linux/include/linux/rcupdate.h
<<
>>
Prefs
   1/*
   2 * Read-Copy Update mechanism for mutual exclusion
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  17 *
  18 * Copyright IBM Corporation, 2001
  19 *
  20 * Author: Dipankar Sarma <dipankar@in.ibm.com>
  21 *
  22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
  23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  24 * Papers:
  25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
  26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
  27 *
  28 * For detailed explanation of Read-Copy Update mechanism see -
  29 *              http://lse.sourceforge.net/locking/rcupdate.html
  30 *
  31 */
  32
  33#ifndef __LINUX_RCUPDATE_H
  34#define __LINUX_RCUPDATE_H
  35
  36#include <linux/types.h>
  37#include <linux/cache.h>
  38#include <linux/spinlock.h>
  39#include <linux/threads.h>
  40#include <linux/cpumask.h>
  41#include <linux/seqlock.h>
  42#include <linux/lockdep.h>
  43#include <linux/completion.h>
  44#include <linux/debugobjects.h>
  45#include <linux/compiler.h>
  46
  47#ifdef CONFIG_RCU_TORTURE_TEST
  48extern int rcutorture_runnable; /* for sysctl */
  49#endif /* #ifdef CONFIG_RCU_TORTURE_TEST */
  50
  51#if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
  52extern void rcutorture_record_test_transition(void);
  53extern void rcutorture_record_progress(unsigned long vernum);
  54extern void do_trace_rcu_torture_read(char *rcutorturename,
  55                                      struct rcu_head *rhp);
  56#else
  57static inline void rcutorture_record_test_transition(void)
  58{
  59}
  60static inline void rcutorture_record_progress(unsigned long vernum)
  61{
  62}
  63#ifdef CONFIG_RCU_TRACE
  64extern void do_trace_rcu_torture_read(char *rcutorturename,
  65                                      struct rcu_head *rhp);
  66#else
  67#define do_trace_rcu_torture_read(rcutorturename, rhp) do { } while (0)
  68#endif
  69#endif
  70
  71#define UINT_CMP_GE(a, b)       (UINT_MAX / 2 >= (a) - (b))
  72#define UINT_CMP_LT(a, b)       (UINT_MAX / 2 < (a) - (b))
  73#define ULONG_CMP_GE(a, b)      (ULONG_MAX / 2 >= (a) - (b))
  74#define ULONG_CMP_LT(a, b)      (ULONG_MAX / 2 < (a) - (b))
  75
  76/* Exported common interfaces */
  77
  78#ifdef CONFIG_PREEMPT_RCU
  79
  80/**
  81 * call_rcu() - Queue an RCU callback for invocation after a grace period.
  82 * @head: structure to be used for queueing the RCU updates.
  83 * @func: actual callback function to be invoked after the grace period
  84 *
  85 * The callback function will be invoked some time after a full grace
  86 * period elapses, in other words after all pre-existing RCU read-side
  87 * critical sections have completed.  However, the callback function
  88 * might well execute concurrently with RCU read-side critical sections
  89 * that started after call_rcu() was invoked.  RCU read-side critical
  90 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
  91 * and may be nested.
  92 */
  93extern void call_rcu(struct rcu_head *head,
  94                              void (*func)(struct rcu_head *head));
  95
  96#else /* #ifdef CONFIG_PREEMPT_RCU */
  97
  98/* In classic RCU, call_rcu() is just call_rcu_sched(). */
  99#define call_rcu        call_rcu_sched
 100
 101#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
 102
 103/**
 104 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
 105 * @head: structure to be used for queueing the RCU updates.
 106 * @func: actual callback function to be invoked after the grace period
 107 *
 108 * The callback function will be invoked some time after a full grace
 109 * period elapses, in other words after all currently executing RCU
 110 * read-side critical sections have completed. call_rcu_bh() assumes
 111 * that the read-side critical sections end on completion of a softirq
 112 * handler. This means that read-side critical sections in process
 113 * context must not be interrupted by softirqs. This interface is to be
 114 * used when most of the read-side critical sections are in softirq context.
 115 * RCU read-side critical sections are delimited by :
 116 *  - rcu_read_lock() and  rcu_read_unlock(), if in interrupt context.
 117 *  OR
 118 *  - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
 119 *  These may be nested.
 120 */
 121extern void call_rcu_bh(struct rcu_head *head,
 122                        void (*func)(struct rcu_head *head));
 123
 124/**
 125 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
 126 * @head: structure to be used for queueing the RCU updates.
 127 * @func: actual callback function to be invoked after the grace period
 128 *
 129 * The callback function will be invoked some time after a full grace
 130 * period elapses, in other words after all currently executing RCU
 131 * read-side critical sections have completed. call_rcu_sched() assumes
 132 * that the read-side critical sections end on enabling of preemption
 133 * or on voluntary preemption.
 134 * RCU read-side critical sections are delimited by :
 135 *  - rcu_read_lock_sched() and  rcu_read_unlock_sched(),
 136 *  OR
 137 *  anything that disables preemption.
 138 *  These may be nested.
 139 */
 140extern void call_rcu_sched(struct rcu_head *head,
 141                           void (*func)(struct rcu_head *rcu));
 142
 143extern void synchronize_sched(void);
 144
 145#ifdef CONFIG_PREEMPT_RCU
 146
 147extern void __rcu_read_lock(void);
 148extern void __rcu_read_unlock(void);
 149void synchronize_rcu(void);
 150
 151/*
 152 * Defined as a macro as it is a very low level header included from
 153 * areas that don't even know about current.  This gives the rcu_read_lock()
 154 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
 155 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
 156 */
 157#define rcu_preempt_depth() (current->rcu_read_lock_nesting)
 158
 159#else /* #ifdef CONFIG_PREEMPT_RCU */
 160
 161static inline void __rcu_read_lock(void)
 162{
 163        preempt_disable();
 164}
 165
 166static inline void __rcu_read_unlock(void)
 167{
 168        preempt_enable();
 169}
 170
 171static inline void synchronize_rcu(void)
 172{
 173        synchronize_sched();
 174}
 175
 176static inline int rcu_preempt_depth(void)
 177{
 178        return 0;
 179}
 180
 181#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
 182
 183/* Internal to kernel */
 184extern void rcu_sched_qs(int cpu);
 185extern void rcu_bh_qs(int cpu);
 186extern void rcu_check_callbacks(int cpu, int user);
 187struct notifier_block;
 188extern void rcu_idle_enter(void);
 189extern void rcu_idle_exit(void);
 190extern void rcu_irq_enter(void);
 191extern void rcu_irq_exit(void);
 192
 193/*
 194 * Infrastructure to implement the synchronize_() primitives in
 195 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
 196 */
 197
 198typedef void call_rcu_func_t(struct rcu_head *head,
 199                             void (*func)(struct rcu_head *head));
 200void wait_rcu_gp(call_rcu_func_t crf);
 201
 202#if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
 203#include <linux/rcutree.h>
 204#elif defined(CONFIG_TINY_RCU) || defined(CONFIG_TINY_PREEMPT_RCU)
 205#include <linux/rcutiny.h>
 206#else
 207#error "Unknown RCU implementation specified to kernel configuration"
 208#endif
 209
 210/*
 211 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
 212 * initialization and destruction of rcu_head on the stack. rcu_head structures
 213 * allocated dynamically in the heap or defined statically don't need any
 214 * initialization.
 215 */
 216#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
 217extern void init_rcu_head_on_stack(struct rcu_head *head);
 218extern void destroy_rcu_head_on_stack(struct rcu_head *head);
 219#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
 220static inline void init_rcu_head_on_stack(struct rcu_head *head)
 221{
 222}
 223
 224static inline void destroy_rcu_head_on_stack(struct rcu_head *head)
 225{
 226}
 227#endif  /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
 228
 229#ifdef CONFIG_DEBUG_LOCK_ALLOC
 230
 231#ifdef CONFIG_PROVE_RCU
 232extern int rcu_is_cpu_idle(void);
 233#else /* !CONFIG_PROVE_RCU */
 234static inline int rcu_is_cpu_idle(void)
 235{
 236        return 0;
 237}
 238#endif /* else !CONFIG_PROVE_RCU */
 239
 240static inline void rcu_lock_acquire(struct lockdep_map *map)
 241{
 242        WARN_ON_ONCE(rcu_is_cpu_idle());
 243        lock_acquire(map, 0, 0, 2, 1, NULL, _THIS_IP_);
 244}
 245
 246static inline void rcu_lock_release(struct lockdep_map *map)
 247{
 248        WARN_ON_ONCE(rcu_is_cpu_idle());
 249        lock_release(map, 1, _THIS_IP_);
 250}
 251
 252extern struct lockdep_map rcu_lock_map;
 253extern struct lockdep_map rcu_bh_lock_map;
 254extern struct lockdep_map rcu_sched_lock_map;
 255extern int debug_lockdep_rcu_enabled(void);
 256
 257/**
 258 * rcu_read_lock_held() - might we be in RCU read-side critical section?
 259 *
 260 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
 261 * read-side critical section.  In absence of CONFIG_DEBUG_LOCK_ALLOC,
 262 * this assumes we are in an RCU read-side critical section unless it can
 263 * prove otherwise.  This is useful for debug checks in functions that
 264 * require that they be called within an RCU read-side critical section.
 265 *
 266 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
 267 * and while lockdep is disabled.
 268 *
 269 * Note that rcu_read_lock() and the matching rcu_read_unlock() must
 270 * occur in the same context, for example, it is illegal to invoke
 271 * rcu_read_unlock() in process context if the matching rcu_read_lock()
 272 * was invoked from within an irq handler.
 273 */
 274static inline int rcu_read_lock_held(void)
 275{
 276        if (!debug_lockdep_rcu_enabled())
 277                return 1;
 278        if (rcu_is_cpu_idle())
 279                return 0;
 280        return lock_is_held(&rcu_lock_map);
 281}
 282
 283/*
 284 * rcu_read_lock_bh_held() is defined out of line to avoid #include-file
 285 * hell.
 286 */
 287extern int rcu_read_lock_bh_held(void);
 288
 289/**
 290 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
 291 *
 292 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
 293 * RCU-sched read-side critical section.  In absence of
 294 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
 295 * critical section unless it can prove otherwise.  Note that disabling
 296 * of preemption (including disabling irqs) counts as an RCU-sched
 297 * read-side critical section.  This is useful for debug checks in functions
 298 * that required that they be called within an RCU-sched read-side
 299 * critical section.
 300 *
 301 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
 302 * and while lockdep is disabled.
 303 *
 304 * Note that if the CPU is in the idle loop from an RCU point of
 305 * view (ie: that we are in the section between rcu_idle_enter() and
 306 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
 307 * did an rcu_read_lock().  The reason for this is that RCU ignores CPUs
 308 * that are in such a section, considering these as in extended quiescent
 309 * state, so such a CPU is effectively never in an RCU read-side critical
 310 * section regardless of what RCU primitives it invokes.  This state of
 311 * affairs is required --- we need to keep an RCU-free window in idle
 312 * where the CPU may possibly enter into low power mode. This way we can
 313 * notice an extended quiescent state to other CPUs that started a grace
 314 * period. Otherwise we would delay any grace period as long as we run in
 315 * the idle task.
 316 */
 317#ifdef CONFIG_PREEMPT_COUNT
 318static inline int rcu_read_lock_sched_held(void)
 319{
 320        int lockdep_opinion = 0;
 321
 322        if (!debug_lockdep_rcu_enabled())
 323                return 1;
 324        if (rcu_is_cpu_idle())
 325                return 0;
 326        if (debug_locks)
 327                lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
 328        return lockdep_opinion || preempt_count() != 0 || irqs_disabled();
 329}
 330#else /* #ifdef CONFIG_PREEMPT_COUNT */
 331static inline int rcu_read_lock_sched_held(void)
 332{
 333        return 1;
 334}
 335#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
 336
 337#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 338
 339# define rcu_lock_acquire(a)            do { } while (0)
 340# define rcu_lock_release(a)            do { } while (0)
 341
 342static inline int rcu_read_lock_held(void)
 343{
 344        return 1;
 345}
 346
 347static inline int rcu_read_lock_bh_held(void)
 348{
 349        return 1;
 350}
 351
 352#ifdef CONFIG_PREEMPT_COUNT
 353static inline int rcu_read_lock_sched_held(void)
 354{
 355        return preempt_count() != 0 || irqs_disabled();
 356}
 357#else /* #ifdef CONFIG_PREEMPT_COUNT */
 358static inline int rcu_read_lock_sched_held(void)
 359{
 360        return 1;
 361}
 362#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
 363
 364#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 365
 366#ifdef CONFIG_PROVE_RCU
 367
 368extern int rcu_my_thread_group_empty(void);
 369
 370/**
 371 * rcu_lockdep_assert - emit lockdep splat if specified condition not met
 372 * @c: condition to check
 373 * @s: informative message
 374 */
 375#define rcu_lockdep_assert(c, s)                                        \
 376        do {                                                            \
 377                static bool __warned;                                   \
 378                if (debug_lockdep_rcu_enabled() && !__warned && !(c)) { \
 379                        __warned = true;                                \
 380                        lockdep_rcu_suspicious(__FILE__, __LINE__, s);  \
 381                }                                                       \
 382        } while (0)
 383
 384#define rcu_sleep_check()                                               \
 385        do {                                                            \
 386                rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),     \
 387                                   "Illegal context switch in RCU-bh"   \
 388                                   " read-side critical section");      \
 389                rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),  \
 390                                   "Illegal context switch in RCU-sched"\
 391                                   " read-side critical section");      \
 392        } while (0)
 393
 394#else /* #ifdef CONFIG_PROVE_RCU */
 395
 396#define rcu_lockdep_assert(c, s) do { } while (0)
 397#define rcu_sleep_check() do { } while (0)
 398
 399#endif /* #else #ifdef CONFIG_PROVE_RCU */
 400
 401/*
 402 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
 403 * and rcu_assign_pointer().  Some of these could be folded into their
 404 * callers, but they are left separate in order to ease introduction of
 405 * multiple flavors of pointers to match the multiple flavors of RCU
 406 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
 407 * the future.
 408 */
 409
 410#ifdef __CHECKER__
 411#define rcu_dereference_sparse(p, space) \
 412        ((void)(((typeof(*p) space *)p) == p))
 413#else /* #ifdef __CHECKER__ */
 414#define rcu_dereference_sparse(p, space)
 415#endif /* #else #ifdef __CHECKER__ */
 416
 417#define __rcu_access_pointer(p, space) \
 418        ({ \
 419                typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \
 420                rcu_dereference_sparse(p, space); \
 421                ((typeof(*p) __force __kernel *)(_________p1)); \
 422        })
 423#define __rcu_dereference_check(p, c, space) \
 424        ({ \
 425                typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \
 426                rcu_lockdep_assert(c, "suspicious rcu_dereference_check()" \
 427                                      " usage"); \
 428                rcu_dereference_sparse(p, space); \
 429                smp_read_barrier_depends(); \
 430                ((typeof(*p) __force __kernel *)(_________p1)); \
 431        })
 432#define __rcu_dereference_protected(p, c, space) \
 433        ({ \
 434                rcu_lockdep_assert(c, "suspicious rcu_dereference_protected()" \
 435                                      " usage"); \
 436                rcu_dereference_sparse(p, space); \
 437                ((typeof(*p) __force __kernel *)(p)); \
 438        })
 439
 440#define __rcu_access_index(p, space) \
 441        ({ \
 442                typeof(p) _________p1 = ACCESS_ONCE(p); \
 443                rcu_dereference_sparse(p, space); \
 444                (_________p1); \
 445        })
 446#define __rcu_dereference_index_check(p, c) \
 447        ({ \
 448                typeof(p) _________p1 = ACCESS_ONCE(p); \
 449                rcu_lockdep_assert(c, \
 450                                   "suspicious rcu_dereference_index_check()" \
 451                                   " usage"); \
 452                smp_read_barrier_depends(); \
 453                (_________p1); \
 454        })
 455#define __rcu_assign_pointer(p, v, space) \
 456        ({ \
 457                smp_wmb(); \
 458                (p) = (typeof(*v) __force space *)(v); \
 459        })
 460
 461
 462/**
 463 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
 464 * @p: The pointer to read
 465 *
 466 * Return the value of the specified RCU-protected pointer, but omit the
 467 * smp_read_barrier_depends() and keep the ACCESS_ONCE().  This is useful
 468 * when the value of this pointer is accessed, but the pointer is not
 469 * dereferenced, for example, when testing an RCU-protected pointer against
 470 * NULL.  Although rcu_access_pointer() may also be used in cases where
 471 * update-side locks prevent the value of the pointer from changing, you
 472 * should instead use rcu_dereference_protected() for this use case.
 473 */
 474#define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
 475
 476/**
 477 * rcu_dereference_check() - rcu_dereference with debug checking
 478 * @p: The pointer to read, prior to dereferencing
 479 * @c: The conditions under which the dereference will take place
 480 *
 481 * Do an rcu_dereference(), but check that the conditions under which the
 482 * dereference will take place are correct.  Typically the conditions
 483 * indicate the various locking conditions that should be held at that
 484 * point.  The check should return true if the conditions are satisfied.
 485 * An implicit check for being in an RCU read-side critical section
 486 * (rcu_read_lock()) is included.
 487 *
 488 * For example:
 489 *
 490 *      bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
 491 *
 492 * could be used to indicate to lockdep that foo->bar may only be dereferenced
 493 * if either rcu_read_lock() is held, or that the lock required to replace
 494 * the bar struct at foo->bar is held.
 495 *
 496 * Note that the list of conditions may also include indications of when a lock
 497 * need not be held, for example during initialisation or destruction of the
 498 * target struct:
 499 *
 500 *      bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
 501 *                                            atomic_read(&foo->usage) == 0);
 502 *
 503 * Inserts memory barriers on architectures that require them
 504 * (currently only the Alpha), prevents the compiler from refetching
 505 * (and from merging fetches), and, more importantly, documents exactly
 506 * which pointers are protected by RCU and checks that the pointer is
 507 * annotated as __rcu.
 508 */
 509#define rcu_dereference_check(p, c) \
 510        __rcu_dereference_check((p), rcu_read_lock_held() || (c), __rcu)
 511
 512/**
 513 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
 514 * @p: The pointer to read, prior to dereferencing
 515 * @c: The conditions under which the dereference will take place
 516 *
 517 * This is the RCU-bh counterpart to rcu_dereference_check().
 518 */
 519#define rcu_dereference_bh_check(p, c) \
 520        __rcu_dereference_check((p), rcu_read_lock_bh_held() || (c), __rcu)
 521
 522/**
 523 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
 524 * @p: The pointer to read, prior to dereferencing
 525 * @c: The conditions under which the dereference will take place
 526 *
 527 * This is the RCU-sched counterpart to rcu_dereference_check().
 528 */
 529#define rcu_dereference_sched_check(p, c) \
 530        __rcu_dereference_check((p), rcu_read_lock_sched_held() || (c), \
 531                                __rcu)
 532
 533#define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/
 534
 535/**
 536 * rcu_access_index() - fetch RCU index with no dereferencing
 537 * @p: The index to read
 538 *
 539 * Return the value of the specified RCU-protected index, but omit the
 540 * smp_read_barrier_depends() and keep the ACCESS_ONCE().  This is useful
 541 * when the value of this index is accessed, but the index is not
 542 * dereferenced, for example, when testing an RCU-protected index against
 543 * -1.  Although rcu_access_index() may also be used in cases where
 544 * update-side locks prevent the value of the index from changing, you
 545 * should instead use rcu_dereference_index_protected() for this use case.
 546 */
 547#define rcu_access_index(p) __rcu_access_index((p), __rcu)
 548
 549/**
 550 * rcu_dereference_index_check() - rcu_dereference for indices with debug checking
 551 * @p: The pointer to read, prior to dereferencing
 552 * @c: The conditions under which the dereference will take place
 553 *
 554 * Similar to rcu_dereference_check(), but omits the sparse checking.
 555 * This allows rcu_dereference_index_check() to be used on integers,
 556 * which can then be used as array indices.  Attempting to use
 557 * rcu_dereference_check() on an integer will give compiler warnings
 558 * because the sparse address-space mechanism relies on dereferencing
 559 * the RCU-protected pointer.  Dereferencing integers is not something
 560 * that even gcc will put up with.
 561 *
 562 * Note that this function does not implicitly check for RCU read-side
 563 * critical sections.  If this function gains lots of uses, it might
 564 * make sense to provide versions for each flavor of RCU, but it does
 565 * not make sense as of early 2010.
 566 */
 567#define rcu_dereference_index_check(p, c) \
 568        __rcu_dereference_index_check((p), (c))
 569
 570/**
 571 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
 572 * @p: The pointer to read, prior to dereferencing
 573 * @c: The conditions under which the dereference will take place
 574 *
 575 * Return the value of the specified RCU-protected pointer, but omit
 576 * both the smp_read_barrier_depends() and the ACCESS_ONCE().  This
 577 * is useful in cases where update-side locks prevent the value of the
 578 * pointer from changing.  Please note that this primitive does -not-
 579 * prevent the compiler from repeating this reference or combining it
 580 * with other references, so it should not be used without protection
 581 * of appropriate locks.
 582 *
 583 * This function is only for update-side use.  Using this function
 584 * when protected only by rcu_read_lock() will result in infrequent
 585 * but very ugly failures.
 586 */
 587#define rcu_dereference_protected(p, c) \
 588        __rcu_dereference_protected((p), (c), __rcu)
 589
 590
 591/**
 592 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
 593 * @p: The pointer to read, prior to dereferencing
 594 *
 595 * This is a simple wrapper around rcu_dereference_check().
 596 */
 597#define rcu_dereference(p) rcu_dereference_check(p, 0)
 598
 599/**
 600 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
 601 * @p: The pointer to read, prior to dereferencing
 602 *
 603 * Makes rcu_dereference_check() do the dirty work.
 604 */
 605#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
 606
 607/**
 608 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
 609 * @p: The pointer to read, prior to dereferencing
 610 *
 611 * Makes rcu_dereference_check() do the dirty work.
 612 */
 613#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
 614
 615/**
 616 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
 617 *
 618 * When synchronize_rcu() is invoked on one CPU while other CPUs
 619 * are within RCU read-side critical sections, then the
 620 * synchronize_rcu() is guaranteed to block until after all the other
 621 * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
 622 * on one CPU while other CPUs are within RCU read-side critical
 623 * sections, invocation of the corresponding RCU callback is deferred
 624 * until after the all the other CPUs exit their critical sections.
 625 *
 626 * Note, however, that RCU callbacks are permitted to run concurrently
 627 * with new RCU read-side critical sections.  One way that this can happen
 628 * is via the following sequence of events: (1) CPU 0 enters an RCU
 629 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
 630 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
 631 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
 632 * callback is invoked.  This is legal, because the RCU read-side critical
 633 * section that was running concurrently with the call_rcu() (and which
 634 * therefore might be referencing something that the corresponding RCU
 635 * callback would free up) has completed before the corresponding
 636 * RCU callback is invoked.
 637 *
 638 * RCU read-side critical sections may be nested.  Any deferred actions
 639 * will be deferred until the outermost RCU read-side critical section
 640 * completes.
 641 *
 642 * You can avoid reading and understanding the next paragraph by
 643 * following this rule: don't put anything in an rcu_read_lock() RCU
 644 * read-side critical section that would block in a !PREEMPT kernel.
 645 * But if you want the full story, read on!
 646 *
 647 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU), it
 648 * is illegal to block while in an RCU read-side critical section.  In
 649 * preemptible RCU implementations (TREE_PREEMPT_RCU and TINY_PREEMPT_RCU)
 650 * in CONFIG_PREEMPT kernel builds, RCU read-side critical sections may
 651 * be preempted, but explicit blocking is illegal.  Finally, in preemptible
 652 * RCU implementations in real-time (CONFIG_PREEMPT_RT) kernel builds,
 653 * RCU read-side critical sections may be preempted and they may also
 654 * block, but only when acquiring spinlocks that are subject to priority
 655 * inheritance.
 656 */
 657static inline void rcu_read_lock(void)
 658{
 659        __rcu_read_lock();
 660        __acquire(RCU);
 661        rcu_lock_acquire(&rcu_lock_map);
 662}
 663
 664/*
 665 * So where is rcu_write_lock()?  It does not exist, as there is no
 666 * way for writers to lock out RCU readers.  This is a feature, not
 667 * a bug -- this property is what provides RCU's performance benefits.
 668 * Of course, writers must coordinate with each other.  The normal
 669 * spinlock primitives work well for this, but any other technique may be
 670 * used as well.  RCU does not care how the writers keep out of each
 671 * others' way, as long as they do so.
 672 */
 673
 674/**
 675 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
 676 *
 677 * See rcu_read_lock() for more information.
 678 */
 679static inline void rcu_read_unlock(void)
 680{
 681        rcu_lock_release(&rcu_lock_map);
 682        __release(RCU);
 683        __rcu_read_unlock();
 684}
 685
 686/**
 687 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
 688 *
 689 * This is equivalent of rcu_read_lock(), but to be used when updates
 690 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
 691 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
 692 * softirq handler to be a quiescent state, a process in RCU read-side
 693 * critical section must be protected by disabling softirqs. Read-side
 694 * critical sections in interrupt context can use just rcu_read_lock(),
 695 * though this should at least be commented to avoid confusing people
 696 * reading the code.
 697 *
 698 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
 699 * must occur in the same context, for example, it is illegal to invoke
 700 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
 701 * was invoked from some other task.
 702 */
 703static inline void rcu_read_lock_bh(void)
 704{
 705        local_bh_disable();
 706        __acquire(RCU_BH);
 707        rcu_lock_acquire(&rcu_bh_lock_map);
 708}
 709
 710/*
 711 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
 712 *
 713 * See rcu_read_lock_bh() for more information.
 714 */
 715static inline void rcu_read_unlock_bh(void)
 716{
 717        rcu_lock_release(&rcu_bh_lock_map);
 718        __release(RCU_BH);
 719        local_bh_enable();
 720}
 721
 722/**
 723 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
 724 *
 725 * This is equivalent of rcu_read_lock(), but to be used when updates
 726 * are being done using call_rcu_sched() or synchronize_rcu_sched().
 727 * Read-side critical sections can also be introduced by anything that
 728 * disables preemption, including local_irq_disable() and friends.
 729 *
 730 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
 731 * must occur in the same context, for example, it is illegal to invoke
 732 * rcu_read_unlock_sched() from process context if the matching
 733 * rcu_read_lock_sched() was invoked from an NMI handler.
 734 */
 735static inline void rcu_read_lock_sched(void)
 736{
 737        preempt_disable();
 738        __acquire(RCU_SCHED);
 739        rcu_lock_acquire(&rcu_sched_lock_map);
 740}
 741
 742/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
 743static inline notrace void rcu_read_lock_sched_notrace(void)
 744{
 745        preempt_disable_notrace();
 746        __acquire(RCU_SCHED);
 747}
 748
 749/*
 750 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
 751 *
 752 * See rcu_read_lock_sched for more information.
 753 */
 754static inline void rcu_read_unlock_sched(void)
 755{
 756        rcu_lock_release(&rcu_sched_lock_map);
 757        __release(RCU_SCHED);
 758        preempt_enable();
 759}
 760
 761/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
 762static inline notrace void rcu_read_unlock_sched_notrace(void)
 763{
 764        __release(RCU_SCHED);
 765        preempt_enable_notrace();
 766}
 767
 768/**
 769 * rcu_assign_pointer() - assign to RCU-protected pointer
 770 * @p: pointer to assign to
 771 * @v: value to assign (publish)
 772 *
 773 * Assigns the specified value to the specified RCU-protected
 774 * pointer, ensuring that any concurrent RCU readers will see
 775 * any prior initialization.  Returns the value assigned.
 776 *
 777 * Inserts memory barriers on architectures that require them
 778 * (which is most of them), and also prevents the compiler from
 779 * reordering the code that initializes the structure after the pointer
 780 * assignment.  More importantly, this call documents which pointers
 781 * will be dereferenced by RCU read-side code.
 782 *
 783 * In some special cases, you may use RCU_INIT_POINTER() instead
 784 * of rcu_assign_pointer().  RCU_INIT_POINTER() is a bit faster due
 785 * to the fact that it does not constrain either the CPU or the compiler.
 786 * That said, using RCU_INIT_POINTER() when you should have used
 787 * rcu_assign_pointer() is a very bad thing that results in
 788 * impossible-to-diagnose memory corruption.  So please be careful.
 789 * See the RCU_INIT_POINTER() comment header for details.
 790 */
 791#define rcu_assign_pointer(p, v) \
 792        __rcu_assign_pointer((p), (v), __rcu)
 793
 794/**
 795 * RCU_INIT_POINTER() - initialize an RCU protected pointer
 796 *
 797 * Initialize an RCU-protected pointer in special cases where readers
 798 * do not need ordering constraints on the CPU or the compiler.  These
 799 * special cases are:
 800 *
 801 * 1.   This use of RCU_INIT_POINTER() is NULLing out the pointer -or-
 802 * 2.   The caller has taken whatever steps are required to prevent
 803 *      RCU readers from concurrently accessing this pointer -or-
 804 * 3.   The referenced data structure has already been exposed to
 805 *      readers either at compile time or via rcu_assign_pointer() -and-
 806 *      a.      You have not made -any- reader-visible changes to
 807 *              this structure since then -or-
 808 *      b.      It is OK for readers accessing this structure from its
 809 *              new location to see the old state of the structure.  (For
 810 *              example, the changes were to statistical counters or to
 811 *              other state where exact synchronization is not required.)
 812 *
 813 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
 814 * result in impossible-to-diagnose memory corruption.  As in the structures
 815 * will look OK in crash dumps, but any concurrent RCU readers might
 816 * see pre-initialized values of the referenced data structure.  So
 817 * please be very careful how you use RCU_INIT_POINTER()!!!
 818 *
 819 * If you are creating an RCU-protected linked structure that is accessed
 820 * by a single external-to-structure RCU-protected pointer, then you may
 821 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
 822 * pointers, but you must use rcu_assign_pointer() to initialize the
 823 * external-to-structure pointer -after- you have completely initialized
 824 * the reader-accessible portions of the linked structure.
 825 */
 826#define RCU_INIT_POINTER(p, v) \
 827                p = (typeof(*v) __force __rcu *)(v)
 828
 829static __always_inline bool __is_kfree_rcu_offset(unsigned long offset)
 830{
 831        return offset < 4096;
 832}
 833
 834static __always_inline
 835void __kfree_rcu(struct rcu_head *head, unsigned long offset)
 836{
 837        typedef void (*rcu_callback)(struct rcu_head *);
 838
 839        BUILD_BUG_ON(!__builtin_constant_p(offset));
 840
 841        /* See the kfree_rcu() header comment. */
 842        BUILD_BUG_ON(!__is_kfree_rcu_offset(offset));
 843
 844        call_rcu(head, (rcu_callback)offset);
 845}
 846
 847/**
 848 * kfree_rcu() - kfree an object after a grace period.
 849 * @ptr:        pointer to kfree
 850 * @rcu_head:   the name of the struct rcu_head within the type of @ptr.
 851 *
 852 * Many rcu callbacks functions just call kfree() on the base structure.
 853 * These functions are trivial, but their size adds up, and furthermore
 854 * when they are used in a kernel module, that module must invoke the
 855 * high-latency rcu_barrier() function at module-unload time.
 856 *
 857 * The kfree_rcu() function handles this issue.  Rather than encoding a
 858 * function address in the embedded rcu_head structure, kfree_rcu() instead
 859 * encodes the offset of the rcu_head structure within the base structure.
 860 * Because the functions are not allowed in the low-order 4096 bytes of
 861 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
 862 * If the offset is larger than 4095 bytes, a compile-time error will
 863 * be generated in __kfree_rcu().  If this error is triggered, you can
 864 * either fall back to use of call_rcu() or rearrange the structure to
 865 * position the rcu_head structure into the first 4096 bytes.
 866 *
 867 * Note that the allowable offset might decrease in the future, for example,
 868 * to allow something like kmem_cache_free_rcu().
 869 */
 870#define kfree_rcu(ptr, rcu_head)                                        \
 871        __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
 872
 873#endif /* __LINUX_RCUPDATE_H */
 874