linux/kernel/auditsc.c
<<
>>
Prefs
   1/* auditsc.c -- System-call auditing support
   2 * Handles all system-call specific auditing features.
   3 *
   4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
   5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
   6 * Copyright (C) 2005, 2006 IBM Corporation
   7 * All Rights Reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation; either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  22 *
  23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  24 *
  25 * Many of the ideas implemented here are from Stephen C. Tweedie,
  26 * especially the idea of avoiding a copy by using getname.
  27 *
  28 * The method for actual interception of syscall entry and exit (not in
  29 * this file -- see entry.S) is based on a GPL'd patch written by
  30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
  31 *
  32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
  33 * 2006.
  34 *
  35 * The support of additional filter rules compares (>, <, >=, <=) was
  36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
  37 *
  38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
  39 * filesystem information.
  40 *
  41 * Subject and object context labeling support added by <danjones@us.ibm.com>
  42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
  43 */
  44
  45#include <linux/init.h>
  46#include <asm/types.h>
  47#include <linux/atomic.h>
  48#include <linux/fs.h>
  49#include <linux/namei.h>
  50#include <linux/mm.h>
  51#include <linux/export.h>
  52#include <linux/slab.h>
  53#include <linux/mount.h>
  54#include <linux/socket.h>
  55#include <linux/mqueue.h>
  56#include <linux/audit.h>
  57#include <linux/personality.h>
  58#include <linux/time.h>
  59#include <linux/netlink.h>
  60#include <linux/compiler.h>
  61#include <asm/unistd.h>
  62#include <linux/security.h>
  63#include <linux/list.h>
  64#include <linux/tty.h>
  65#include <linux/binfmts.h>
  66#include <linux/highmem.h>
  67#include <linux/syscalls.h>
  68#include <linux/capability.h>
  69#include <linux/fs_struct.h>
  70
  71#include "audit.h"
  72
  73/* flags stating the success for a syscall */
  74#define AUDITSC_INVALID 0
  75#define AUDITSC_SUCCESS 1
  76#define AUDITSC_FAILURE 2
  77
  78/* AUDIT_NAMES is the number of slots we reserve in the audit_context
  79 * for saving names from getname().  If we get more names we will allocate
  80 * a name dynamically and also add those to the list anchored by names_list. */
  81#define AUDIT_NAMES     5
  82
  83/* Indicates that audit should log the full pathname. */
  84#define AUDIT_NAME_FULL -1
  85
  86/* no execve audit message should be longer than this (userspace limits) */
  87#define MAX_EXECVE_AUDIT_LEN 7500
  88
  89/* number of audit rules */
  90int audit_n_rules;
  91
  92/* determines whether we collect data for signals sent */
  93int audit_signals;
  94
  95struct audit_cap_data {
  96        kernel_cap_t            permitted;
  97        kernel_cap_t            inheritable;
  98        union {
  99                unsigned int    fE;             /* effective bit of a file capability */
 100                kernel_cap_t    effective;      /* effective set of a process */
 101        };
 102};
 103
 104/* When fs/namei.c:getname() is called, we store the pointer in name and
 105 * we don't let putname() free it (instead we free all of the saved
 106 * pointers at syscall exit time).
 107 *
 108 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
 109struct audit_names {
 110        struct list_head list;          /* audit_context->names_list */
 111        const char      *name;
 112        unsigned long   ino;
 113        dev_t           dev;
 114        umode_t         mode;
 115        uid_t           uid;
 116        gid_t           gid;
 117        dev_t           rdev;
 118        u32             osid;
 119        struct audit_cap_data fcap;
 120        unsigned int    fcap_ver;
 121        int             name_len;       /* number of name's characters to log */
 122        bool            name_put;       /* call __putname() for this name */
 123        /*
 124         * This was an allocated audit_names and not from the array of
 125         * names allocated in the task audit context.  Thus this name
 126         * should be freed on syscall exit
 127         */
 128        bool            should_free;
 129};
 130
 131struct audit_aux_data {
 132        struct audit_aux_data   *next;
 133        int                     type;
 134};
 135
 136#define AUDIT_AUX_IPCPERM       0
 137
 138/* Number of target pids per aux struct. */
 139#define AUDIT_AUX_PIDS  16
 140
 141struct audit_aux_data_execve {
 142        struct audit_aux_data   d;
 143        int argc;
 144        int envc;
 145        struct mm_struct *mm;
 146};
 147
 148struct audit_aux_data_pids {
 149        struct audit_aux_data   d;
 150        pid_t                   target_pid[AUDIT_AUX_PIDS];
 151        uid_t                   target_auid[AUDIT_AUX_PIDS];
 152        uid_t                   target_uid[AUDIT_AUX_PIDS];
 153        unsigned int            target_sessionid[AUDIT_AUX_PIDS];
 154        u32                     target_sid[AUDIT_AUX_PIDS];
 155        char                    target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
 156        int                     pid_count;
 157};
 158
 159struct audit_aux_data_bprm_fcaps {
 160        struct audit_aux_data   d;
 161        struct audit_cap_data   fcap;
 162        unsigned int            fcap_ver;
 163        struct audit_cap_data   old_pcap;
 164        struct audit_cap_data   new_pcap;
 165};
 166
 167struct audit_aux_data_capset {
 168        struct audit_aux_data   d;
 169        pid_t                   pid;
 170        struct audit_cap_data   cap;
 171};
 172
 173struct audit_tree_refs {
 174        struct audit_tree_refs *next;
 175        struct audit_chunk *c[31];
 176};
 177
 178/* The per-task audit context. */
 179struct audit_context {
 180        int                 dummy;      /* must be the first element */
 181        int                 in_syscall; /* 1 if task is in a syscall */
 182        enum audit_state    state, current_state;
 183        unsigned int        serial;     /* serial number for record */
 184        int                 major;      /* syscall number */
 185        struct timespec     ctime;      /* time of syscall entry */
 186        unsigned long       argv[4];    /* syscall arguments */
 187        long                return_code;/* syscall return code */
 188        u64                 prio;
 189        int                 return_valid; /* return code is valid */
 190        /*
 191         * The names_list is the list of all audit_names collected during this
 192         * syscall.  The first AUDIT_NAMES entries in the names_list will
 193         * actually be from the preallocated_names array for performance
 194         * reasons.  Except during allocation they should never be referenced
 195         * through the preallocated_names array and should only be found/used
 196         * by running the names_list.
 197         */
 198        struct audit_names  preallocated_names[AUDIT_NAMES];
 199        int                 name_count; /* total records in names_list */
 200        struct list_head    names_list; /* anchor for struct audit_names->list */
 201        char *              filterkey;  /* key for rule that triggered record */
 202        struct path         pwd;
 203        struct audit_context *previous; /* For nested syscalls */
 204        struct audit_aux_data *aux;
 205        struct audit_aux_data *aux_pids;
 206        struct sockaddr_storage *sockaddr;
 207        size_t sockaddr_len;
 208                                /* Save things to print about task_struct */
 209        pid_t               pid, ppid;
 210        uid_t               uid, euid, suid, fsuid;
 211        gid_t               gid, egid, sgid, fsgid;
 212        unsigned long       personality;
 213        int                 arch;
 214
 215        pid_t               target_pid;
 216        uid_t               target_auid;
 217        uid_t               target_uid;
 218        unsigned int        target_sessionid;
 219        u32                 target_sid;
 220        char                target_comm[TASK_COMM_LEN];
 221
 222        struct audit_tree_refs *trees, *first_trees;
 223        struct list_head killed_trees;
 224        int tree_count;
 225
 226        int type;
 227        union {
 228                struct {
 229                        int nargs;
 230                        long args[6];
 231                } socketcall;
 232                struct {
 233                        uid_t                   uid;
 234                        gid_t                   gid;
 235                        umode_t                 mode;
 236                        u32                     osid;
 237                        int                     has_perm;
 238                        uid_t                   perm_uid;
 239                        gid_t                   perm_gid;
 240                        umode_t                 perm_mode;
 241                        unsigned long           qbytes;
 242                } ipc;
 243                struct {
 244                        mqd_t                   mqdes;
 245                        struct mq_attr          mqstat;
 246                } mq_getsetattr;
 247                struct {
 248                        mqd_t                   mqdes;
 249                        int                     sigev_signo;
 250                } mq_notify;
 251                struct {
 252                        mqd_t                   mqdes;
 253                        size_t                  msg_len;
 254                        unsigned int            msg_prio;
 255                        struct timespec         abs_timeout;
 256                } mq_sendrecv;
 257                struct {
 258                        int                     oflag;
 259                        umode_t                 mode;
 260                        struct mq_attr          attr;
 261                } mq_open;
 262                struct {
 263                        pid_t                   pid;
 264                        struct audit_cap_data   cap;
 265                } capset;
 266                struct {
 267                        int                     fd;
 268                        int                     flags;
 269                } mmap;
 270        };
 271        int fds[2];
 272
 273#if AUDIT_DEBUG
 274        int                 put_count;
 275        int                 ino_count;
 276#endif
 277};
 278
 279static inline int open_arg(int flags, int mask)
 280{
 281        int n = ACC_MODE(flags);
 282        if (flags & (O_TRUNC | O_CREAT))
 283                n |= AUDIT_PERM_WRITE;
 284        return n & mask;
 285}
 286
 287static int audit_match_perm(struct audit_context *ctx, int mask)
 288{
 289        unsigned n;
 290        if (unlikely(!ctx))
 291                return 0;
 292        n = ctx->major;
 293
 294        switch (audit_classify_syscall(ctx->arch, n)) {
 295        case 0: /* native */
 296                if ((mask & AUDIT_PERM_WRITE) &&
 297                     audit_match_class(AUDIT_CLASS_WRITE, n))
 298                        return 1;
 299                if ((mask & AUDIT_PERM_READ) &&
 300                     audit_match_class(AUDIT_CLASS_READ, n))
 301                        return 1;
 302                if ((mask & AUDIT_PERM_ATTR) &&
 303                     audit_match_class(AUDIT_CLASS_CHATTR, n))
 304                        return 1;
 305                return 0;
 306        case 1: /* 32bit on biarch */
 307                if ((mask & AUDIT_PERM_WRITE) &&
 308                     audit_match_class(AUDIT_CLASS_WRITE_32, n))
 309                        return 1;
 310                if ((mask & AUDIT_PERM_READ) &&
 311                     audit_match_class(AUDIT_CLASS_READ_32, n))
 312                        return 1;
 313                if ((mask & AUDIT_PERM_ATTR) &&
 314                     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
 315                        return 1;
 316                return 0;
 317        case 2: /* open */
 318                return mask & ACC_MODE(ctx->argv[1]);
 319        case 3: /* openat */
 320                return mask & ACC_MODE(ctx->argv[2]);
 321        case 4: /* socketcall */
 322                return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
 323        case 5: /* execve */
 324                return mask & AUDIT_PERM_EXEC;
 325        default:
 326                return 0;
 327        }
 328}
 329
 330static int audit_match_filetype(struct audit_context *ctx, int val)
 331{
 332        struct audit_names *n;
 333        umode_t mode = (umode_t)val;
 334
 335        if (unlikely(!ctx))
 336                return 0;
 337
 338        list_for_each_entry(n, &ctx->names_list, list) {
 339                if ((n->ino != -1) &&
 340                    ((n->mode & S_IFMT) == mode))
 341                        return 1;
 342        }
 343
 344        return 0;
 345}
 346
 347/*
 348 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
 349 * ->first_trees points to its beginning, ->trees - to the current end of data.
 350 * ->tree_count is the number of free entries in array pointed to by ->trees.
 351 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
 352 * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
 353 * it's going to remain 1-element for almost any setup) until we free context itself.
 354 * References in it _are_ dropped - at the same time we free/drop aux stuff.
 355 */
 356
 357#ifdef CONFIG_AUDIT_TREE
 358static void audit_set_auditable(struct audit_context *ctx)
 359{
 360        if (!ctx->prio) {
 361                ctx->prio = 1;
 362                ctx->current_state = AUDIT_RECORD_CONTEXT;
 363        }
 364}
 365
 366static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
 367{
 368        struct audit_tree_refs *p = ctx->trees;
 369        int left = ctx->tree_count;
 370        if (likely(left)) {
 371                p->c[--left] = chunk;
 372                ctx->tree_count = left;
 373                return 1;
 374        }
 375        if (!p)
 376                return 0;
 377        p = p->next;
 378        if (p) {
 379                p->c[30] = chunk;
 380                ctx->trees = p;
 381                ctx->tree_count = 30;
 382                return 1;
 383        }
 384        return 0;
 385}
 386
 387static int grow_tree_refs(struct audit_context *ctx)
 388{
 389        struct audit_tree_refs *p = ctx->trees;
 390        ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
 391        if (!ctx->trees) {
 392                ctx->trees = p;
 393                return 0;
 394        }
 395        if (p)
 396                p->next = ctx->trees;
 397        else
 398                ctx->first_trees = ctx->trees;
 399        ctx->tree_count = 31;
 400        return 1;
 401}
 402#endif
 403
 404static void unroll_tree_refs(struct audit_context *ctx,
 405                      struct audit_tree_refs *p, int count)
 406{
 407#ifdef CONFIG_AUDIT_TREE
 408        struct audit_tree_refs *q;
 409        int n;
 410        if (!p) {
 411                /* we started with empty chain */
 412                p = ctx->first_trees;
 413                count = 31;
 414                /* if the very first allocation has failed, nothing to do */
 415                if (!p)
 416                        return;
 417        }
 418        n = count;
 419        for (q = p; q != ctx->trees; q = q->next, n = 31) {
 420                while (n--) {
 421                        audit_put_chunk(q->c[n]);
 422                        q->c[n] = NULL;
 423                }
 424        }
 425        while (n-- > ctx->tree_count) {
 426                audit_put_chunk(q->c[n]);
 427                q->c[n] = NULL;
 428        }
 429        ctx->trees = p;
 430        ctx->tree_count = count;
 431#endif
 432}
 433
 434static void free_tree_refs(struct audit_context *ctx)
 435{
 436        struct audit_tree_refs *p, *q;
 437        for (p = ctx->first_trees; p; p = q) {
 438                q = p->next;
 439                kfree(p);
 440        }
 441}
 442
 443static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
 444{
 445#ifdef CONFIG_AUDIT_TREE
 446        struct audit_tree_refs *p;
 447        int n;
 448        if (!tree)
 449                return 0;
 450        /* full ones */
 451        for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
 452                for (n = 0; n < 31; n++)
 453                        if (audit_tree_match(p->c[n], tree))
 454                                return 1;
 455        }
 456        /* partial */
 457        if (p) {
 458                for (n = ctx->tree_count; n < 31; n++)
 459                        if (audit_tree_match(p->c[n], tree))
 460                                return 1;
 461        }
 462#endif
 463        return 0;
 464}
 465
 466static int audit_compare_id(uid_t uid1,
 467                            struct audit_names *name,
 468                            unsigned long name_offset,
 469                            struct audit_field *f,
 470                            struct audit_context *ctx)
 471{
 472        struct audit_names *n;
 473        unsigned long addr;
 474        uid_t uid2;
 475        int rc;
 476
 477        BUILD_BUG_ON(sizeof(uid_t) != sizeof(gid_t));
 478
 479        if (name) {
 480                addr = (unsigned long)name;
 481                addr += name_offset;
 482
 483                uid2 = *(uid_t *)addr;
 484                rc = audit_comparator(uid1, f->op, uid2);
 485                if (rc)
 486                        return rc;
 487        }
 488
 489        if (ctx) {
 490                list_for_each_entry(n, &ctx->names_list, list) {
 491                        addr = (unsigned long)n;
 492                        addr += name_offset;
 493
 494                        uid2 = *(uid_t *)addr;
 495
 496                        rc = audit_comparator(uid1, f->op, uid2);
 497                        if (rc)
 498                                return rc;
 499                }
 500        }
 501        return 0;
 502}
 503
 504static int audit_field_compare(struct task_struct *tsk,
 505                               const struct cred *cred,
 506                               struct audit_field *f,
 507                               struct audit_context *ctx,
 508                               struct audit_names *name)
 509{
 510        switch (f->val) {
 511        /* process to file object comparisons */
 512        case AUDIT_COMPARE_UID_TO_OBJ_UID:
 513                return audit_compare_id(cred->uid,
 514                                        name, offsetof(struct audit_names, uid),
 515                                        f, ctx);
 516        case AUDIT_COMPARE_GID_TO_OBJ_GID:
 517                return audit_compare_id(cred->gid,
 518                                        name, offsetof(struct audit_names, gid),
 519                                        f, ctx);
 520        case AUDIT_COMPARE_EUID_TO_OBJ_UID:
 521                return audit_compare_id(cred->euid,
 522                                        name, offsetof(struct audit_names, uid),
 523                                        f, ctx);
 524        case AUDIT_COMPARE_EGID_TO_OBJ_GID:
 525                return audit_compare_id(cred->egid,
 526                                        name, offsetof(struct audit_names, gid),
 527                                        f, ctx);
 528        case AUDIT_COMPARE_AUID_TO_OBJ_UID:
 529                return audit_compare_id(tsk->loginuid,
 530                                        name, offsetof(struct audit_names, uid),
 531                                        f, ctx);
 532        case AUDIT_COMPARE_SUID_TO_OBJ_UID:
 533                return audit_compare_id(cred->suid,
 534                                        name, offsetof(struct audit_names, uid),
 535                                        f, ctx);
 536        case AUDIT_COMPARE_SGID_TO_OBJ_GID:
 537                return audit_compare_id(cred->sgid,
 538                                        name, offsetof(struct audit_names, gid),
 539                                        f, ctx);
 540        case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
 541                return audit_compare_id(cred->fsuid,
 542                                        name, offsetof(struct audit_names, uid),
 543                                        f, ctx);
 544        case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
 545                return audit_compare_id(cred->fsgid,
 546                                        name, offsetof(struct audit_names, gid),
 547                                        f, ctx);
 548        /* uid comparisons */
 549        case AUDIT_COMPARE_UID_TO_AUID:
 550                return audit_comparator(cred->uid, f->op, tsk->loginuid);
 551        case AUDIT_COMPARE_UID_TO_EUID:
 552                return audit_comparator(cred->uid, f->op, cred->euid);
 553        case AUDIT_COMPARE_UID_TO_SUID:
 554                return audit_comparator(cred->uid, f->op, cred->suid);
 555        case AUDIT_COMPARE_UID_TO_FSUID:
 556                return audit_comparator(cred->uid, f->op, cred->fsuid);
 557        /* auid comparisons */
 558        case AUDIT_COMPARE_AUID_TO_EUID:
 559                return audit_comparator(tsk->loginuid, f->op, cred->euid);
 560        case AUDIT_COMPARE_AUID_TO_SUID:
 561                return audit_comparator(tsk->loginuid, f->op, cred->suid);
 562        case AUDIT_COMPARE_AUID_TO_FSUID:
 563                return audit_comparator(tsk->loginuid, f->op, cred->fsuid);
 564        /* euid comparisons */
 565        case AUDIT_COMPARE_EUID_TO_SUID:
 566                return audit_comparator(cred->euid, f->op, cred->suid);
 567        case AUDIT_COMPARE_EUID_TO_FSUID:
 568                return audit_comparator(cred->euid, f->op, cred->fsuid);
 569        /* suid comparisons */
 570        case AUDIT_COMPARE_SUID_TO_FSUID:
 571                return audit_comparator(cred->suid, f->op, cred->fsuid);
 572        /* gid comparisons */
 573        case AUDIT_COMPARE_GID_TO_EGID:
 574                return audit_comparator(cred->gid, f->op, cred->egid);
 575        case AUDIT_COMPARE_GID_TO_SGID:
 576                return audit_comparator(cred->gid, f->op, cred->sgid);
 577        case AUDIT_COMPARE_GID_TO_FSGID:
 578                return audit_comparator(cred->gid, f->op, cred->fsgid);
 579        /* egid comparisons */
 580        case AUDIT_COMPARE_EGID_TO_SGID:
 581                return audit_comparator(cred->egid, f->op, cred->sgid);
 582        case AUDIT_COMPARE_EGID_TO_FSGID:
 583                return audit_comparator(cred->egid, f->op, cred->fsgid);
 584        /* sgid comparison */
 585        case AUDIT_COMPARE_SGID_TO_FSGID:
 586                return audit_comparator(cred->sgid, f->op, cred->fsgid);
 587        default:
 588                WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
 589                return 0;
 590        }
 591        return 0;
 592}
 593
 594/* Determine if any context name data matches a rule's watch data */
 595/* Compare a task_struct with an audit_rule.  Return 1 on match, 0
 596 * otherwise.
 597 *
 598 * If task_creation is true, this is an explicit indication that we are
 599 * filtering a task rule at task creation time.  This and tsk == current are
 600 * the only situations where tsk->cred may be accessed without an rcu read lock.
 601 */
 602static int audit_filter_rules(struct task_struct *tsk,
 603                              struct audit_krule *rule,
 604                              struct audit_context *ctx,
 605                              struct audit_names *name,
 606                              enum audit_state *state,
 607                              bool task_creation)
 608{
 609        const struct cred *cred;
 610        int i, need_sid = 1;
 611        u32 sid;
 612
 613        cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
 614
 615        for (i = 0; i < rule->field_count; i++) {
 616                struct audit_field *f = &rule->fields[i];
 617                struct audit_names *n;
 618                int result = 0;
 619
 620                switch (f->type) {
 621                case AUDIT_PID:
 622                        result = audit_comparator(tsk->pid, f->op, f->val);
 623                        break;
 624                case AUDIT_PPID:
 625                        if (ctx) {
 626                                if (!ctx->ppid)
 627                                        ctx->ppid = sys_getppid();
 628                                result = audit_comparator(ctx->ppid, f->op, f->val);
 629                        }
 630                        break;
 631                case AUDIT_UID:
 632                        result = audit_comparator(cred->uid, f->op, f->val);
 633                        break;
 634                case AUDIT_EUID:
 635                        result = audit_comparator(cred->euid, f->op, f->val);
 636                        break;
 637                case AUDIT_SUID:
 638                        result = audit_comparator(cred->suid, f->op, f->val);
 639                        break;
 640                case AUDIT_FSUID:
 641                        result = audit_comparator(cred->fsuid, f->op, f->val);
 642                        break;
 643                case AUDIT_GID:
 644                        result = audit_comparator(cred->gid, f->op, f->val);
 645                        break;
 646                case AUDIT_EGID:
 647                        result = audit_comparator(cred->egid, f->op, f->val);
 648                        break;
 649                case AUDIT_SGID:
 650                        result = audit_comparator(cred->sgid, f->op, f->val);
 651                        break;
 652                case AUDIT_FSGID:
 653                        result = audit_comparator(cred->fsgid, f->op, f->val);
 654                        break;
 655                case AUDIT_PERS:
 656                        result = audit_comparator(tsk->personality, f->op, f->val);
 657                        break;
 658                case AUDIT_ARCH:
 659                        if (ctx)
 660                                result = audit_comparator(ctx->arch, f->op, f->val);
 661                        break;
 662
 663                case AUDIT_EXIT:
 664                        if (ctx && ctx->return_valid)
 665                                result = audit_comparator(ctx->return_code, f->op, f->val);
 666                        break;
 667                case AUDIT_SUCCESS:
 668                        if (ctx && ctx->return_valid) {
 669                                if (f->val)
 670                                        result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
 671                                else
 672                                        result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
 673                        }
 674                        break;
 675                case AUDIT_DEVMAJOR:
 676                        if (name) {
 677                                if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
 678                                    audit_comparator(MAJOR(name->rdev), f->op, f->val))
 679                                        ++result;
 680                        } else if (ctx) {
 681                                list_for_each_entry(n, &ctx->names_list, list) {
 682                                        if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
 683                                            audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
 684                                                ++result;
 685                                                break;
 686                                        }
 687                                }
 688                        }
 689                        break;
 690                case AUDIT_DEVMINOR:
 691                        if (name) {
 692                                if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
 693                                    audit_comparator(MINOR(name->rdev), f->op, f->val))
 694                                        ++result;
 695                        } else if (ctx) {
 696                                list_for_each_entry(n, &ctx->names_list, list) {
 697                                        if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
 698                                            audit_comparator(MINOR(n->rdev), f->op, f->val)) {
 699                                                ++result;
 700                                                break;
 701                                        }
 702                                }
 703                        }
 704                        break;
 705                case AUDIT_INODE:
 706                        if (name)
 707                                result = (name->ino == f->val);
 708                        else if (ctx) {
 709                                list_for_each_entry(n, &ctx->names_list, list) {
 710                                        if (audit_comparator(n->ino, f->op, f->val)) {
 711                                                ++result;
 712                                                break;
 713                                        }
 714                                }
 715                        }
 716                        break;
 717                case AUDIT_OBJ_UID:
 718                        if (name) {
 719                                result = audit_comparator(name->uid, f->op, f->val);
 720                        } else if (ctx) {
 721                                list_for_each_entry(n, &ctx->names_list, list) {
 722                                        if (audit_comparator(n->uid, f->op, f->val)) {
 723                                                ++result;
 724                                                break;
 725                                        }
 726                                }
 727                        }
 728                        break;
 729                case AUDIT_OBJ_GID:
 730                        if (name) {
 731                                result = audit_comparator(name->gid, f->op, f->val);
 732                        } else if (ctx) {
 733                                list_for_each_entry(n, &ctx->names_list, list) {
 734                                        if (audit_comparator(n->gid, f->op, f->val)) {
 735                                                ++result;
 736                                                break;
 737                                        }
 738                                }
 739                        }
 740                        break;
 741                case AUDIT_WATCH:
 742                        if (name)
 743                                result = audit_watch_compare(rule->watch, name->ino, name->dev);
 744                        break;
 745                case AUDIT_DIR:
 746                        if (ctx)
 747                                result = match_tree_refs(ctx, rule->tree);
 748                        break;
 749                case AUDIT_LOGINUID:
 750                        result = 0;
 751                        if (ctx)
 752                                result = audit_comparator(tsk->loginuid, f->op, f->val);
 753                        break;
 754                case AUDIT_SUBJ_USER:
 755                case AUDIT_SUBJ_ROLE:
 756                case AUDIT_SUBJ_TYPE:
 757                case AUDIT_SUBJ_SEN:
 758                case AUDIT_SUBJ_CLR:
 759                        /* NOTE: this may return negative values indicating
 760                           a temporary error.  We simply treat this as a
 761                           match for now to avoid losing information that
 762                           may be wanted.   An error message will also be
 763                           logged upon error */
 764                        if (f->lsm_rule) {
 765                                if (need_sid) {
 766                                        security_task_getsecid(tsk, &sid);
 767                                        need_sid = 0;
 768                                }
 769                                result = security_audit_rule_match(sid, f->type,
 770                                                                  f->op,
 771                                                                  f->lsm_rule,
 772                                                                  ctx);
 773                        }
 774                        break;
 775                case AUDIT_OBJ_USER:
 776                case AUDIT_OBJ_ROLE:
 777                case AUDIT_OBJ_TYPE:
 778                case AUDIT_OBJ_LEV_LOW:
 779                case AUDIT_OBJ_LEV_HIGH:
 780                        /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
 781                           also applies here */
 782                        if (f->lsm_rule) {
 783                                /* Find files that match */
 784                                if (name) {
 785                                        result = security_audit_rule_match(
 786                                                   name->osid, f->type, f->op,
 787                                                   f->lsm_rule, ctx);
 788                                } else if (ctx) {
 789                                        list_for_each_entry(n, &ctx->names_list, list) {
 790                                                if (security_audit_rule_match(n->osid, f->type,
 791                                                                              f->op, f->lsm_rule,
 792                                                                              ctx)) {
 793                                                        ++result;
 794                                                        break;
 795                                                }
 796                                        }
 797                                }
 798                                /* Find ipc objects that match */
 799                                if (!ctx || ctx->type != AUDIT_IPC)
 800                                        break;
 801                                if (security_audit_rule_match(ctx->ipc.osid,
 802                                                              f->type, f->op,
 803                                                              f->lsm_rule, ctx))
 804                                        ++result;
 805                        }
 806                        break;
 807                case AUDIT_ARG0:
 808                case AUDIT_ARG1:
 809                case AUDIT_ARG2:
 810                case AUDIT_ARG3:
 811                        if (ctx)
 812                                result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
 813                        break;
 814                case AUDIT_FILTERKEY:
 815                        /* ignore this field for filtering */
 816                        result = 1;
 817                        break;
 818                case AUDIT_PERM:
 819                        result = audit_match_perm(ctx, f->val);
 820                        break;
 821                case AUDIT_FILETYPE:
 822                        result = audit_match_filetype(ctx, f->val);
 823                        break;
 824                case AUDIT_FIELD_COMPARE:
 825                        result = audit_field_compare(tsk, cred, f, ctx, name);
 826                        break;
 827                }
 828                if (!result)
 829                        return 0;
 830        }
 831
 832        if (ctx) {
 833                if (rule->prio <= ctx->prio)
 834                        return 0;
 835                if (rule->filterkey) {
 836                        kfree(ctx->filterkey);
 837                        ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
 838                }
 839                ctx->prio = rule->prio;
 840        }
 841        switch (rule->action) {
 842        case AUDIT_NEVER:    *state = AUDIT_DISABLED;       break;
 843        case AUDIT_ALWAYS:   *state = AUDIT_RECORD_CONTEXT; break;
 844        }
 845        return 1;
 846}
 847
 848/* At process creation time, we can determine if system-call auditing is
 849 * completely disabled for this task.  Since we only have the task
 850 * structure at this point, we can only check uid and gid.
 851 */
 852static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
 853{
 854        struct audit_entry *e;
 855        enum audit_state   state;
 856
 857        rcu_read_lock();
 858        list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
 859                if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
 860                                       &state, true)) {
 861                        if (state == AUDIT_RECORD_CONTEXT)
 862                                *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
 863                        rcu_read_unlock();
 864                        return state;
 865                }
 866        }
 867        rcu_read_unlock();
 868        return AUDIT_BUILD_CONTEXT;
 869}
 870
 871/* At syscall entry and exit time, this filter is called if the
 872 * audit_state is not low enough that auditing cannot take place, but is
 873 * also not high enough that we already know we have to write an audit
 874 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
 875 */
 876static enum audit_state audit_filter_syscall(struct task_struct *tsk,
 877                                             struct audit_context *ctx,
 878                                             struct list_head *list)
 879{
 880        struct audit_entry *e;
 881        enum audit_state state;
 882
 883        if (audit_pid && tsk->tgid == audit_pid)
 884                return AUDIT_DISABLED;
 885
 886        rcu_read_lock();
 887        if (!list_empty(list)) {
 888                int word = AUDIT_WORD(ctx->major);
 889                int bit  = AUDIT_BIT(ctx->major);
 890
 891                list_for_each_entry_rcu(e, list, list) {
 892                        if ((e->rule.mask[word] & bit) == bit &&
 893                            audit_filter_rules(tsk, &e->rule, ctx, NULL,
 894                                               &state, false)) {
 895                                rcu_read_unlock();
 896                                ctx->current_state = state;
 897                                return state;
 898                        }
 899                }
 900        }
 901        rcu_read_unlock();
 902        return AUDIT_BUILD_CONTEXT;
 903}
 904
 905/*
 906 * Given an audit_name check the inode hash table to see if they match.
 907 * Called holding the rcu read lock to protect the use of audit_inode_hash
 908 */
 909static int audit_filter_inode_name(struct task_struct *tsk,
 910                                   struct audit_names *n,
 911                                   struct audit_context *ctx) {
 912        int word, bit;
 913        int h = audit_hash_ino((u32)n->ino);
 914        struct list_head *list = &audit_inode_hash[h];
 915        struct audit_entry *e;
 916        enum audit_state state;
 917
 918        word = AUDIT_WORD(ctx->major);
 919        bit  = AUDIT_BIT(ctx->major);
 920
 921        if (list_empty(list))
 922                return 0;
 923
 924        list_for_each_entry_rcu(e, list, list) {
 925                if ((e->rule.mask[word] & bit) == bit &&
 926                    audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
 927                        ctx->current_state = state;
 928                        return 1;
 929                }
 930        }
 931
 932        return 0;
 933}
 934
 935/* At syscall exit time, this filter is called if any audit_names have been
 936 * collected during syscall processing.  We only check rules in sublists at hash
 937 * buckets applicable to the inode numbers in audit_names.
 938 * Regarding audit_state, same rules apply as for audit_filter_syscall().
 939 */
 940void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
 941{
 942        struct audit_names *n;
 943
 944        if (audit_pid && tsk->tgid == audit_pid)
 945                return;
 946
 947        rcu_read_lock();
 948
 949        list_for_each_entry(n, &ctx->names_list, list) {
 950                if (audit_filter_inode_name(tsk, n, ctx))
 951                        break;
 952        }
 953        rcu_read_unlock();
 954}
 955
 956static inline struct audit_context *audit_get_context(struct task_struct *tsk,
 957                                                      int return_valid,
 958                                                      long return_code)
 959{
 960        struct audit_context *context = tsk->audit_context;
 961
 962        if (!context)
 963                return NULL;
 964        context->return_valid = return_valid;
 965
 966        /*
 967         * we need to fix up the return code in the audit logs if the actual
 968         * return codes are later going to be fixed up by the arch specific
 969         * signal handlers
 970         *
 971         * This is actually a test for:
 972         * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
 973         * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
 974         *
 975         * but is faster than a bunch of ||
 976         */
 977        if (unlikely(return_code <= -ERESTARTSYS) &&
 978            (return_code >= -ERESTART_RESTARTBLOCK) &&
 979            (return_code != -ENOIOCTLCMD))
 980                context->return_code = -EINTR;
 981        else
 982                context->return_code  = return_code;
 983
 984        if (context->in_syscall && !context->dummy) {
 985                audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
 986                audit_filter_inodes(tsk, context);
 987        }
 988
 989        tsk->audit_context = NULL;
 990        return context;
 991}
 992
 993static inline void audit_free_names(struct audit_context *context)
 994{
 995        struct audit_names *n, *next;
 996
 997#if AUDIT_DEBUG == 2
 998        if (context->put_count + context->ino_count != context->name_count) {
 999                printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
1000                       " name_count=%d put_count=%d"
1001                       " ino_count=%d [NOT freeing]\n",
1002                       __FILE__, __LINE__,
1003                       context->serial, context->major, context->in_syscall,
1004                       context->name_count, context->put_count,
1005                       context->ino_count);
1006                list_for_each_entry(n, &context->names_list, list) {
1007                        printk(KERN_ERR "names[%d] = %p = %s\n", i,
1008                               n->name, n->name ?: "(null)");
1009                }
1010                dump_stack();
1011                return;
1012        }
1013#endif
1014#if AUDIT_DEBUG
1015        context->put_count  = 0;
1016        context->ino_count  = 0;
1017#endif
1018
1019        list_for_each_entry_safe(n, next, &context->names_list, list) {
1020                list_del(&n->list);
1021                if (n->name && n->name_put)
1022                        __putname(n->name);
1023                if (n->should_free)
1024                        kfree(n);
1025        }
1026        context->name_count = 0;
1027        path_put(&context->pwd);
1028        context->pwd.dentry = NULL;
1029        context->pwd.mnt = NULL;
1030}
1031
1032static inline void audit_free_aux(struct audit_context *context)
1033{
1034        struct audit_aux_data *aux;
1035
1036        while ((aux = context->aux)) {
1037                context->aux = aux->next;
1038                kfree(aux);
1039        }
1040        while ((aux = context->aux_pids)) {
1041                context->aux_pids = aux->next;
1042                kfree(aux);
1043        }
1044}
1045
1046static inline void audit_zero_context(struct audit_context *context,
1047                                      enum audit_state state)
1048{
1049        memset(context, 0, sizeof(*context));
1050        context->state      = state;
1051        context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1052}
1053
1054static inline struct audit_context *audit_alloc_context(enum audit_state state)
1055{
1056        struct audit_context *context;
1057
1058        if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
1059                return NULL;
1060        audit_zero_context(context, state);
1061        INIT_LIST_HEAD(&context->killed_trees);
1062        INIT_LIST_HEAD(&context->names_list);
1063        return context;
1064}
1065
1066/**
1067 * audit_alloc - allocate an audit context block for a task
1068 * @tsk: task
1069 *
1070 * Filter on the task information and allocate a per-task audit context
1071 * if necessary.  Doing so turns on system call auditing for the
1072 * specified task.  This is called from copy_process, so no lock is
1073 * needed.
1074 */
1075int audit_alloc(struct task_struct *tsk)
1076{
1077        struct audit_context *context;
1078        enum audit_state     state;
1079        char *key = NULL;
1080
1081        if (likely(!audit_ever_enabled))
1082                return 0; /* Return if not auditing. */
1083
1084        state = audit_filter_task(tsk, &key);
1085        if (state == AUDIT_DISABLED)
1086                return 0;
1087
1088        if (!(context = audit_alloc_context(state))) {
1089                kfree(key);
1090                audit_log_lost("out of memory in audit_alloc");
1091                return -ENOMEM;
1092        }
1093        context->filterkey = key;
1094
1095        tsk->audit_context  = context;
1096        set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
1097        return 0;
1098}
1099
1100static inline void audit_free_context(struct audit_context *context)
1101{
1102        struct audit_context *previous;
1103        int                  count = 0;
1104
1105        do {
1106                previous = context->previous;
1107                if (previous || (count &&  count < 10)) {
1108                        ++count;
1109                        printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
1110                               " freeing multiple contexts (%d)\n",
1111                               context->serial, context->major,
1112                               context->name_count, count);
1113                }
1114                audit_free_names(context);
1115                unroll_tree_refs(context, NULL, 0);
1116                free_tree_refs(context);
1117                audit_free_aux(context);
1118                kfree(context->filterkey);
1119                kfree(context->sockaddr);
1120                kfree(context);
1121                context  = previous;
1122        } while (context);
1123        if (count >= 10)
1124                printk(KERN_ERR "audit: freed %d contexts\n", count);
1125}
1126
1127void audit_log_task_context(struct audit_buffer *ab)
1128{
1129        char *ctx = NULL;
1130        unsigned len;
1131        int error;
1132        u32 sid;
1133
1134        security_task_getsecid(current, &sid);
1135        if (!sid)
1136                return;
1137
1138        error = security_secid_to_secctx(sid, &ctx, &len);
1139        if (error) {
1140                if (error != -EINVAL)
1141                        goto error_path;
1142                return;
1143        }
1144
1145        audit_log_format(ab, " subj=%s", ctx);
1146        security_release_secctx(ctx, len);
1147        return;
1148
1149error_path:
1150        audit_panic("error in audit_log_task_context");
1151        return;
1152}
1153
1154EXPORT_SYMBOL(audit_log_task_context);
1155
1156static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1157{
1158        char name[sizeof(tsk->comm)];
1159        struct mm_struct *mm = tsk->mm;
1160        struct vm_area_struct *vma;
1161
1162        /* tsk == current */
1163
1164        get_task_comm(name, tsk);
1165        audit_log_format(ab, " comm=");
1166        audit_log_untrustedstring(ab, name);
1167
1168        if (mm) {
1169                down_read(&mm->mmap_sem);
1170                vma = mm->mmap;
1171                while (vma) {
1172                        if ((vma->vm_flags & VM_EXECUTABLE) &&
1173                            vma->vm_file) {
1174                                audit_log_d_path(ab, " exe=",
1175                                                 &vma->vm_file->f_path);
1176                                break;
1177                        }
1178                        vma = vma->vm_next;
1179                }
1180                up_read(&mm->mmap_sem);
1181        }
1182        audit_log_task_context(ab);
1183}
1184
1185static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1186                                 uid_t auid, uid_t uid, unsigned int sessionid,
1187                                 u32 sid, char *comm)
1188{
1189        struct audit_buffer *ab;
1190        char *ctx = NULL;
1191        u32 len;
1192        int rc = 0;
1193
1194        ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1195        if (!ab)
1196                return rc;
1197
1198        audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
1199                         uid, sessionid);
1200        if (security_secid_to_secctx(sid, &ctx, &len)) {
1201                audit_log_format(ab, " obj=(none)");
1202                rc = 1;
1203        } else {
1204                audit_log_format(ab, " obj=%s", ctx);
1205                security_release_secctx(ctx, len);
1206        }
1207        audit_log_format(ab, " ocomm=");
1208        audit_log_untrustedstring(ab, comm);
1209        audit_log_end(ab);
1210
1211        return rc;
1212}
1213
1214/*
1215 * to_send and len_sent accounting are very loose estimates.  We aren't
1216 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1217 * within about 500 bytes (next page boundary)
1218 *
1219 * why snprintf?  an int is up to 12 digits long.  if we just assumed when
1220 * logging that a[%d]= was going to be 16 characters long we would be wasting
1221 * space in every audit message.  In one 7500 byte message we can log up to
1222 * about 1000 min size arguments.  That comes down to about 50% waste of space
1223 * if we didn't do the snprintf to find out how long arg_num_len was.
1224 */
1225static int audit_log_single_execve_arg(struct audit_context *context,
1226                                        struct audit_buffer **ab,
1227                                        int arg_num,
1228                                        size_t *len_sent,
1229                                        const char __user *p,
1230                                        char *buf)
1231{
1232        char arg_num_len_buf[12];
1233        const char __user *tmp_p = p;
1234        /* how many digits are in arg_num? 5 is the length of ' a=""' */
1235        size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1236        size_t len, len_left, to_send;
1237        size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1238        unsigned int i, has_cntl = 0, too_long = 0;
1239        int ret;
1240
1241        /* strnlen_user includes the null we don't want to send */
1242        len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1243
1244        /*
1245         * We just created this mm, if we can't find the strings
1246         * we just copied into it something is _very_ wrong. Similar
1247         * for strings that are too long, we should not have created
1248         * any.
1249         */
1250        if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1251                WARN_ON(1);
1252                send_sig(SIGKILL, current, 0);
1253                return -1;
1254        }
1255
1256        /* walk the whole argument looking for non-ascii chars */
1257        do {
1258                if (len_left > MAX_EXECVE_AUDIT_LEN)
1259                        to_send = MAX_EXECVE_AUDIT_LEN;
1260                else
1261                        to_send = len_left;
1262                ret = copy_from_user(buf, tmp_p, to_send);
1263                /*
1264                 * There is no reason for this copy to be short. We just
1265                 * copied them here, and the mm hasn't been exposed to user-
1266                 * space yet.
1267                 */
1268                if (ret) {
1269                        WARN_ON(1);
1270                        send_sig(SIGKILL, current, 0);
1271                        return -1;
1272                }
1273                buf[to_send] = '\0';
1274                has_cntl = audit_string_contains_control(buf, to_send);
1275                if (has_cntl) {
1276                        /*
1277                         * hex messages get logged as 2 bytes, so we can only
1278                         * send half as much in each message
1279                         */
1280                        max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1281                        break;
1282                }
1283                len_left -= to_send;
1284                tmp_p += to_send;
1285        } while (len_left > 0);
1286
1287        len_left = len;
1288
1289        if (len > max_execve_audit_len)
1290                too_long = 1;
1291
1292        /* rewalk the argument actually logging the message */
1293        for (i = 0; len_left > 0; i++) {
1294                int room_left;
1295
1296                if (len_left > max_execve_audit_len)
1297                        to_send = max_execve_audit_len;
1298                else
1299                        to_send = len_left;
1300
1301                /* do we have space left to send this argument in this ab? */
1302                room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1303                if (has_cntl)
1304                        room_left -= (to_send * 2);
1305                else
1306                        room_left -= to_send;
1307                if (room_left < 0) {
1308                        *len_sent = 0;
1309                        audit_log_end(*ab);
1310                        *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1311                        if (!*ab)
1312                                return 0;
1313                }
1314
1315                /*
1316                 * first record needs to say how long the original string was
1317                 * so we can be sure nothing was lost.
1318                 */
1319                if ((i == 0) && (too_long))
1320                        audit_log_format(*ab, " a%d_len=%zu", arg_num,
1321                                         has_cntl ? 2*len : len);
1322
1323                /*
1324                 * normally arguments are small enough to fit and we already
1325                 * filled buf above when we checked for control characters
1326                 * so don't bother with another copy_from_user
1327                 */
1328                if (len >= max_execve_audit_len)
1329                        ret = copy_from_user(buf, p, to_send);
1330                else
1331                        ret = 0;
1332                if (ret) {
1333                        WARN_ON(1);
1334                        send_sig(SIGKILL, current, 0);
1335                        return -1;
1336                }
1337                buf[to_send] = '\0';
1338
1339                /* actually log it */
1340                audit_log_format(*ab, " a%d", arg_num);
1341                if (too_long)
1342                        audit_log_format(*ab, "[%d]", i);
1343                audit_log_format(*ab, "=");
1344                if (has_cntl)
1345                        audit_log_n_hex(*ab, buf, to_send);
1346                else
1347                        audit_log_string(*ab, buf);
1348
1349                p += to_send;
1350                len_left -= to_send;
1351                *len_sent += arg_num_len;
1352                if (has_cntl)
1353                        *len_sent += to_send * 2;
1354                else
1355                        *len_sent += to_send;
1356        }
1357        /* include the null we didn't log */
1358        return len + 1;
1359}
1360
1361static void audit_log_execve_info(struct audit_context *context,
1362                                  struct audit_buffer **ab,
1363                                  struct audit_aux_data_execve *axi)
1364{
1365        int i, len;
1366        size_t len_sent = 0;
1367        const char __user *p;
1368        char *buf;
1369
1370        if (axi->mm != current->mm)
1371                return; /* execve failed, no additional info */
1372
1373        p = (const char __user *)axi->mm->arg_start;
1374
1375        audit_log_format(*ab, "argc=%d", axi->argc);
1376
1377        /*
1378         * we need some kernel buffer to hold the userspace args.  Just
1379         * allocate one big one rather than allocating one of the right size
1380         * for every single argument inside audit_log_single_execve_arg()
1381         * should be <8k allocation so should be pretty safe.
1382         */
1383        buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1384        if (!buf) {
1385                audit_panic("out of memory for argv string\n");
1386                return;
1387        }
1388
1389        for (i = 0; i < axi->argc; i++) {
1390                len = audit_log_single_execve_arg(context, ab, i,
1391                                                  &len_sent, p, buf);
1392                if (len <= 0)
1393                        break;
1394                p += len;
1395        }
1396        kfree(buf);
1397}
1398
1399static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1400{
1401        int i;
1402
1403        audit_log_format(ab, " %s=", prefix);
1404        CAP_FOR_EACH_U32(i) {
1405                audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1406        }
1407}
1408
1409static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1410{
1411        kernel_cap_t *perm = &name->fcap.permitted;
1412        kernel_cap_t *inh = &name->fcap.inheritable;
1413        int log = 0;
1414
1415        if (!cap_isclear(*perm)) {
1416                audit_log_cap(ab, "cap_fp", perm);
1417                log = 1;
1418        }
1419        if (!cap_isclear(*inh)) {
1420                audit_log_cap(ab, "cap_fi", inh);
1421                log = 1;
1422        }
1423
1424        if (log)
1425                audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1426}
1427
1428static void show_special(struct audit_context *context, int *call_panic)
1429{
1430        struct audit_buffer *ab;
1431        int i;
1432
1433        ab = audit_log_start(context, GFP_KERNEL, context->type);
1434        if (!ab)
1435                return;
1436
1437        switch (context->type) {
1438        case AUDIT_SOCKETCALL: {
1439                int nargs = context->socketcall.nargs;
1440                audit_log_format(ab, "nargs=%d", nargs);
1441                for (i = 0; i < nargs; i++)
1442                        audit_log_format(ab, " a%d=%lx", i,
1443                                context->socketcall.args[i]);
1444                break; }
1445        case AUDIT_IPC: {
1446                u32 osid = context->ipc.osid;
1447
1448                audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1449                         context->ipc.uid, context->ipc.gid, context->ipc.mode);
1450                if (osid) {
1451                        char *ctx = NULL;
1452                        u32 len;
1453                        if (security_secid_to_secctx(osid, &ctx, &len)) {
1454                                audit_log_format(ab, " osid=%u", osid);
1455                                *call_panic = 1;
1456                        } else {
1457                                audit_log_format(ab, " obj=%s", ctx);
1458                                security_release_secctx(ctx, len);
1459                        }
1460                }
1461                if (context->ipc.has_perm) {
1462                        audit_log_end(ab);
1463                        ab = audit_log_start(context, GFP_KERNEL,
1464                                             AUDIT_IPC_SET_PERM);
1465                        audit_log_format(ab,
1466                                "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1467                                context->ipc.qbytes,
1468                                context->ipc.perm_uid,
1469                                context->ipc.perm_gid,
1470                                context->ipc.perm_mode);
1471                        if (!ab)
1472                                return;
1473                }
1474                break; }
1475        case AUDIT_MQ_OPEN: {
1476                audit_log_format(ab,
1477                        "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1478                        "mq_msgsize=%ld mq_curmsgs=%ld",
1479                        context->mq_open.oflag, context->mq_open.mode,
1480                        context->mq_open.attr.mq_flags,
1481                        context->mq_open.attr.mq_maxmsg,
1482                        context->mq_open.attr.mq_msgsize,
1483                        context->mq_open.attr.mq_curmsgs);
1484                break; }
1485        case AUDIT_MQ_SENDRECV: {
1486                audit_log_format(ab,
1487                        "mqdes=%d msg_len=%zd msg_prio=%u "
1488                        "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1489                        context->mq_sendrecv.mqdes,
1490                        context->mq_sendrecv.msg_len,
1491                        context->mq_sendrecv.msg_prio,
1492                        context->mq_sendrecv.abs_timeout.tv_sec,
1493                        context->mq_sendrecv.abs_timeout.tv_nsec);
1494                break; }
1495        case AUDIT_MQ_NOTIFY: {
1496                audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1497                                context->mq_notify.mqdes,
1498                                context->mq_notify.sigev_signo);
1499                break; }
1500        case AUDIT_MQ_GETSETATTR: {
1501                struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1502                audit_log_format(ab,
1503                        "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1504                        "mq_curmsgs=%ld ",
1505                        context->mq_getsetattr.mqdes,
1506                        attr->mq_flags, attr->mq_maxmsg,
1507                        attr->mq_msgsize, attr->mq_curmsgs);
1508                break; }
1509        case AUDIT_CAPSET: {
1510                audit_log_format(ab, "pid=%d", context->capset.pid);
1511                audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1512                audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1513                audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1514                break; }
1515        case AUDIT_MMAP: {
1516                audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1517                                 context->mmap.flags);
1518                break; }
1519        }
1520        audit_log_end(ab);
1521}
1522
1523static void audit_log_name(struct audit_context *context, struct audit_names *n,
1524                           int record_num, int *call_panic)
1525{
1526        struct audit_buffer *ab;
1527        ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1528        if (!ab)
1529                return; /* audit_panic has been called */
1530
1531        audit_log_format(ab, "item=%d", record_num);
1532
1533        if (n->name) {
1534                switch (n->name_len) {
1535                case AUDIT_NAME_FULL:
1536                        /* log the full path */
1537                        audit_log_format(ab, " name=");
1538                        audit_log_untrustedstring(ab, n->name);
1539                        break;
1540                case 0:
1541                        /* name was specified as a relative path and the
1542                         * directory component is the cwd */
1543                        audit_log_d_path(ab, " name=", &context->pwd);
1544                        break;
1545                default:
1546                        /* log the name's directory component */
1547                        audit_log_format(ab, " name=");
1548                        audit_log_n_untrustedstring(ab, n->name,
1549                                                    n->name_len);
1550                }
1551        } else
1552                audit_log_format(ab, " name=(null)");
1553
1554        if (n->ino != (unsigned long)-1) {
1555                audit_log_format(ab, " inode=%lu"
1556                                 " dev=%02x:%02x mode=%#ho"
1557                                 " ouid=%u ogid=%u rdev=%02x:%02x",
1558                                 n->ino,
1559                                 MAJOR(n->dev),
1560                                 MINOR(n->dev),
1561                                 n->mode,
1562                                 n->uid,
1563                                 n->gid,
1564                                 MAJOR(n->rdev),
1565                                 MINOR(n->rdev));
1566        }
1567        if (n->osid != 0) {
1568                char *ctx = NULL;
1569                u32 len;
1570                if (security_secid_to_secctx(
1571                        n->osid, &ctx, &len)) {
1572                        audit_log_format(ab, " osid=%u", n->osid);
1573                        *call_panic = 2;
1574                } else {
1575                        audit_log_format(ab, " obj=%s", ctx);
1576                        security_release_secctx(ctx, len);
1577                }
1578        }
1579
1580        audit_log_fcaps(ab, n);
1581
1582        audit_log_end(ab);
1583}
1584
1585static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1586{
1587        const struct cred *cred;
1588        int i, call_panic = 0;
1589        struct audit_buffer *ab;
1590        struct audit_aux_data *aux;
1591        const char *tty;
1592        struct audit_names *n;
1593
1594        /* tsk == current */
1595        context->pid = tsk->pid;
1596        if (!context->ppid)
1597                context->ppid = sys_getppid();
1598        cred = current_cred();
1599        context->uid   = cred->uid;
1600        context->gid   = cred->gid;
1601        context->euid  = cred->euid;
1602        context->suid  = cred->suid;
1603        context->fsuid = cred->fsuid;
1604        context->egid  = cred->egid;
1605        context->sgid  = cred->sgid;
1606        context->fsgid = cred->fsgid;
1607        context->personality = tsk->personality;
1608
1609        ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1610        if (!ab)
1611                return;         /* audit_panic has been called */
1612        audit_log_format(ab, "arch=%x syscall=%d",
1613                         context->arch, context->major);
1614        if (context->personality != PER_LINUX)
1615                audit_log_format(ab, " per=%lx", context->personality);
1616        if (context->return_valid)
1617                audit_log_format(ab, " success=%s exit=%ld",
1618                                 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1619                                 context->return_code);
1620
1621        spin_lock_irq(&tsk->sighand->siglock);
1622        if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1623                tty = tsk->signal->tty->name;
1624        else
1625                tty = "(none)";
1626        spin_unlock_irq(&tsk->sighand->siglock);
1627
1628        audit_log_format(ab,
1629                  " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1630                  " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1631                  " euid=%u suid=%u fsuid=%u"
1632                  " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1633                  context->argv[0],
1634                  context->argv[1],
1635                  context->argv[2],
1636                  context->argv[3],
1637                  context->name_count,
1638                  context->ppid,
1639                  context->pid,
1640                  tsk->loginuid,
1641                  context->uid,
1642                  context->gid,
1643                  context->euid, context->suid, context->fsuid,
1644                  context->egid, context->sgid, context->fsgid, tty,
1645                  tsk->sessionid);
1646
1647
1648        audit_log_task_info(ab, tsk);
1649        audit_log_key(ab, context->filterkey);
1650        audit_log_end(ab);
1651
1652        for (aux = context->aux; aux; aux = aux->next) {
1653
1654                ab = audit_log_start(context, GFP_KERNEL, aux->type);
1655                if (!ab)
1656                        continue; /* audit_panic has been called */
1657
1658                switch (aux->type) {
1659
1660                case AUDIT_EXECVE: {
1661                        struct audit_aux_data_execve *axi = (void *)aux;
1662                        audit_log_execve_info(context, &ab, axi);
1663                        break; }
1664
1665                case AUDIT_BPRM_FCAPS: {
1666                        struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1667                        audit_log_format(ab, "fver=%x", axs->fcap_ver);
1668                        audit_log_cap(ab, "fp", &axs->fcap.permitted);
1669                        audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1670                        audit_log_format(ab, " fe=%d", axs->fcap.fE);
1671                        audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1672                        audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1673                        audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1674                        audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1675                        audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1676                        audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1677                        break; }
1678
1679                }
1680                audit_log_end(ab);
1681        }
1682
1683        if (context->type)
1684                show_special(context, &call_panic);
1685
1686        if (context->fds[0] >= 0) {
1687                ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1688                if (ab) {
1689                        audit_log_format(ab, "fd0=%d fd1=%d",
1690                                        context->fds[0], context->fds[1]);
1691                        audit_log_end(ab);
1692                }
1693        }
1694
1695        if (context->sockaddr_len) {
1696                ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1697                if (ab) {
1698                        audit_log_format(ab, "saddr=");
1699                        audit_log_n_hex(ab, (void *)context->sockaddr,
1700                                        context->sockaddr_len);
1701                        audit_log_end(ab);
1702                }
1703        }
1704
1705        for (aux = context->aux_pids; aux; aux = aux->next) {
1706                struct audit_aux_data_pids *axs = (void *)aux;
1707
1708                for (i = 0; i < axs->pid_count; i++)
1709                        if (audit_log_pid_context(context, axs->target_pid[i],
1710                                                  axs->target_auid[i],
1711                                                  axs->target_uid[i],
1712                                                  axs->target_sessionid[i],
1713                                                  axs->target_sid[i],
1714                                                  axs->target_comm[i]))
1715                                call_panic = 1;
1716        }
1717
1718        if (context->target_pid &&
1719            audit_log_pid_context(context, context->target_pid,
1720                                  context->target_auid, context->target_uid,
1721                                  context->target_sessionid,
1722                                  context->target_sid, context->target_comm))
1723                        call_panic = 1;
1724
1725        if (context->pwd.dentry && context->pwd.mnt) {
1726                ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1727                if (ab) {
1728                        audit_log_d_path(ab, " cwd=", &context->pwd);
1729                        audit_log_end(ab);
1730                }
1731        }
1732
1733        i = 0;
1734        list_for_each_entry(n, &context->names_list, list)
1735                audit_log_name(context, n, i++, &call_panic);
1736
1737        /* Send end of event record to help user space know we are finished */
1738        ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1739        if (ab)
1740                audit_log_end(ab);
1741        if (call_panic)
1742                audit_panic("error converting sid to string");
1743}
1744
1745/**
1746 * audit_free - free a per-task audit context
1747 * @tsk: task whose audit context block to free
1748 *
1749 * Called from copy_process and do_exit
1750 */
1751void __audit_free(struct task_struct *tsk)
1752{
1753        struct audit_context *context;
1754
1755        context = audit_get_context(tsk, 0, 0);
1756        if (!context)
1757                return;
1758
1759        /* Check for system calls that do not go through the exit
1760         * function (e.g., exit_group), then free context block.
1761         * We use GFP_ATOMIC here because we might be doing this
1762         * in the context of the idle thread */
1763        /* that can happen only if we are called from do_exit() */
1764        if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1765                audit_log_exit(context, tsk);
1766        if (!list_empty(&context->killed_trees))
1767                audit_kill_trees(&context->killed_trees);
1768
1769        audit_free_context(context);
1770}
1771
1772/**
1773 * audit_syscall_entry - fill in an audit record at syscall entry
1774 * @arch: architecture type
1775 * @major: major syscall type (function)
1776 * @a1: additional syscall register 1
1777 * @a2: additional syscall register 2
1778 * @a3: additional syscall register 3
1779 * @a4: additional syscall register 4
1780 *
1781 * Fill in audit context at syscall entry.  This only happens if the
1782 * audit context was created when the task was created and the state or
1783 * filters demand the audit context be built.  If the state from the
1784 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1785 * then the record will be written at syscall exit time (otherwise, it
1786 * will only be written if another part of the kernel requests that it
1787 * be written).
1788 */
1789void __audit_syscall_entry(int arch, int major,
1790                         unsigned long a1, unsigned long a2,
1791                         unsigned long a3, unsigned long a4)
1792{
1793        struct task_struct *tsk = current;
1794        struct audit_context *context = tsk->audit_context;
1795        enum audit_state     state;
1796
1797        if (!context)
1798                return;
1799
1800        /*
1801         * This happens only on certain architectures that make system
1802         * calls in kernel_thread via the entry.S interface, instead of
1803         * with direct calls.  (If you are porting to a new
1804         * architecture, hitting this condition can indicate that you
1805         * got the _exit/_leave calls backward in entry.S.)
1806         *
1807         * i386     no
1808         * x86_64   no
1809         * ppc64    yes (see arch/powerpc/platforms/iseries/misc.S)
1810         *
1811         * This also happens with vm86 emulation in a non-nested manner
1812         * (entries without exits), so this case must be caught.
1813         */
1814        if (context->in_syscall) {
1815                struct audit_context *newctx;
1816
1817#if AUDIT_DEBUG
1818                printk(KERN_ERR
1819                       "audit(:%d) pid=%d in syscall=%d;"
1820                       " entering syscall=%d\n",
1821                       context->serial, tsk->pid, context->major, major);
1822#endif
1823                newctx = audit_alloc_context(context->state);
1824                if (newctx) {
1825                        newctx->previous   = context;
1826                        context            = newctx;
1827                        tsk->audit_context = newctx;
1828                } else  {
1829                        /* If we can't alloc a new context, the best we
1830                         * can do is to leak memory (any pending putname
1831                         * will be lost).  The only other alternative is
1832                         * to abandon auditing. */
1833                        audit_zero_context(context, context->state);
1834                }
1835        }
1836        BUG_ON(context->in_syscall || context->name_count);
1837
1838        if (!audit_enabled)
1839                return;
1840
1841        context->arch       = arch;
1842        context->major      = major;
1843        context->argv[0]    = a1;
1844        context->argv[1]    = a2;
1845        context->argv[2]    = a3;
1846        context->argv[3]    = a4;
1847
1848        state = context->state;
1849        context->dummy = !audit_n_rules;
1850        if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1851                context->prio = 0;
1852                state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1853        }
1854        if (state == AUDIT_DISABLED)
1855                return;
1856
1857        context->serial     = 0;
1858        context->ctime      = CURRENT_TIME;
1859        context->in_syscall = 1;
1860        context->current_state  = state;
1861        context->ppid       = 0;
1862}
1863
1864/**
1865 * audit_syscall_exit - deallocate audit context after a system call
1866 * @success: success value of the syscall
1867 * @return_code: return value of the syscall
1868 *
1869 * Tear down after system call.  If the audit context has been marked as
1870 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1871 * filtering, or because some other part of the kernel wrote an audit
1872 * message), then write out the syscall information.  In call cases,
1873 * free the names stored from getname().
1874 */
1875void __audit_syscall_exit(int success, long return_code)
1876{
1877        struct task_struct *tsk = current;
1878        struct audit_context *context;
1879
1880        if (success)
1881                success = AUDITSC_SUCCESS;
1882        else
1883                success = AUDITSC_FAILURE;
1884
1885        context = audit_get_context(tsk, success, return_code);
1886        if (!context)
1887                return;
1888
1889        if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1890                audit_log_exit(context, tsk);
1891
1892        context->in_syscall = 0;
1893        context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1894
1895        if (!list_empty(&context->killed_trees))
1896                audit_kill_trees(&context->killed_trees);
1897
1898        if (context->previous) {
1899                struct audit_context *new_context = context->previous;
1900                context->previous  = NULL;
1901                audit_free_context(context);
1902                tsk->audit_context = new_context;
1903        } else {
1904                audit_free_names(context);
1905                unroll_tree_refs(context, NULL, 0);
1906                audit_free_aux(context);
1907                context->aux = NULL;
1908                context->aux_pids = NULL;
1909                context->target_pid = 0;
1910                context->target_sid = 0;
1911                context->sockaddr_len = 0;
1912                context->type = 0;
1913                context->fds[0] = -1;
1914                if (context->state != AUDIT_RECORD_CONTEXT) {
1915                        kfree(context->filterkey);
1916                        context->filterkey = NULL;
1917                }
1918                tsk->audit_context = context;
1919        }
1920}
1921
1922static inline void handle_one(const struct inode *inode)
1923{
1924#ifdef CONFIG_AUDIT_TREE
1925        struct audit_context *context;
1926        struct audit_tree_refs *p;
1927        struct audit_chunk *chunk;
1928        int count;
1929        if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1930                return;
1931        context = current->audit_context;
1932        p = context->trees;
1933        count = context->tree_count;
1934        rcu_read_lock();
1935        chunk = audit_tree_lookup(inode);
1936        rcu_read_unlock();
1937        if (!chunk)
1938                return;
1939        if (likely(put_tree_ref(context, chunk)))
1940                return;
1941        if (unlikely(!grow_tree_refs(context))) {
1942                printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1943                audit_set_auditable(context);
1944                audit_put_chunk(chunk);
1945                unroll_tree_refs(context, p, count);
1946                return;
1947        }
1948        put_tree_ref(context, chunk);
1949#endif
1950}
1951
1952static void handle_path(const struct dentry *dentry)
1953{
1954#ifdef CONFIG_AUDIT_TREE
1955        struct audit_context *context;
1956        struct audit_tree_refs *p;
1957        const struct dentry *d, *parent;
1958        struct audit_chunk *drop;
1959        unsigned long seq;
1960        int count;
1961
1962        context = current->audit_context;
1963        p = context->trees;
1964        count = context->tree_count;
1965retry:
1966        drop = NULL;
1967        d = dentry;
1968        rcu_read_lock();
1969        seq = read_seqbegin(&rename_lock);
1970        for(;;) {
1971                struct inode *inode = d->d_inode;
1972                if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1973                        struct audit_chunk *chunk;
1974                        chunk = audit_tree_lookup(inode);
1975                        if (chunk) {
1976                                if (unlikely(!put_tree_ref(context, chunk))) {
1977                                        drop = chunk;
1978                                        break;
1979                                }
1980                        }
1981                }
1982                parent = d->d_parent;
1983                if (parent == d)
1984                        break;
1985                d = parent;
1986        }
1987        if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1988                rcu_read_unlock();
1989                if (!drop) {
1990                        /* just a race with rename */
1991                        unroll_tree_refs(context, p, count);
1992                        goto retry;
1993                }
1994                audit_put_chunk(drop);
1995                if (grow_tree_refs(context)) {
1996                        /* OK, got more space */
1997                        unroll_tree_refs(context, p, count);
1998                        goto retry;
1999                }
2000                /* too bad */
2001                printk(KERN_WARNING
2002                        "out of memory, audit has lost a tree reference\n");
2003                unroll_tree_refs(context, p, count);
2004                audit_set_auditable(context);
2005                return;
2006        }
2007        rcu_read_unlock();
2008#endif
2009}
2010
2011static struct audit_names *audit_alloc_name(struct audit_context *context)
2012{
2013        struct audit_names *aname;
2014
2015        if (context->name_count < AUDIT_NAMES) {
2016                aname = &context->preallocated_names[context->name_count];
2017                memset(aname, 0, sizeof(*aname));
2018        } else {
2019                aname = kzalloc(sizeof(*aname), GFP_NOFS);
2020                if (!aname)
2021                        return NULL;
2022                aname->should_free = true;
2023        }
2024
2025        aname->ino = (unsigned long)-1;
2026        list_add_tail(&aname->list, &context->names_list);
2027
2028        context->name_count++;
2029#if AUDIT_DEBUG
2030        context->ino_count++;
2031#endif
2032        return aname;
2033}
2034
2035/**
2036 * audit_getname - add a name to the list
2037 * @name: name to add
2038 *
2039 * Add a name to the list of audit names for this context.
2040 * Called from fs/namei.c:getname().
2041 */
2042void __audit_getname(const char *name)
2043{
2044        struct audit_context *context = current->audit_context;
2045        struct audit_names *n;
2046
2047        if (!context->in_syscall) {
2048#if AUDIT_DEBUG == 2
2049                printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
2050                       __FILE__, __LINE__, context->serial, name);
2051                dump_stack();
2052#endif
2053                return;
2054        }
2055
2056        n = audit_alloc_name(context);
2057        if (!n)
2058                return;
2059
2060        n->name = name;
2061        n->name_len = AUDIT_NAME_FULL;
2062        n->name_put = true;
2063
2064        if (!context->pwd.dentry)
2065                get_fs_pwd(current->fs, &context->pwd);
2066}
2067
2068/* audit_putname - intercept a putname request
2069 * @name: name to intercept and delay for putname
2070 *
2071 * If we have stored the name from getname in the audit context,
2072 * then we delay the putname until syscall exit.
2073 * Called from include/linux/fs.h:putname().
2074 */
2075void audit_putname(const char *name)
2076{
2077        struct audit_context *context = current->audit_context;
2078
2079        BUG_ON(!context);
2080        if (!context->in_syscall) {
2081#if AUDIT_DEBUG == 2
2082                printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
2083                       __FILE__, __LINE__, context->serial, name);
2084                if (context->name_count) {
2085                        struct audit_names *n;
2086                        int i;
2087
2088                        list_for_each_entry(n, &context->names_list, list)
2089                                printk(KERN_ERR "name[%d] = %p = %s\n", i,
2090                                       n->name, n->name ?: "(null)");
2091                        }
2092#endif
2093                __putname(name);
2094        }
2095#if AUDIT_DEBUG
2096        else {
2097                ++context->put_count;
2098                if (context->put_count > context->name_count) {
2099                        printk(KERN_ERR "%s:%d(:%d): major=%d"
2100                               " in_syscall=%d putname(%p) name_count=%d"
2101                               " put_count=%d\n",
2102                               __FILE__, __LINE__,
2103                               context->serial, context->major,
2104                               context->in_syscall, name, context->name_count,
2105                               context->put_count);
2106                        dump_stack();
2107                }
2108        }
2109#endif
2110}
2111
2112static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
2113{
2114        struct cpu_vfs_cap_data caps;
2115        int rc;
2116
2117        if (!dentry)
2118                return 0;
2119
2120        rc = get_vfs_caps_from_disk(dentry, &caps);
2121        if (rc)
2122                return rc;
2123
2124        name->fcap.permitted = caps.permitted;
2125        name->fcap.inheritable = caps.inheritable;
2126        name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2127        name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2128
2129        return 0;
2130}
2131
2132
2133/* Copy inode data into an audit_names. */
2134static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2135                             const struct inode *inode)
2136{
2137        name->ino   = inode->i_ino;
2138        name->dev   = inode->i_sb->s_dev;
2139        name->mode  = inode->i_mode;
2140        name->uid   = inode->i_uid;
2141        name->gid   = inode->i_gid;
2142        name->rdev  = inode->i_rdev;
2143        security_inode_getsecid(inode, &name->osid);
2144        audit_copy_fcaps(name, dentry);
2145}
2146
2147/**
2148 * audit_inode - store the inode and device from a lookup
2149 * @name: name being audited
2150 * @dentry: dentry being audited
2151 *
2152 * Called from fs/namei.c:path_lookup().
2153 */
2154void __audit_inode(const char *name, const struct dentry *dentry)
2155{
2156        struct audit_context *context = current->audit_context;
2157        const struct inode *inode = dentry->d_inode;
2158        struct audit_names *n;
2159
2160        if (!context->in_syscall)
2161                return;
2162
2163        list_for_each_entry_reverse(n, &context->names_list, list) {
2164                if (n->name && (n->name == name))
2165                        goto out;
2166        }
2167
2168        /* unable to find the name from a previous getname() */
2169        n = audit_alloc_name(context);
2170        if (!n)
2171                return;
2172out:
2173        handle_path(dentry);
2174        audit_copy_inode(n, dentry, inode);
2175}
2176
2177/**
2178 * audit_inode_child - collect inode info for created/removed objects
2179 * @dentry: dentry being audited
2180 * @parent: inode of dentry parent
2181 *
2182 * For syscalls that create or remove filesystem objects, audit_inode
2183 * can only collect information for the filesystem object's parent.
2184 * This call updates the audit context with the child's information.
2185 * Syscalls that create a new filesystem object must be hooked after
2186 * the object is created.  Syscalls that remove a filesystem object
2187 * must be hooked prior, in order to capture the target inode during
2188 * unsuccessful attempts.
2189 */
2190void __audit_inode_child(const struct dentry *dentry,
2191                         const struct inode *parent)
2192{
2193        struct audit_context *context = current->audit_context;
2194        const char *found_parent = NULL, *found_child = NULL;
2195        const struct inode *inode = dentry->d_inode;
2196        const char *dname = dentry->d_name.name;
2197        struct audit_names *n;
2198        int dirlen = 0;
2199
2200        if (!context->in_syscall)
2201                return;
2202
2203        if (inode)
2204                handle_one(inode);
2205
2206        /* parent is more likely, look for it first */
2207        list_for_each_entry(n, &context->names_list, list) {
2208                if (!n->name)
2209                        continue;
2210
2211                if (n->ino == parent->i_ino &&
2212                    !audit_compare_dname_path(dname, n->name, &dirlen)) {
2213                        n->name_len = dirlen; /* update parent data in place */
2214                        found_parent = n->name;
2215                        goto add_names;
2216                }
2217        }
2218
2219        /* no matching parent, look for matching child */
2220        list_for_each_entry(n, &context->names_list, list) {
2221                if (!n->name)
2222                        continue;
2223
2224                /* strcmp() is the more likely scenario */
2225                if (!strcmp(dname, n->name) ||
2226                     !audit_compare_dname_path(dname, n->name, &dirlen)) {
2227                        if (inode)
2228                                audit_copy_inode(n, NULL, inode);
2229                        else
2230                                n->ino = (unsigned long)-1;
2231                        found_child = n->name;
2232                        goto add_names;
2233                }
2234        }
2235
2236add_names:
2237        if (!found_parent) {
2238                n = audit_alloc_name(context);
2239                if (!n)
2240                        return;
2241                audit_copy_inode(n, NULL, parent);
2242        }
2243
2244        if (!found_child) {
2245                n = audit_alloc_name(context);
2246                if (!n)
2247                        return;
2248
2249                /* Re-use the name belonging to the slot for a matching parent
2250                 * directory. All names for this context are relinquished in
2251                 * audit_free_names() */
2252                if (found_parent) {
2253                        n->name = found_parent;
2254                        n->name_len = AUDIT_NAME_FULL;
2255                        /* don't call __putname() */
2256                        n->name_put = false;
2257                }
2258
2259                if (inode)
2260                        audit_copy_inode(n, NULL, inode);
2261        }
2262}
2263EXPORT_SYMBOL_GPL(__audit_inode_child);
2264
2265/**
2266 * auditsc_get_stamp - get local copies of audit_context values
2267 * @ctx: audit_context for the task
2268 * @t: timespec to store time recorded in the audit_context
2269 * @serial: serial value that is recorded in the audit_context
2270 *
2271 * Also sets the context as auditable.
2272 */
2273int auditsc_get_stamp(struct audit_context *ctx,
2274                       struct timespec *t, unsigned int *serial)
2275{
2276        if (!ctx->in_syscall)
2277                return 0;
2278        if (!ctx->serial)
2279                ctx->serial = audit_serial();
2280        t->tv_sec  = ctx->ctime.tv_sec;
2281        t->tv_nsec = ctx->ctime.tv_nsec;
2282        *serial    = ctx->serial;
2283        if (!ctx->prio) {
2284                ctx->prio = 1;
2285                ctx->current_state = AUDIT_RECORD_CONTEXT;
2286        }
2287        return 1;
2288}
2289
2290/* global counter which is incremented every time something logs in */
2291static atomic_t session_id = ATOMIC_INIT(0);
2292
2293/**
2294 * audit_set_loginuid - set current task's audit_context loginuid
2295 * @loginuid: loginuid value
2296 *
2297 * Returns 0.
2298 *
2299 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2300 */
2301int audit_set_loginuid(uid_t loginuid)
2302{
2303        struct task_struct *task = current;
2304        struct audit_context *context = task->audit_context;
2305        unsigned int sessionid;
2306
2307#ifdef CONFIG_AUDIT_LOGINUID_IMMUTABLE
2308        if (task->loginuid != -1)
2309                return -EPERM;
2310#else /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2311        if (!capable(CAP_AUDIT_CONTROL))
2312                return -EPERM;
2313#endif  /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2314
2315        sessionid = atomic_inc_return(&session_id);
2316        if (context && context->in_syscall) {
2317                struct audit_buffer *ab;
2318
2319                ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2320                if (ab) {
2321                        audit_log_format(ab, "login pid=%d uid=%u "
2322                                "old auid=%u new auid=%u"
2323                                " old ses=%u new ses=%u",
2324                                task->pid, task_uid(task),
2325                                task->loginuid, loginuid,
2326                                task->sessionid, sessionid);
2327                        audit_log_end(ab);
2328                }
2329        }
2330        task->sessionid = sessionid;
2331        task->loginuid = loginuid;
2332        return 0;
2333}
2334
2335/**
2336 * __audit_mq_open - record audit data for a POSIX MQ open
2337 * @oflag: open flag
2338 * @mode: mode bits
2339 * @attr: queue attributes
2340 *
2341 */
2342void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2343{
2344        struct audit_context *context = current->audit_context;
2345
2346        if (attr)
2347                memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2348        else
2349                memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2350
2351        context->mq_open.oflag = oflag;
2352        context->mq_open.mode = mode;
2353
2354        context->type = AUDIT_MQ_OPEN;
2355}
2356
2357/**
2358 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2359 * @mqdes: MQ descriptor
2360 * @msg_len: Message length
2361 * @msg_prio: Message priority
2362 * @abs_timeout: Message timeout in absolute time
2363 *
2364 */
2365void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2366                        const struct timespec *abs_timeout)
2367{
2368        struct audit_context *context = current->audit_context;
2369        struct timespec *p = &context->mq_sendrecv.abs_timeout;
2370
2371        if (abs_timeout)
2372                memcpy(p, abs_timeout, sizeof(struct timespec));
2373        else
2374                memset(p, 0, sizeof(struct timespec));
2375
2376        context->mq_sendrecv.mqdes = mqdes;
2377        context->mq_sendrecv.msg_len = msg_len;
2378        context->mq_sendrecv.msg_prio = msg_prio;
2379
2380        context->type = AUDIT_MQ_SENDRECV;
2381}
2382
2383/**
2384 * __audit_mq_notify - record audit data for a POSIX MQ notify
2385 * @mqdes: MQ descriptor
2386 * @notification: Notification event
2387 *
2388 */
2389
2390void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2391{
2392        struct audit_context *context = current->audit_context;
2393
2394        if (notification)
2395                context->mq_notify.sigev_signo = notification->sigev_signo;
2396        else
2397                context->mq_notify.sigev_signo = 0;
2398
2399        context->mq_notify.mqdes = mqdes;
2400        context->type = AUDIT_MQ_NOTIFY;
2401}
2402
2403/**
2404 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2405 * @mqdes: MQ descriptor
2406 * @mqstat: MQ flags
2407 *
2408 */
2409void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2410{
2411        struct audit_context *context = current->audit_context;
2412        context->mq_getsetattr.mqdes = mqdes;
2413        context->mq_getsetattr.mqstat = *mqstat;
2414        context->type = AUDIT_MQ_GETSETATTR;
2415}
2416
2417/**
2418 * audit_ipc_obj - record audit data for ipc object
2419 * @ipcp: ipc permissions
2420 *
2421 */
2422void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2423{
2424        struct audit_context *context = current->audit_context;
2425        context->ipc.uid = ipcp->uid;
2426        context->ipc.gid = ipcp->gid;
2427        context->ipc.mode = ipcp->mode;
2428        context->ipc.has_perm = 0;
2429        security_ipc_getsecid(ipcp, &context->ipc.osid);
2430        context->type = AUDIT_IPC;
2431}
2432
2433/**
2434 * audit_ipc_set_perm - record audit data for new ipc permissions
2435 * @qbytes: msgq bytes
2436 * @uid: msgq user id
2437 * @gid: msgq group id
2438 * @mode: msgq mode (permissions)
2439 *
2440 * Called only after audit_ipc_obj().
2441 */
2442void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2443{
2444        struct audit_context *context = current->audit_context;
2445
2446        context->ipc.qbytes = qbytes;
2447        context->ipc.perm_uid = uid;
2448        context->ipc.perm_gid = gid;
2449        context->ipc.perm_mode = mode;
2450        context->ipc.has_perm = 1;
2451}
2452
2453int __audit_bprm(struct linux_binprm *bprm)
2454{
2455        struct audit_aux_data_execve *ax;
2456        struct audit_context *context = current->audit_context;
2457
2458        ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2459        if (!ax)
2460                return -ENOMEM;
2461
2462        ax->argc = bprm->argc;
2463        ax->envc = bprm->envc;
2464        ax->mm = bprm->mm;
2465        ax->d.type = AUDIT_EXECVE;
2466        ax->d.next = context->aux;
2467        context->aux = (void *)ax;
2468        return 0;
2469}
2470
2471
2472/**
2473 * audit_socketcall - record audit data for sys_socketcall
2474 * @nargs: number of args
2475 * @args: args array
2476 *
2477 */
2478void __audit_socketcall(int nargs, unsigned long *args)
2479{
2480        struct audit_context *context = current->audit_context;
2481
2482        context->type = AUDIT_SOCKETCALL;
2483        context->socketcall.nargs = nargs;
2484        memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2485}
2486
2487/**
2488 * __audit_fd_pair - record audit data for pipe and socketpair
2489 * @fd1: the first file descriptor
2490 * @fd2: the second file descriptor
2491 *
2492 */
2493void __audit_fd_pair(int fd1, int fd2)
2494{
2495        struct audit_context *context = current->audit_context;
2496        context->fds[0] = fd1;
2497        context->fds[1] = fd2;
2498}
2499
2500/**
2501 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2502 * @len: data length in user space
2503 * @a: data address in kernel space
2504 *
2505 * Returns 0 for success or NULL context or < 0 on error.
2506 */
2507int __audit_sockaddr(int len, void *a)
2508{
2509        struct audit_context *context = current->audit_context;
2510
2511        if (!context->sockaddr) {
2512                void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2513                if (!p)
2514                        return -ENOMEM;
2515                context->sockaddr = p;
2516        }
2517
2518        context->sockaddr_len = len;
2519        memcpy(context->sockaddr, a, len);
2520        return 0;
2521}
2522
2523void __audit_ptrace(struct task_struct *t)
2524{
2525        struct audit_context *context = current->audit_context;
2526
2527        context->target_pid = t->pid;
2528        context->target_auid = audit_get_loginuid(t);
2529        context->target_uid = task_uid(t);
2530        context->target_sessionid = audit_get_sessionid(t);
2531        security_task_getsecid(t, &context->target_sid);
2532        memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2533}
2534
2535/**
2536 * audit_signal_info - record signal info for shutting down audit subsystem
2537 * @sig: signal value
2538 * @t: task being signaled
2539 *
2540 * If the audit subsystem is being terminated, record the task (pid)
2541 * and uid that is doing that.
2542 */
2543int __audit_signal_info(int sig, struct task_struct *t)
2544{
2545        struct audit_aux_data_pids *axp;
2546        struct task_struct *tsk = current;
2547        struct audit_context *ctx = tsk->audit_context;
2548        uid_t uid = current_uid(), t_uid = task_uid(t);
2549
2550        if (audit_pid && t->tgid == audit_pid) {
2551                if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2552                        audit_sig_pid = tsk->pid;
2553                        if (tsk->loginuid != -1)
2554                                audit_sig_uid = tsk->loginuid;
2555                        else
2556                                audit_sig_uid = uid;
2557                        security_task_getsecid(tsk, &audit_sig_sid);
2558                }
2559                if (!audit_signals || audit_dummy_context())
2560                        return 0;
2561        }
2562
2563        /* optimize the common case by putting first signal recipient directly
2564         * in audit_context */
2565        if (!ctx->target_pid) {
2566                ctx->target_pid = t->tgid;
2567                ctx->target_auid = audit_get_loginuid(t);
2568                ctx->target_uid = t_uid;
2569                ctx->target_sessionid = audit_get_sessionid(t);
2570                security_task_getsecid(t, &ctx->target_sid);
2571                memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2572                return 0;
2573        }
2574
2575        axp = (void *)ctx->aux_pids;
2576        if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2577                axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2578                if (!axp)
2579                        return -ENOMEM;
2580
2581                axp->d.type = AUDIT_OBJ_PID;
2582                axp->d.next = ctx->aux_pids;
2583                ctx->aux_pids = (void *)axp;
2584        }
2585        BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2586
2587        axp->target_pid[axp->pid_count] = t->tgid;
2588        axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2589        axp->target_uid[axp->pid_count] = t_uid;
2590        axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2591        security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2592        memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2593        axp->pid_count++;
2594
2595        return 0;
2596}
2597
2598/**
2599 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2600 * @bprm: pointer to the bprm being processed
2601 * @new: the proposed new credentials
2602 * @old: the old credentials
2603 *
2604 * Simply check if the proc already has the caps given by the file and if not
2605 * store the priv escalation info for later auditing at the end of the syscall
2606 *
2607 * -Eric
2608 */
2609int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2610                           const struct cred *new, const struct cred *old)
2611{
2612        struct audit_aux_data_bprm_fcaps *ax;
2613        struct audit_context *context = current->audit_context;
2614        struct cpu_vfs_cap_data vcaps;
2615        struct dentry *dentry;
2616
2617        ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2618        if (!ax)
2619                return -ENOMEM;
2620
2621        ax->d.type = AUDIT_BPRM_FCAPS;
2622        ax->d.next = context->aux;
2623        context->aux = (void *)ax;
2624
2625        dentry = dget(bprm->file->f_dentry);
2626        get_vfs_caps_from_disk(dentry, &vcaps);
2627        dput(dentry);
2628
2629        ax->fcap.permitted = vcaps.permitted;
2630        ax->fcap.inheritable = vcaps.inheritable;
2631        ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2632        ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2633
2634        ax->old_pcap.permitted   = old->cap_permitted;
2635        ax->old_pcap.inheritable = old->cap_inheritable;
2636        ax->old_pcap.effective   = old->cap_effective;
2637
2638        ax->new_pcap.permitted   = new->cap_permitted;
2639        ax->new_pcap.inheritable = new->cap_inheritable;
2640        ax->new_pcap.effective   = new->cap_effective;
2641        return 0;
2642}
2643
2644/**
2645 * __audit_log_capset - store information about the arguments to the capset syscall
2646 * @pid: target pid of the capset call
2647 * @new: the new credentials
2648 * @old: the old (current) credentials
2649 *
2650 * Record the aguments userspace sent to sys_capset for later printing by the
2651 * audit system if applicable
2652 */
2653void __audit_log_capset(pid_t pid,
2654                       const struct cred *new, const struct cred *old)
2655{
2656        struct audit_context *context = current->audit_context;
2657        context->capset.pid = pid;
2658        context->capset.cap.effective   = new->cap_effective;
2659        context->capset.cap.inheritable = new->cap_effective;
2660        context->capset.cap.permitted   = new->cap_permitted;
2661        context->type = AUDIT_CAPSET;
2662}
2663
2664void __audit_mmap_fd(int fd, int flags)
2665{
2666        struct audit_context *context = current->audit_context;
2667        context->mmap.fd = fd;
2668        context->mmap.flags = flags;
2669        context->type = AUDIT_MMAP;
2670}
2671
2672static void audit_log_abend(struct audit_buffer *ab, char *reason, long signr)
2673{
2674        uid_t auid, uid;
2675        gid_t gid;
2676        unsigned int sessionid;
2677
2678        auid = audit_get_loginuid(current);
2679        sessionid = audit_get_sessionid(current);
2680        current_uid_gid(&uid, &gid);
2681
2682        audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2683                         auid, uid, gid, sessionid);
2684        audit_log_task_context(ab);
2685        audit_log_format(ab, " pid=%d comm=", current->pid);
2686        audit_log_untrustedstring(ab, current->comm);
2687        audit_log_format(ab, " reason=");
2688        audit_log_string(ab, reason);
2689        audit_log_format(ab, " sig=%ld", signr);
2690}
2691/**
2692 * audit_core_dumps - record information about processes that end abnormally
2693 * @signr: signal value
2694 *
2695 * If a process ends with a core dump, something fishy is going on and we
2696 * should record the event for investigation.
2697 */
2698void audit_core_dumps(long signr)
2699{
2700        struct audit_buffer *ab;
2701
2702        if (!audit_enabled)
2703                return;
2704
2705        if (signr == SIGQUIT)   /* don't care for those */
2706                return;
2707
2708        ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2709        audit_log_abend(ab, "memory violation", signr);
2710        audit_log_end(ab);
2711}
2712
2713void __audit_seccomp(unsigned long syscall)
2714{
2715        struct audit_buffer *ab;
2716
2717        ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2718        audit_log_abend(ab, "seccomp", SIGKILL);
2719        audit_log_format(ab, " syscall=%ld", syscall);
2720        audit_log_end(ab);
2721}
2722
2723struct list_head *audit_killed_trees(void)
2724{
2725        struct audit_context *ctx = current->audit_context;
2726        if (likely(!ctx || !ctx->in_syscall))
2727                return NULL;
2728        return &ctx->killed_trees;
2729}
2730