 54extern void do_trace_rcu_torture_read(char *rcutorturename, 55 struct rcu_head *rhp); 56#else 57static inline void rcutorture_record_test_transition(void) 58{ 59} 60static inline void rcutorture_record_progress(unsigned long vernum) 61{ 62} 63#ifdef CONFIG_RCU_TRACE 64extern void do_trace_rcu_torture_read(char *rcutorturename, 65 struct rcu_head *rhp); 66#else 67#define do_trace_rcu_torture_read(rcutorturename, rhp) do { } while (0) 68#endif 69#endif 70 71#define UINT_CMP_GE(a, b) (UINT_MAX / 2 >= (a) - (b)) 72#define UINT_CMP_LT(a, b) (UINT_MAX / 2 < (a) - (b)) 73#define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b)) 74#define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b)) 75 76/* Exported common interfaces */ 77 78#ifdef CONFIG_PREEMPT_RCU 79 80/** 81 * call_rcu() - Queue an RCU callback for invocation after a grace period. 82 * @head: structure to be used for queueing the RCU updates. 83 * @func: actual callback function to be invoked after the grace period 84 * 85 * The callback function will be invoked some time after a full grace 86 * period elapses, in other words after all pre-existing RCU read-side 87 * critical sections have completed. However, the callback function 88 * might well execute concurrently with RCU read-side critical sections 89 * that started after call_rcu() was invoked. RCU read-side critical 90 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), 91 * and may be nested. 92 */ 93extern void call_rcu(struct rcu_head *head, 94 void (*func)(struct rcu_head *head)); 95 96#else /* #ifdef CONFIG_PREEMPT_RCU */ 97 98/* In classic RCU, call_rcu() is just call_rcu_sched(). */ 99#define call_rcu call_rcu_sched 100 101#endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 102 103/** 104 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period. 105 * @head: structure to be used for queueing the RCU updates. 106 * @func: actual callback function to be invoked after the grace period 107 * 108 * The callback function will be invoked some time after a full grace 109 * period elapses, in other words after all currently executing RCU 110 * read-side critical sections have completed. call_rcu_bh() assumes 111 * that the read-side critical sections end on completion of a softirq 112 * handler. This means that read-side critical sections in process 113 * context must not be interrupted by softirqs. This interface is to be 114 * used when most of the read-side critical sections are in softirq context. 115 * RCU read-side critical sections are delimited by : 116 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context. 117 * OR 118 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context. 119 * These may be nested. 120 */ 121extern void call_rcu_bh(struct rcu_head *head, 122 void (*func)(struct rcu_head *head)); 123 124/** 125 * call_rcu_sched() - Queue an RCU for invocation after sched grace period. 126 * @head: structure to be used for queueing the RCU updates. 127 * @func: actual callback function to be invoked after the grace period 128 * 129 * The callback function will be invoked some time after a full grace 130 * period elapses, in other words after all currently executing RCU 131 * read-side critical sections have completed. call_rcu_sched() assumes 132 * that the read-side critical sections end on enabling of preemption 133 * or on voluntary preemption. 134 * RCU read-side critical sections are delimited by : 135 * - rcu_read_lock_sched() and rcu_read_unlock_sched(), 136 * OR 137 * anything that disables preemption. 138 * These may be nested. 139 */ 140extern void call_rcu_sched(struct rcu_head *head, 141 void (*func)(struct rcu_head *rcu)); 142 143extern void synchronize_sched(void); 144 145#ifdef CONFIG_PREEMPT_RCU 146 147extern void __rcu_read_lock(void); 148extern void __rcu_read_unlock(void); 149void synchronize_rcu(void); 150 151/* 152 * Defined as a macro as it is a very low level header included from 153 * areas that don't even know about current. This gives the rcu_read_lock() 154 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other 155 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable. 156 */ 157#define rcu_preempt_depth() (current->rcu_read_lock_nesting) 158 159#else /* #ifdef CONFIG_PREEMPT_RCU */ 160 161static inline void __rcu_read_lock(void) 162{ 163 preempt_disable(); 164} 165 166static inline void __rcu_read_unlock(void) 167{ 168 preempt_enable(); 169} 170 171static inline void synchronize_rcu(void) 172{ 173 synchronize_sched(); 174} 175 176static inline int rcu_preempt_depth(void) 177{ 178 return 0; 179} 180 181#endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 182 183/* Internal to kernel */ 184extern void rcu_sched_qs(int cpu); 185extern void rcu_bh_qs(int cpu); 186extern void rcu_check_callbacks(int cpu, int user); 187struct notifier_block; 188extern void rcu_idle_enter(void); 189extern void rcu_idle_exit(void); 190extern void rcu_irq_enter(void); 191extern void rcu_irq_exit(void); 192 193/* 194 * Infrastructure to implement the synchronize_() primitives in 195 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU. 196 */ 197 198typedef void call_rcu_func_t(struct rcu_head *head, 199 void (*func)(struct rcu_head *head)); 200void wait_rcu_gp(call_rcu_func_t crf); 201 202#if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU) 203#include <linux/rcutree.h> 204#elif defined(CONFIG_TINY_RCU) || defined(CONFIG_TINY_PREEMPT_RCU) 205#include <linux/rcutiny.h> 206#else 207#error "Unknown RCU implementation specified to kernel configuration" 208#endif 209 210/* 211 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic 212 * initialization and destruction of rcu_head on the stack. rcu_head structures 213 * allocated dynamically in the heap or defined statically don't need any 214 * initialization. 215 */ 216#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 217extern void init_rcu_head_on_stack(struct rcu_head *head); 218extern void destroy_rcu_head_on_stack(struct rcu_head *head); 219#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 220static inline void init_rcu_head_on_stack(struct rcu_head *head) 221{ 222} 223 224static inline void destroy_rcu_head_on_stack(struct rcu_head *head) 225{ 226} 227#endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 228 229#ifdef CONFIG_DEBUG_LOCK_ALLOC 230 231#ifdef CONFIG_PROVE_RCU 232extern int rcu_is_cpu_idle(void); 233#else /* !CONFIG_PROVE_RCU */ 234static inline int rcu_is_cpu_idle(void) 235{ 236 return 0; 237} 238#endif /* else !CONFIG_PROVE_RCU */ 239 240static inline void rcu_lock_acquire(struct lockdep_map *map) 241{ 242 WARN_ON_ONCE(rcu_is_cpu_idle()); 243 lock_acquire(map, 0, 0, 2, 1, NULL, _THIS_IP_); 244} 245 246static inline void rcu_lock_release(struct lockdep_map *map) 247{ 248 WARN_ON_ONCE(rcu_is_cpu_idle()); 249 lock_release(map, 1, _THIS_IP_); 250} 251 252extern struct lockdep_map rcu_lock_map; 253extern struct lockdep_map rcu_bh_lock_map; 254extern struct lockdep_map rcu_sched_lock_map; 255extern int debug_lockdep_rcu_enabled(void); 256 257/** 258 * rcu_read_lock_held() - might we be in RCU read-side critical section? 259 * 260 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU 261 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC, 262 * this assumes we are in an RCU read-side critical section unless it can 263 * prove otherwise. This is useful for debug checks in functions that 264 * require that they be called within an RCU read-side critical section. 265 * 266 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot 267 * and while lockdep is disabled. 268 * 269 * Note that rcu_read_lock() and the matching rcu_read_unlock() must 270 * occur in the same context, for example, it is illegal to invoke 271 * rcu_read_unlock() in process context if the matching rcu_read_lock() 272 * was invoked from within an irq handler. 273 */ 274static inline int rcu_read_lock_held(void) 275{ 276 if (!debug_lockdep_rcu_enabled()) 277 return 1; 278 if (rcu_is_cpu_idle()) 279 return 0; 280 return lock_is_held(&rcu_lock_map); 281} 282 283/* 284 * rcu_read_lock_bh_held() is defined out of line to avoid #include-file 285 * hell. 286 */ 287extern int rcu_read_lock_bh_held(void); 288 289/** 290 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section? 291 * 292 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an 293 * RCU-sched read-side critical section. In absence of 294 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side 295 * critical section unless it can prove otherwise. Note that disabling 296 * of preemption (including disabling irqs) counts as an RCU-sched 297 * read-side critical section. This is useful for debug checks in functions 298 * that required that they be called within an RCU-sched read-side 299 * critical section. 300 * 301 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot 302 * and while lockdep is disabled. 303 * 304 * Note that if the CPU is in the idle loop from an RCU point of 305 * view (ie: that we are in the section between rcu_idle_enter() and 306 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU 307 * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs 308 * that are in such a section, considering these as in extended quiescent 309 * state, so such a CPU is effectively never in an RCU read-side critical 310 * section regardless of what RCU primitives it invokes. This state of 311 * affairs is required --- we need to keep an RCU-free window in idle 312 * where the CPU may possibly enter into low power mode. This way we can 313 * notice an extended quiescent state to other CPUs that started a grace 314 * period. Otherwise we would delay any grace period as long as we run in 315 * the idle task. 316 */ 317#ifdef CONFIG_PREEMPT_COUNT 318static inline int rcu_read_lock_sched_held(void) 319{ 320 int lockdep_opinion = 0; 321 322 if (!debug_lockdep_rcu_enabled()) 323 return 1; 324 if (rcu_is_cpu_idle()) 325 return 0; 326 if (debug_locks) 327 lockdep_opinion = lock_is_held(&rcu_sched_lock_map); 328 return lockdep_opinion || preempt_count() != 0 || irqs_disabled(); 329} 330#else /* #ifdef CONFIG_PREEMPT_COUNT */ 331static inline int rcu_read_lock_sched_held(void) 332{ 333 return 1; 334} 335#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */ 336 337#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 338 339# define rcu_lock_acquire(a) do { } while (0) 340# define rcu_lock_release(a) do { } while (0) 341 342static inline int rcu_read_lock_held(void) 343{ 344 return 1; 345} 346 347static inline int rcu_read_lock_bh_held(void) 348{ 349 return 1; 350} 351 352#ifdef CONFIG_PREEMPT_COUNT 353static inline int rcu_read_lock_sched_held(void) 354{ 355 return preempt_count() != 0 || irqs_disabled(); 356} 357#else /* #ifdef CONFIG_PREEMPT_COUNT */ 358static inline int rcu_read_lock_sched_held(void) 359{ 360 return 1; 361} 362#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */ 363 364#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 365 366#ifdef CONFIG_PROVE_RCU 367 368extern int rcu_my_thread_group_empty(void); 369 370/** 371 * rcu_lockdep_assert - emit lockdep splat if specified condition not met 372 * @c: condition to check 373 * @s: informative message 374 */ 375#define rcu_lockdep_assert(c, s) \ 376 do { \ 377 static bool __warned; \ 378 if (debug_lockdep_rcu_enabled() && !__warned && !(c)) { \ 379 __warned = true; \ 380 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \ 381 } \ 382 } while (0) 383 384#define rcu_sleep_check() \ 385 do { \ 386 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map), \ 387 "Illegal context switch in RCU-bh" \ 388 " read-side critical section"); \ 389 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map), \ 390 "Illegal context switch in RCU-sched"\ 391 " read-side critical section"); \ 392 } while (0) 393 394#else /* #ifdef CONFIG_PROVE_RCU */ 395 396#define rcu_lockdep_assert(c, s) do { } while (0) 397#define rcu_sleep_check() do { } while (0) 398 399#endif /* #else #ifdef CONFIG_PROVE_RCU */ 400 401/* 402 * Helper functions for rcu_dereference_check(), rcu_dereference_protected() 403 * and rcu_assign_pointer(). Some of these could be folded into their 404 * callers, but they are left separate in order to ease introduction of 405 * multiple flavors of pointers to match the multiple flavors of RCU 406 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in 407 * the future. 408 */ 409 410#ifdef __CHECKER__ 411#define rcu_dereference_sparse(p, space) \ 412 ((void)(((typeof(*p) space *)p) == p)) 413#else /* #ifdef __CHECKER__ */ 414#define rcu_dereference_sparse(p, space) 415#endif /* #else #ifdef __CHECKER__ */ 416 417#define __rcu_access_pointer(p, space) \ 418 ({ \ 419 typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \ 420 rcu_dereference_sparse(p, space); \ 421 ((typeof(*p) __force __kernel *)(_________p1)); \ 422 }) 423#define __rcu_dereference_check(p, c, space) \ 424 ({ \ 425 typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \ 426 rcu_lockdep_assert(c, "suspicious rcu_dereference_check()" \ 427 " usage"); \ 428 rcu_dereference_sparse(p, space); \ 429 smp_read_barrier_depends(); \ 430 ((typeof(*p) __force __kernel *)(_________p1)); \ 431 }) 432#define __rcu_dereference_protected(p, c, space) \ 433 ({ \ 434 rcu_lockdep_assert(c, "suspicious rcu_dereference_protected()" \ 435 " usage"); \ 436 rcu_dereference_sparse(p, space); \ 437 ((typeof(*p) __force __kernel *)(p)); \ 438 }) 439 440#define __rcu_access_index(p, space) \ 441 ({ \ 442 typeof(p) _________p1 = ACCESS_ONCE(p); \ 443 rcu_dereference_sparse(p, space); \ 444 (_________p1); \ 445 }) 446#define __rcu_dereference_index_check(p, c) \ 447 ({ \ 448 typeof(p) _________p1 = ACCESS_ONCE(p); \ 449 rcu_lockdep_assert(c, \ 450 "suspicious rcu_dereference_index_check()" \ 451 " usage"); \ 452 smp_read_barrier_depends(); \ 453 (_________p1); \ 454 }) 455#define __rcu_assign_pointer(p, v, space) \ 456 ({ \ 457 smp_wmb(); \ 458 (p) = (typeof(*v) __force space *)(v); \ 459 }) 460 461 462/** 463 * rcu_access_pointer() - fetch RCU pointer with no dereferencing 464 * @p: The pointer to read 465 * 466 * Return the value of the specified RCU-protected pointer, but omit the 467 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful 468 * when the value of this pointer is accessed, but the pointer is not 469 * dereferenced, for example, when testing an RCU-protected pointer against 470 * NULL. Although rcu_access_pointer() may also be used in cases where 471 * update-side locks prevent the value of the pointer from changing, you 472 * should instead use rcu_dereference_protected() for this use case. 473 */ 474#define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu) 475 476/** 477 * rcu_dereference_check() - rcu_dereference with debug checking 478 * @p: The pointer to read, prior to dereferencing 479 * @c: The conditions under which the dereference will take place 480 * 481 * Do an rcu_dereference(), but check that the conditions under which the 482 * dereference will take place are correct. Typically the conditions 483 * indicate the various locking conditions that should be held at that 484 * point. The check should return true if the conditions are satisfied. 485 * An implicit check for being in an RCU read-side critical section 486 * (rcu_read_lock()) is included. 487 * 488 * For example: 489 * 490 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock)); 491 * 492 * could be used to indicate to lockdep that foo->bar may only be dereferenced 493 * if either rcu_read_lock() is held, or that the lock required to replace 494 * the bar struct at foo->bar is held. 495 * 496 * Note that the list of conditions may also include indications of when a lock 497 * need not be held, for example during initialisation or destruction of the 498 * target struct: 499 * 500 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) || 501 * atomic_read(&foo->usage) == 0); 502 * 503 * Inserts memory barriers on architectures that require them 504 * (currently only the Alpha), prevents the compiler from refetching 505 * (and from merging fetches), and, more importantly, documents exactly 506 * which pointers are protected by RCU and checks that the pointer is 507 * annotated as __rcu. 508 */ 509#define rcu_dereference_check(p, c) \ 510 __rcu_dereference_check((p), rcu_read_lock_held() || (c), __rcu) 511 512/** 513 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking 514 * @p: The pointer to read, prior to dereferencing 515 * @c: The conditions under which the dereference will take place 516 * 517 * This is the RCU-bh counterpart to rcu_dereference_check(). 518 */ 519#define rcu_dereference_bh_check(p, c) \ 520 __rcu_dereference_check((p), rcu_read_lock_bh_held() || (c), __rcu) 521 522/** 523 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking 524 * @p: The pointer to read, prior to dereferencing 525 * @c: The conditions under which the dereference will take place 526 * 527 * This is the RCU-sched counterpart to rcu_dereference_check(). 528 */ 529#define rcu_dereference_sched_check(p, c) \ 530 __rcu_dereference_check((p), rcu_read_lock_sched_held() || (c), \ 531 __rcu) 532 533#define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/ 534 535/** 536 * rcu_access_index() - fetch RCU index with no dereferencing 537 * @p: The index to read 538 * 539 * Return the value of the specified RCU-protected index, but omit the 540 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful 541 * when the value of this index is accessed, but the index is not 542 * dereferenced, for example, when testing an RCU-protected index against 543 * -1. Although rcu_access_index() may also be used in cases where 544 * update-side locks prevent the value of the index from changing, you 545 * should instead use rcu_dereference_index_protected() for this use case. 546 */ 547#define rcu_access_index(p) __rcu_access_index((p), __rcu) 548 549/** 550 * rcu_dereference_index_check() - rcu_dereference for indices with debug checking 551 * @p: The pointer to read, prior to dereferencing 552 * @c: The conditions under which the dereference will take place 553 * 554 * Similar to rcu_dereference_check(), but omits the sparse checking. 555 * This allows rcu_dereference_index_check() to be used on integers, 556 * which can then be used as array indices. Attempting to use 557 * rcu_dereference_check() on an integer will give compiler warnings 558 * because the sparse address-space mechanism relies on dereferencing 559 * the RCU-protected pointer. Dereferencing integers is not something 560 * that even gcc will put up with. 561 * 562 * Note that this function does not implicitly check for RCU read-side 563 * critical sections. If this function gains lots of uses, it might 564 * make sense to provide versions for each flavor of RCU, but it does 565 * not make sense as of early 2010. 566 */ 567#define rcu_dereference_index_check(p, c) \ 568 __rcu_dereference_index_check((p), (c)) 569 570/** 571 * rcu_dereference_protected() - fetch RCU pointer when updates prevented 572 * @p: The pointer to read, prior to dereferencing 573 * @c: The conditions under which the dereference will take place 574 * 575 * Return the value of the specified RCU-protected pointer, but omit 576 * both the smp_read_barrier_depends() and the ACCESS_ONCE(). This 577 * is useful in cases where update-side locks prevent the value of the 578 * pointer from changing. Please note that this primitive does -not- 579 * prevent the compiler from repeating this reference or combining it 580 * with other references, so it should not be used without protection 581 * of appropriate locks. 582 * 583 * This function is only for update-side use. Using this function 584 * when protected only by rcu_read_lock() will result in infrequent 585 * but very ugly failures. 586 */ 587#define rcu_dereference_protected(p, c) \ 588 __rcu_dereference_protected((p), (c), __rcu) 589 590 591/** 592 * rcu_dereference() - fetch RCU-protected pointer for dereferencing 593 * @p: The pointer to read, prior to dereferencing 594 * 595 * This is a simple wrapper around rcu_dereference_check(). 596 */ 597#define rcu_dereference(p) rcu_dereference_check(p, 0) 598 599/** 600 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing 601 * @p: The pointer to read, prior to dereferencing 602 * 603 * Makes rcu_dereference_check() do the dirty work. 604 */ 605#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0) 606 607/** 608 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing 609 * @p: The pointer to read, prior to dereferencing 610 * 611 * Makes rcu_dereference_check() do the dirty work. 612 */ 613#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0) 614 615/** 616 * rcu_read_lock() - mark the beginning of an RCU read-side critical section 617 * 618 * When synchronize_rcu() is invoked on one CPU while other CPUs 619 * are within RCU read-side critical sections, then the 620 * synchronize_rcu() is guaranteed to block until after all the other 621 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked 622 * on one CPU while other CPUs are within RCU read-side critical 623 * sections, invocation of the corresponding RCU callback is deferred 624 * until after the all the other CPUs exit their critical sections. 625 * 626 * Note, however, that RCU callbacks are permitted to run concurrently 627 * with new RCU read-side critical sections. One way that this can happen 628 * is via the following sequence of events: (1) CPU 0 enters an RCU 629 * read-side critical section, (2) CPU 1 invokes call_rcu() to register 630 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section, 631 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU 632 * callback is invoked. This is legal, because the RCU read-side critical 633 * section that was running concurrently with the call_rcu() (and which 634 * therefore might be referencing something that the corresponding RCU 635 * callback would free up) has completed before the corresponding 636 * RCU callback is invoked. 637 * 638 * RCU read-side critical sections may be nested. Any deferred actions 639 * will be deferred until the outermost RCU read-side critical section 640 * completes. 641 * 642 * You can avoid reading and understanding the next paragraph by 643 * following this rule: don't put anything in an rcu_read_lock() RCU 644 * read-side critical section that would block in a !PREEMPT kernel. 645 * But if you want the full story, read on! 646 * 647 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU), it 648 * is illegal to block while in an RCU read-side critical section. In 649 * preemptible RCU implementations (TREE_PREEMPT_RCU and TINY_PREEMPT_RCU) 650 * in CONFIG_PREEMPT kernel builds, RCU read-side critical sections may 651 * be preempted, but explicit blocking is illegal. Finally, in preemptible 652 * RCU implementations in real-time (CONFIG_PREEMPT_RT) kernel builds, 653 * RCU read-side critical sections may be preempted and they may also 654 * block, but only when acquiring spinlocks that are subject to priority 655 * inheritance. 656 */ 657static inline void rcu_read_lock(void) 658{ 659 __rcu_read_lock(); 660 __acquire(RCU); 661 rcu_lock_acquire(&rcu_lock_map); 662} 663 664/* 665 * So where is rcu_write_lock()? It does not exist, as there is no 666 * way for writers to lock out RCU readers. This is a feature, not 667 * a bug -- this property is what provides RCU's performance benefits. 668 * Of course, writers must coordinate with each other. The normal 669 * spinlock primitives work well for this, but any other technique may be 670 * used as well. RCU does not care how the writers keep out of each 671 * others' way, as long as they do so. 672 */ 673 674/** 675 * rcu_read_unlock() - marks the end of an RCU read-side critical section. 676 * 677 * See rcu_read_lock() for more information. 678 */ 679static inline void rcu_read_unlock(void) 680{ 681 rcu_lock_release(&rcu_lock_map); 682 __release(RCU); 683 __rcu_read_unlock(); 684} 685 686/** 687 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section 688 * 689 * This is equivalent of rcu_read_lock(), but to be used when updates 690 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since 691 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a 692 * softirq handler to be a quiescent state, a process in RCU read-side 693 * critical section must be protected by disabling softirqs. Read-side 694 * critical sections in interrupt context can use just rcu_read_lock(), 695 * though this should at least be commented to avoid confusing people 696 * reading the code. 697 * 698 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh() 699 * must occur in the same context, for example, it is illegal to invoke 700 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh() 701 * was invoked from some other task. 702 */ 703static inline void rcu_read_lock_bh(void) 704{ 705 local_bh_disable(); 706 __acquire(RCU_BH); 707 rcu_lock_acquire(&rcu_bh_lock_map); 708} 709 710/* 711 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section 712 * 713 * See rcu_read_lock_bh() for more information. 714 */ 715static inline void rcu_read_unlock_bh(void) 716{ 717 rcu_lock_release(&rcu_bh_lock_map); 718 __release(RCU_BH); 719 local_bh_enable(); 720} 721 722/** 723 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section 724 * 725 * This is equivalent of rcu_read_lock(), but to be used when updates 726 * are being done using call_rcu_sched() or synchronize_rcu_sched(). 727 * Read-side critical sections can also be introduced by anything that 728 * disables preemption, including local_irq_disable() and friends. 729 * 730 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched() 731 * must occur in the same context, for example, it is illegal to invoke 732 * rcu_read_unlock_sched() from process context if the matching 733 * rcu_read_lock_sched() was invoked from an NMI handler. 734 */ 735static inline void rcu_read_lock_sched(void) 736{ 737 preempt_disable(); 738 __acquire(RCU_SCHED); 739 rcu_lock_acquire(&rcu_sched_lock_map); 740} 741 742/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 743static inline notrace void rcu_read_lock_sched_notrace(void) 744{ 745 preempt_disable_notrace(); 746 __acquire(RCU_SCHED); 747} 748 749/* 750 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section 751 * 752 * See rcu_read_lock_sched for more information. 753 */ 754static inline void rcu_read_unlock_sched(void) 755{ 756 rcu_lock_release(&rcu_sched_lock_map); 757 __release(RCU_SCHED); 758 preempt_enable(); 759} 760 761/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 762static inline notrace void rcu_read_unlock_sched_notrace(void) 763{ 764 __release(RCU_SCHED); 765 preempt_enable_notrace(); 766} 767 768/** 769 * rcu_assign_pointer() - assign to RCU-protected pointer 770 * @p: pointer to assign to 771 * @v: value to assign (publish) 772 * 773 * Assigns the specified value to the specified RCU-protected 774 * pointer, ensuring that any concurrent RCU readers will see 775 * any prior initialization. Returns the value assigned. 776 * 777 * Inserts memory barriers on architectures that require them 778 * (which is most of them), and also prevents the compiler from 779 * reordering the code that initializes the structure after the pointer 780 * assignment. More importantly, this call documents which pointers 781 * will be dereferenced by RCU read-side code. 782 * 783 * In some special cases, you may use RCU_INIT_POINTER() instead 784 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due 785 * to the fact that it does not constrain either the CPU or the compiler. 786 * That said, using RCU_INIT_POINTER() when you should have used 787 * rcu_assign_pointer() is a very bad thing that results in 788 * impossible-to-diagnose memory corruption. So please be careful. 789 * See the RCU_INIT_POINTER() comment header for details. 790 */ 791#define rcu_assign_pointer(p, v) \ 792 __rcu_assign_pointer((p), (v), __rcu) 793 794/** 795 * RCU_INIT_POINTER() - initialize an RCU protected pointer 796 * 797 * Initialize an RCU-protected pointer in special cases where readers 798 * do not need ordering constraints on the CPU or the compiler. These 799 * special cases are: 800 * 801 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer -or- 802 * 2. The caller has taken whatever steps are required to prevent 803 * RCU readers from concurrently accessing this pointer -or- 804 * 3. The referenced data structure has already been exposed to 805 * readers either at compile time or via rcu_assign_pointer() -and- 806 * a. You have not made -any- reader-visible changes to 807 * this structure since then -or- 808 * b. It is OK for readers accessing this structure from its 809 * new location to see the old state of the structure. (For 810 * example, the changes were to statistical counters or to 811 * other state where exact synchronization is not required.) 812 * 813 * Failure to follow these rules governing use of RCU_INIT_POINTER() will 814 * result in impossible-to-diagnose memory corruption. As in the structures 815 * will look OK in crash dumps, but any concurrent RCU readers might 816 * see pre-initialized values of the referenced data structure. So 817 * please be very careful how you use RCU_INIT_POINTER()!!! 818 * 819 * If you are creating an RCU-protected linked structure that is accessed 820 * by a single external-to-structure RCU-protected pointer, then you may 821 * use RCU_INIT_POINTER() to initialize the internal RCU-protected 822 * pointers, but you must use rcu_assign_pointer() to initialize the 823 * external-to-structure pointer -after- you have completely initialized 824 * the reader-accessible portions of the linked structure. 825 */ 826#define RCU_INIT_POINTER(p, v) \ 827 p = (typeof(*v) __force __rcu *)(v) 828 829static __always_inline bool __is_kfree_rcu_offset(unsigned long offset) 830{ 831 return offset < 4096; 832} 833 834static __always_inline 835void __kfree_rcu(struct rcu_head *head, unsigned long offset) 836{ 837 typedef void (*rcu_callback)(struct rcu_head *); 838 839 BUILD_BUG_ON(!__builtin_constant_p(offset)); 840 841 /* See the kfree_rcu() header comment. */ 842 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); 843 844 call_rcu(head, (rcu_callback)offset); 845} 846 847/** 848 * kfree_rcu() - kfree an object after a grace period. 849 * @ptr: pointer to kfree 850 * @rcu_head: the name of the struct rcu_head within the type of @ptr. 851 * 852 * Many rcu callbacks functions just call kfree() on the base structure. 853 * These functions are trivial, but their size adds up, and furthermore 854 * when they are used in a kernel module, that module must invoke the 855 * high-latency rcu_barrier() function at module-unload time. 856 * 857 * The kfree_rcu() function handles this issue. Rather than encoding a 858 * function address in the embedded rcu_head structure, kfree_rcu() instead 859 * encodes the offset of the rcu_head structure within the base structure. 860 * Because the functions are not allowed in the low-order 4096 bytes of 861 * kernel virtual memory, offsets up to 4095 bytes can be accommodated. 862 * If the offset is larger than 4095 bytes, a compile-time error will 863 * be generated in __kfree_rcu(). If this error is triggered, you can 864 * either fall back to use of call_rcu() or rearrange the structure to 865 * position the rcu_head structure into the first 4096 bytes. 866 * 867 * Note that the allowable offset might decrease in the future, for example, 868 * to allow something like kmem_cache_free_rcu(). 869 */ 870#define kfree_rcu(ptr, rcu_head) \ 871 __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head)) 872 873#endif /* __LINUX_RCUPDATE_H */ 874