linux/include/net/red.h
<<
>>
Prefs
   1#ifndef __NET_SCHED_RED_H
   2#define __NET_SCHED_RED_H
   3
   4#include <linux/types.h>
   5#include <net/pkt_sched.h>
   6#include <net/inet_ecn.h>
   7#include <net/dsfield.h>
   8#include <linux/reciprocal_div.h>
   9
  10/*      Random Early Detection (RED) algorithm.
  11        =======================================
  12
  13        Source: Sally Floyd and Van Jacobson, "Random Early Detection Gateways
  14        for Congestion Avoidance", 1993, IEEE/ACM Transactions on Networking.
  15
  16        This file codes a "divisionless" version of RED algorithm
  17        as written down in Fig.17 of the paper.
  18
  19        Short description.
  20        ------------------
  21
  22        When a new packet arrives we calculate the average queue length:
  23
  24        avg = (1-W)*avg + W*current_queue_len,
  25
  26        W is the filter time constant (chosen as 2^(-Wlog)), it controls
  27        the inertia of the algorithm. To allow larger bursts, W should be
  28        decreased.
  29
  30        if (avg > th_max) -> packet marked (dropped).
  31        if (avg < th_min) -> packet passes.
  32        if (th_min < avg < th_max) we calculate probability:
  33
  34        Pb = max_P * (avg - th_min)/(th_max-th_min)
  35
  36        and mark (drop) packet with this probability.
  37        Pb changes from 0 (at avg==th_min) to max_P (avg==th_max).
  38        max_P should be small (not 1), usually 0.01..0.02 is good value.
  39
  40        max_P is chosen as a number, so that max_P/(th_max-th_min)
  41        is a negative power of two in order arithmetics to contain
  42        only shifts.
  43
  44
  45        Parameters, settable by user:
  46        -----------------------------
  47
  48        qth_min         - bytes (should be < qth_max/2)
  49        qth_max         - bytes (should be at least 2*qth_min and less limit)
  50        Wlog            - bits (<32) log(1/W).
  51        Plog            - bits (<32)
  52
  53        Plog is related to max_P by formula:
  54
  55        max_P = (qth_max-qth_min)/2^Plog;
  56
  57        F.e. if qth_max=128K and qth_min=32K, then Plog=22
  58        corresponds to max_P=0.02
  59
  60        Scell_log
  61        Stab
  62
  63        Lookup table for log((1-W)^(t/t_ave).
  64
  65
  66        NOTES:
  67
  68        Upper bound on W.
  69        -----------------
  70
  71        If you want to allow bursts of L packets of size S,
  72        you should choose W:
  73
  74        L + 1 - th_min/S < (1-(1-W)^L)/W
  75
  76        th_min/S = 32         th_min/S = 4
  77
  78        log(W)  L
  79        -1      33
  80        -2      35
  81        -3      39
  82        -4      46
  83        -5      57
  84        -6      75
  85        -7      101
  86        -8      135
  87        -9      190
  88        etc.
  89 */
  90
  91/*
  92 * Adaptative RED : An Algorithm for Increasing the Robustness of RED's AQM
  93 * (Sally FLoyd, Ramakrishna Gummadi, and Scott Shenker) August 2001
  94 *
  95 * Every 500 ms:
  96 *  if (avg > target and max_p <= 0.5)
  97 *   increase max_p : max_p += alpha;
  98 *  else if (avg < target and max_p >= 0.01)
  99 *   decrease max_p : max_p *= beta;
 100 *
 101 * target :[qth_min + 0.4*(qth_min - qth_max),
 102 *          qth_min + 0.6*(qth_min - qth_max)].
 103 * alpha : min(0.01, max_p / 4)
 104 * beta : 0.9
 105 * max_P is a Q0.32 fixed point number (with 32 bits mantissa)
 106 * max_P between 0.01 and 0.5 (1% - 50%) [ Its no longer a negative power of two ]
 107 */
 108#define RED_ONE_PERCENT ((u32)DIV_ROUND_CLOSEST(1ULL<<32, 100))
 109
 110#define MAX_P_MIN (1 * RED_ONE_PERCENT)
 111#define MAX_P_MAX (50 * RED_ONE_PERCENT)
 112#define MAX_P_ALPHA(val) min(MAX_P_MIN, val / 4)
 113
 114#define RED_STAB_SIZE   256
 115#define RED_STAB_MASK   (RED_STAB_SIZE - 1)
 116
 117struct red_stats {
 118        u32             prob_drop;      /* Early probability drops */
 119        u32             prob_mark;      /* Early probability marks */
 120        u32             forced_drop;    /* Forced drops, qavg > max_thresh */
 121        u32             forced_mark;    /* Forced marks, qavg > max_thresh */
 122        u32             pdrop;          /* Drops due to queue limits */
 123        u32             other;          /* Drops due to drop() calls */
 124};
 125
 126struct red_parms {
 127        /* Parameters */
 128        u32             qth_min;        /* Min avg length threshold: Wlog scaled */
 129        u32             qth_max;        /* Max avg length threshold: Wlog scaled */
 130        u32             Scell_max;
 131        u32             max_P;          /* probability, [0 .. 1.0] 32 scaled */
 132        u32             max_P_reciprocal; /* reciprocal_value(max_P / qth_delta) */
 133        u32             qth_delta;      /* max_th - min_th */
 134        u32             target_min;     /* min_th + 0.4*(max_th - min_th) */
 135        u32             target_max;     /* min_th + 0.6*(max_th - min_th) */
 136        u8              Scell_log;
 137        u8              Wlog;           /* log(W)               */
 138        u8              Plog;           /* random number bits   */
 139        u8              Stab[RED_STAB_SIZE];
 140};
 141
 142struct red_vars {
 143        /* Variables */
 144        int             qcount;         /* Number of packets since last random
 145                                           number generation */
 146        u32             qR;             /* Cached random number */
 147
 148        unsigned long   qavg;           /* Average queue length: Wlog scaled */
 149        ktime_t         qidlestart;     /* Start of current idle period */
 150};
 151
 152static inline u32 red_maxp(u8 Plog)
 153{
 154        return Plog < 32 ? (~0U >> Plog) : ~0U;
 155}
 156
 157static inline void red_set_vars(struct red_vars *v)
 158{
 159        /* Reset average queue length, the value is strictly bound
 160         * to the parameters below, reseting hurts a bit but leaving
 161         * it might result in an unreasonable qavg for a while. --TGR
 162         */
 163        v->qavg         = 0;
 164
 165        v->qcount       = -1;
 166}
 167
 168static inline void red_set_parms(struct red_parms *p,
 169                                 u32 qth_min, u32 qth_max, u8 Wlog, u8 Plog,
 170                                 u8 Scell_log, u8 *stab, u32 max_P)
 171{
 172        int delta = qth_max - qth_min;
 173        u32 max_p_delta;
 174
 175        p->qth_min      = qth_min << Wlog;
 176        p->qth_max      = qth_max << Wlog;
 177        p->Wlog         = Wlog;
 178        p->Plog         = Plog;
 179        if (delta < 0)
 180                delta = 1;
 181        p->qth_delta    = delta;
 182        if (!max_P) {
 183                max_P = red_maxp(Plog);
 184                max_P *= delta; /* max_P = (qth_max - qth_min)/2^Plog */
 185        }
 186        p->max_P = max_P;
 187        max_p_delta = max_P / delta;
 188        max_p_delta = max(max_p_delta, 1U);
 189        p->max_P_reciprocal  = reciprocal_value(max_p_delta);
 190
 191        /* RED Adaptative target :
 192         * [min_th + 0.4*(min_th - max_th),
 193         *  min_th + 0.6*(min_th - max_th)].
 194         */
 195        delta /= 5;
 196        p->target_min = qth_min + 2*delta;
 197        p->target_max = qth_min + 3*delta;
 198
 199        p->Scell_log    = Scell_log;
 200        p->Scell_max    = (255 << Scell_log);
 201
 202        if (stab)
 203                memcpy(p->Stab, stab, sizeof(p->Stab));
 204}
 205
 206static inline int red_is_idling(const struct red_vars *v)
 207{
 208        return v->qidlestart.tv64 != 0;
 209}
 210
 211static inline void red_start_of_idle_period(struct red_vars *v)
 212{
 213        v->qidlestart = ktime_get();
 214}
 215
 216static inline void red_end_of_idle_period(struct red_vars *v)
 217{
 218        v->qidlestart.tv64 = 0;
 219}
 220
 221static inline void red_restart(struct red_vars *v)
 222{
 223        red_end_of_idle_period(v);
 224        v->qavg = 0;
 225        v->qcount = -1;
 226}
 227
 228static inline unsigned long red_calc_qavg_from_idle_time(const struct red_parms *p,
 229                                                         const struct red_vars *v)
 230{
 231        s64 delta = ktime_us_delta(ktime_get(), v->qidlestart);
 232        long us_idle = min_t(s64, delta, p->Scell_max);
 233        int  shift;
 234
 235        /*
 236         * The problem: ideally, average length queue recalcultion should
 237         * be done over constant clock intervals. This is too expensive, so
 238         * that the calculation is driven by outgoing packets.
 239         * When the queue is idle we have to model this clock by hand.
 240         *
 241         * SF+VJ proposed to "generate":
 242         *
 243         *      m = idletime / (average_pkt_size / bandwidth)
 244         *
 245         * dummy packets as a burst after idle time, i.e.
 246         *
 247         *      p->qavg *= (1-W)^m
 248         *
 249         * This is an apparently overcomplicated solution (f.e. we have to
 250         * precompute a table to make this calculation in reasonable time)
 251         * I believe that a simpler model may be used here,
 252         * but it is field for experiments.
 253         */
 254
 255        shift = p->Stab[(us_idle >> p->Scell_log) & RED_STAB_MASK];
 256
 257        if (shift)
 258                return v->qavg >> shift;
 259        else {
 260                /* Approximate initial part of exponent with linear function:
 261                 *
 262                 *      (1-W)^m ~= 1-mW + ...
 263                 *
 264                 * Seems, it is the best solution to
 265                 * problem of too coarse exponent tabulation.
 266                 */
 267                us_idle = (v->qavg * (u64)us_idle) >> p->Scell_log;
 268
 269                if (us_idle < (v->qavg >> 1))
 270                        return v->qavg - us_idle;
 271                else
 272                        return v->qavg >> 1;
 273        }
 274}
 275
 276static inline unsigned long red_calc_qavg_no_idle_time(const struct red_parms *p,
 277                                                       const struct red_vars *v,
 278                                                       unsigned int backlog)
 279{
 280        /*
 281         * NOTE: p->qavg is fixed point number with point at Wlog.
 282         * The formula below is equvalent to floating point
 283         * version:
 284         *
 285         *      qavg = qavg*(1-W) + backlog*W;
 286         *
 287         * --ANK (980924)
 288         */
 289        return v->qavg + (backlog - (v->qavg >> p->Wlog));
 290}
 291
 292static inline unsigned long red_calc_qavg(const struct red_parms *p,
 293                                          const struct red_vars *v,
 294                                          unsigned int backlog)
 295{
 296        if (!red_is_idling(v))
 297                return red_calc_qavg_no_idle_time(p, v, backlog);
 298        else
 299                return red_calc_qavg_from_idle_time(p, v);
 300}
 301
 302
 303static inline u32 red_random(const struct red_parms *p)
 304{
 305        return reciprocal_divide(net_random(), p->max_P_reciprocal);
 306}
 307
 308static inline int red_mark_probability(const struct red_parms *p,
 309                                       const struct red_vars *v,
 310                                       unsigned long qavg)
 311{
 312        /* The formula used below causes questions.
 313
 314           OK. qR is random number in the interval
 315                (0..1/max_P)*(qth_max-qth_min)
 316           i.e. 0..(2^Plog). If we used floating point
 317           arithmetics, it would be: (2^Plog)*rnd_num,
 318           where rnd_num is less 1.
 319
 320           Taking into account, that qavg have fixed
 321           point at Wlog, two lines
 322           below have the following floating point equivalent:
 323
 324           max_P*(qavg - qth_min)/(qth_max-qth_min) < rnd/qcount
 325
 326           Any questions? --ANK (980924)
 327         */
 328        return !(((qavg - p->qth_min) >> p->Wlog) * v->qcount < v->qR);
 329}
 330
 331enum {
 332        RED_BELOW_MIN_THRESH,
 333        RED_BETWEEN_TRESH,
 334        RED_ABOVE_MAX_TRESH,
 335};
 336
 337static inline int red_cmp_thresh(const struct red_parms *p, unsigned long qavg)
 338{
 339        if (qavg < p->qth_min)
 340                return RED_BELOW_MIN_THRESH;
 341        else if (qavg >= p->qth_max)
 342                return RED_ABOVE_MAX_TRESH;
 343        else
 344                return RED_BETWEEN_TRESH;
 345}
 346
 347enum {
 348        RED_DONT_MARK,
 349        RED_PROB_MARK,
 350        RED_HARD_MARK,
 351};
 352
 353static inline int red_action(const struct red_parms *p,
 354                             struct red_vars *v,
 355                             unsigned long qavg)
 356{
 357        switch (red_cmp_thresh(p, qavg)) {
 358                case RED_BELOW_MIN_THRESH:
 359                        v->qcount = -1;
 360                        return RED_DONT_MARK;
 361
 362                case RED_BETWEEN_TRESH:
 363                        if (++v->qcount) {
 364                                if (red_mark_probability(p, v, qavg)) {
 365                                        v->qcount = 0;
 366                                        v->qR = red_random(p);
 367                                        return RED_PROB_MARK;
 368                                }
 369                        } else
 370                                v->qR = red_random(p);
 371
 372                        return RED_DONT_MARK;
 373
 374                case RED_ABOVE_MAX_TRESH:
 375                        v->qcount = -1;
 376                        return RED_HARD_MARK;
 377        }
 378
 379        BUG();
 380        return RED_DONT_MARK;
 381}
 382
 383static inline void red_adaptative_algo(struct red_parms *p, struct red_vars *v)
 384{
 385        unsigned long qavg;
 386        u32 max_p_delta;
 387
 388        qavg = v->qavg;
 389        if (red_is_idling(v))
 390                qavg = red_calc_qavg_from_idle_time(p, v);
 391
 392        /* p->qavg is fixed point number with point at Wlog */
 393        qavg >>= p->Wlog;
 394
 395        if (qavg > p->target_max && p->max_P <= MAX_P_MAX)
 396                p->max_P += MAX_P_ALPHA(p->max_P); /* maxp = maxp + alpha */
 397        else if (qavg < p->target_min && p->max_P >= MAX_P_MIN)
 398                p->max_P = (p->max_P/10)*9; /* maxp = maxp * Beta */
 399
 400        max_p_delta = DIV_ROUND_CLOSEST(p->max_P, p->qth_delta);
 401        max_p_delta = max(max_p_delta, 1U);
 402        p->max_P_reciprocal = reciprocal_value(max_p_delta);
 403}
 404#endif
 405