linux/kernel/events/core.c
<<
>>
Prefs
   1/*
   2 * Performance events core code:
   3 *
   4 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
   5 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
   6 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
   7 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
   8 *
   9 * For licensing details see kernel-base/COPYING
  10 */
  11
  12#include <linux/fs.h>
  13#include <linux/mm.h>
  14#include <linux/cpu.h>
  15#include <linux/smp.h>
  16#include <linux/idr.h>
  17#include <linux/file.h>
  18#include <linux/poll.h>
  19#include <linux/slab.h>
  20#include <linux/hash.h>
  21#include <linux/sysfs.h>
  22#include <linux/dcache.h>
  23#include <linux/percpu.h>
  24#include <linux/ptrace.h>
  25#include <linux/reboot.h>
  26#include <linux/vmstat.h>
  27#include <linux/device.h>
  28#include <linux/export.h>
  29#include <linux/vmalloc.h>
  30#include <linux/hardirq.h>
  31#include <linux/rculist.h>
  32#include <linux/uaccess.h>
  33#include <linux/syscalls.h>
  34#include <linux/anon_inodes.h>
  35#include <linux/kernel_stat.h>
  36#include <linux/perf_event.h>
  37#include <linux/ftrace_event.h>
  38#include <linux/hw_breakpoint.h>
  39
  40#include "internal.h"
  41
  42#include <asm/irq_regs.h>
  43
  44struct remote_function_call {
  45        struct task_struct      *p;
  46        int                     (*func)(void *info);
  47        void                    *info;
  48        int                     ret;
  49};
  50
  51static void remote_function(void *data)
  52{
  53        struct remote_function_call *tfc = data;
  54        struct task_struct *p = tfc->p;
  55
  56        if (p) {
  57                tfc->ret = -EAGAIN;
  58                if (task_cpu(p) != smp_processor_id() || !task_curr(p))
  59                        return;
  60        }
  61
  62        tfc->ret = tfc->func(tfc->info);
  63}
  64
  65/**
  66 * task_function_call - call a function on the cpu on which a task runs
  67 * @p:          the task to evaluate
  68 * @func:       the function to be called
  69 * @info:       the function call argument
  70 *
  71 * Calls the function @func when the task is currently running. This might
  72 * be on the current CPU, which just calls the function directly
  73 *
  74 * returns: @func return value, or
  75 *          -ESRCH  - when the process isn't running
  76 *          -EAGAIN - when the process moved away
  77 */
  78static int
  79task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
  80{
  81        struct remote_function_call data = {
  82                .p      = p,
  83                .func   = func,
  84                .info   = info,
  85                .ret    = -ESRCH, /* No such (running) process */
  86        };
  87
  88        if (task_curr(p))
  89                smp_call_function_single(task_cpu(p), remote_function, &data, 1);
  90
  91        return data.ret;
  92}
  93
  94/**
  95 * cpu_function_call - call a function on the cpu
  96 * @func:       the function to be called
  97 * @info:       the function call argument
  98 *
  99 * Calls the function @func on the remote cpu.
 100 *
 101 * returns: @func return value or -ENXIO when the cpu is offline
 102 */
 103static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
 104{
 105        struct remote_function_call data = {
 106                .p      = NULL,
 107                .func   = func,
 108                .info   = info,
 109                .ret    = -ENXIO, /* No such CPU */
 110        };
 111
 112        smp_call_function_single(cpu, remote_function, &data, 1);
 113
 114        return data.ret;
 115}
 116
 117#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
 118                       PERF_FLAG_FD_OUTPUT  |\
 119                       PERF_FLAG_PID_CGROUP)
 120
 121enum event_type_t {
 122        EVENT_FLEXIBLE = 0x1,
 123        EVENT_PINNED = 0x2,
 124        EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
 125};
 126
 127/*
 128 * perf_sched_events : >0 events exist
 129 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 130 */
 131struct jump_label_key_deferred perf_sched_events __read_mostly;
 132static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
 133
 134static atomic_t nr_mmap_events __read_mostly;
 135static atomic_t nr_comm_events __read_mostly;
 136static atomic_t nr_task_events __read_mostly;
 137
 138static LIST_HEAD(pmus);
 139static DEFINE_MUTEX(pmus_lock);
 140static struct srcu_struct pmus_srcu;
 141
 142/*
 143 * perf event paranoia level:
 144 *  -1 - not paranoid at all
 145 *   0 - disallow raw tracepoint access for unpriv
 146 *   1 - disallow cpu events for unpriv
 147 *   2 - disallow kernel profiling for unpriv
 148 */
 149int sysctl_perf_event_paranoid __read_mostly = 1;
 150
 151/* Minimum for 512 kiB + 1 user control page */
 152int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
 153
 154/*
 155 * max perf event sample rate
 156 */
 157#define DEFAULT_MAX_SAMPLE_RATE 100000
 158int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
 159static int max_samples_per_tick __read_mostly =
 160        DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
 161
 162int perf_proc_update_handler(struct ctl_table *table, int write,
 163                void __user *buffer, size_t *lenp,
 164                loff_t *ppos)
 165{
 166        int ret = proc_dointvec(table, write, buffer, lenp, ppos);
 167
 168        if (ret || !write)
 169                return ret;
 170
 171        max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
 172
 173        return 0;
 174}
 175
 176static atomic64_t perf_event_id;
 177
 178static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
 179                              enum event_type_t event_type);
 180
 181static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
 182                             enum event_type_t event_type,
 183                             struct task_struct *task);
 184
 185static void update_context_time(struct perf_event_context *ctx);
 186static u64 perf_event_time(struct perf_event *event);
 187
 188static void ring_buffer_attach(struct perf_event *event,
 189                               struct ring_buffer *rb);
 190
 191void __weak perf_event_print_debug(void)        { }
 192
 193extern __weak const char *perf_pmu_name(void)
 194{
 195        return "pmu";
 196}
 197
 198static inline u64 perf_clock(void)
 199{
 200        return local_clock();
 201}
 202
 203static inline struct perf_cpu_context *
 204__get_cpu_context(struct perf_event_context *ctx)
 205{
 206        return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
 207}
 208
 209static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
 210                          struct perf_event_context *ctx)
 211{
 212        raw_spin_lock(&cpuctx->ctx.lock);
 213        if (ctx)
 214                raw_spin_lock(&ctx->lock);
 215}
 216
 217static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
 218                            struct perf_event_context *ctx)
 219{
 220        if (ctx)
 221                raw_spin_unlock(&ctx->lock);
 222        raw_spin_unlock(&cpuctx->ctx.lock);
 223}
 224
 225#ifdef CONFIG_CGROUP_PERF
 226
 227/*
 228 * Must ensure cgroup is pinned (css_get) before calling
 229 * this function. In other words, we cannot call this function
 230 * if there is no cgroup event for the current CPU context.
 231 */
 232static inline struct perf_cgroup *
 233perf_cgroup_from_task(struct task_struct *task)
 234{
 235        return container_of(task_subsys_state(task, perf_subsys_id),
 236                        struct perf_cgroup, css);
 237}
 238
 239static inline bool
 240perf_cgroup_match(struct perf_event *event)
 241{
 242        struct perf_event_context *ctx = event->ctx;
 243        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 244
 245        return !event->cgrp || event->cgrp == cpuctx->cgrp;
 246}
 247
 248static inline void perf_get_cgroup(struct perf_event *event)
 249{
 250        css_get(&event->cgrp->css);
 251}
 252
 253static inline void perf_put_cgroup(struct perf_event *event)
 254{
 255        css_put(&event->cgrp->css);
 256}
 257
 258static inline void perf_detach_cgroup(struct perf_event *event)
 259{
 260        perf_put_cgroup(event);
 261        event->cgrp = NULL;
 262}
 263
 264static inline int is_cgroup_event(struct perf_event *event)
 265{
 266        return event->cgrp != NULL;
 267}
 268
 269static inline u64 perf_cgroup_event_time(struct perf_event *event)
 270{
 271        struct perf_cgroup_info *t;
 272
 273        t = per_cpu_ptr(event->cgrp->info, event->cpu);
 274        return t->time;
 275}
 276
 277static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
 278{
 279        struct perf_cgroup_info *info;
 280        u64 now;
 281
 282        now = perf_clock();
 283
 284        info = this_cpu_ptr(cgrp->info);
 285
 286        info->time += now - info->timestamp;
 287        info->timestamp = now;
 288}
 289
 290static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
 291{
 292        struct perf_cgroup *cgrp_out = cpuctx->cgrp;
 293        if (cgrp_out)
 294                __update_cgrp_time(cgrp_out);
 295}
 296
 297static inline void update_cgrp_time_from_event(struct perf_event *event)
 298{
 299        struct perf_cgroup *cgrp;
 300
 301        /*
 302         * ensure we access cgroup data only when needed and
 303         * when we know the cgroup is pinned (css_get)
 304         */
 305        if (!is_cgroup_event(event))
 306                return;
 307
 308        cgrp = perf_cgroup_from_task(current);
 309        /*
 310         * Do not update time when cgroup is not active
 311         */
 312        if (cgrp == event->cgrp)
 313                __update_cgrp_time(event->cgrp);
 314}
 315
 316static inline void
 317perf_cgroup_set_timestamp(struct task_struct *task,
 318                          struct perf_event_context *ctx)
 319{
 320        struct perf_cgroup *cgrp;
 321        struct perf_cgroup_info *info;
 322
 323        /*
 324         * ctx->lock held by caller
 325         * ensure we do not access cgroup data
 326         * unless we have the cgroup pinned (css_get)
 327         */
 328        if (!task || !ctx->nr_cgroups)
 329                return;
 330
 331        cgrp = perf_cgroup_from_task(task);
 332        info = this_cpu_ptr(cgrp->info);
 333        info->timestamp = ctx->timestamp;
 334}
 335
 336#define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
 337#define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
 338
 339/*
 340 * reschedule events based on the cgroup constraint of task.
 341 *
 342 * mode SWOUT : schedule out everything
 343 * mode SWIN : schedule in based on cgroup for next
 344 */
 345void perf_cgroup_switch(struct task_struct *task, int mode)
 346{
 347        struct perf_cpu_context *cpuctx;
 348        struct pmu *pmu;
 349        unsigned long flags;
 350
 351        /*
 352         * disable interrupts to avoid geting nr_cgroup
 353         * changes via __perf_event_disable(). Also
 354         * avoids preemption.
 355         */
 356        local_irq_save(flags);
 357
 358        /*
 359         * we reschedule only in the presence of cgroup
 360         * constrained events.
 361         */
 362        rcu_read_lock();
 363
 364        list_for_each_entry_rcu(pmu, &pmus, entry) {
 365                cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
 366
 367                /*
 368                 * perf_cgroup_events says at least one
 369                 * context on this CPU has cgroup events.
 370                 *
 371                 * ctx->nr_cgroups reports the number of cgroup
 372                 * events for a context.
 373                 */
 374                if (cpuctx->ctx.nr_cgroups > 0) {
 375                        perf_ctx_lock(cpuctx, cpuctx->task_ctx);
 376                        perf_pmu_disable(cpuctx->ctx.pmu);
 377
 378                        if (mode & PERF_CGROUP_SWOUT) {
 379                                cpu_ctx_sched_out(cpuctx, EVENT_ALL);
 380                                /*
 381                                 * must not be done before ctxswout due
 382                                 * to event_filter_match() in event_sched_out()
 383                                 */
 384                                cpuctx->cgrp = NULL;
 385                        }
 386
 387                        if (mode & PERF_CGROUP_SWIN) {
 388                                WARN_ON_ONCE(cpuctx->cgrp);
 389                                /* set cgrp before ctxsw in to
 390                                 * allow event_filter_match() to not
 391                                 * have to pass task around
 392                                 */
 393                                cpuctx->cgrp = perf_cgroup_from_task(task);
 394                                cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
 395                        }
 396                        perf_pmu_enable(cpuctx->ctx.pmu);
 397                        perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
 398                }
 399        }
 400
 401        rcu_read_unlock();
 402
 403        local_irq_restore(flags);
 404}
 405
 406static inline void perf_cgroup_sched_out(struct task_struct *task,
 407                                         struct task_struct *next)
 408{
 409        struct perf_cgroup *cgrp1;
 410        struct perf_cgroup *cgrp2 = NULL;
 411
 412        /*
 413         * we come here when we know perf_cgroup_events > 0
 414         */
 415        cgrp1 = perf_cgroup_from_task(task);
 416
 417        /*
 418         * next is NULL when called from perf_event_enable_on_exec()
 419         * that will systematically cause a cgroup_switch()
 420         */
 421        if (next)
 422                cgrp2 = perf_cgroup_from_task(next);
 423
 424        /*
 425         * only schedule out current cgroup events if we know
 426         * that we are switching to a different cgroup. Otherwise,
 427         * do no touch the cgroup events.
 428         */
 429        if (cgrp1 != cgrp2)
 430                perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
 431}
 432
 433static inline void perf_cgroup_sched_in(struct task_struct *prev,
 434                                        struct task_struct *task)
 435{
 436        struct perf_cgroup *cgrp1;
 437        struct perf_cgroup *cgrp2 = NULL;
 438
 439        /*
 440         * we come here when we know perf_cgroup_events > 0
 441         */
 442        cgrp1 = perf_cgroup_from_task(task);
 443
 444        /* prev can never be NULL */
 445        cgrp2 = perf_cgroup_from_task(prev);
 446
 447        /*
 448         * only need to schedule in cgroup events if we are changing
 449         * cgroup during ctxsw. Cgroup events were not scheduled
 450         * out of ctxsw out if that was not the case.
 451         */
 452        if (cgrp1 != cgrp2)
 453                perf_cgroup_switch(task, PERF_CGROUP_SWIN);
 454}
 455
 456static inline int perf_cgroup_connect(int fd, struct perf_event *event,
 457                                      struct perf_event_attr *attr,
 458                                      struct perf_event *group_leader)
 459{
 460        struct perf_cgroup *cgrp;
 461        struct cgroup_subsys_state *css;
 462        struct file *file;
 463        int ret = 0, fput_needed;
 464
 465        file = fget_light(fd, &fput_needed);
 466        if (!file)
 467                return -EBADF;
 468
 469        css = cgroup_css_from_dir(file, perf_subsys_id);
 470        if (IS_ERR(css)) {
 471                ret = PTR_ERR(css);
 472                goto out;
 473        }
 474
 475        cgrp = container_of(css, struct perf_cgroup, css);
 476        event->cgrp = cgrp;
 477
 478        /* must be done before we fput() the file */
 479        perf_get_cgroup(event);
 480
 481        /*
 482         * all events in a group must monitor
 483         * the same cgroup because a task belongs
 484         * to only one perf cgroup at a time
 485         */
 486        if (group_leader && group_leader->cgrp != cgrp) {
 487                perf_detach_cgroup(event);
 488                ret = -EINVAL;
 489        }
 490out:
 491        fput_light(file, fput_needed);
 492        return ret;
 493}
 494
 495static inline void
 496perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
 497{
 498        struct perf_cgroup_info *t;
 499        t = per_cpu_ptr(event->cgrp->info, event->cpu);
 500        event->shadow_ctx_time = now - t->timestamp;
 501}
 502
 503static inline void
 504perf_cgroup_defer_enabled(struct perf_event *event)
 505{
 506        /*
 507         * when the current task's perf cgroup does not match
 508         * the event's, we need to remember to call the
 509         * perf_mark_enable() function the first time a task with
 510         * a matching perf cgroup is scheduled in.
 511         */
 512        if (is_cgroup_event(event) && !perf_cgroup_match(event))
 513                event->cgrp_defer_enabled = 1;
 514}
 515
 516static inline void
 517perf_cgroup_mark_enabled(struct perf_event *event,
 518                         struct perf_event_context *ctx)
 519{
 520        struct perf_event *sub;
 521        u64 tstamp = perf_event_time(event);
 522
 523        if (!event->cgrp_defer_enabled)
 524                return;
 525
 526        event->cgrp_defer_enabled = 0;
 527
 528        event->tstamp_enabled = tstamp - event->total_time_enabled;
 529        list_for_each_entry(sub, &event->sibling_list, group_entry) {
 530                if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
 531                        sub->tstamp_enabled = tstamp - sub->total_time_enabled;
 532                        sub->cgrp_defer_enabled = 0;
 533                }
 534        }
 535}
 536#else /* !CONFIG_CGROUP_PERF */
 537
 538static inline bool
 539perf_cgroup_match(struct perf_event *event)
 540{
 541        return true;
 542}
 543
 544static inline void perf_detach_cgroup(struct perf_event *event)
 545{}
 546
 547static inline int is_cgroup_event(struct perf_event *event)
 548{
 549        return 0;
 550}
 551
 552static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
 553{
 554        return 0;
 555}
 556
 557static inline void update_cgrp_time_from_event(struct perf_event *event)
 558{
 559}
 560
 561static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
 562{
 563}
 564
 565static inline void perf_cgroup_sched_out(struct task_struct *task,
 566                                         struct task_struct *next)
 567{
 568}
 569
 570static inline void perf_cgroup_sched_in(struct task_struct *prev,
 571                                        struct task_struct *task)
 572{
 573}
 574
 575static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
 576                                      struct perf_event_attr *attr,
 577                                      struct perf_event *group_leader)
 578{
 579        return -EINVAL;
 580}
 581
 582static inline void
 583perf_cgroup_set_timestamp(struct task_struct *task,
 584                          struct perf_event_context *ctx)
 585{
 586}
 587
 588void
 589perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
 590{
 591}
 592
 593static inline void
 594perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
 595{
 596}
 597
 598static inline u64 perf_cgroup_event_time(struct perf_event *event)
 599{
 600        return 0;
 601}
 602
 603static inline void
 604perf_cgroup_defer_enabled(struct perf_event *event)
 605{
 606}
 607
 608static inline void
 609perf_cgroup_mark_enabled(struct perf_event *event,
 610                         struct perf_event_context *ctx)
 611{
 612}
 613#endif
 614
 615void perf_pmu_disable(struct pmu *pmu)
 616{
 617        int *count = this_cpu_ptr(pmu->pmu_disable_count);
 618        if (!(*count)++)
 619                pmu->pmu_disable(pmu);
 620}
 621
 622void perf_pmu_enable(struct pmu *pmu)
 623{
 624        int *count = this_cpu_ptr(pmu->pmu_disable_count);
 625        if (!--(*count))
 626                pmu->pmu_enable(pmu);
 627}
 628
 629static DEFINE_PER_CPU(struct list_head, rotation_list);
 630
 631/*
 632 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 633 * because they're strictly cpu affine and rotate_start is called with IRQs
 634 * disabled, while rotate_context is called from IRQ context.
 635 */
 636static void perf_pmu_rotate_start(struct pmu *pmu)
 637{
 638        struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
 639        struct list_head *head = &__get_cpu_var(rotation_list);
 640
 641        WARN_ON(!irqs_disabled());
 642
 643        if (list_empty(&cpuctx->rotation_list))
 644                list_add(&cpuctx->rotation_list, head);
 645}
 646
 647static void get_ctx(struct perf_event_context *ctx)
 648{
 649        WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
 650}
 651
 652static void put_ctx(struct perf_event_context *ctx)
 653{
 654        if (atomic_dec_and_test(&ctx->refcount)) {
 655                if (ctx->parent_ctx)
 656                        put_ctx(ctx->parent_ctx);
 657                if (ctx->task)
 658                        put_task_struct(ctx->task);
 659                kfree_rcu(ctx, rcu_head);
 660        }
 661}
 662
 663static void unclone_ctx(struct perf_event_context *ctx)
 664{
 665        if (ctx->parent_ctx) {
 666                put_ctx(ctx->parent_ctx);
 667                ctx->parent_ctx = NULL;
 668        }
 669}
 670
 671static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
 672{
 673        /*
 674         * only top level events have the pid namespace they were created in
 675         */
 676        if (event->parent)
 677                event = event->parent;
 678
 679        return task_tgid_nr_ns(p, event->ns);
 680}
 681
 682static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
 683{
 684        /*
 685         * only top level events have the pid namespace they were created in
 686         */
 687        if (event->parent)
 688                event = event->parent;
 689
 690        return task_pid_nr_ns(p, event->ns);
 691}
 692
 693/*
 694 * If we inherit events we want to return the parent event id
 695 * to userspace.
 696 */
 697static u64 primary_event_id(struct perf_event *event)
 698{
 699        u64 id = event->id;
 700
 701        if (event->parent)
 702                id = event->parent->id;
 703
 704        return id;
 705}
 706
 707/*
 708 * Get the perf_event_context for a task and lock it.
 709 * This has to cope with with the fact that until it is locked,
 710 * the context could get moved to another task.
 711 */
 712static struct perf_event_context *
 713perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
 714{
 715        struct perf_event_context *ctx;
 716
 717        rcu_read_lock();
 718retry:
 719        ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
 720        if (ctx) {
 721                /*
 722                 * If this context is a clone of another, it might
 723                 * get swapped for another underneath us by
 724                 * perf_event_task_sched_out, though the
 725                 * rcu_read_lock() protects us from any context
 726                 * getting freed.  Lock the context and check if it
 727                 * got swapped before we could get the lock, and retry
 728                 * if so.  If we locked the right context, then it
 729                 * can't get swapped on us any more.
 730                 */
 731                raw_spin_lock_irqsave(&ctx->lock, *flags);
 732                if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
 733                        raw_spin_unlock_irqrestore(&ctx->lock, *flags);
 734                        goto retry;
 735                }
 736
 737                if (!atomic_inc_not_zero(&ctx->refcount)) {
 738                        raw_spin_unlock_irqrestore(&ctx->lock, *flags);
 739                        ctx = NULL;
 740                }
 741        }
 742        rcu_read_unlock();
 743        return ctx;
 744}
 745
 746/*
 747 * Get the context for a task and increment its pin_count so it
 748 * can't get swapped to another task.  This also increments its
 749 * reference count so that the context can't get freed.
 750 */
 751static struct perf_event_context *
 752perf_pin_task_context(struct task_struct *task, int ctxn)
 753{
 754        struct perf_event_context *ctx;
 755        unsigned long flags;
 756
 757        ctx = perf_lock_task_context(task, ctxn, &flags);
 758        if (ctx) {
 759                ++ctx->pin_count;
 760                raw_spin_unlock_irqrestore(&ctx->lock, flags);
 761        }
 762        return ctx;
 763}
 764
 765static void perf_unpin_context(struct perf_event_context *ctx)
 766{
 767        unsigned long flags;
 768
 769        raw_spin_lock_irqsave(&ctx->lock, flags);
 770        --ctx->pin_count;
 771        raw_spin_unlock_irqrestore(&ctx->lock, flags);
 772}
 773
 774/*
 775 * Update the record of the current time in a context.
 776 */
 777static void update_context_time(struct perf_event_context *ctx)
 778{
 779        u64 now = perf_clock();
 780
 781        ctx->time += now - ctx->timestamp;
 782        ctx->timestamp = now;
 783}
 784
 785static u64 perf_event_time(struct perf_event *event)
 786{
 787        struct perf_event_context *ctx = event->ctx;
 788
 789        if (is_cgroup_event(event))
 790                return perf_cgroup_event_time(event);
 791
 792        return ctx ? ctx->time : 0;
 793}
 794
 795/*
 796 * Update the total_time_enabled and total_time_running fields for a event.
 797 * The caller of this function needs to hold the ctx->lock.
 798 */
 799static void update_event_times(struct perf_event *event)
 800{
 801        struct perf_event_context *ctx = event->ctx;
 802        u64 run_end;
 803
 804        if (event->state < PERF_EVENT_STATE_INACTIVE ||
 805            event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
 806                return;
 807        /*
 808         * in cgroup mode, time_enabled represents
 809         * the time the event was enabled AND active
 810         * tasks were in the monitored cgroup. This is
 811         * independent of the activity of the context as
 812         * there may be a mix of cgroup and non-cgroup events.
 813         *
 814         * That is why we treat cgroup events differently
 815         * here.
 816         */
 817        if (is_cgroup_event(event))
 818                run_end = perf_cgroup_event_time(event);
 819        else if (ctx->is_active)
 820                run_end = ctx->time;
 821        else
 822                run_end = event->tstamp_stopped;
 823
 824        event->total_time_enabled = run_end - event->tstamp_enabled;
 825
 826        if (event->state == PERF_EVENT_STATE_INACTIVE)
 827                run_end = event->tstamp_stopped;
 828        else
 829                run_end = perf_event_time(event);
 830
 831        event->total_time_running = run_end - event->tstamp_running;
 832
 833}
 834
 835/*
 836 * Update total_time_enabled and total_time_running for all events in a group.
 837 */
 838static void update_group_times(struct perf_event *leader)
 839{
 840        struct perf_event *event;
 841
 842        update_event_times(leader);
 843        list_for_each_entry(event, &leader->sibling_list, group_entry)
 844                update_event_times(event);
 845}
 846
 847static struct list_head *
 848ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
 849{
 850        if (event->attr.pinned)
 851                return &ctx->pinned_groups;
 852        else
 853                return &ctx->flexible_groups;
 854}
 855
 856/*
 857 * Add a event from the lists for its context.
 858 * Must be called with ctx->mutex and ctx->lock held.
 859 */
 860static void
 861list_add_event(struct perf_event *event, struct perf_event_context *ctx)
 862{
 863        WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
 864        event->attach_state |= PERF_ATTACH_CONTEXT;
 865
 866        /*
 867         * If we're a stand alone event or group leader, we go to the context
 868         * list, group events are kept attached to the group so that
 869         * perf_group_detach can, at all times, locate all siblings.
 870         */
 871        if (event->group_leader == event) {
 872                struct list_head *list;
 873
 874                if (is_software_event(event))
 875                        event->group_flags |= PERF_GROUP_SOFTWARE;
 876
 877                list = ctx_group_list(event, ctx);
 878                list_add_tail(&event->group_entry, list);
 879        }
 880
 881        if (is_cgroup_event(event))
 882                ctx->nr_cgroups++;
 883
 884        list_add_rcu(&event->event_entry, &ctx->event_list);
 885        if (!ctx->nr_events)
 886                perf_pmu_rotate_start(ctx->pmu);
 887        ctx->nr_events++;
 888        if (event->attr.inherit_stat)
 889                ctx->nr_stat++;
 890}
 891
 892/*
 893 * Called at perf_event creation and when events are attached/detached from a
 894 * group.
 895 */
 896static void perf_event__read_size(struct perf_event *event)
 897{
 898        int entry = sizeof(u64); /* value */
 899        int size = 0;
 900        int nr = 1;
 901
 902        if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
 903                size += sizeof(u64);
 904
 905        if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
 906                size += sizeof(u64);
 907
 908        if (event->attr.read_format & PERF_FORMAT_ID)
 909                entry += sizeof(u64);
 910
 911        if (event->attr.read_format & PERF_FORMAT_GROUP) {
 912                nr += event->group_leader->nr_siblings;
 913                size += sizeof(u64);
 914        }
 915
 916        size += entry * nr;
 917        event->read_size = size;
 918}
 919
 920static void perf_event__header_size(struct perf_event *event)
 921{
 922        struct perf_sample_data *data;
 923        u64 sample_type = event->attr.sample_type;
 924        u16 size = 0;
 925
 926        perf_event__read_size(event);
 927
 928        if (sample_type & PERF_SAMPLE_IP)
 929                size += sizeof(data->ip);
 930
 931        if (sample_type & PERF_SAMPLE_ADDR)
 932                size += sizeof(data->addr);
 933
 934        if (sample_type & PERF_SAMPLE_PERIOD)
 935                size += sizeof(data->period);
 936
 937        if (sample_type & PERF_SAMPLE_READ)
 938                size += event->read_size;
 939
 940        event->header_size = size;
 941}
 942
 943static void perf_event__id_header_size(struct perf_event *event)
 944{
 945        struct perf_sample_data *data;
 946        u64 sample_type = event->attr.sample_type;
 947        u16 size = 0;
 948
 949        if (sample_type & PERF_SAMPLE_TID)
 950                size += sizeof(data->tid_entry);
 951
 952        if (sample_type & PERF_SAMPLE_TIME)
 953                size += sizeof(data->time);
 954
 955        if (sample_type & PERF_SAMPLE_ID)
 956                size += sizeof(data->id);
 957
 958        if (sample_type & PERF_SAMPLE_STREAM_ID)
 959                size += sizeof(data->stream_id);
 960
 961        if (sample_type & PERF_SAMPLE_CPU)
 962                size += sizeof(data->cpu_entry);
 963
 964        event->id_header_size = size;
 965}
 966
 967static void perf_group_attach(struct perf_event *event)
 968{
 969        struct perf_event *group_leader = event->group_leader, *pos;
 970
 971        /*
 972         * We can have double attach due to group movement in perf_event_open.
 973         */
 974        if (event->attach_state & PERF_ATTACH_GROUP)
 975                return;
 976
 977        event->attach_state |= PERF_ATTACH_GROUP;
 978
 979        if (group_leader == event)
 980                return;
 981
 982        if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
 983                        !is_software_event(event))
 984                group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
 985
 986        list_add_tail(&event->group_entry, &group_leader->sibling_list);
 987        group_leader->nr_siblings++;
 988
 989        perf_event__header_size(group_leader);
 990
 991        list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
 992                perf_event__header_size(pos);
 993}
 994
 995/*
 996 * Remove a event from the lists for its context.
 997 * Must be called with ctx->mutex and ctx->lock held.
 998 */
 999static void
1000list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1001{
1002        struct perf_cpu_context *cpuctx;
1003        /*
1004         * We can have double detach due to exit/hot-unplug + close.
1005         */
1006        if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1007                return;
1008
1009        event->attach_state &= ~PERF_ATTACH_CONTEXT;
1010
1011        if (is_cgroup_event(event)) {
1012                ctx->nr_cgroups--;
1013                cpuctx = __get_cpu_context(ctx);
1014                /*
1015                 * if there are no more cgroup events
1016                 * then cler cgrp to avoid stale pointer
1017                 * in update_cgrp_time_from_cpuctx()
1018                 */
1019                if (!ctx->nr_cgroups)
1020                        cpuctx->cgrp = NULL;
1021        }
1022
1023        ctx->nr_events--;
1024        if (event->attr.inherit_stat)
1025                ctx->nr_stat--;
1026
1027        list_del_rcu(&event->event_entry);
1028
1029        if (event->group_leader == event)
1030                list_del_init(&event->group_entry);
1031
1032        update_group_times(event);
1033
1034        /*
1035         * If event was in error state, then keep it
1036         * that way, otherwise bogus counts will be
1037         * returned on read(). The only way to get out
1038         * of error state is by explicit re-enabling
1039         * of the event
1040         */
1041        if (event->state > PERF_EVENT_STATE_OFF)
1042                event->state = PERF_EVENT_STATE_OFF;
1043}
1044
1045static void perf_group_detach(struct perf_event *event)
1046{
1047        struct perf_event *sibling, *tmp;
1048        struct list_head *list = NULL;
1049
1050        /*
1051         * We can have double detach due to exit/hot-unplug + close.
1052         */
1053        if (!(event->attach_state & PERF_ATTACH_GROUP))
1054                return;
1055
1056        event->attach_state &= ~PERF_ATTACH_GROUP;
1057
1058        /*
1059         * If this is a sibling, remove it from its group.
1060         */
1061        if (event->group_leader != event) {
1062                list_del_init(&event->group_entry);
1063                event->group_leader->nr_siblings--;
1064                goto out;
1065        }
1066
1067        if (!list_empty(&event->group_entry))
1068                list = &event->group_entry;
1069
1070        /*
1071         * If this was a group event with sibling events then
1072         * upgrade the siblings to singleton events by adding them
1073         * to whatever list we are on.
1074         */
1075        list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1076                if (list)
1077                        list_move_tail(&sibling->group_entry, list);
1078                sibling->group_leader = sibling;
1079
1080                /* Inherit group flags from the previous leader */
1081                sibling->group_flags = event->group_flags;
1082        }
1083
1084out:
1085        perf_event__header_size(event->group_leader);
1086
1087        list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1088                perf_event__header_size(tmp);
1089}
1090
1091static inline int
1092event_filter_match(struct perf_event *event)
1093{
1094        return (event->cpu == -1 || event->cpu == smp_processor_id())
1095            && perf_cgroup_match(event);
1096}
1097
1098static void
1099event_sched_out(struct perf_event *event,
1100                  struct perf_cpu_context *cpuctx,
1101                  struct perf_event_context *ctx)
1102{
1103        u64 tstamp = perf_event_time(event);
1104        u64 delta;
1105        /*
1106         * An event which could not be activated because of
1107         * filter mismatch still needs to have its timings
1108         * maintained, otherwise bogus information is return
1109         * via read() for time_enabled, time_running:
1110         */
1111        if (event->state == PERF_EVENT_STATE_INACTIVE
1112            && !event_filter_match(event)) {
1113                delta = tstamp - event->tstamp_stopped;
1114                event->tstamp_running += delta;
1115                event->tstamp_stopped = tstamp;
1116        }
1117
1118        if (event->state != PERF_EVENT_STATE_ACTIVE)
1119                return;
1120
1121        event->state = PERF_EVENT_STATE_INACTIVE;
1122        if (event->pending_disable) {
1123                event->pending_disable = 0;
1124                event->state = PERF_EVENT_STATE_OFF;
1125        }
1126        event->tstamp_stopped = tstamp;
1127        event->pmu->del(event, 0);
1128        event->oncpu = -1;
1129
1130        if (!is_software_event(event))
1131                cpuctx->active_oncpu--;
1132        ctx->nr_active--;
1133        if (event->attr.freq && event->attr.sample_freq)
1134                ctx->nr_freq--;
1135        if (event->attr.exclusive || !cpuctx->active_oncpu)
1136                cpuctx->exclusive = 0;
1137}
1138
1139static void
1140group_sched_out(struct perf_event *group_event,
1141                struct perf_cpu_context *cpuctx,
1142                struct perf_event_context *ctx)
1143{
1144        struct perf_event *event;
1145        int state = group_event->state;
1146
1147        event_sched_out(group_event, cpuctx, ctx);
1148
1149        /*
1150         * Schedule out siblings (if any):
1151         */
1152        list_for_each_entry(event, &group_event->sibling_list, group_entry)
1153                event_sched_out(event, cpuctx, ctx);
1154
1155        if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1156                cpuctx->exclusive = 0;
1157}
1158
1159/*
1160 * Cross CPU call to remove a performance event
1161 *
1162 * We disable the event on the hardware level first. After that we
1163 * remove it from the context list.
1164 */
1165static int __perf_remove_from_context(void *info)
1166{
1167        struct perf_event *event = info;
1168        struct perf_event_context *ctx = event->ctx;
1169        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1170
1171        raw_spin_lock(&ctx->lock);
1172        event_sched_out(event, cpuctx, ctx);
1173        list_del_event(event, ctx);
1174        if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1175                ctx->is_active = 0;
1176                cpuctx->task_ctx = NULL;
1177        }
1178        raw_spin_unlock(&ctx->lock);
1179
1180        return 0;
1181}
1182
1183
1184/*
1185 * Remove the event from a task's (or a CPU's) list of events.
1186 *
1187 * CPU events are removed with a smp call. For task events we only
1188 * call when the task is on a CPU.
1189 *
1190 * If event->ctx is a cloned context, callers must make sure that
1191 * every task struct that event->ctx->task could possibly point to
1192 * remains valid.  This is OK when called from perf_release since
1193 * that only calls us on the top-level context, which can't be a clone.
1194 * When called from perf_event_exit_task, it's OK because the
1195 * context has been detached from its task.
1196 */
1197static void perf_remove_from_context(struct perf_event *event)
1198{
1199        struct perf_event_context *ctx = event->ctx;
1200        struct task_struct *task = ctx->task;
1201
1202        lockdep_assert_held(&ctx->mutex);
1203
1204        if (!task) {
1205                /*
1206                 * Per cpu events are removed via an smp call and
1207                 * the removal is always successful.
1208                 */
1209                cpu_function_call(event->cpu, __perf_remove_from_context, event);
1210                return;
1211        }
1212
1213retry:
1214        if (!task_function_call(task, __perf_remove_from_context, event))
1215                return;
1216
1217        raw_spin_lock_irq(&ctx->lock);
1218        /*
1219         * If we failed to find a running task, but find the context active now
1220         * that we've acquired the ctx->lock, retry.
1221         */
1222        if (ctx->is_active) {
1223                raw_spin_unlock_irq(&ctx->lock);
1224                goto retry;
1225        }
1226
1227        /*
1228         * Since the task isn't running, its safe to remove the event, us
1229         * holding the ctx->lock ensures the task won't get scheduled in.
1230         */
1231        list_del_event(event, ctx);
1232        raw_spin_unlock_irq(&ctx->lock);
1233}
1234
1235/*
1236 * Cross CPU call to disable a performance event
1237 */
1238static int __perf_event_disable(void *info)
1239{
1240        struct perf_event *event = info;
1241        struct perf_event_context *ctx = event->ctx;
1242        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1243
1244        /*
1245         * If this is a per-task event, need to check whether this
1246         * event's task is the current task on this cpu.
1247         *
1248         * Can trigger due to concurrent perf_event_context_sched_out()
1249         * flipping contexts around.
1250         */
1251        if (ctx->task && cpuctx->task_ctx != ctx)
1252                return -EINVAL;
1253
1254        raw_spin_lock(&ctx->lock);
1255
1256        /*
1257         * If the event is on, turn it off.
1258         * If it is in error state, leave it in error state.
1259         */
1260        if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1261                update_context_time(ctx);
1262                update_cgrp_time_from_event(event);
1263                update_group_times(event);
1264                if (event == event->group_leader)
1265                        group_sched_out(event, cpuctx, ctx);
1266                else
1267                        event_sched_out(event, cpuctx, ctx);
1268                event->state = PERF_EVENT_STATE_OFF;
1269        }
1270
1271        raw_spin_unlock(&ctx->lock);
1272
1273        return 0;
1274}
1275
1276/*
1277 * Disable a event.
1278 *
1279 * If event->ctx is a cloned context, callers must make sure that
1280 * every task struct that event->ctx->task could possibly point to
1281 * remains valid.  This condition is satisifed when called through
1282 * perf_event_for_each_child or perf_event_for_each because they
1283 * hold the top-level event's child_mutex, so any descendant that
1284 * goes to exit will block in sync_child_event.
1285 * When called from perf_pending_event it's OK because event->ctx
1286 * is the current context on this CPU and preemption is disabled,
1287 * hence we can't get into perf_event_task_sched_out for this context.
1288 */
1289void perf_event_disable(struct perf_event *event)
1290{
1291        struct perf_event_context *ctx = event->ctx;
1292        struct task_struct *task = ctx->task;
1293
1294        if (!task) {
1295                /*
1296                 * Disable the event on the cpu that it's on
1297                 */
1298                cpu_function_call(event->cpu, __perf_event_disable, event);
1299                return;
1300        }
1301
1302retry:
1303        if (!task_function_call(task, __perf_event_disable, event))
1304                return;
1305
1306        raw_spin_lock_irq(&ctx->lock);
1307        /*
1308         * If the event is still active, we need to retry the cross-call.
1309         */
1310        if (event->state == PERF_EVENT_STATE_ACTIVE) {
1311                raw_spin_unlock_irq(&ctx->lock);
1312                /*
1313                 * Reload the task pointer, it might have been changed by
1314                 * a concurrent perf_event_context_sched_out().
1315                 */
1316                task = ctx->task;
1317                goto retry;
1318        }
1319
1320        /*
1321         * Since we have the lock this context can't be scheduled
1322         * in, so we can change the state safely.
1323         */
1324        if (event->state == PERF_EVENT_STATE_INACTIVE) {
1325                update_group_times(event);
1326                event->state = PERF_EVENT_STATE_OFF;
1327        }
1328        raw_spin_unlock_irq(&ctx->lock);
1329}
1330EXPORT_SYMBOL_GPL(perf_event_disable);
1331
1332static void perf_set_shadow_time(struct perf_event *event,
1333                                 struct perf_event_context *ctx,
1334                                 u64 tstamp)
1335{
1336        /*
1337         * use the correct time source for the time snapshot
1338         *
1339         * We could get by without this by leveraging the
1340         * fact that to get to this function, the caller
1341         * has most likely already called update_context_time()
1342         * and update_cgrp_time_xx() and thus both timestamp
1343         * are identical (or very close). Given that tstamp is,
1344         * already adjusted for cgroup, we could say that:
1345         *    tstamp - ctx->timestamp
1346         * is equivalent to
1347         *    tstamp - cgrp->timestamp.
1348         *
1349         * Then, in perf_output_read(), the calculation would
1350         * work with no changes because:
1351         * - event is guaranteed scheduled in
1352         * - no scheduled out in between
1353         * - thus the timestamp would be the same
1354         *
1355         * But this is a bit hairy.
1356         *
1357         * So instead, we have an explicit cgroup call to remain
1358         * within the time time source all along. We believe it
1359         * is cleaner and simpler to understand.
1360         */
1361        if (is_cgroup_event(event))
1362                perf_cgroup_set_shadow_time(event, tstamp);
1363        else
1364                event->shadow_ctx_time = tstamp - ctx->timestamp;
1365}
1366
1367#define MAX_INTERRUPTS (~0ULL)
1368
1369static void perf_log_throttle(struct perf_event *event, int enable);
1370
1371static int
1372event_sched_in(struct perf_event *event,
1373                 struct perf_cpu_context *cpuctx,
1374                 struct perf_event_context *ctx)
1375{
1376        u64 tstamp = perf_event_time(event);
1377
1378        if (event->state <= PERF_EVENT_STATE_OFF)
1379                return 0;
1380
1381        event->state = PERF_EVENT_STATE_ACTIVE;
1382        event->oncpu = smp_processor_id();
1383
1384        /*
1385         * Unthrottle events, since we scheduled we might have missed several
1386         * ticks already, also for a heavily scheduling task there is little
1387         * guarantee it'll get a tick in a timely manner.
1388         */
1389        if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1390                perf_log_throttle(event, 1);
1391                event->hw.interrupts = 0;
1392        }
1393
1394        /*
1395         * The new state must be visible before we turn it on in the hardware:
1396         */
1397        smp_wmb();
1398
1399        if (event->pmu->add(event, PERF_EF_START)) {
1400                event->state = PERF_EVENT_STATE_INACTIVE;
1401                event->oncpu = -1;
1402                return -EAGAIN;
1403        }
1404
1405        event->tstamp_running += tstamp - event->tstamp_stopped;
1406
1407        perf_set_shadow_time(event, ctx, tstamp);
1408
1409        if (!is_software_event(event))
1410                cpuctx->active_oncpu++;
1411        ctx->nr_active++;
1412        if (event->attr.freq && event->attr.sample_freq)
1413                ctx->nr_freq++;
1414
1415        if (event->attr.exclusive)
1416                cpuctx->exclusive = 1;
1417
1418        return 0;
1419}
1420
1421static int
1422group_sched_in(struct perf_event *group_event,
1423               struct perf_cpu_context *cpuctx,
1424               struct perf_event_context *ctx)
1425{
1426        struct perf_event *event, *partial_group = NULL;
1427        struct pmu *pmu = group_event->pmu;
1428        u64 now = ctx->time;
1429        bool simulate = false;
1430
1431        if (group_event->state == PERF_EVENT_STATE_OFF)
1432                return 0;
1433
1434        pmu->start_txn(pmu);
1435
1436        if (event_sched_in(group_event, cpuctx, ctx)) {
1437                pmu->cancel_txn(pmu);
1438                return -EAGAIN;
1439        }
1440
1441        /*
1442         * Schedule in siblings as one group (if any):
1443         */
1444        list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1445                if (event_sched_in(event, cpuctx, ctx)) {
1446                        partial_group = event;
1447                        goto group_error;
1448                }
1449        }
1450
1451        if (!pmu->commit_txn(pmu))
1452                return 0;
1453
1454group_error:
1455        /*
1456         * Groups can be scheduled in as one unit only, so undo any
1457         * partial group before returning:
1458         * The events up to the failed event are scheduled out normally,
1459         * tstamp_stopped will be updated.
1460         *
1461         * The failed events and the remaining siblings need to have
1462         * their timings updated as if they had gone thru event_sched_in()
1463         * and event_sched_out(). This is required to get consistent timings
1464         * across the group. This also takes care of the case where the group
1465         * could never be scheduled by ensuring tstamp_stopped is set to mark
1466         * the time the event was actually stopped, such that time delta
1467         * calculation in update_event_times() is correct.
1468         */
1469        list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1470                if (event == partial_group)
1471                        simulate = true;
1472
1473                if (simulate) {
1474                        event->tstamp_running += now - event->tstamp_stopped;
1475                        event->tstamp_stopped = now;
1476                } else {
1477                        event_sched_out(event, cpuctx, ctx);
1478                }
1479        }
1480        event_sched_out(group_event, cpuctx, ctx);
1481
1482        pmu->cancel_txn(pmu);
1483
1484        return -EAGAIN;
1485}
1486
1487/*
1488 * Work out whether we can put this event group on the CPU now.
1489 */
1490static int group_can_go_on(struct perf_event *event,
1491                           struct perf_cpu_context *cpuctx,
1492                           int can_add_hw)
1493{
1494        /*
1495         * Groups consisting entirely of software events can always go on.
1496         */
1497        if (event->group_flags & PERF_GROUP_SOFTWARE)
1498                return 1;
1499        /*
1500         * If an exclusive group is already on, no other hardware
1501         * events can go on.
1502         */
1503        if (cpuctx->exclusive)
1504                return 0;
1505        /*
1506         * If this group is exclusive and there are already
1507         * events on the CPU, it can't go on.
1508         */
1509        if (event->attr.exclusive && cpuctx->active_oncpu)
1510                return 0;
1511        /*
1512         * Otherwise, try to add it if all previous groups were able
1513         * to go on.
1514         */
1515        return can_add_hw;
1516}
1517
1518static void add_event_to_ctx(struct perf_event *event,
1519                               struct perf_event_context *ctx)
1520{
1521        u64 tstamp = perf_event_time(event);
1522
1523        list_add_event(event, ctx);
1524        perf_group_attach(event);
1525        event->tstamp_enabled = tstamp;
1526        event->tstamp_running = tstamp;
1527        event->tstamp_stopped = tstamp;
1528}
1529
1530static void task_ctx_sched_out(struct perf_event_context *ctx);
1531static void
1532ctx_sched_in(struct perf_event_context *ctx,
1533             struct perf_cpu_context *cpuctx,
1534             enum event_type_t event_type,
1535             struct task_struct *task);
1536
1537static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1538                                struct perf_event_context *ctx,
1539                                struct task_struct *task)
1540{
1541        cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1542        if (ctx)
1543                ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1544        cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1545        if (ctx)
1546                ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1547}
1548
1549/*
1550 * Cross CPU call to install and enable a performance event
1551 *
1552 * Must be called with ctx->mutex held
1553 */
1554static int  __perf_install_in_context(void *info)
1555{
1556        struct perf_event *event = info;
1557        struct perf_event_context *ctx = event->ctx;
1558        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1559        struct perf_event_context *task_ctx = cpuctx->task_ctx;
1560        struct task_struct *task = current;
1561
1562        perf_ctx_lock(cpuctx, task_ctx);
1563        perf_pmu_disable(cpuctx->ctx.pmu);
1564
1565        /*
1566         * If there was an active task_ctx schedule it out.
1567         */
1568        if (task_ctx)
1569                task_ctx_sched_out(task_ctx);
1570
1571        /*
1572         * If the context we're installing events in is not the
1573         * active task_ctx, flip them.
1574         */
1575        if (ctx->task && task_ctx != ctx) {
1576                if (task_ctx)
1577                        raw_spin_unlock(&task_ctx->lock);
1578                raw_spin_lock(&ctx->lock);
1579                task_ctx = ctx;
1580        }
1581
1582        if (task_ctx) {
1583                cpuctx->task_ctx = task_ctx;
1584                task = task_ctx->task;
1585        }
1586
1587        cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1588
1589        update_context_time(ctx);
1590        /*
1591         * update cgrp time only if current cgrp
1592         * matches event->cgrp. Must be done before
1593         * calling add_event_to_ctx()
1594         */
1595        update_cgrp_time_from_event(event);
1596
1597        add_event_to_ctx(event, ctx);
1598
1599        /*
1600         * Schedule everything back in
1601         */
1602        perf_event_sched_in(cpuctx, task_ctx, task);
1603
1604        perf_pmu_enable(cpuctx->ctx.pmu);
1605        perf_ctx_unlock(cpuctx, task_ctx);
1606
1607        return 0;
1608}
1609
1610/*
1611 * Attach a performance event to a context
1612 *
1613 * First we add the event to the list with the hardware enable bit
1614 * in event->hw_config cleared.
1615 *
1616 * If the event is attached to a task which is on a CPU we use a smp
1617 * call to enable it in the task context. The task might have been
1618 * scheduled away, but we check this in the smp call again.
1619 */
1620static void
1621perf_install_in_context(struct perf_event_context *ctx,
1622                        struct perf_event *event,
1623                        int cpu)
1624{
1625        struct task_struct *task = ctx->task;
1626
1627        lockdep_assert_held(&ctx->mutex);
1628
1629        event->ctx = ctx;
1630
1631        if (!task) {
1632                /*
1633                 * Per cpu events are installed via an smp call and
1634                 * the install is always successful.
1635                 */
1636                cpu_function_call(cpu, __perf_install_in_context, event);
1637                return;
1638        }
1639
1640retry:
1641        if (!task_function_call(task, __perf_install_in_context, event))
1642                return;
1643
1644        raw_spin_lock_irq(&ctx->lock);
1645        /*
1646         * If we failed to find a running task, but find the context active now
1647         * that we've acquired the ctx->lock, retry.
1648         */
1649        if (ctx->is_active) {
1650                raw_spin_unlock_irq(&ctx->lock);
1651                goto retry;
1652        }
1653
1654        /*
1655         * Since the task isn't running, its safe to add the event, us holding
1656         * the ctx->lock ensures the task won't get scheduled in.
1657         */
1658        add_event_to_ctx(event, ctx);
1659        raw_spin_unlock_irq(&ctx->lock);
1660}
1661
1662/*
1663 * Put a event into inactive state and update time fields.
1664 * Enabling the leader of a group effectively enables all
1665 * the group members that aren't explicitly disabled, so we
1666 * have to update their ->tstamp_enabled also.
1667 * Note: this works for group members as well as group leaders
1668 * since the non-leader members' sibling_lists will be empty.
1669 */
1670static void __perf_event_mark_enabled(struct perf_event *event)
1671{
1672        struct perf_event *sub;
1673        u64 tstamp = perf_event_time(event);
1674
1675        event->state = PERF_EVENT_STATE_INACTIVE;
1676        event->tstamp_enabled = tstamp - event->total_time_enabled;
1677        list_for_each_entry(sub, &event->sibling_list, group_entry) {
1678                if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1679                        sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1680        }
1681}
1682
1683/*
1684 * Cross CPU call to enable a performance event
1685 */
1686static int __perf_event_enable(void *info)
1687{
1688        struct perf_event *event = info;
1689        struct perf_event_context *ctx = event->ctx;
1690        struct perf_event *leader = event->group_leader;
1691        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1692        int err;
1693
1694        if (WARN_ON_ONCE(!ctx->is_active))
1695                return -EINVAL;
1696
1697        raw_spin_lock(&ctx->lock);
1698        update_context_time(ctx);
1699
1700        if (event->state >= PERF_EVENT_STATE_INACTIVE)
1701                goto unlock;
1702
1703        /*
1704         * set current task's cgroup time reference point
1705         */
1706        perf_cgroup_set_timestamp(current, ctx);
1707
1708        __perf_event_mark_enabled(event);
1709
1710        if (!event_filter_match(event)) {
1711                if (is_cgroup_event(event))
1712                        perf_cgroup_defer_enabled(event);
1713                goto unlock;
1714        }
1715
1716        /*
1717         * If the event is in a group and isn't the group leader,
1718         * then don't put it on unless the group is on.
1719         */
1720        if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1721                goto unlock;
1722
1723        if (!group_can_go_on(event, cpuctx, 1)) {
1724                err = -EEXIST;
1725        } else {
1726                if (event == leader)
1727                        err = group_sched_in(event, cpuctx, ctx);
1728                else
1729                        err = event_sched_in(event, cpuctx, ctx);
1730        }
1731
1732        if (err) {
1733                /*
1734                 * If this event can't go on and it's part of a
1735                 * group, then the whole group has to come off.
1736                 */
1737                if (leader != event)
1738                        group_sched_out(leader, cpuctx, ctx);
1739                if (leader->attr.pinned) {
1740                        update_group_times(leader);
1741                        leader->state = PERF_EVENT_STATE_ERROR;
1742                }
1743        }
1744
1745unlock:
1746        raw_spin_unlock(&ctx->lock);
1747
1748        return 0;
1749}
1750
1751/*
1752 * Enable a event.
1753 *
1754 * If event->ctx is a cloned context, callers must make sure that
1755 * every task struct that event->ctx->task could possibly point to
1756 * remains valid.  This condition is satisfied when called through
1757 * perf_event_for_each_child or perf_event_for_each as described
1758 * for perf_event_disable.
1759 */
1760void perf_event_enable(struct perf_event *event)
1761{
1762        struct perf_event_context *ctx = event->ctx;
1763        struct task_struct *task = ctx->task;
1764
1765        if (!task) {
1766                /*
1767                 * Enable the event on the cpu that it's on
1768                 */
1769                cpu_function_call(event->cpu, __perf_event_enable, event);
1770                return;
1771        }
1772
1773        raw_spin_lock_irq(&ctx->lock);
1774        if (event->state >= PERF_EVENT_STATE_INACTIVE)
1775                goto out;
1776
1777        /*
1778         * If the event is in error state, clear that first.
1779         * That way, if we see the event in error state below, we
1780         * know that it has gone back into error state, as distinct
1781         * from the task having been scheduled away before the
1782         * cross-call arrived.
1783         */
1784        if (event->state == PERF_EVENT_STATE_ERROR)
1785                event->state = PERF_EVENT_STATE_OFF;
1786
1787retry:
1788        if (!ctx->is_active) {
1789                __perf_event_mark_enabled(event);
1790                goto out;
1791        }
1792
1793        raw_spin_unlock_irq(&ctx->lock);
1794
1795        if (!task_function_call(task, __perf_event_enable, event))
1796                return;
1797
1798        raw_spin_lock_irq(&ctx->lock);
1799
1800        /*
1801         * If the context is active and the event is still off,
1802         * we need to retry the cross-call.
1803         */
1804        if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1805                /*
1806                 * task could have been flipped by a concurrent
1807                 * perf_event_context_sched_out()
1808                 */
1809                task = ctx->task;
1810                goto retry;
1811        }
1812
1813out:
1814        raw_spin_unlock_irq(&ctx->lock);
1815}
1816EXPORT_SYMBOL_GPL(perf_event_enable);
1817
1818int perf_event_refresh(struct perf_event *event, int refresh)
1819{
1820        /*
1821         * not supported on inherited events
1822         */
1823        if (event->attr.inherit || !is_sampling_event(event))
1824                return -EINVAL;
1825
1826        atomic_add(refresh, &event->event_limit);
1827        perf_event_enable(event);
1828
1829        return 0;
1830}
1831EXPORT_SYMBOL_GPL(perf_event_refresh);
1832
1833static void ctx_sched_out(struct perf_event_context *ctx,
1834                          struct perf_cpu_context *cpuctx,
1835                          enum event_type_t event_type)
1836{
1837        struct perf_event *event;
1838        int is_active = ctx->is_active;
1839
1840        ctx->is_active &= ~event_type;
1841        if (likely(!ctx->nr_events))
1842                return;
1843
1844        update_context_time(ctx);
1845        update_cgrp_time_from_cpuctx(cpuctx);
1846        if (!ctx->nr_active)
1847                return;
1848
1849        perf_pmu_disable(ctx->pmu);
1850        if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1851                list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1852                        group_sched_out(event, cpuctx, ctx);
1853        }
1854
1855        if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1856                list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1857                        group_sched_out(event, cpuctx, ctx);
1858        }
1859        perf_pmu_enable(ctx->pmu);
1860}
1861
1862/*
1863 * Test whether two contexts are equivalent, i.e. whether they
1864 * have both been cloned from the same version of the same context
1865 * and they both have the same number of enabled events.
1866 * If the number of enabled events is the same, then the set
1867 * of enabled events should be the same, because these are both
1868 * inherited contexts, therefore we can't access individual events
1869 * in them directly with an fd; we can only enable/disable all
1870 * events via prctl, or enable/disable all events in a family
1871 * via ioctl, which will have the same effect on both contexts.
1872 */
1873static int context_equiv(struct perf_event_context *ctx1,
1874                         struct perf_event_context *ctx2)
1875{
1876        return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1877                && ctx1->parent_gen == ctx2->parent_gen
1878                && !ctx1->pin_count && !ctx2->pin_count;
1879}
1880
1881static void __perf_event_sync_stat(struct perf_event *event,
1882                                     struct perf_event *next_event)
1883{
1884        u64 value;
1885
1886        if (!event->attr.inherit_stat)
1887                return;
1888
1889        /*
1890         * Update the event value, we cannot use perf_event_read()
1891         * because we're in the middle of a context switch and have IRQs
1892         * disabled, which upsets smp_call_function_single(), however
1893         * we know the event must be on the current CPU, therefore we
1894         * don't need to use it.
1895         */
1896        switch (event->state) {
1897        case PERF_EVENT_STATE_ACTIVE:
1898                event->pmu->read(event);
1899                /* fall-through */
1900
1901        case PERF_EVENT_STATE_INACTIVE:
1902                update_event_times(event);
1903                break;
1904
1905        default:
1906                break;
1907        }
1908
1909        /*
1910         * In order to keep per-task stats reliable we need to flip the event
1911         * values when we flip the contexts.
1912         */
1913        value = local64_read(&next_event->count);
1914        value = local64_xchg(&event->count, value);
1915        local64_set(&next_event->count, value);
1916
1917        swap(event->total_time_enabled, next_event->total_time_enabled);
1918        swap(event->total_time_running, next_event->total_time_running);
1919
1920        /*
1921         * Since we swizzled the values, update the user visible data too.
1922         */
1923        perf_event_update_userpage(event);
1924        perf_event_update_userpage(next_event);
1925}
1926
1927#define list_next_entry(pos, member) \
1928        list_entry(pos->member.next, typeof(*pos), member)
1929
1930static void perf_event_sync_stat(struct perf_event_context *ctx,
1931                                   struct perf_event_context *next_ctx)
1932{
1933        struct perf_event *event, *next_event;
1934
1935        if (!ctx->nr_stat)
1936                return;
1937
1938        update_context_time(ctx);
1939
1940        event = list_first_entry(&ctx->event_list,
1941                                   struct perf_event, event_entry);
1942
1943        next_event = list_first_entry(&next_ctx->event_list,
1944                                        struct perf_event, event_entry);
1945
1946        while (&event->event_entry != &ctx->event_list &&
1947               &next_event->event_entry != &next_ctx->event_list) {
1948
1949                __perf_event_sync_stat(event, next_event);
1950
1951                event = list_next_entry(event, event_entry);
1952                next_event = list_next_entry(next_event, event_entry);
1953        }
1954}
1955
1956static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1957                                         struct task_struct *next)
1958{
1959        struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1960        struct perf_event_context *next_ctx;
1961        struct perf_event_context *parent;
1962        struct perf_cpu_context *cpuctx;
1963        int do_switch = 1;
1964
1965        if (likely(!ctx))
1966                return;
1967
1968        cpuctx = __get_cpu_context(ctx);
1969        if (!cpuctx->task_ctx)
1970                return;
1971
1972        rcu_read_lock();
1973        parent = rcu_dereference(ctx->parent_ctx);
1974        next_ctx = next->perf_event_ctxp[ctxn];
1975        if (parent && next_ctx &&
1976            rcu_dereference(next_ctx->parent_ctx) == parent) {
1977                /*
1978                 * Looks like the two contexts are clones, so we might be
1979                 * able to optimize the context switch.  We lock both
1980                 * contexts and check that they are clones under the
1981                 * lock (including re-checking that neither has been
1982                 * uncloned in the meantime).  It doesn't matter which
1983                 * order we take the locks because no other cpu could
1984                 * be trying to lock both of these tasks.
1985                 */
1986                raw_spin_lock(&ctx->lock);
1987                raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1988                if (context_equiv(ctx, next_ctx)) {
1989                        /*
1990                         * XXX do we need a memory barrier of sorts
1991                         * wrt to rcu_dereference() of perf_event_ctxp
1992                         */
1993                        task->perf_event_ctxp[ctxn] = next_ctx;
1994                        next->perf_event_ctxp[ctxn] = ctx;
1995                        ctx->task = next;
1996                        next_ctx->task = task;
1997                        do_switch = 0;
1998
1999                        perf_event_sync_stat(ctx, next_ctx);
2000                }
2001                raw_spin_unlock(&next_ctx->lock);
2002                raw_spin_unlock(&ctx->lock);
2003        }
2004        rcu_read_unlock();
2005
2006        if (do_switch) {
2007                raw_spin_lock(&ctx->lock);
2008                ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2009                cpuctx->task_ctx = NULL;
2010                raw_spin_unlock(&ctx->lock);
2011        }
2012}
2013
2014#define for_each_task_context_nr(ctxn)                                  \
2015        for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2016
2017/*
2018 * Called from scheduler to remove the events of the current task,
2019 * with interrupts disabled.
2020 *
2021 * We stop each event and update the event value in event->count.
2022 *
2023 * This does not protect us against NMI, but disable()
2024 * sets the disabled bit in the control field of event _before_
2025 * accessing the event control register. If a NMI hits, then it will
2026 * not restart the event.
2027 */
2028void __perf_event_task_sched_out(struct task_struct *task,
2029                                 struct task_struct *next)
2030{
2031        int ctxn;
2032
2033        for_each_task_context_nr(ctxn)
2034                perf_event_context_sched_out(task, ctxn, next);
2035
2036        /*
2037         * if cgroup events exist on this CPU, then we need
2038         * to check if we have to switch out PMU state.
2039         * cgroup event are system-wide mode only
2040         */
2041        if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2042                perf_cgroup_sched_out(task, next);
2043}
2044
2045static void task_ctx_sched_out(struct perf_event_context *ctx)
2046{
2047        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2048
2049        if (!cpuctx->task_ctx)
2050                return;
2051
2052        if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2053                return;
2054
2055        ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2056        cpuctx->task_ctx = NULL;
2057}
2058
2059/*
2060 * Called with IRQs disabled
2061 */
2062static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2063                              enum event_type_t event_type)
2064{
2065        ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2066}
2067
2068static void
2069ctx_pinned_sched_in(struct perf_event_context *ctx,
2070                    struct perf_cpu_context *cpuctx)
2071{
2072        struct perf_event *event;
2073
2074        list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2075                if (event->state <= PERF_EVENT_STATE_OFF)
2076                        continue;
2077                if (!event_filter_match(event))
2078                        continue;
2079
2080                /* may need to reset tstamp_enabled */
2081                if (is_cgroup_event(event))
2082                        perf_cgroup_mark_enabled(event, ctx);
2083
2084                if (group_can_go_on(event, cpuctx, 1))
2085                        group_sched_in(event, cpuctx, ctx);
2086
2087                /*
2088                 * If this pinned group hasn't been scheduled,
2089                 * put it in error state.
2090                 */
2091                if (event->state == PERF_EVENT_STATE_INACTIVE) {
2092                        update_group_times(event);
2093                        event->state = PERF_EVENT_STATE_ERROR;
2094                }
2095        }
2096}
2097
2098static void
2099ctx_flexible_sched_in(struct perf_event_context *ctx,
2100                      struct perf_cpu_context *cpuctx)
2101{
2102        struct perf_event *event;
2103        int can_add_hw = 1;
2104
2105        list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2106                /* Ignore events in OFF or ERROR state */
2107                if (event->state <= PERF_EVENT_STATE_OFF)
2108                        continue;
2109                /*
2110                 * Listen to the 'cpu' scheduling filter constraint
2111                 * of events:
2112                 */
2113                if (!event_filter_match(event))
2114                        continue;
2115
2116                /* may need to reset tstamp_enabled */
2117                if (is_cgroup_event(event))
2118                        perf_cgroup_mark_enabled(event, ctx);
2119
2120                if (group_can_go_on(event, cpuctx, can_add_hw)) {
2121                        if (group_sched_in(event, cpuctx, ctx))
2122                                can_add_hw = 0;
2123                }
2124        }
2125}
2126
2127static void
2128ctx_sched_in(struct perf_event_context *ctx,
2129             struct perf_cpu_context *cpuctx,
2130             enum event_type_t event_type,
2131             struct task_struct *task)
2132{
2133        u64 now;
2134        int is_active = ctx->is_active;
2135
2136        ctx->is_active |= event_type;
2137        if (likely(!ctx->nr_events))
2138                return;
2139
2140        now = perf_clock();
2141        ctx->timestamp = now;
2142        perf_cgroup_set_timestamp(task, ctx);
2143        /*
2144         * First go through the list and put on any pinned groups
2145         * in order to give them the best chance of going on.
2146         */
2147        if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2148                ctx_pinned_sched_in(ctx, cpuctx);
2149
2150        /* Then walk through the lower prio flexible groups */
2151        if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2152                ctx_flexible_sched_in(ctx, cpuctx);
2153}
2154
2155static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2156                             enum event_type_t event_type,
2157                             struct task_struct *task)
2158{
2159        struct perf_event_context *ctx = &cpuctx->ctx;
2160
2161        ctx_sched_in(ctx, cpuctx, event_type, task);
2162}
2163
2164static void perf_event_context_sched_in(struct perf_event_context *ctx,
2165                                        struct task_struct *task)
2166{
2167        struct perf_cpu_context *cpuctx;
2168
2169        cpuctx = __get_cpu_context(ctx);
2170        if (cpuctx->task_ctx == ctx)
2171                return;
2172
2173        perf_ctx_lock(cpuctx, ctx);
2174        perf_pmu_disable(ctx->pmu);
2175        /*
2176         * We want to keep the following priority order:
2177         * cpu pinned (that don't need to move), task pinned,
2178         * cpu flexible, task flexible.
2179         */
2180        cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2181
2182        if (ctx->nr_events)
2183                cpuctx->task_ctx = ctx;
2184
2185        perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2186
2187        perf_pmu_enable(ctx->pmu);
2188        perf_ctx_unlock(cpuctx, ctx);
2189
2190        /*
2191         * Since these rotations are per-cpu, we need to ensure the
2192         * cpu-context we got scheduled on is actually rotating.
2193         */
2194        perf_pmu_rotate_start(ctx->pmu);
2195}
2196
2197/*
2198 * Called from scheduler to add the events of the current task
2199 * with interrupts disabled.
2200 *
2201 * We restore the event value and then enable it.
2202 *
2203 * This does not protect us against NMI, but enable()
2204 * sets the enabled bit in the control field of event _before_
2205 * accessing the event control register. If a NMI hits, then it will
2206 * keep the event running.
2207 */
2208void __perf_event_task_sched_in(struct task_struct *prev,
2209                                struct task_struct *task)
2210{
2211        struct perf_event_context *ctx;
2212        int ctxn;
2213
2214        for_each_task_context_nr(ctxn) {
2215                ctx = task->perf_event_ctxp[ctxn];
2216                if (likely(!ctx))
2217                        continue;
2218
2219                perf_event_context_sched_in(ctx, task);
2220        }
2221        /*
2222         * if cgroup events exist on this CPU, then we need
2223         * to check if we have to switch in PMU state.
2224         * cgroup event are system-wide mode only
2225         */
2226        if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2227                perf_cgroup_sched_in(prev, task);
2228}
2229
2230static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2231{
2232        u64 frequency = event->attr.sample_freq;
2233        u64 sec = NSEC_PER_SEC;
2234        u64 divisor, dividend;
2235
2236        int count_fls, nsec_fls, frequency_fls, sec_fls;
2237
2238        count_fls = fls64(count);
2239        nsec_fls = fls64(nsec);
2240        frequency_fls = fls64(frequency);
2241        sec_fls = 30;
2242
2243        /*
2244         * We got @count in @nsec, with a target of sample_freq HZ
2245         * the target period becomes:
2246         *
2247         *             @count * 10^9
2248         * period = -------------------
2249         *          @nsec * sample_freq
2250         *
2251         */
2252
2253        /*
2254         * Reduce accuracy by one bit such that @a and @b converge
2255         * to a similar magnitude.
2256         */
2257#define REDUCE_FLS(a, b)                \
2258do {                                    \
2259        if (a##_fls > b##_fls) {        \
2260                a >>= 1;                \
2261                a##_fls--;              \
2262        } else {                        \
2263                b >>= 1;                \
2264                b##_fls--;              \
2265        }                               \
2266} while (0)
2267
2268        /*
2269         * Reduce accuracy until either term fits in a u64, then proceed with
2270         * the other, so that finally we can do a u64/u64 division.
2271         */
2272        while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2273                REDUCE_FLS(nsec, frequency);
2274                REDUCE_FLS(sec, count);
2275        }
2276
2277        if (count_fls + sec_fls > 64) {
2278                divisor = nsec * frequency;
2279
2280                while (count_fls + sec_fls > 64) {
2281                        REDUCE_FLS(count, sec);
2282                        divisor >>= 1;
2283                }
2284
2285                dividend = count * sec;
2286        } else {
2287                dividend = count * sec;
2288
2289                while (nsec_fls + frequency_fls > 64) {
2290                        REDUCE_FLS(nsec, frequency);
2291                        dividend >>= 1;
2292                }
2293
2294                divisor = nsec * frequency;
2295        }
2296
2297        if (!divisor)
2298                return dividend;
2299
2300        return div64_u64(dividend, divisor);
2301}
2302
2303static DEFINE_PER_CPU(int, perf_throttled_count);
2304static DEFINE_PER_CPU(u64, perf_throttled_seq);
2305
2306static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2307{
2308        struct hw_perf_event *hwc = &event->hw;
2309        s64 period, sample_period;
2310        s64 delta;
2311
2312        period = perf_calculate_period(event, nsec, count);
2313
2314        delta = (s64)(period - hwc->sample_period);
2315        delta = (delta + 7) / 8; /* low pass filter */
2316
2317        sample_period = hwc->sample_period + delta;
2318
2319        if (!sample_period)
2320                sample_period = 1;
2321
2322        hwc->sample_period = sample_period;
2323
2324        if (local64_read(&hwc->period_left) > 8*sample_period) {
2325                if (disable)
2326                        event->pmu->stop(event, PERF_EF_UPDATE);
2327
2328                local64_set(&hwc->period_left, 0);
2329
2330                if (disable)
2331                        event->pmu->start(event, PERF_EF_RELOAD);
2332        }
2333}
2334
2335/*
2336 * combine freq adjustment with unthrottling to avoid two passes over the
2337 * events. At the same time, make sure, having freq events does not change
2338 * the rate of unthrottling as that would introduce bias.
2339 */
2340static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2341                                           int needs_unthr)
2342{
2343        struct perf_event *event;
2344        struct hw_perf_event *hwc;
2345        u64 now, period = TICK_NSEC;
2346        s64 delta;
2347
2348        /*
2349         * only need to iterate over all events iff:
2350         * - context have events in frequency mode (needs freq adjust)
2351         * - there are events to unthrottle on this cpu
2352         */
2353        if (!(ctx->nr_freq || needs_unthr))
2354                return;
2355
2356        raw_spin_lock(&ctx->lock);
2357        perf_pmu_disable(ctx->pmu);
2358
2359        list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2360                if (event->state != PERF_EVENT_STATE_ACTIVE)
2361                        continue;
2362
2363                if (!event_filter_match(event))
2364                        continue;
2365
2366                hwc = &event->hw;
2367
2368                if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
2369                        hwc->interrupts = 0;
2370                        perf_log_throttle(event, 1);
2371                        event->pmu->start(event, 0);
2372                }
2373
2374                if (!event->attr.freq || !event->attr.sample_freq)
2375                        continue;
2376
2377                /*
2378                 * stop the event and update event->count
2379                 */
2380                event->pmu->stop(event, PERF_EF_UPDATE);
2381
2382                now = local64_read(&event->count);
2383                delta = now - hwc->freq_count_stamp;
2384                hwc->freq_count_stamp = now;
2385
2386                /*
2387                 * restart the event
2388                 * reload only if value has changed
2389                 * we have stopped the event so tell that
2390                 * to perf_adjust_period() to avoid stopping it
2391                 * twice.
2392                 */
2393                if (delta > 0)
2394                        perf_adjust_period(event, period, delta, false);
2395
2396                event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2397        }
2398
2399        perf_pmu_enable(ctx->pmu);
2400        raw_spin_unlock(&ctx->lock);
2401}
2402
2403/*
2404 * Round-robin a context's events:
2405 */
2406static void rotate_ctx(struct perf_event_context *ctx)
2407{
2408        /*
2409         * Rotate the first entry last of non-pinned groups. Rotation might be
2410         * disabled by the inheritance code.
2411         */
2412        if (!ctx->rotate_disable)
2413                list_rotate_left(&ctx->flexible_groups);
2414}
2415
2416/*
2417 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2418 * because they're strictly cpu affine and rotate_start is called with IRQs
2419 * disabled, while rotate_context is called from IRQ context.
2420 */
2421static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2422{
2423        struct perf_event_context *ctx = NULL;
2424        int rotate = 0, remove = 1;
2425
2426        if (cpuctx->ctx.nr_events) {
2427                remove = 0;
2428                if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2429                        rotate = 1;
2430        }
2431
2432        ctx = cpuctx->task_ctx;
2433        if (ctx && ctx->nr_events) {
2434                remove = 0;
2435                if (ctx->nr_events != ctx->nr_active)
2436                        rotate = 1;
2437        }
2438
2439        if (!rotate)
2440                goto done;
2441
2442        perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2443        perf_pmu_disable(cpuctx->ctx.pmu);
2444
2445        cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2446        if (ctx)
2447                ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2448
2449        rotate_ctx(&cpuctx->ctx);
2450        if (ctx)
2451                rotate_ctx(ctx);
2452
2453        perf_event_sched_in(cpuctx, ctx, current);
2454
2455        perf_pmu_enable(cpuctx->ctx.pmu);
2456        perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2457done:
2458        if (remove)
2459                list_del_init(&cpuctx->rotation_list);
2460}
2461
2462void perf_event_task_tick(void)
2463{
2464        struct list_head *head = &__get_cpu_var(rotation_list);
2465        struct perf_cpu_context *cpuctx, *tmp;
2466        struct perf_event_context *ctx;
2467        int throttled;
2468
2469        WARN_ON(!irqs_disabled());
2470
2471        __this_cpu_inc(perf_throttled_seq);
2472        throttled = __this_cpu_xchg(perf_throttled_count, 0);
2473
2474        list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2475                ctx = &cpuctx->ctx;
2476                perf_adjust_freq_unthr_context(ctx, throttled);
2477
2478                ctx = cpuctx->task_ctx;
2479                if (ctx)
2480                        perf_adjust_freq_unthr_context(ctx, throttled);
2481
2482                if (cpuctx->jiffies_interval == 1 ||
2483                                !(jiffies % cpuctx->jiffies_interval))
2484                        perf_rotate_context(cpuctx);
2485        }
2486}
2487
2488static int event_enable_on_exec(struct perf_event *event,
2489                                struct perf_event_context *ctx)
2490{
2491        if (!event->attr.enable_on_exec)
2492                return 0;
2493
2494        event->attr.enable_on_exec = 0;
2495        if (event->state >= PERF_EVENT_STATE_INACTIVE)
2496                return 0;
2497
2498        __perf_event_mark_enabled(event);
2499
2500        return 1;
2501}
2502
2503/*
2504 * Enable all of a task's events that have been marked enable-on-exec.
2505 * This expects task == current.
2506 */
2507static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2508{
2509        struct perf_event *event;
2510        unsigned long flags;
2511        int enabled = 0;
2512        int ret;
2513
2514        local_irq_save(flags);
2515        if (!ctx || !ctx->nr_events)
2516                goto out;
2517
2518        /*
2519         * We must ctxsw out cgroup events to avoid conflict
2520         * when invoking perf_task_event_sched_in() later on
2521         * in this function. Otherwise we end up trying to
2522         * ctxswin cgroup events which are already scheduled
2523         * in.
2524         */
2525        perf_cgroup_sched_out(current, NULL);
2526
2527        raw_spin_lock(&ctx->lock);
2528        task_ctx_sched_out(ctx);
2529
2530        list_for_each_entry(event, &ctx->event_list, event_entry) {
2531                ret = event_enable_on_exec(event, ctx);
2532                if (ret)
2533                        enabled = 1;
2534        }
2535
2536        /*
2537         * Unclone this context if we enabled any event.
2538         */
2539        if (enabled)
2540                unclone_ctx(ctx);
2541
2542        raw_spin_unlock(&ctx->lock);
2543
2544        /*
2545         * Also calls ctxswin for cgroup events, if any:
2546         */
2547        perf_event_context_sched_in(ctx, ctx->task);
2548out:
2549        local_irq_restore(flags);
2550}
2551
2552/*
2553 * Cross CPU call to read the hardware event
2554 */
2555static void __perf_event_read(void *info)
2556{
2557        struct perf_event *event = info;
2558        struct perf_event_context *ctx = event->ctx;
2559        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2560
2561        /*
2562         * If this is a task context, we need to check whether it is
2563         * the current task context of this cpu.  If not it has been
2564         * scheduled out before the smp call arrived.  In that case
2565         * event->count would have been updated to a recent sample
2566         * when the event was scheduled out.
2567         */
2568        if (ctx->task && cpuctx->task_ctx != ctx)
2569                return;
2570
2571        raw_spin_lock(&ctx->lock);
2572        if (ctx->is_active) {
2573                update_context_time(ctx);
2574                update_cgrp_time_from_event(event);
2575        }
2576        update_event_times(event);
2577        if (event->state == PERF_EVENT_STATE_ACTIVE)
2578                event->pmu->read(event);
2579        raw_spin_unlock(&ctx->lock);
2580}
2581
2582static inline u64 perf_event_count(struct perf_event *event)
2583{
2584        return local64_read(&event->count) + atomic64_read(&event->child_count);
2585}
2586
2587static u64 perf_event_read(struct perf_event *event)
2588{
2589        /*
2590         * If event is enabled and currently active on a CPU, update the
2591         * value in the event structure:
2592         */
2593        if (event->state == PERF_EVENT_STATE_ACTIVE) {
2594                smp_call_function_single(event->oncpu,
2595                                         __perf_event_read, event, 1);
2596        } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2597                struct perf_event_context *ctx = event->ctx;
2598                unsigned long flags;
2599
2600                raw_spin_lock_irqsave(&ctx->lock, flags);
2601                /*
2602                 * may read while context is not active
2603                 * (e.g., thread is blocked), in that case
2604                 * we cannot update context time
2605                 */
2606                if (ctx->is_active) {
2607                        update_context_time(ctx);
2608                        update_cgrp_time_from_event(event);
2609                }
2610                update_event_times(event);
2611                raw_spin_unlock_irqrestore(&ctx->lock, flags);
2612        }
2613
2614        return perf_event_count(event);
2615}
2616
2617/*
2618 * Initialize the perf_event context in a task_struct:
2619 */
2620static void __perf_event_init_context(struct perf_event_context *ctx)
2621{
2622        raw_spin_lock_init(&ctx->lock);
2623        mutex_init(&ctx->mutex);
2624        INIT_LIST_HEAD(&ctx->pinned_groups);
2625        INIT_LIST_HEAD(&ctx->flexible_groups);
2626        INIT_LIST_HEAD(&ctx->event_list);
2627        atomic_set(&ctx->refcount, 1);
2628}
2629
2630static struct perf_event_context *
2631alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2632{
2633        struct perf_event_context *ctx;
2634
2635        ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2636        if (!ctx)
2637                return NULL;
2638
2639        __perf_event_init_context(ctx);
2640        if (task) {
2641                ctx->task = task;
2642                get_task_struct(task);
2643        }
2644        ctx->pmu = pmu;
2645
2646        return ctx;
2647}
2648
2649static struct task_struct *
2650find_lively_task_by_vpid(pid_t vpid)
2651{
2652        struct task_struct *task;
2653        int err;
2654
2655        rcu_read_lock();
2656        if (!vpid)
2657                task = current;
2658        else
2659                task = find_task_by_vpid(vpid);
2660        if (task)
2661                get_task_struct(task);
2662        rcu_read_unlock();
2663
2664        if (!task)
2665                return ERR_PTR(-ESRCH);
2666
2667        /* Reuse ptrace permission checks for now. */
2668        err = -EACCES;
2669        if (!ptrace_may_access(task, PTRACE_MODE_READ))
2670                goto errout;
2671
2672        return task;
2673errout:
2674        put_task_struct(task);
2675        return ERR_PTR(err);
2676
2677}
2678
2679/*
2680 * Returns a matching context with refcount and pincount.
2681 */
2682static struct perf_event_context *
2683find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2684{
2685        struct perf_event_context *ctx;
2686        struct perf_cpu_context *cpuctx;
2687        unsigned long flags;
2688        int ctxn, err;
2689
2690        if (!task) {
2691                /* Must be root to operate on a CPU event: */
2692                if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2693                        return ERR_PTR(-EACCES);
2694
2695                /*
2696                 * We could be clever and allow to attach a event to an
2697                 * offline CPU and activate it when the CPU comes up, but
2698                 * that's for later.
2699                 */
2700                if (!cpu_online(cpu))
2701                        return ERR_PTR(-ENODEV);
2702
2703                cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2704                ctx = &cpuctx->ctx;
2705                get_ctx(ctx);
2706                ++ctx->pin_count;
2707
2708                return ctx;
2709        }
2710
2711        err = -EINVAL;
2712        ctxn = pmu->task_ctx_nr;
2713        if (ctxn < 0)
2714                goto errout;
2715
2716retry:
2717        ctx = perf_lock_task_context(task, ctxn, &flags);
2718        if (ctx) {
2719                unclone_ctx(ctx);
2720                ++ctx->pin_count;
2721                raw_spin_unlock_irqrestore(&ctx->lock, flags);
2722        } else {
2723                ctx = alloc_perf_context(pmu, task);
2724                err = -ENOMEM;
2725                if (!ctx)
2726                        goto errout;
2727
2728                err = 0;
2729                mutex_lock(&task->perf_event_mutex);
2730                /*
2731                 * If it has already passed perf_event_exit_task().
2732                 * we must see PF_EXITING, it takes this mutex too.
2733                 */
2734                if (task->flags & PF_EXITING)
2735                        err = -ESRCH;
2736                else if (task->perf_event_ctxp[ctxn])
2737                        err = -EAGAIN;
2738                else {
2739                        get_ctx(ctx);
2740                        ++ctx->pin_count;
2741                        rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2742                }
2743                mutex_unlock(&task->perf_event_mutex);
2744
2745                if (unlikely(err)) {
2746                        put_ctx(ctx);
2747
2748                        if (err == -EAGAIN)
2749                                goto retry;
2750                        goto errout;
2751                }
2752        }
2753
2754        return ctx;
2755
2756errout:
2757        return ERR_PTR(err);
2758}
2759
2760static void perf_event_free_filter(struct perf_event *event);
2761
2762static void free_event_rcu(struct rcu_head *head)
2763{
2764        struct perf_event *event;
2765
2766        event = container_of(head, struct perf_event, rcu_head);
2767        if (event->ns)
2768                put_pid_ns(event->ns);
2769        perf_event_free_filter(event);
2770        kfree(event);
2771}
2772
2773static void ring_buffer_put(struct ring_buffer *rb);
2774
2775static void free_event(struct perf_event *event)
2776{
2777        irq_work_sync(&event->pending);
2778
2779        if (!event->parent) {
2780                if (event->attach_state & PERF_ATTACH_TASK)
2781                        jump_label_dec_deferred(&perf_sched_events);
2782                if (event->attr.mmap || event->attr.mmap_data)
2783                        atomic_dec(&nr_mmap_events);
2784                if (event->attr.comm)
2785                        atomic_dec(&nr_comm_events);
2786                if (event->attr.task)
2787                        atomic_dec(&nr_task_events);
2788                if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2789                        put_callchain_buffers();
2790                if (is_cgroup_event(event)) {
2791                        atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2792                        jump_label_dec_deferred(&perf_sched_events);
2793                }
2794        }
2795
2796        if (event->rb) {
2797                ring_buffer_put(event->rb);
2798                event->rb = NULL;
2799        }
2800
2801        if (is_cgroup_event(event))
2802                perf_detach_cgroup(event);
2803
2804        if (event->destroy)
2805                event->destroy(event);
2806
2807        if (event->ctx)
2808                put_ctx(event->ctx);
2809
2810        call_rcu(&event->rcu_head, free_event_rcu);
2811}
2812
2813int perf_event_release_kernel(struct perf_event *event)
2814{
2815        struct perf_event_context *ctx = event->ctx;
2816
2817        WARN_ON_ONCE(ctx->parent_ctx);
2818        /*
2819         * There are two ways this annotation is useful:
2820         *
2821         *  1) there is a lock recursion from perf_event_exit_task
2822         *     see the comment there.
2823         *
2824         *  2) there is a lock-inversion with mmap_sem through
2825         *     perf_event_read_group(), which takes faults while
2826         *     holding ctx->mutex, however this is called after
2827         *     the last filedesc died, so there is no possibility
2828         *     to trigger the AB-BA case.
2829         */
2830        mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2831        raw_spin_lock_irq(&ctx->lock);
2832        perf_group_detach(event);
2833        raw_spin_unlock_irq(&ctx->lock);
2834        perf_remove_from_context(event);
2835        mutex_unlock(&ctx->mutex);
2836
2837        free_event(event);
2838
2839        return 0;
2840}
2841EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2842
2843/*
2844 * Called when the last reference to the file is gone.
2845 */
2846static int perf_release(struct inode *inode, struct file *file)
2847{
2848        struct perf_event *event = file->private_data;
2849        struct task_struct *owner;
2850
2851        file->private_data = NULL;
2852
2853        rcu_read_lock();
2854        owner = ACCESS_ONCE(event->owner);
2855        /*
2856         * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2857         * !owner it means the list deletion is complete and we can indeed
2858         * free this event, otherwise we need to serialize on
2859         * owner->perf_event_mutex.
2860         */
2861        smp_read_barrier_depends();
2862        if (owner) {
2863                /*
2864                 * Since delayed_put_task_struct() also drops the last
2865                 * task reference we can safely take a new reference
2866                 * while holding the rcu_read_lock().
2867                 */
2868                get_task_struct(owner);
2869        }
2870        rcu_read_unlock();
2871
2872        if (owner) {
2873                mutex_lock(&owner->perf_event_mutex);
2874                /*
2875                 * We have to re-check the event->owner field, if it is cleared
2876                 * we raced with perf_event_exit_task(), acquiring the mutex
2877                 * ensured they're done, and we can proceed with freeing the
2878                 * event.
2879                 */
2880                if (event->owner)
2881                        list_del_init(&event->owner_entry);
2882                mutex_unlock(&owner->perf_event_mutex);
2883                put_task_struct(owner);
2884        }
2885
2886        return perf_event_release_kernel(event);
2887}
2888
2889u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2890{
2891        struct perf_event *child;
2892        u64 total = 0;
2893
2894        *enabled = 0;
2895        *running = 0;
2896
2897        mutex_lock(&event->child_mutex);
2898        total += perf_event_read(event);
2899        *enabled += event->total_time_enabled +
2900                        atomic64_read(&event->child_total_time_enabled);
2901        *running += event->total_time_running +
2902                        atomic64_read(&event->child_total_time_running);
2903
2904        list_for_each_entry(child, &event->child_list, child_list) {
2905                total += perf_event_read(child);
2906                *enabled += child->total_time_enabled;
2907                *running += child->total_time_running;
2908        }
2909        mutex_unlock(&event->child_mutex);
2910
2911        return total;
2912}
2913EXPORT_SYMBOL_GPL(perf_event_read_value);
2914
2915static int perf_event_read_group(struct perf_event *event,
2916                                   u64 read_format, char __user *buf)
2917{
2918        struct perf_event *leader = event->group_leader, *sub;
2919        int n = 0, size = 0, ret = -EFAULT;
2920        struct perf_event_context *ctx = leader->ctx;
2921        u64 values[5];
2922        u64 count, enabled, running;
2923
2924        mutex_lock(&ctx->mutex);
2925        count = perf_event_read_value(leader, &enabled, &running);
2926
2927        values[n++] = 1 + leader->nr_siblings;
2928        if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2929                values[n++] = enabled;
2930        if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2931                values[n++] = running;
2932        values[n++] = count;
2933        if (read_format & PERF_FORMAT_ID)
2934                values[n++] = primary_event_id(leader);
2935
2936        size = n * sizeof(u64);
2937
2938        if (copy_to_user(buf, values, size))
2939                goto unlock;
2940
2941        ret = size;
2942
2943        list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2944                n = 0;
2945
2946                values[n++] = perf_event_read_value(sub, &enabled, &running);
2947                if (read_format & PERF_FORMAT_ID)
2948                        values[n++] = primary_event_id(sub);
2949
2950                size = n * sizeof(u64);
2951
2952                if (copy_to_user(buf + ret, values, size)) {
2953                        ret = -EFAULT;
2954                        goto unlock;
2955                }
2956
2957                ret += size;
2958        }
2959unlock:
2960        mutex_unlock(&ctx->mutex);
2961
2962        return ret;
2963}
2964
2965static int perf_event_read_one(struct perf_event *event,
2966                                 u64 read_format, char __user *buf)
2967{
2968        u64 enabled, running;
2969        u64 values[4];
2970        int n = 0;
2971
2972        values[n++] = perf_event_read_value(event, &enabled, &running);
2973        if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2974                values[n++] = enabled;
2975        if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2976                values[n++] = running;
2977        if (read_format & PERF_FORMAT_ID)
2978                values[n++] = primary_event_id(event);
2979
2980        if (copy_to_user(buf, values, n * sizeof(u64)))
2981                return -EFAULT;
2982
2983        return n * sizeof(u64);
2984}
2985
2986/*
2987 * Read the performance event - simple non blocking version for now
2988 */
2989static ssize_t
2990perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2991{
2992        u64 read_format = event->attr.read_format;
2993        int ret;
2994
2995        /*
2996         * Return end-of-file for a read on a event that is in
2997         * error state (i.e. because it was pinned but it couldn't be
2998         * scheduled on to the CPU at some point).
2999         */
3000        if (event->state == PERF_EVENT_STATE_ERROR)
3001                return 0;
3002
3003        if (count < event->read_size)
3004                return -ENOSPC;
3005
3006        WARN_ON_ONCE(event->ctx->parent_ctx);
3007        if (read_format & PERF_FORMAT_GROUP)
3008                ret = perf_event_read_group(event, read_format, buf);
3009        else
3010                ret = perf_event_read_one(event, read_format, buf);
3011
3012        return ret;
3013}
3014
3015static ssize_t
3016perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3017{
3018        struct perf_event *event = file->private_data;
3019
3020        return perf_read_hw(event, buf, count);
3021}
3022
3023static unsigned int perf_poll(struct file *file, poll_table *wait)
3024{
3025        struct perf_event *event = file->private_data;
3026        struct ring_buffer *rb;
3027        unsigned int events = POLL_HUP;
3028
3029        /*
3030         * Race between perf_event_set_output() and perf_poll(): perf_poll()
3031         * grabs the rb reference but perf_event_set_output() overrides it.
3032         * Here is the timeline for two threads T1, T2:
3033         * t0: T1, rb = rcu_dereference(event->rb)
3034         * t1: T2, old_rb = event->rb
3035         * t2: T2, event->rb = new rb
3036         * t3: T2, ring_buffer_detach(old_rb)
3037         * t4: T1, ring_buffer_attach(rb1)
3038         * t5: T1, poll_wait(event->waitq)
3039         *
3040         * To avoid this problem, we grab mmap_mutex in perf_poll()
3041         * thereby ensuring that the assignment of the new ring buffer
3042         * and the detachment of the old buffer appear atomic to perf_poll()
3043         */
3044        mutex_lock(&event->mmap_mutex);
3045
3046        rcu_read_lock();
3047        rb = rcu_dereference(event->rb);
3048        if (rb) {
3049                ring_buffer_attach(event, rb);
3050                events = atomic_xchg(&rb->poll, 0);
3051        }
3052        rcu_read_unlock();
3053
3054        mutex_unlock(&event->mmap_mutex);
3055
3056        poll_wait(file, &event->waitq, wait);
3057
3058        return events;
3059}
3060
3061static void perf_event_reset(struct perf_event *event)
3062{
3063        (void)perf_event_read(event);
3064        local64_set(&event->count, 0);
3065        perf_event_update_userpage(event);
3066}
3067
3068/*
3069 * Holding the top-level event's child_mutex means that any
3070 * descendant process that has inherited this event will block
3071 * in sync_child_event if it goes to exit, thus satisfying the
3072 * task existence requirements of perf_event_enable/disable.
3073 */
3074static void perf_event_for_each_child(struct perf_event *event,
3075                                        void (*func)(struct perf_event *))
3076{
3077        struct perf_event *child;
3078
3079        WARN_ON_ONCE(event->ctx->parent_ctx);
3080        mutex_lock(&event->child_mutex);
3081        func(event);
3082        list_for_each_entry(child, &event->child_list, child_list)
3083                func(child);
3084        mutex_unlock(&event->child_mutex);
3085}
3086
3087static void perf_event_for_each(struct perf_event *event,
3088                                  void (*func)(struct perf_event *))
3089{
3090        struct perf_event_context *ctx = event->ctx;
3091        struct perf_event *sibling;
3092
3093        WARN_ON_ONCE(ctx->parent_ctx);
3094        mutex_lock(&ctx->mutex);
3095        event = event->group_leader;
3096
3097        perf_event_for_each_child(event, func);
3098        func(event);
3099        list_for_each_entry(sibling, &event->sibling_list, group_entry)
3100                perf_event_for_each_child(event, func);
3101        mutex_unlock(&ctx->mutex);
3102}
3103
3104static int perf_event_period(struct perf_event *event, u64 __user *arg)
3105{
3106        struct perf_event_context *ctx = event->ctx;
3107        int ret = 0;
3108        u64 value;
3109
3110        if (!is_sampling_event(event))
3111                return -EINVAL;
3112
3113        if (copy_from_user(&value, arg, sizeof(value)))
3114                return -EFAULT;
3115
3116        if (!value)
3117                return -EINVAL;
3118
3119        raw_spin_lock_irq(&ctx->lock);
3120        if (event->attr.freq) {
3121                if (value > sysctl_perf_event_sample_rate) {
3122                        ret = -EINVAL;
3123                        goto unlock;
3124                }
3125
3126                event->attr.sample_freq = value;
3127        } else {
3128                event->attr.sample_period = value;
3129                event->hw.sample_period = value;
3130        }
3131unlock:
3132        raw_spin_unlock_irq(&ctx->lock);
3133
3134        return ret;
3135}
3136
3137static const struct file_operations perf_fops;
3138
3139static struct perf_event *perf_fget_light(int fd, int *fput_needed)
3140{
3141        struct file *file;
3142
3143        file = fget_light(fd, fput_needed);
3144        if (!file)
3145                return ERR_PTR(-EBADF);
3146
3147        if (file->f_op != &perf_fops) {
3148                fput_light(file, *fput_needed);
3149                *fput_needed = 0;
3150                return ERR_PTR(-EBADF);
3151        }
3152
3153        return file->private_data;
3154}
3155
3156static int perf_event_set_output(struct perf_event *event,
3157                                 struct perf_event *output_event);
3158static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3159
3160static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3161{
3162        struct perf_event *event = file->private_data;
3163        void (*func)(struct perf_event *);
3164        u32 flags = arg;
3165
3166        switch (cmd) {
3167        case PERF_EVENT_IOC_ENABLE:
3168                func = perf_event_enable;
3169                break;
3170        case PERF_EVENT_IOC_DISABLE:
3171                func = perf_event_disable;
3172                break;
3173        case PERF_EVENT_IOC_RESET:
3174                func = perf_event_reset;
3175                break;
3176
3177        case PERF_EVENT_IOC_REFRESH:
3178                return perf_event_refresh(event, arg);
3179
3180        case PERF_EVENT_IOC_PERIOD:
3181                return perf_event_period(event, (u64 __user *)arg);
3182
3183        case PERF_EVENT_IOC_SET_OUTPUT:
3184        {
3185                struct perf_event *output_event = NULL;
3186                int fput_needed = 0;
3187                int ret;
3188
3189                if (arg != -1) {
3190                        output_event = perf_fget_light(arg, &fput_needed);
3191                        if (IS_ERR(output_event))
3192                                return PTR_ERR(output_event);
3193                }
3194
3195                ret = perf_event_set_output(event, output_event);
3196                if (output_event)
3197                        fput_light(output_event->filp, fput_needed);
3198
3199                return ret;
3200        }
3201
3202        case PERF_EVENT_IOC_SET_FILTER:
3203                return perf_event_set_filter(event, (void __user *)arg);
3204
3205        default:
3206                return -ENOTTY;
3207        }
3208
3209        if (flags & PERF_IOC_FLAG_GROUP)
3210                perf_event_for_each(event, func);
3211        else
3212                perf_event_for_each_child(event, func);
3213
3214        return 0;
3215}
3216
3217int perf_event_task_enable(void)
3218{
3219        struct perf_event *event;
3220
3221        mutex_lock(&current->perf_event_mutex);
3222        list_for_each_entry(event, &current->perf_event_list, owner_entry)
3223                perf_event_for_each_child(event, perf_event_enable);
3224        mutex_unlock(&current->perf_event_mutex);
3225
3226        return 0;
3227}
3228
3229int perf_event_task_disable(void)
3230{
3231        struct perf_event *event;
3232
3233        mutex_lock(&current->perf_event_mutex);
3234        list_for_each_entry(event, &current->perf_event_list, owner_entry)
3235                perf_event_for_each_child(event, perf_event_disable);
3236        mutex_unlock(&current->perf_event_mutex);
3237
3238        return 0;
3239}
3240
3241#ifndef PERF_EVENT_INDEX_OFFSET
3242# define PERF_EVENT_INDEX_OFFSET 0
3243#endif
3244
3245static int perf_event_index(struct perf_event *event)
3246{
3247        if (event->hw.state & PERF_HES_STOPPED)
3248                return 0;
3249
3250        if (event->state != PERF_EVENT_STATE_ACTIVE)
3251                return 0;
3252
3253        return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
3254}
3255
3256static void calc_timer_values(struct perf_event *event,
3257                                u64 *enabled,
3258                                u64 *running)
3259{
3260        u64 now, ctx_time;
3261
3262        now = perf_clock();
3263        ctx_time = event->shadow_ctx_time + now;
3264        *enabled = ctx_time - event->tstamp_enabled;
3265        *running = ctx_time - event->tstamp_running;
3266}
3267
3268/*
3269 * Callers need to ensure there can be no nesting of this function, otherwise
3270 * the seqlock logic goes bad. We can not serialize this because the arch
3271 * code calls this from NMI context.
3272 */
3273void perf_event_update_userpage(struct perf_event *event)
3274{
3275        struct perf_event_mmap_page *userpg;
3276        struct ring_buffer *rb;
3277        u64 enabled, running;
3278
3279        rcu_read_lock();
3280        /*
3281         * compute total_time_enabled, total_time_running
3282         * based on snapshot values taken when the event
3283         * was last scheduled in.
3284         *
3285         * we cannot simply called update_context_time()
3286         * because of locking issue as we can be called in
3287         * NMI context
3288         */
3289        calc_timer_values(event, &enabled, &running);
3290        rb = rcu_dereference(event->rb);
3291        if (!rb)
3292                goto unlock;
3293
3294        userpg = rb->user_page;
3295
3296        /*
3297         * Disable preemption so as to not let the corresponding user-space
3298         * spin too long if we get preempted.
3299         */
3300        preempt_disable();
3301        ++userpg->lock;
3302        barrier();
3303        userpg->index = perf_event_index(event);
3304        userpg->offset = perf_event_count(event);
3305        if (event->state == PERF_EVENT_STATE_ACTIVE)
3306                userpg->offset -= local64_read(&event->hw.prev_count);
3307
3308        userpg->time_enabled = enabled +
3309                        atomic64_read(&event->child_total_time_enabled);
3310
3311        userpg->time_running = running +
3312                        atomic64_read(&event->child_total_time_running);
3313
3314        barrier();
3315        ++userpg->lock;
3316        preempt_enable();
3317unlock:
3318        rcu_read_unlock();
3319}
3320
3321static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3322{
3323        struct perf_event *event = vma->vm_file->private_data;
3324        struct ring_buffer *rb;
3325        int ret = VM_FAULT_SIGBUS;
3326
3327        if (vmf->flags & FAULT_FLAG_MKWRITE) {
3328                if (vmf->pgoff == 0)
3329                        ret = 0;
3330                return ret;
3331        }
3332
3333        rcu_read_lock();
3334        rb = rcu_dereference(event->rb);
3335        if (!rb)
3336                goto unlock;
3337
3338        if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3339                goto unlock;
3340
3341        vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3342        if (!vmf->page)
3343                goto unlock;
3344
3345        get_page(vmf->page);
3346        vmf->page->mapping = vma->vm_file->f_mapping;
3347        vmf->page->index   = vmf->pgoff;
3348
3349        ret = 0;
3350unlock:
3351        rcu_read_unlock();
3352
3353        return ret;
3354}
3355
3356static void ring_buffer_attach(struct perf_event *event,
3357                               struct ring_buffer *rb)
3358{
3359        unsigned long flags;
3360
3361        if (!list_empty(&event->rb_entry))
3362                return;
3363
3364        spin_lock_irqsave(&rb->event_lock, flags);
3365        if (!list_empty(&event->rb_entry))
3366                goto unlock;
3367
3368        list_add(&event->rb_entry, &rb->event_list);
3369unlock:
3370        spin_unlock_irqrestore(&rb->event_lock, flags);
3371}
3372
3373static void ring_buffer_detach(struct perf_event *event,
3374                               struct ring_buffer *rb)
3375{
3376        unsigned long flags;
3377
3378        if (list_empty(&event->rb_entry))
3379                return;
3380
3381        spin_lock_irqsave(&rb->event_lock, flags);
3382        list_del_init(&event->rb_entry);
3383        wake_up_all(&event->waitq);
3384        spin_unlock_irqrestore(&rb->event_lock, flags);
3385}
3386
3387static void ring_buffer_wakeup(struct perf_event *event)
3388{
3389        struct ring_buffer *rb;
3390
3391        rcu_read_lock();
3392        rb = rcu_dereference(event->rb);
3393        if (!rb)
3394                goto unlock;
3395
3396        list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3397                wake_up_all(&event->waitq);
3398
3399unlock:
3400        rcu_read_unlock();
3401}
3402
3403static void rb_free_rcu(struct rcu_head *rcu_head)
3404{
3405        struct ring_buffer *rb;
3406
3407        rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3408        rb_free(rb);
3409}
3410
3411static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3412{
3413        struct ring_buffer *rb;
3414
3415        rcu_read_lock();
3416        rb = rcu_dereference(event->rb);
3417        if (rb) {
3418                if (!atomic_inc_not_zero(&rb->refcount))
3419                        rb = NULL;
3420        }
3421        rcu_read_unlock();
3422
3423        return rb;
3424}
3425
3426static void ring_buffer_put(struct ring_buffer *rb)
3427{
3428        struct perf_event *event, *n;
3429        unsigned long flags;
3430
3431        if (!atomic_dec_and_test(&rb->refcount))
3432                return;
3433
3434        spin_lock_irqsave(&rb->event_lock, flags);
3435        list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
3436                list_del_init(&event->rb_entry);
3437                wake_up_all(&event->waitq);
3438        }
3439        spin_unlock_irqrestore(&rb->event_lock, flags);
3440
3441        call_rcu(&rb->rcu_head, rb_free_rcu);
3442}
3443
3444static void perf_mmap_open(struct vm_area_struct *vma)
3445{
3446        struct perf_event *event = vma->vm_file->private_data;
3447
3448        atomic_inc(&event->mmap_count);
3449}
3450
3451static void perf_mmap_close(struct vm_area_struct *vma)
3452{
3453        struct perf_event *event = vma->vm_file->private_data;
3454
3455        if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3456                unsigned long size = perf_data_size(event->rb);
3457                struct user_struct *user = event->mmap_user;
3458                struct ring_buffer *rb = event->rb;
3459
3460                atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3461                vma->vm_mm->pinned_vm -= event->mmap_locked;
3462                rcu_assign_pointer(event->rb, NULL);
3463                ring_buffer_detach(event, rb);
3464                mutex_unlock(&event->mmap_mutex);
3465
3466                ring_buffer_put(rb);
3467                free_uid(user);
3468        }
3469}
3470
3471static const struct vm_operations_struct perf_mmap_vmops = {
3472        .open           = perf_mmap_open,
3473        .close          = perf_mmap_close,
3474        .fault          = perf_mmap_fault,
3475        .page_mkwrite   = perf_mmap_fault,
3476};
3477
3478static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3479{
3480        struct perf_event *event = file->private_data;
3481        unsigned long user_locked, user_lock_limit;
3482        struct user_struct *user = current_user();
3483        unsigned long locked, lock_limit;
3484        struct ring_buffer *rb;
3485        unsigned long vma_size;
3486        unsigned long nr_pages;
3487        long user_extra, extra;
3488        int ret = 0, flags = 0;
3489
3490        /*
3491         * Don't allow mmap() of inherited per-task counters. This would
3492         * create a performance issue due to all children writing to the
3493         * same rb.
3494         */
3495        if (event->cpu == -1 && event->attr.inherit)
3496                return -EINVAL;
3497
3498        if (!(vma->vm_flags & VM_SHARED))
3499                return -EINVAL;
3500
3501        vma_size = vma->vm_end - vma->vm_start;
3502        nr_pages = (vma_size / PAGE_SIZE) - 1;
3503
3504        /*
3505         * If we have rb pages ensure they're a power-of-two number, so we
3506         * can do bitmasks instead of modulo.
3507         */
3508        if (nr_pages != 0 && !is_power_of_2(nr_pages))
3509                return -EINVAL;
3510
3511        if (vma_size != PAGE_SIZE * (1 + nr_pages))
3512                return -EINVAL;
3513
3514        if (vma->vm_pgoff != 0)
3515                return -EINVAL;
3516
3517        WARN_ON_ONCE(event->ctx->parent_ctx);
3518        mutex_lock(&event->mmap_mutex);
3519        if (event->rb) {
3520                if (event->rb->nr_pages == nr_pages)
3521                        atomic_inc(&event->rb->refcount);
3522                else
3523                        ret = -EINVAL;
3524                goto unlock;
3525        }
3526
3527        user_extra = nr_pages + 1;
3528        user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3529
3530        /*
3531         * Increase the limit linearly with more CPUs:
3532         */
3533        user_lock_limit *= num_online_cpus();
3534
3535        user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3536
3537        extra = 0;
3538        if (user_locked > user_lock_limit)
3539                extra = user_locked - user_lock_limit;
3540
3541        lock_limit = rlimit(RLIMIT_MEMLOCK);
3542        lock_limit >>= PAGE_SHIFT;
3543        locked = vma->vm_mm->pinned_vm + extra;
3544
3545        if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3546                !capable(CAP_IPC_LOCK)) {
3547                ret = -EPERM;
3548                goto unlock;
3549        }
3550
3551        WARN_ON(event->rb);
3552
3553        if (vma->vm_flags & VM_WRITE)
3554                flags |= RING_BUFFER_WRITABLE;
3555
3556        rb = rb_alloc(nr_pages, 
3557                event->attr.watermark ? event->attr.wakeup_watermark : 0,
3558                event->cpu, flags);
3559
3560        if (!rb) {
3561                ret = -ENOMEM;
3562                goto unlock;
3563        }
3564        rcu_assign_pointer(event->rb, rb);
3565
3566        atomic_long_add(user_extra, &user->locked_vm);
3567        event->mmap_locked = extra;
3568        event->mmap_user = get_current_user();
3569        vma->vm_mm->pinned_vm += event->mmap_locked;
3570
3571unlock:
3572        if (!ret)
3573                atomic_inc(&event->mmap_count);
3574        mutex_unlock(&event->mmap_mutex);
3575
3576        vma->vm_flags |= VM_RESERVED;
3577        vma->vm_ops = &perf_mmap_vmops;
3578
3579        return ret;
3580}
3581
3582static int perf_fasync(int fd, struct file *filp, int on)
3583{
3584        struct inode *inode = filp->f_path.dentry->d_inode;
3585        struct perf_event *event = filp->private_data;
3586        int retval;
3587
3588        mutex_lock(&inode->i_mutex);
3589        retval = fasync_helper(fd, filp, on, &event->fasync);
3590        mutex_unlock(&inode->i_mutex);
3591
3592        if (retval < 0)
3593                return retval;
3594
3595        return 0;
3596}
3597
3598static const struct file_operations perf_fops = {
3599        .llseek                 = no_llseek,
3600        .release                = perf_release,
3601        .read                   = perf_read,
3602        .poll                   = perf_poll,
3603        .unlocked_ioctl         = perf_ioctl,
3604        .compat_ioctl           = perf_ioctl,
3605        .mmap                   = perf_mmap,
3606        .fasync                 = perf_fasync,
3607};
3608
3609/*
3610 * Perf event wakeup
3611 *
3612 * If there's data, ensure we set the poll() state and publish everything
3613 * to user-space before waking everybody up.
3614 */
3615
3616void perf_event_wakeup(struct perf_event *event)
3617{
3618        ring_buffer_wakeup(event);
3619
3620        if (event->pending_kill) {
3621                kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3622                event->pending_kill = 0;
3623        }
3624}
3625
3626static void perf_pending_event(struct irq_work *entry)
3627{
3628        struct perf_event *event = container_of(entry,
3629                        struct perf_event, pending);
3630
3631        if (event->pending_disable) {
3632                event->pending_disable = 0;
3633                __perf_event_disable(event);
3634        }
3635
3636        if (event->pending_wakeup) {
3637                event->pending_wakeup = 0;
3638                perf_event_wakeup(event);
3639        }
3640}
3641
3642/*
3643 * We assume there is only KVM supporting the callbacks.
3644 * Later on, we might change it to a list if there is
3645 * another virtualization implementation supporting the callbacks.
3646 */
3647struct perf_guest_info_callbacks *perf_guest_cbs;
3648
3649int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3650{
3651        perf_guest_cbs = cbs;
3652        return 0;
3653}
3654EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3655
3656int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3657{
3658        perf_guest_cbs = NULL;
3659        return 0;
3660}
3661EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3662
3663static void __perf_event_header__init_id(struct perf_event_header *header,
3664                                         struct perf_sample_data *data,
3665                                         struct perf_event *event)
3666{
3667        u64 sample_type = event->attr.sample_type;
3668
3669        data->type = sample_type;
3670        header->size += event->id_header_size;
3671
3672        if (sample_type & PERF_SAMPLE_TID) {
3673                /* namespace issues */
3674                data->tid_entry.pid = perf_event_pid(event, current);
3675                data->tid_entry.tid = perf_event_tid(event, current);
3676        }
3677
3678        if (sample_type & PERF_SAMPLE_TIME)
3679                data->time = perf_clock();
3680
3681        if (sample_type & PERF_SAMPLE_ID)
3682                data->id = primary_event_id(event);
3683
3684        if (sample_type & PERF_SAMPLE_STREAM_ID)
3685                data->stream_id = event->id;
3686
3687        if (sample_type & PERF_SAMPLE_CPU) {
3688                data->cpu_entry.cpu      = raw_smp_processor_id();
3689                data->cpu_entry.reserved = 0;
3690        }
3691}
3692
3693void perf_event_header__init_id(struct perf_event_header *header,
3694                                struct perf_sample_data *data,
3695                                struct perf_event *event)
3696{
3697        if (event->attr.sample_id_all)
3698                __perf_event_header__init_id(header, data, event);
3699}
3700
3701static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3702                                           struct perf_sample_data *data)
3703{
3704        u64 sample_type = data->type;
3705
3706        if (sample_type & PERF_SAMPLE_TID)
3707                perf_output_put(handle, data->tid_entry);
3708
3709        if (sample_type & PERF_SAMPLE_TIME)
3710                perf_output_put(handle, data->time);
3711
3712        if (sample_type & PERF_SAMPLE_ID)
3713                perf_output_put(handle, data->id);
3714
3715        if (sample_type & PERF_SAMPLE_STREAM_ID)
3716                perf_output_put(handle, data->stream_id);
3717
3718        if (sample_type & PERF_SAMPLE_CPU)
3719                perf_output_put(handle, data->cpu_entry);
3720}
3721
3722void perf_event__output_id_sample(struct perf_event *event,
3723                                  struct perf_output_handle *handle,
3724                                  struct perf_sample_data *sample)
3725{
3726        if (event->attr.sample_id_all)
3727                __perf_event__output_id_sample(handle, sample);
3728}
3729
3730static void perf_output_read_one(struct perf_output_handle *handle,
3731                                 struct perf_event *event,
3732                                 u64 enabled, u64 running)
3733{
3734        u64 read_format = event->attr.read_format;
3735        u64 values[4];
3736        int n = 0;
3737
3738        values[n++] = perf_event_count(event);
3739        if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3740                values[n++] = enabled +
3741                        atomic64_read(&event->child_total_time_enabled);
3742        }
3743        if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3744                values[n++] = running +
3745                        atomic64_read(&event->child_total_time_running);
3746        }
3747        if (read_format & PERF_FORMAT_ID)
3748                values[n++] = primary_event_id(event);
3749
3750        __output_copy(handle, values, n * sizeof(u64));
3751}
3752
3753/*
3754 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3755 */
3756static void perf_output_read_group(struct perf_output_handle *handle,
3757                            struct perf_event *event,
3758                            u64 enabled, u64 running)
3759{
3760        struct perf_event *leader = event->group_leader, *sub;
3761        u64 read_format = event->attr.read_format;
3762        u64 values[5];
3763        int n = 0;
3764
3765        values[n++] = 1 + leader->nr_siblings;
3766
3767        if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3768                values[n++] = enabled;
3769
3770        if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3771                values[n++] = running;
3772
3773        if (leader != event)
3774                leader->pmu->read(leader);
3775
3776        values[n++] = perf_event_count(leader);
3777        if (read_format & PERF_FORMAT_ID)
3778                values[n++] = primary_event_id(leader);
3779
3780        __output_copy(handle, values, n * sizeof(u64));
3781
3782        list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3783                n = 0;
3784
3785                if (sub != event)
3786                        sub->pmu->read(sub);
3787
3788                values[n++] = perf_event_count(sub);
3789                if (read_format & PERF_FORMAT_ID)
3790                        values[n++] = primary_event_id(sub);
3791
3792                __output_copy(handle, values, n * sizeof(u64));
3793        }
3794}
3795
3796#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3797                                 PERF_FORMAT_TOTAL_TIME_RUNNING)
3798
3799static void perf_output_read(struct perf_output_handle *handle,
3800                             struct perf_event *event)
3801{
3802        u64 enabled = 0, running = 0;
3803        u64 read_format = event->attr.read_format;
3804
3805        /*
3806         * compute total_time_enabled, total_time_running
3807         * based on snapshot values taken when the event
3808         * was last scheduled in.
3809         *
3810         * we cannot simply called update_context_time()
3811         * because of locking issue as we are called in
3812         * NMI context
3813         */
3814        if (read_format & PERF_FORMAT_TOTAL_TIMES)
3815                calc_timer_values(event, &enabled, &running);
3816
3817        if (event->attr.read_format & PERF_FORMAT_GROUP)
3818                perf_output_read_group(handle, event, enabled, running);
3819        else
3820                perf_output_read_one(handle, event, enabled, running);
3821}
3822
3823void perf_output_sample(struct perf_output_handle *handle,
3824                        struct perf_event_header *header,
3825                        struct perf_sample_data *data,
3826                        struct perf_event *event)
3827{
3828        u64 sample_type = data->type;
3829
3830        perf_output_put(handle, *header);
3831
3832        if (sample_type & PERF_SAMPLE_IP)
3833                perf_output_put(handle, data->ip);
3834
3835        if (sample_type & PERF_SAMPLE_TID)
3836                perf_output_put(handle, data->tid_entry);
3837
3838        if (sample_type & PERF_SAMPLE_TIME)
3839                perf_output_put(handle, data->time);
3840
3841        if (sample_type & PERF_SAMPLE_ADDR)
3842                perf_output_put(handle, data->addr);
3843
3844        if (sample_type & PERF_SAMPLE_ID)
3845                perf_output_put(handle, data->id);
3846
3847        if (sample_type & PERF_SAMPLE_STREAM_ID)
3848                perf_output_put(handle, data->stream_id);
3849
3850        if (sample_type & PERF_SAMPLE_CPU)
3851                perf_output_put(handle, data->cpu_entry);
3852
3853        if (sample_type & PERF_SAMPLE_PERIOD)
3854                perf_output_put(handle, data->period);
3855
3856        if (sample_type & PERF_SAMPLE_READ)
3857                perf_output_read(handle, event);
3858
3859        if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3860                if (data->callchain) {
3861                        int size = 1;
3862
3863                        if (data->callchain)
3864                                size += data->callchain->nr;
3865
3866                        size *= sizeof(u64);
3867
3868                        __output_copy(handle, data->callchain, size);
3869                } else {
3870                        u64 nr = 0;
3871                        perf_output_put(handle, nr);
3872                }
3873        }
3874
3875        if (sample_type & PERF_SAMPLE_RAW) {
3876                if (data->raw) {
3877                        perf_output_put(handle, data->raw->size);
3878                        __output_copy(handle, data->raw->data,
3879                                           data->raw->size);
3880                } else {
3881                        struct {
3882                                u32     size;
3883                                u32     data;
3884                        } raw = {
3885                                .size = sizeof(u32),
3886                                .data = 0,
3887                        };
3888                        perf_output_put(handle, raw);
3889                }
3890        }
3891
3892        if (!event->attr.watermark) {
3893                int wakeup_events = event->attr.wakeup_events;
3894
3895                if (wakeup_events) {
3896                        struct ring_buffer *rb = handle->rb;
3897                        int events = local_inc_return(&rb->events);
3898
3899                        if (events >= wakeup_events) {
3900                                local_sub(wakeup_events, &rb->events);
3901                                local_inc(&rb->wakeup);
3902                        }
3903                }
3904        }
3905}
3906
3907void perf_prepare_sample(struct perf_event_header *header,
3908                         struct perf_sample_data *data,
3909                         struct perf_event *event,
3910                         struct pt_regs *regs)
3911{
3912        u64 sample_type = event->attr.sample_type;
3913
3914        header->type = PERF_RECORD_SAMPLE;
3915        header->size = sizeof(*header) + event->header_size;
3916
3917        header->misc = 0;
3918        header->misc |= perf_misc_flags(regs);
3919
3920        __perf_event_header__init_id(header, data, event);
3921
3922        if (sample_type & PERF_SAMPLE_IP)
3923                data->ip = perf_instruction_pointer(regs);
3924
3925        if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3926                int size = 1;
3927
3928                data->callchain = perf_callchain(regs);
3929
3930                if (data->callchain)
3931                        size += data->callchain->nr;
3932
3933                header->size += size * sizeof(u64);
3934        }
3935
3936        if (sample_type & PERF_SAMPLE_RAW) {
3937                int size = sizeof(u32);
3938
3939                if (data->raw)
3940                        size += data->raw->size;
3941                else
3942                        size += sizeof(u32);
3943
3944                WARN_ON_ONCE(size & (sizeof(u64)-1));
3945                header->size += size;
3946        }
3947}
3948
3949static void perf_event_output(struct perf_event *event,
3950                                struct perf_sample_data *data,
3951                                struct pt_regs *regs)
3952{
3953        struct perf_output_handle handle;
3954        struct perf_event_header header;
3955
3956        /* protect the callchain buffers */
3957        rcu_read_lock();
3958
3959        perf_prepare_sample(&header, data, event, regs);
3960
3961        if (perf_output_begin(&handle, event, header.size))
3962                goto exit;
3963
3964        perf_output_sample(&handle, &header, data, event);
3965
3966        perf_output_end(&handle);
3967
3968exit:
3969        rcu_read_unlock();
3970}
3971
3972/*
3973 * read event_id
3974 */
3975
3976struct perf_read_event {
3977        struct perf_event_header        header;
3978
3979        u32                             pid;
3980        u32                             tid;
3981};
3982
3983static void
3984perf_event_read_event(struct perf_event *event,
3985                        struct task_struct *task)
3986{
3987        struct perf_output_handle handle;
3988        struct perf_sample_data sample;
3989        struct perf_read_event read_event = {
3990                .header = {
3991                        .type = PERF_RECORD_READ,
3992                        .misc = 0,
3993                        .size = sizeof(read_event) + event->read_size,
3994                },
3995                .pid = perf_event_pid(event, task),
3996                .tid = perf_event_tid(event, task),
3997        };
3998        int ret;
3999
4000        perf_event_header__init_id(&read_event.header, &sample, event);
4001        ret = perf_output_begin(&handle, event, read_event.header.size);
4002        if (ret)
4003                return;
4004
4005        perf_output_put(&handle, read_event);
4006        perf_output_read(&handle, event);
4007        perf_event__output_id_sample(event, &handle, &sample);
4008
4009        perf_output_end(&handle);
4010}
4011
4012/*
4013 * task tracking -- fork/exit
4014 *
4015 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4016 */
4017
4018struct perf_task_event {
4019        struct task_struct              *task;
4020        struct perf_event_context       *task_ctx;
4021
4022        struct {
4023                struct perf_event_header        header;
4024
4025                u32                             pid;
4026                u32                             ppid;
4027                u32                             tid;
4028                u32                             ptid;
4029                u64                             time;
4030        } event_id;
4031};
4032
4033static void perf_event_task_output(struct perf_event *event,
4034                                     struct perf_task_event *task_event)
4035{
4036        struct perf_output_handle handle;
4037        struct perf_sample_data sample;
4038        struct task_struct *task = task_event->task;
4039        int ret, size = task_event->event_id.header.size;
4040
4041        perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4042
4043        ret = perf_output_begin(&handle, event,
4044                                task_event->event_id.header.size);
4045        if (ret)
4046                goto out;
4047
4048        task_event->event_id.pid = perf_event_pid(event, task);
4049        task_event->event_id.ppid = perf_event_pid(event, current);
4050
4051        task_event->event_id.tid = perf_event_tid(event, task);
4052        task_event->event_id.ptid = perf_event_tid(event, current);
4053
4054        perf_output_put(&handle, task_event->event_id);
4055
4056        perf_event__output_id_sample(event, &handle, &sample);
4057
4058        perf_output_end(&handle);
4059out:
4060        task_event->event_id.header.size = size;
4061}
4062
4063static int perf_event_task_match(struct perf_event *event)
4064{
4065        if (event->state < PERF_EVENT_STATE_INACTIVE)
4066                return 0;
4067
4068        if (!event_filter_match(event))
4069                return 0;
4070
4071        if (event->attr.comm || event->attr.mmap ||
4072            event->attr.mmap_data || event->attr.task)
4073                return 1;
4074
4075        return 0;
4076}
4077
4078static void perf_event_task_ctx(struct perf_event_context *ctx,
4079                                  struct perf_task_event *task_event)
4080{
4081        struct perf_event *event;
4082
4083        list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4084                if (perf_event_task_match(event))
4085                        perf_event_task_output(event, task_event);
4086        }
4087}
4088
4089static void perf_event_task_event(struct perf_task_event *task_event)
4090{
4091        struct perf_cpu_context *cpuctx;
4092        struct perf_event_context *ctx;
4093        struct pmu *pmu;
4094        int ctxn;
4095
4096        rcu_read_lock();
4097        list_for_each_entry_rcu(pmu, &pmus, entry) {
4098                cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4099                if (cpuctx->active_pmu != pmu)
4100                        goto next;
4101                perf_event_task_ctx(&cpuctx->ctx, task_event);
4102
4103                ctx = task_event->task_ctx;
4104                if (!ctx) {
4105                        ctxn = pmu->task_ctx_nr;
4106                        if (ctxn < 0)
4107                                goto next;
4108                        ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4109                }
4110                if (ctx)
4111                        perf_event_task_ctx(ctx, task_event);
4112next:
4113                put_cpu_ptr(pmu->pmu_cpu_context);
4114        }
4115        rcu_read_unlock();
4116}
4117
4118static void perf_event_task(struct task_struct *task,
4119                              struct perf_event_context *task_ctx,
4120                              int new)
4121{
4122        struct perf_task_event task_event;
4123
4124        if (!atomic_read(&nr_comm_events) &&
4125            !atomic_read(&nr_mmap_events) &&
4126            !atomic_read(&nr_task_events))
4127                return;
4128
4129        task_event = (struct perf_task_event){
4130                .task     = task,
4131                .task_ctx = task_ctx,
4132                .event_id    = {
4133                        .header = {
4134                                .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4135                                .misc = 0,
4136                                .size = sizeof(task_event.event_id),
4137                        },
4138                        /* .pid  */
4139                        /* .ppid */
4140                        /* .tid  */
4141                        /* .ptid */
4142                        .time = perf_clock(),
4143                },
4144        };
4145
4146        perf_event_task_event(&task_event);
4147}
4148
4149void perf_event_fork(struct task_struct *task)
4150{
4151        perf_event_task(task, NULL, 1);
4152}
4153
4154/*
4155 * comm tracking
4156 */
4157
4158struct perf_comm_event {
4159        struct task_struct      *task;
4160        char                    *comm;
4161        int                     comm_size;
4162
4163        struct {
4164                struct perf_event_header        header;
4165
4166                u32                             pid;
4167                u32                             tid;
4168        } event_id;
4169};
4170
4171static void perf_event_comm_output(struct perf_event *event,
4172                                     struct perf_comm_event *comm_event)
4173{
4174        struct perf_output_handle handle;
4175        struct perf_sample_data sample;
4176        int size = comm_event->event_id.header.size;
4177        int ret;
4178
4179        perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4180        ret = perf_output_begin(&handle, event,
4181                                comm_event->event_id.header.size);
4182
4183        if (ret)
4184                goto out;
4185
4186        comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4187        comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4188
4189        perf_output_put(&handle, comm_event->event_id);
4190        __output_copy(&handle, comm_event->comm,
4191                                   comm_event->comm_size);
4192
4193        perf_event__output_id_sample(event, &handle, &sample);
4194
4195        perf_output_end(&handle);
4196out:
4197        comm_event->event_id.header.size = size;
4198}
4199
4200static int perf_event_comm_match(struct perf_event *event)
4201{
4202        if (event->state < PERF_EVENT_STATE_INACTIVE)
4203                return 0;
4204
4205        if (!event_filter_match(event))
4206                return 0;
4207
4208        if (event->attr.comm)
4209                return 1;
4210
4211        return 0;
4212}
4213
4214static void perf_event_comm_ctx(struct perf_event_context *ctx,
4215                                  struct perf_comm_event *comm_event)
4216{
4217        struct perf_event *event;
4218
4219        list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4220                if (perf_event_comm_match(event))
4221                        perf_event_comm_output(event, comm_event);
4222        }
4223}
4224
4225static void perf_event_comm_event(struct perf_comm_event *comm_event)
4226{
4227        struct perf_cpu_context *cpuctx;
4228        struct perf_event_context *ctx;
4229        char comm[TASK_COMM_LEN];
4230        unsigned int size;
4231        struct pmu *pmu;
4232        int ctxn;
4233
4234        memset(comm, 0, sizeof(comm));
4235        strlcpy(comm, comm_event->task->comm, sizeof(comm));
4236        size = ALIGN(strlen(comm)+1, sizeof(u64));
4237
4238        comm_event->comm = comm;
4239        comm_event->comm_size = size;
4240
4241        comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4242        rcu_read_lock();
4243        list_for_each_entry_rcu(pmu, &pmus, entry) {
4244                cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4245                if (cpuctx->active_pmu != pmu)
4246                        goto next;
4247                perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4248
4249                ctxn = pmu->task_ctx_nr;
4250                if (ctxn < 0)
4251                        goto next;
4252
4253                ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4254                if (ctx)
4255                        perf_event_comm_ctx(ctx, comm_event);
4256next:
4257                put_cpu_ptr(pmu->pmu_cpu_context);
4258        }
4259        rcu_read_unlock();
4260}
4261
4262void perf_event_comm(struct task_struct *task)
4263{
4264        struct perf_comm_event comm_event;
4265        struct perf_event_context *ctx;
4266        int ctxn;
4267
4268        for_each_task_context_nr(ctxn) {
4269                ctx = task->perf_event_ctxp[ctxn];
4270                if (!ctx)
4271                        continue;
4272
4273                perf_event_enable_on_exec(ctx);
4274        }
4275
4276        if (!atomic_read(&nr_comm_events))
4277                return;
4278
4279        comm_event = (struct perf_comm_event){
4280                .task   = task,
4281                /* .comm      */
4282                /* .comm_size */
4283                .event_id  = {
4284                        .header = {
4285                                .type = PERF_RECORD_COMM,
4286                                .misc = 0,
4287                                /* .size */
4288                        },
4289                        /* .pid */
4290                        /* .tid */
4291                },
4292        };
4293
4294        perf_event_comm_event(&comm_event);
4295}
4296
4297/*
4298 * mmap tracking
4299 */
4300
4301struct perf_mmap_event {
4302        struct vm_area_struct   *vma;
4303
4304        const char              *file_name;
4305        int                     file_size;
4306
4307        struct {
4308                struct perf_event_header        header;
4309
4310                u32                             pid;
4311                u32                             tid;
4312                u64                             start;
4313                u64                             len;
4314                u64                             pgoff;
4315        } event_id;
4316};
4317
4318static void perf_event_mmap_output(struct perf_event *event,
4319                                     struct perf_mmap_event *mmap_event)
4320{
4321        struct perf_output_handle handle;
4322        struct perf_sample_data sample;
4323        int size = mmap_event->event_id.header.size;
4324        int ret;
4325
4326        perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4327        ret = perf_output_begin(&handle, event,
4328                                mmap_event->event_id.header.size);
4329        if (ret)
4330                goto out;
4331
4332        mmap_event->event_id.pid = perf_event_pid(event, current);
4333        mmap_event->event_id.tid = perf_event_tid(event, current);
4334
4335        perf_output_put(&handle, mmap_event->event_id);
4336        __output_copy(&handle, mmap_event->file_name,
4337                                   mmap_event->file_size);
4338
4339        perf_event__output_id_sample(event, &handle, &sample);
4340
4341        perf_output_end(&handle);
4342out:
4343        mmap_event->event_id.header.size = size;
4344}
4345
4346static int perf_event_mmap_match(struct perf_event *event,
4347                                   struct perf_mmap_event *mmap_event,
4348                                   int executable)
4349{
4350        if (event->state < PERF_EVENT_STATE_INACTIVE)
4351                return 0;
4352
4353        if (!event_filter_match(event))
4354                return 0;
4355
4356        if ((!executable && event->attr.mmap_data) ||
4357            (executable && event->attr.mmap))
4358                return 1;
4359
4360        return 0;
4361}
4362
4363static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4364                                  struct perf_mmap_event *mmap_event,
4365                                  int executable)
4366{
4367        struct perf_event *event;
4368
4369        list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4370                if (perf_event_mmap_match(event, mmap_event, executable))
4371                        perf_event_mmap_output(event, mmap_event);
4372        }
4373}
4374
4375static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4376{
4377        struct perf_cpu_context *cpuctx;
4378        struct perf_event_context *ctx;
4379        struct vm_area_struct *vma = mmap_event->vma;
4380        struct file *file = vma->vm_file;
4381        unsigned int size;
4382        char tmp[16];
4383        char *buf = NULL;
4384        const char *name;
4385        struct pmu *pmu;
4386        int ctxn;
4387
4388        memset(tmp, 0, sizeof(tmp));
4389
4390        if (file) {
4391                /*
4392                 * d_path works from the end of the rb backwards, so we
4393                 * need to add enough zero bytes after the string to handle
4394                 * the 64bit alignment we do later.
4395                 */
4396                buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4397                if (!buf) {
4398                        name = strncpy(tmp, "//enomem", sizeof(tmp));
4399                        goto got_name;
4400                }
4401                name = d_path(&file->f_path, buf, PATH_MAX);
4402                if (IS_ERR(name)) {
4403                        name = strncpy(tmp, "//toolong", sizeof(tmp));
4404                        goto got_name;
4405                }
4406        } else {
4407                if (arch_vma_name(mmap_event->vma)) {
4408                        name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4409                                       sizeof(tmp));
4410                        goto got_name;
4411                }
4412
4413                if (!vma->vm_mm) {
4414                        name = strncpy(tmp, "[vdso]", sizeof(tmp));
4415                        goto got_name;
4416                } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4417                                vma->vm_end >= vma->vm_mm->brk) {
4418                        name = strncpy(tmp, "[heap]", sizeof(tmp));
4419                        goto got_name;
4420                } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4421                                vma->vm_end >= vma->vm_mm->start_stack) {
4422                        name = strncpy(tmp, "[stack]", sizeof(tmp));
4423                        goto got_name;
4424                }
4425
4426                name = strncpy(tmp, "//anon", sizeof(tmp));
4427                goto got_name;
4428        }
4429
4430got_name:
4431        size = ALIGN(strlen(name)+1, sizeof(u64));
4432
4433        mmap_event->file_name = name;
4434        mmap_event->file_size = size;
4435
4436        mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4437
4438        rcu_read_lock();
4439        list_for_each_entry_rcu(pmu, &pmus, entry) {
4440                cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4441                if (cpuctx->active_pmu != pmu)
4442                        goto next;
4443                perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4444                                        vma->vm_flags & VM_EXEC);
4445
4446                ctxn = pmu->task_ctx_nr;
4447                if (ctxn < 0)
4448                        goto next;
4449
4450                ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4451                if (ctx) {
4452                        perf_event_mmap_ctx(ctx, mmap_event,
4453                                        vma->vm_flags & VM_EXEC);
4454                }
4455next:
4456                put_cpu_ptr(pmu->pmu_cpu_context);
4457        }
4458        rcu_read_unlock();
4459
4460        kfree(buf);
4461}
4462
4463void perf_event_mmap(struct vm_area_struct *vma)
4464{
4465        struct perf_mmap_event mmap_event;
4466
4467        if (!atomic_read(&nr_mmap_events))
4468                return;
4469
4470        mmap_event = (struct perf_mmap_event){
4471                .vma    = vma,
4472                /* .file_name */
4473                /* .file_size */
4474                .event_id  = {
4475                        .header = {
4476                                .type = PERF_RECORD_MMAP,
4477                                .misc = PERF_RECORD_MISC_USER,
4478                                /* .size */
4479                        },
4480                        /* .pid */
4481                        /* .tid */
4482                        .start  = vma->vm_start,
4483                        .len    = vma->vm_end - vma->vm_start,
4484                        .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4485                },
4486        };
4487
4488        perf_event_mmap_event(&mmap_event);
4489}
4490
4491/*
4492 * IRQ throttle logging
4493 */
4494
4495static void perf_log_throttle(struct perf_event *event, int enable)
4496{
4497        struct perf_output_handle handle;
4498        struct perf_sample_data sample;
4499        int ret;
4500
4501        struct {
4502                struct perf_event_header        header;
4503                u64                             time;
4504                u64                             id;
4505                u64                             stream_id;
4506        } throttle_event = {
4507                .header = {
4508                        .type = PERF_RECORD_THROTTLE,
4509                        .misc = 0,
4510                        .size = sizeof(throttle_event),
4511                },
4512                .time           = perf_clock(),
4513                .id             = primary_event_id(event),
4514                .stream_id      = event->id,
4515        };
4516
4517        if (enable)
4518                throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4519
4520        perf_event_header__init_id(&throttle_event.header, &sample, event);
4521
4522        ret = perf_output_begin(&handle, event,
4523                                throttle_event.header.size);
4524        if (ret)
4525                return;
4526
4527        perf_output_put(&handle, throttle_event);
4528        perf_event__output_id_sample(event, &handle, &sample);
4529        perf_output_end(&handle);
4530}
4531
4532/*
4533 * Generic event overflow handling, sampling.
4534 */
4535
4536static int __perf_event_overflow(struct perf_event *event,
4537                                   int throttle, struct perf_sample_data *data,
4538                                   struct pt_regs *regs)
4539{
4540        int events = atomic_read(&event->event_limit);
4541        struct hw_perf_event *hwc = &event->hw;
4542        u64 seq;
4543        int ret = 0;
4544
4545        /*
4546         * Non-sampling counters might still use the PMI to fold short
4547         * hardware counters, ignore those.
4548         */
4549        if (unlikely(!is_sampling_event(event)))
4550                return 0;
4551
4552        seq = __this_cpu_read(perf_throttled_seq);
4553        if (seq != hwc->interrupts_seq) {
4554                hwc->interrupts_seq = seq;
4555                hwc->interrupts = 1;
4556        } else {
4557                hwc->interrupts++;
4558                if (unlikely(throttle
4559                             && hwc->interrupts >= max_samples_per_tick)) {
4560                        __this_cpu_inc(perf_throttled_count);
4561                        hwc->interrupts = MAX_INTERRUPTS;
4562                        perf_log_throttle(event, 0);
4563                        ret = 1;
4564                }
4565        }
4566
4567        if (event->attr.freq) {
4568                u64 now = perf_clock();
4569                s64 delta = now - hwc->freq_time_stamp;
4570
4571                hwc->freq_time_stamp = now;
4572
4573                if (delta > 0 && delta < 2*TICK_NSEC)
4574                        perf_adjust_period(event, delta, hwc->last_period, true);
4575        }
4576
4577        /*
4578         * XXX event_limit might not quite work as expected on inherited
4579         * events
4580         */
4581
4582        event->pending_kill = POLL_IN;
4583        if (events && atomic_dec_and_test(&event->event_limit)) {
4584                ret = 1;
4585                event->pending_kill = POLL_HUP;
4586                event->pending_disable = 1;
4587                irq_work_queue(&event->pending);
4588        }
4589
4590        if (event->overflow_handler)
4591                event->overflow_handler(event, data, regs);
4592        else
4593                perf_event_output(event, data, regs);
4594
4595        if (event->fasync && event->pending_kill) {
4596                event->pending_wakeup = 1;
4597                irq_work_queue(&event->pending);
4598        }
4599
4600        return ret;
4601}
4602
4603int perf_event_overflow(struct perf_event *event,
4604                          struct perf_sample_data *data,
4605                          struct pt_regs *regs)
4606{
4607        return __perf_event_overflow(event, 1, data, regs);
4608}
4609
4610/*
4611 * Generic software event infrastructure
4612 */
4613
4614struct swevent_htable {
4615        struct swevent_hlist            *swevent_hlist;
4616        struct mutex                    hlist_mutex;
4617        int                             hlist_refcount;
4618
4619        /* Recursion avoidance in each contexts */
4620        int                             recursion[PERF_NR_CONTEXTS];
4621};
4622
4623static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4624
4625/*
4626 * We directly increment event->count and keep a second value in
4627 * event->hw.period_left to count intervals. This period event
4628 * is kept in the range [-sample_period, 0] so that we can use the
4629 * sign as trigger.
4630 */
4631
4632static u64 perf_swevent_set_period(struct perf_event *event)
4633{
4634        struct hw_perf_event *hwc = &event->hw;
4635        u64 period = hwc->last_period;
4636        u64 nr, offset;
4637        s64 old, val;
4638
4639        hwc->last_period = hwc->sample_period;
4640
4641again:
4642        old = val = local64_read(&hwc->period_left);
4643        if (val < 0)
4644                return 0;
4645
4646        nr = div64_u64(period + val, period);
4647        offset = nr * period;
4648        val -= offset;
4649        if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4650                goto again;
4651
4652        return nr;
4653}
4654
4655static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4656                                    struct perf_sample_data *data,
4657                                    struct pt_regs *regs)
4658{
4659        struct hw_perf_event *hwc = &event->hw;
4660        int throttle = 0;
4661
4662        if (!overflow)
4663                overflow = perf_swevent_set_period(event);
4664
4665        if (hwc->interrupts == MAX_INTERRUPTS)
4666                return;
4667
4668        for (; overflow; overflow--) {
4669                if (__perf_event_overflow(event, throttle,
4670                                            data, regs)) {
4671                        /*
4672                         * We inhibit the overflow from happening when
4673                         * hwc->interrupts == MAX_INTERRUPTS.
4674                         */
4675                        break;
4676                }
4677                throttle = 1;
4678        }
4679}
4680
4681static void perf_swevent_event(struct perf_event *event, u64 nr,
4682                               struct perf_sample_data *data,
4683                               struct pt_regs *regs)
4684{
4685        struct hw_perf_event *hwc = &event->hw;
4686
4687        local64_add(nr, &event->count);
4688
4689        if (!regs)
4690                return;
4691
4692        if (!is_sampling_event(event))
4693                return;
4694
4695        if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
4696                data->period = nr;
4697                return perf_swevent_overflow(event, 1, data, regs);
4698        } else
4699                data->period = event->hw.last_period;
4700
4701        if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4702                return perf_swevent_overflow(event, 1, data, regs);
4703
4704        if (local64_add_negative(nr, &hwc->period_left))
4705                return;
4706
4707        perf_swevent_overflow(event, 0, data, regs);
4708}
4709
4710static int perf_exclude_event(struct perf_event *event,
4711                              struct pt_regs *regs)
4712{
4713        if (event->hw.state & PERF_HES_STOPPED)
4714                return 1;
4715
4716        if (regs) {
4717                if (event->attr.exclude_user && user_mode(regs))
4718                        return 1;
4719
4720                if (event->attr.exclude_kernel && !user_mode(regs))
4721                        return 1;
4722        }
4723
4724        return 0;
4725}
4726
4727static int perf_swevent_match(struct perf_event *event,
4728                                enum perf_type_id type,
4729                                u32 event_id,
4730                                struct perf_sample_data *data,
4731                                struct pt_regs *regs)
4732{
4733        if (event->attr.type != type)
4734                return 0;
4735
4736        if (event->attr.config != event_id)
4737                return 0;
4738
4739        if (perf_exclude_event(event, regs))
4740                return 0;
4741
4742        return 1;
4743}
4744
4745static inline u64 swevent_hash(u64 type, u32 event_id)
4746{
4747        u64 val = event_id | (type << 32);
4748
4749        return hash_64(val, SWEVENT_HLIST_BITS);
4750}
4751
4752static inline struct hlist_head *
4753__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4754{
4755        u64 hash = swevent_hash(type, event_id);
4756
4757        return &hlist->heads[hash];
4758}
4759
4760/* For the read side: events when they trigger */
4761static inline struct hlist_head *
4762find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4763{
4764        struct swevent_hlist *hlist;
4765
4766        hlist = rcu_dereference(swhash->swevent_hlist);
4767        if (!hlist)
4768                return NULL;
4769
4770        return __find_swevent_head(hlist, type, event_id);
4771}
4772
4773/* For the event head insertion and removal in the hlist */
4774static inline struct hlist_head *
4775find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4776{
4777        struct swevent_hlist *hlist;
4778        u32 event_id = event->attr.config;
4779        u64 type = event->attr.type;
4780
4781        /*
4782         * Event scheduling is always serialized against hlist allocation
4783         * and release. Which makes the protected version suitable here.
4784         * The context lock guarantees that.
4785         */
4786        hlist = rcu_dereference_protected(swhash->swevent_hlist,
4787                                          lockdep_is_held(&event->ctx->lock));
4788        if (!hlist)
4789                return NULL;
4790
4791        return __find_swevent_head(hlist, type, event_id);
4792}
4793
4794static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4795                                    u64 nr,
4796                                    struct perf_sample_data *data,
4797                                    struct pt_regs *regs)
4798{
4799        struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4800        struct perf_event *event;
4801        struct hlist_node *node;
4802        struct hlist_head *head;
4803
4804        rcu_read_lock();
4805        head = find_swevent_head_rcu(swhash, type, event_id);
4806        if (!head)
4807                goto end;
4808
4809        hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4810                if (perf_swevent_match(event, type, event_id, data, regs))
4811                        perf_swevent_event(event, nr, data, regs);
4812        }
4813end:
4814        rcu_read_unlock();
4815}
4816
4817int perf_swevent_get_recursion_context(void)
4818{
4819        struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4820
4821        return get_recursion_context(swhash->recursion);
4822}
4823EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4824
4825inline void perf_swevent_put_recursion_context(int rctx)
4826{
4827        struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4828
4829        put_recursion_context(swhash->recursion, rctx);
4830}
4831
4832void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
4833{
4834        struct perf_sample_data data;
4835        int rctx;
4836
4837        preempt_disable_notrace();
4838        rctx = perf_swevent_get_recursion_context();
4839        if (rctx < 0)
4840                return;
4841
4842        perf_sample_data_init(&data, addr);
4843
4844        do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4845
4846        perf_swevent_put_recursion_context(rctx);
4847        preempt_enable_notrace();
4848}
4849
4850static void perf_swevent_read(struct perf_event *event)
4851{
4852}
4853
4854static int perf_swevent_add(struct perf_event *event, int flags)
4855{
4856        struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4857        struct hw_perf_event *hwc = &event->hw;
4858        struct hlist_head *head;
4859
4860        if (is_sampling_event(event)) {
4861                hwc->last_period = hwc->sample_period;
4862                perf_swevent_set_period(event);
4863        }
4864
4865        hwc->state = !(flags & PERF_EF_START);
4866
4867        head = find_swevent_head(swhash, event);
4868        if (WARN_ON_ONCE(!head))
4869                return -EINVAL;
4870
4871        hlist_add_head_rcu(&event->hlist_entry, head);
4872
4873        return 0;
4874}
4875
4876static void perf_swevent_del(struct perf_event *event, int flags)
4877{
4878        hlist_del_rcu(&event->hlist_entry);
4879}
4880
4881static void perf_swevent_start(struct perf_event *event, int flags)
4882{
4883        event->hw.state = 0;
4884}
4885
4886static void perf_swevent_stop(struct perf_event *event, int flags)
4887{
4888        event->hw.state = PERF_HES_STOPPED;
4889}
4890
4891/* Deref the hlist from the update side */
4892static inline struct swevent_hlist *
4893swevent_hlist_deref(struct swevent_htable *swhash)
4894{
4895        return rcu_dereference_protected(swhash->swevent_hlist,
4896                                         lockdep_is_held(&swhash->hlist_mutex));
4897}
4898
4899static void swevent_hlist_release(struct swevent_htable *swhash)
4900{
4901        struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4902
4903        if (!hlist)
4904                return;
4905
4906        rcu_assign_pointer(swhash->swevent_hlist, NULL);
4907        kfree_rcu(hlist, rcu_head);
4908}
4909
4910static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4911{
4912        struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4913
4914        mutex_lock(&swhash->hlist_mutex);
4915
4916        if (!--swhash->hlist_refcount)
4917                swevent_hlist_release(swhash);
4918
4919        mutex_unlock(&swhash->hlist_mutex);
4920}
4921
4922static void swevent_hlist_put(struct perf_event *event)
4923{
4924        int cpu;
4925
4926        if (event->cpu != -1) {
4927                swevent_hlist_put_cpu(event, event->cpu);
4928                return;
4929        }
4930
4931        for_each_possible_cpu(cpu)
4932                swevent_hlist_put_cpu(event, cpu);
4933}
4934
4935static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4936{
4937        struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4938        int err = 0;
4939
4940        mutex_lock(&swhash->hlist_mutex);
4941
4942        if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4943                struct swevent_hlist *hlist;
4944
4945                hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4946                if (!hlist) {
4947                        err = -ENOMEM;
4948                        goto exit;
4949                }
4950                rcu_assign_pointer(swhash->swevent_hlist, hlist);
4951        }
4952        swhash->hlist_refcount++;
4953exit:
4954        mutex_unlock(&swhash->hlist_mutex);
4955
4956        return err;
4957}
4958
4959static int swevent_hlist_get(struct perf_event *event)
4960{
4961        int err;
4962        int cpu, failed_cpu;
4963
4964        if (event->cpu != -1)
4965                return swevent_hlist_get_cpu(event, event->cpu);
4966
4967        get_online_cpus();
4968        for_each_possible_cpu(cpu) {
4969                err = swevent_hlist_get_cpu(event, cpu);
4970                if (err) {
4971                        failed_cpu = cpu;
4972                        goto fail;
4973                }
4974        }
4975        put_online_cpus();
4976
4977        return 0;
4978fail:
4979        for_each_possible_cpu(cpu) {
4980                if (cpu == failed_cpu)
4981                        break;
4982                swevent_hlist_put_cpu(event, cpu);
4983        }
4984
4985        put_online_cpus();
4986        return err;
4987}
4988
4989struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
4990
4991static void sw_perf_event_destroy(struct perf_event *event)
4992{
4993        u64 event_id = event->attr.config;
4994
4995        WARN_ON(event->parent);
4996
4997        jump_label_dec(&perf_swevent_enabled[event_id]);
4998        swevent_hlist_put(event);
4999}
5000
5001static int perf_swevent_init(struct perf_event *event)
5002{
5003        int event_id = event->attr.config;
5004
5005        if (event->attr.type != PERF_TYPE_SOFTWARE)
5006                return -ENOENT;
5007
5008        switch (event_id) {
5009        case PERF_COUNT_SW_CPU_CLOCK:
5010        case PERF_COUNT_SW_TASK_CLOCK:
5011                return -ENOENT;
5012
5013        default:
5014                break;
5015        }
5016
5017        if (event_id >= PERF_COUNT_SW_MAX)
5018                return -ENOENT;
5019
5020        if (!event->parent) {
5021                int err;
5022
5023                err = swevent_hlist_get(event);
5024                if (err)
5025                        return err;
5026
5027                jump_label_inc(&perf_swevent_enabled[event_id]);
5028                event->destroy = sw_perf_event_destroy;
5029        }
5030
5031        return 0;
5032}
5033
5034static struct pmu perf_swevent = {
5035        .task_ctx_nr    = perf_sw_context,
5036
5037        .event_init     = perf_swevent_init,
5038        .add            = perf_swevent_add,
5039        .del            = perf_swevent_del,
5040        .start          = perf_swevent_start,
5041        .stop           = perf_swevent_stop,
5042        .read           = perf_swevent_read,
5043};
5044
5045#ifdef CONFIG_EVENT_TRACING
5046
5047static int perf_tp_filter_match(struct perf_event *event,
5048                                struct perf_sample_data *data)
5049{
5050        void *record = data->raw->data;
5051
5052        if (likely(!event->filter) || filter_match_preds(event->filter, record))
5053                return 1;
5054        return 0;
5055}
5056
5057static int perf_tp_event_match(struct perf_event *event,
5058                                struct perf_sample_data *data,
5059                                struct pt_regs *regs)
5060{
5061        if (event->hw.state & PERF_HES_STOPPED)
5062                return 0;
5063        /*
5064         * All tracepoints are from kernel-space.
5065         */
5066        if (event->attr.exclude_kernel)
5067                return 0;
5068
5069        if (!perf_tp_filter_match(event, data))
5070                return 0;
5071
5072        return 1;
5073}
5074
5075void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5076                   struct pt_regs *regs, struct hlist_head *head, int rctx)
5077{
5078        struct perf_sample_data data;
5079        struct perf_event *event;
5080        struct hlist_node *node;
5081
5082        struct perf_raw_record raw = {
5083                .size = entry_size,
5084                .data = record,
5085        };
5086
5087        perf_sample_data_init(&data, addr);
5088        data.raw = &raw;
5089
5090        hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5091                if (perf_tp_event_match(event, &data, regs))
5092                        perf_swevent_event(event, count, &data, regs);
5093        }
5094
5095        perf_swevent_put_recursion_context(rctx);
5096}
5097EXPORT_SYMBOL_GPL(perf_tp_event);
5098
5099static void tp_perf_event_destroy(struct perf_event *event)
5100{
5101        perf_trace_destroy(event);
5102}
5103
5104static int perf_tp_event_init(struct perf_event *event)
5105{
5106        int err;
5107
5108        if (event->attr.type != PERF_TYPE_TRACEPOINT)
5109                return -ENOENT;
5110
5111        err = perf_trace_init(event);
5112        if (err)
5113                return err;
5114
5115        event->destroy = tp_perf_event_destroy;
5116
5117        return 0;
5118}
5119
5120static struct pmu perf_tracepoint = {
5121        .task_ctx_nr    = perf_sw_context,
5122
5123        .event_init     = perf_tp_event_init,
5124        .add            = perf_trace_add,
5125        .del            = perf_trace_del,
5126        .start          = perf_swevent_start,
5127        .stop           = perf_swevent_stop,
5128        .read           = perf_swevent_read,
5129};
5130
5131static inline void perf_tp_register(void)
5132{
5133        perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5134}
5135
5136static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5137{
5138        char *filter_str;
5139        int ret;
5140
5141        if (event->attr.type != PERF_TYPE_TRACEPOINT)
5142                return -EINVAL;
5143
5144        filter_str = strndup_user(arg, PAGE_SIZE);
5145        if (IS_ERR(filter_str))
5146                return PTR_ERR(filter_str);
5147
5148        ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5149
5150        kfree(filter_str);
5151        return ret;
5152}
5153
5154static void perf_event_free_filter(struct perf_event *event)
5155{
5156        ftrace_profile_free_filter(event);
5157}
5158
5159#else
5160
5161static inline void perf_tp_register(void)
5162{
5163}
5164
5165static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5166{
5167        return -ENOENT;
5168}
5169
5170static void perf_event_free_filter(struct perf_event *event)
5171{
5172}
5173
5174#endif /* CONFIG_EVENT_TRACING */
5175
5176#ifdef CONFIG_HAVE_HW_BREAKPOINT
5177void perf_bp_event(struct perf_event *bp, void *data)
5178{
5179        struct perf_sample_data sample;
5180        struct pt_regs *regs = data;
5181
5182        perf_sample_data_init(&sample, bp->attr.bp_addr);
5183
5184        if (!bp->hw.state && !perf_exclude_event(bp, regs))
5185                perf_swevent_event(bp, 1, &sample, regs);
5186}
5187#endif
5188
5189/*
5190 * hrtimer based swevent callback
5191 */
5192
5193static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5194{
5195        enum hrtimer_restart ret = HRTIMER_RESTART;
5196        struct perf_sample_data data;
5197        struct pt_regs *regs;
5198        struct perf_event *event;
5199        u64 period;
5200
5201        event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5202
5203        if (event->state != PERF_EVENT_STATE_ACTIVE)
5204                return HRTIMER_NORESTART;
5205
5206        event->pmu->read(event);
5207
5208        perf_sample_data_init(&data, 0);
5209        data.period = event->hw.last_period;
5210        regs = get_irq_regs();
5211
5212        if (regs && !perf_exclude_event(event, regs)) {
5213                if (!(event->attr.exclude_idle && is_idle_task(current)))
5214                        if (perf_event_overflow(event, &data, regs))
5215                                ret = HRTIMER_NORESTART;
5216        }
5217
5218        period = max_t(u64, 10000, event->hw.sample_period);
5219        hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5220
5221        return ret;
5222}
5223
5224static void perf_swevent_start_hrtimer(struct perf_event *event)
5225{
5226        struct hw_perf_event *hwc = &event->hw;
5227        s64 period;
5228
5229        if (!is_sampling_event(event))
5230                return;
5231
5232        period = local64_read(&hwc->period_left);
5233        if (period) {
5234                if (period < 0)
5235                        period = 10000;
5236
5237                local64_set(&hwc->period_left, 0);
5238        } else {
5239                period = max_t(u64, 10000, hwc->sample_period);
5240        }
5241        __hrtimer_start_range_ns(&hwc->hrtimer,
5242                                ns_to_ktime(period), 0,
5243                                HRTIMER_MODE_REL_PINNED, 0);
5244}
5245
5246static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5247{
5248        struct hw_perf_event *hwc = &event->hw;
5249
5250        if (is_sampling_event(event)) {
5251                ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5252                local64_set(&hwc->period_left, ktime_to_ns(remaining));
5253
5254                hrtimer_cancel(&hwc->hrtimer);
5255        }
5256}
5257
5258static void perf_swevent_init_hrtimer(struct perf_event *event)
5259{
5260        struct hw_perf_event *hwc = &event->hw;
5261
5262        if (!is_sampling_event(event))
5263                return;
5264
5265        hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5266        hwc->hrtimer.function = perf_swevent_hrtimer;
5267
5268        /*
5269         * Since hrtimers have a fixed rate, we can do a static freq->period
5270         * mapping and avoid the whole period adjust feedback stuff.
5271         */
5272        if (event->attr.freq) {
5273                long freq = event->attr.sample_freq;
5274
5275                event->attr.sample_period = NSEC_PER_SEC / freq;
5276                hwc->sample_period = event->attr.sample_period;
5277                local64_set(&hwc->period_left, hwc->sample_period);
5278                event->attr.freq = 0;
5279        }
5280}
5281
5282/*
5283 * Software event: cpu wall time clock
5284 */
5285
5286static void cpu_clock_event_update(struct perf_event *event)
5287{
5288        s64 prev;
5289        u64 now;
5290
5291        now = local_clock();
5292        prev = local64_xchg(&event->hw.prev_count, now);
5293        local64_add(now - prev, &event->count);
5294}
5295
5296static void cpu_clock_event_start(struct perf_event *event, int flags)
5297{
5298        local64_set(&event->hw.prev_count, local_clock());
5299        perf_swevent_start_hrtimer(event);
5300}
5301
5302static void cpu_clock_event_stop(struct perf_event *event, int flags)
5303{
5304        perf_swevent_cancel_hrtimer(event);
5305        cpu_clock_event_update(event);
5306}
5307
5308static int cpu_clock_event_add(struct perf_event *event, int flags)
5309{
5310        if (flags & PERF_EF_START)
5311                cpu_clock_event_start(event, flags);
5312
5313        return 0;
5314}
5315
5316static void cpu_clock_event_del(struct perf_event *event, int flags)
5317{
5318        cpu_clock_event_stop(event, flags);
5319}
5320
5321static void cpu_clock_event_read(struct perf_event *event)
5322{
5323        cpu_clock_event_update(event);
5324}
5325
5326static int cpu_clock_event_init(struct perf_event *event)
5327{
5328        if (event->attr.type != PERF_TYPE_SOFTWARE)
5329                return -ENOENT;
5330
5331        if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5332                return -ENOENT;
5333
5334        perf_swevent_init_hrtimer(event);
5335
5336        return 0;
5337}
5338
5339static struct pmu perf_cpu_clock = {
5340        .task_ctx_nr    = perf_sw_context,
5341
5342        .event_init     = cpu_clock_event_init,
5343        .add            = cpu_clock_event_add,
5344        .del            = cpu_clock_event_del,
5345        .start          = cpu_clock_event_start,
5346        .stop           = cpu_clock_event_stop,
5347        .read           = cpu_clock_event_read,
5348};
5349
5350/*
5351 * Software event: task time clock
5352 */
5353
5354static void task_clock_event_update(struct perf_event *event, u64 now)
5355{
5356        u64 prev;
5357        s64 delta;
5358
5359        prev = local64_xchg(&event->hw.prev_count, now);
5360        delta = now - prev;
5361        local64_add(delta, &event->count);
5362}
5363
5364static void task_clock_event_start(struct perf_event *event, int flags)
5365{
5366        local64_set(&event->hw.prev_count, event->ctx->time);
5367        perf_swevent_start_hrtimer(event);
5368}
5369
5370static void task_clock_event_stop(struct perf_event *event, int flags)
5371{
5372        perf_swevent_cancel_hrtimer(event);
5373        task_clock_event_update(event, event->ctx->time);
5374}
5375
5376static int task_clock_event_add(struct perf_event *event, int flags)
5377{
5378        if (flags & PERF_EF_START)
5379                task_clock_event_start(event, flags);
5380
5381        return 0;
5382}
5383
5384static void task_clock_event_del(struct perf_event *event, int flags)
5385{
5386        task_clock_event_stop(event, PERF_EF_UPDATE);
5387}
5388
5389static void task_clock_event_read(struct perf_event *event)
5390{
5391        u64 now = perf_clock();
5392        u64 delta = now - event->ctx->timestamp;
5393        u64 time = event->ctx->time + delta;
5394
5395        task_clock_event_update(event, time);
5396}
5397
5398static int task_clock_event_init(struct perf_event *event)
5399{
5400        if (event->attr.type != PERF_TYPE_SOFTWARE)
5401                return -ENOENT;
5402
5403        if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5404                return -ENOENT;
5405
5406        perf_swevent_init_hrtimer(event);
5407
5408        return 0;
5409}
5410
5411static struct pmu perf_task_clock = {
5412        .task_ctx_nr    = perf_sw_context,
5413
5414        .event_init     = task_clock_event_init,
5415        .add            = task_clock_event_add,
5416        .del            = task_clock_event_del,
5417        .start          = task_clock_event_start,
5418        .stop           = task_clock_event_stop,
5419        .read           = task_clock_event_read,
5420};
5421
5422static void perf_pmu_nop_void(struct pmu *pmu)
5423{
5424}
5425
5426static int perf_pmu_nop_int(struct pmu *pmu)
5427{
5428        return 0;
5429}
5430
5431static void perf_pmu_start_txn(struct pmu *pmu)
5432{
5433        perf_pmu_disable(pmu);
5434}
5435
5436static int perf_pmu_commit_txn(struct pmu *pmu)
5437{
5438        perf_pmu_enable(pmu);
5439        return 0;
5440}
5441
5442static void perf_pmu_cancel_txn(struct pmu *pmu)
5443{
5444        perf_pmu_enable(pmu);
5445}
5446
5447/*
5448 * Ensures all contexts with the same task_ctx_nr have the same
5449 * pmu_cpu_context too.
5450 */
5451static void *find_pmu_context(int ctxn)
5452{
5453        struct pmu *pmu;
5454
5455        if (ctxn < 0)
5456                return NULL;
5457
5458        list_for_each_entry(pmu, &pmus, entry) {
5459                if (pmu->task_ctx_nr == ctxn)
5460                        return pmu->pmu_cpu_context;
5461        }
5462
5463        return NULL;
5464}
5465
5466static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5467{
5468        int cpu;
5469
5470        for_each_possible_cpu(cpu) {
5471                struct perf_cpu_context *cpuctx;
5472
5473                cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5474
5475                if (cpuctx->active_pmu == old_pmu)
5476                        cpuctx->active_pmu = pmu;
5477        }
5478}
5479
5480static void free_pmu_context(struct pmu *pmu)
5481{
5482        struct pmu *i;
5483
5484        mutex_lock(&pmus_lock);
5485        /*
5486         * Like a real lame refcount.
5487         */
5488        list_for_each_entry(i, &pmus, entry) {
5489                if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5490                        update_pmu_context(i, pmu);
5491                        goto out;
5492                }
5493        }
5494
5495        free_percpu(pmu->pmu_cpu_context);
5496out:
5497        mutex_unlock(&pmus_lock);
5498}
5499static struct idr pmu_idr;
5500
5501static ssize_t
5502type_show(struct device *dev, struct device_attribute *attr, char *page)
5503{
5504        struct pmu *pmu = dev_get_drvdata(dev);
5505
5506        return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5507}
5508
5509static struct device_attribute pmu_dev_attrs[] = {
5510       __ATTR_RO(type),
5511       __ATTR_NULL,
5512};
5513
5514static int pmu_bus_running;
5515static struct bus_type pmu_bus = {
5516        .name           = "event_source",
5517        .dev_attrs      = pmu_dev_attrs,
5518};
5519
5520static void pmu_dev_release(struct device *dev)
5521{
5522        kfree(dev);
5523}
5524
5525static int pmu_dev_alloc(struct pmu *pmu)
5526{
5527        int ret = -ENOMEM;
5528
5529        pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5530        if (!pmu->dev)
5531                goto out;
5532
5533        device_initialize(pmu->dev);
5534        ret = dev_set_name(pmu->dev, "%s", pmu->name);
5535        if (ret)
5536                goto free_dev;
5537
5538        dev_set_drvdata(pmu->dev, pmu);
5539        pmu->dev->bus = &pmu_bus;
5540        pmu->dev->release = pmu_dev_release;
5541        ret = device_add(pmu->dev);
5542        if (ret)
5543                goto free_dev;
5544
5545out:
5546        return ret;
5547
5548free_dev:
5549        put_device(pmu->dev);
5550        goto out;
5551}
5552
5553static struct lock_class_key cpuctx_mutex;
5554static struct lock_class_key cpuctx_lock;
5555
5556int perf_pmu_register(struct pmu *pmu, char *name, int type)
5557{
5558        int cpu, ret;
5559
5560        mutex_lock(&pmus_lock);
5561        ret = -ENOMEM;
5562        pmu->pmu_disable_count = alloc_percpu(int);
5563        if (!pmu->pmu_disable_count)
5564                goto unlock;
5565
5566        pmu->type = -1;
5567        if (!name)
5568                goto skip_type;
5569        pmu->name = name;
5570
5571        if (type < 0) {
5572                int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
5573                if (!err)
5574                        goto free_pdc;
5575
5576                err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
5577                if (err) {
5578                        ret = err;
5579                        goto free_pdc;
5580                }
5581        }
5582        pmu->type = type;
5583
5584        if (pmu_bus_running) {
5585                ret = pmu_dev_alloc(pmu);
5586                if (ret)
5587                        goto free_idr;
5588        }
5589
5590skip_type:
5591        pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5592        if (pmu->pmu_cpu_context)
5593                goto got_cpu_context;
5594
5595        pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5596        if (!pmu->pmu_cpu_context)
5597                goto free_dev;
5598
5599        for_each_possible_cpu(cpu) {
5600                struct perf_cpu_context *cpuctx;
5601
5602                cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5603                __perf_event_init_context(&cpuctx->ctx);
5604                lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5605                lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
5606                cpuctx->ctx.type = cpu_context;
5607                cpuctx->ctx.pmu = pmu;
5608                cpuctx->jiffies_interval = 1;
5609                INIT_LIST_HEAD(&cpuctx->rotation_list);
5610                cpuctx->active_pmu = pmu;
5611        }
5612
5613got_cpu_context:
5614        if (!pmu->start_txn) {
5615                if (pmu->pmu_enable) {
5616                        /*
5617                         * If we have pmu_enable/pmu_disable calls, install
5618                         * transaction stubs that use that to try and batch
5619                         * hardware accesses.
5620                         */
5621                        pmu->start_txn  = perf_pmu_start_txn;
5622                        pmu->commit_txn = perf_pmu_commit_txn;
5623                        pmu->cancel_txn = perf_pmu_cancel_txn;
5624                } else {
5625                        pmu->start_txn  = perf_pmu_nop_void;
5626                        pmu->commit_txn = perf_pmu_nop_int;
5627                        pmu->cancel_txn = perf_pmu_nop_void;
5628                }
5629        }
5630
5631        if (!pmu->pmu_enable) {
5632                pmu->pmu_enable  = perf_pmu_nop_void;
5633                pmu->pmu_disable = perf_pmu_nop_void;
5634        }
5635
5636        list_add_rcu(&pmu->entry, &pmus);
5637        ret = 0;
5638unlock:
5639        mutex_unlock(&pmus_lock);
5640
5641        return ret;
5642
5643free_dev:
5644        device_del(pmu->dev);
5645        put_device(pmu->dev);
5646
5647free_idr:
5648        if (pmu->type >= PERF_TYPE_MAX)
5649                idr_remove(&pmu_idr, pmu->type);
5650
5651free_pdc:
5652        free_percpu(pmu->pmu_disable_count);
5653        goto unlock;
5654}
5655
5656void perf_pmu_unregister(struct pmu *pmu)
5657{
5658        mutex_lock(&pmus_lock);
5659        list_del_rcu(&pmu->entry);
5660        mutex_unlock(&pmus_lock);
5661
5662        /*
5663         * We dereference the pmu list under both SRCU and regular RCU, so
5664         * synchronize against both of those.
5665         */
5666        synchronize_srcu(&pmus_srcu);
5667        synchronize_rcu();
5668
5669        free_percpu(pmu->pmu_disable_count);
5670        if (pmu->type >= PERF_TYPE_MAX)
5671                idr_remove(&pmu_idr, pmu->type);
5672        device_del(pmu->dev);
5673        put_device(pmu->dev);
5674        free_pmu_context(pmu);
5675}
5676
5677struct pmu *perf_init_event(struct perf_event *event)
5678{
5679        struct pmu *pmu = NULL;
5680        int idx;
5681        int ret;
5682
5683        idx = srcu_read_lock(&pmus_srcu);
5684
5685        rcu_read_lock();
5686        pmu = idr_find(&pmu_idr, event->attr.type);
5687        rcu_read_unlock();
5688        if (pmu) {
5689                event->pmu = pmu;
5690                ret = pmu->event_init(event);
5691                if (ret)
5692                        pmu = ERR_PTR(ret);
5693                goto unlock;
5694        }
5695
5696        list_for_each_entry_rcu(pmu, &pmus, entry) {
5697                event->pmu = pmu;
5698                ret = pmu->event_init(event);
5699                if (!ret)
5700                        goto unlock;
5701
5702                if (ret != -ENOENT) {
5703                        pmu = ERR_PTR(ret);
5704                        goto unlock;
5705                }
5706        }
5707        pmu = ERR_PTR(-ENOENT);
5708unlock:
5709        srcu_read_unlock(&pmus_srcu, idx);
5710
5711        return pmu;
5712}
5713
5714/*
5715 * Allocate and initialize a event structure
5716 */
5717static struct perf_event *
5718perf_event_alloc(struct perf_event_attr *attr, int cpu,
5719                 struct task_struct *task,
5720                 struct perf_event *group_leader,
5721                 struct perf_event *parent_event,
5722                 perf_overflow_handler_t overflow_handler,
5723                 void *context)
5724{
5725        struct pmu *pmu;
5726        struct perf_event *event;
5727        struct hw_perf_event *hwc;
5728        long err;
5729
5730        if ((unsigned)cpu >= nr_cpu_ids) {
5731                if (!task || cpu != -1)
5732                        return ERR_PTR(-EINVAL);
5733        }
5734
5735        event = kzalloc(sizeof(*event), GFP_KERNEL);
5736        if (!event)
5737                return ERR_PTR(-ENOMEM);
5738
5739        /*
5740         * Single events are their own group leaders, with an
5741         * empty sibling list:
5742         */
5743        if (!group_leader)
5744                group_leader = event;
5745
5746        mutex_init(&event->child_mutex);
5747        INIT_LIST_HEAD(&event->child_list);
5748
5749        INIT_LIST_HEAD(&event->group_entry);
5750        INIT_LIST_HEAD(&event->event_entry);
5751        INIT_LIST_HEAD(&event->sibling_list);
5752        INIT_LIST_HEAD(&event->rb_entry);
5753
5754        init_waitqueue_head(&event->waitq);
5755        init_irq_work(&event->pending, perf_pending_event);
5756
5757        mutex_init(&event->mmap_mutex);
5758
5759        event->cpu              = cpu;
5760        event->attr             = *attr;
5761        event->group_leader     = group_leader;
5762        event->pmu              = NULL;
5763        event->oncpu            = -1;
5764
5765        event->parent           = parent_event;
5766
5767        event->ns               = get_pid_ns(current->nsproxy->pid_ns);
5768        event->id               = atomic64_inc_return(&perf_event_id);
5769
5770        event->state            = PERF_EVENT_STATE_INACTIVE;
5771
5772        if (task) {
5773                event->attach_state = PERF_ATTACH_TASK;
5774#ifdef CONFIG_HAVE_HW_BREAKPOINT
5775                /*
5776                 * hw_breakpoint is a bit difficult here..
5777                 */
5778                if (attr->type == PERF_TYPE_BREAKPOINT)
5779                        event->hw.bp_target = task;
5780#endif
5781        }
5782
5783        if (!overflow_handler && parent_event) {
5784                overflow_handler = parent_event->overflow_handler;
5785                context = parent_event->overflow_handler_context;
5786        }
5787
5788        event->overflow_handler = overflow_handler;
5789        event->overflow_handler_context = context;
5790
5791        if (attr->disabled)
5792                event->state = PERF_EVENT_STATE_OFF;
5793
5794        pmu = NULL;
5795
5796        hwc = &event->hw;
5797        hwc->sample_period = attr->sample_period;
5798        if (attr->freq && attr->sample_freq)
5799                hwc->sample_period = 1;
5800        hwc->last_period = hwc->sample_period;
5801
5802        local64_set(&hwc->period_left, hwc->sample_period);
5803
5804        /*
5805         * we currently do not support PERF_FORMAT_GROUP on inherited events
5806         */
5807        if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5808                goto done;
5809
5810        pmu = perf_init_event(event);
5811
5812done:
5813        err = 0;
5814        if (!pmu)
5815                err = -EINVAL;
5816        else if (IS_ERR(pmu))
5817                err = PTR_ERR(pmu);
5818
5819        if (err) {
5820                if (event->ns)
5821                        put_pid_ns(event->ns);
5822                kfree(event);
5823                return ERR_PTR(err);
5824        }
5825
5826        if (!event->parent) {
5827                if (event->attach_state & PERF_ATTACH_TASK)
5828                        jump_label_inc(&perf_sched_events.key);
5829                if (event->attr.mmap || event->attr.mmap_data)
5830                        atomic_inc(&nr_mmap_events);
5831                if (event->attr.comm)
5832                        atomic_inc(&nr_comm_events);
5833                if (event->attr.task)
5834                        atomic_inc(&nr_task_events);
5835                if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5836                        err = get_callchain_buffers();
5837                        if (err) {
5838                                free_event(event);
5839                                return ERR_PTR(err);
5840                        }
5841                }
5842        }
5843
5844        return event;
5845}
5846
5847static int perf_copy_attr(struct perf_event_attr __user *uattr,
5848                          struct perf_event_attr *attr)
5849{
5850        u32 size;
5851        int ret;
5852
5853        if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5854                return -EFAULT;
5855
5856        /*
5857         * zero the full structure, so that a short copy will be nice.
5858         */
5859        memset(attr, 0, sizeof(*attr));
5860
5861        ret = get_user(size, &uattr->size);
5862        if (ret)
5863                return ret;
5864
5865        if (size > PAGE_SIZE)   /* silly large */
5866                goto err_size;
5867
5868        if (!size)              /* abi compat */
5869                size = PERF_ATTR_SIZE_VER0;
5870
5871        if (size < PERF_ATTR_SIZE_VER0)
5872                goto err_size;
5873
5874        /*
5875         * If we're handed a bigger struct than we know of,
5876         * ensure all the unknown bits are 0 - i.e. new
5877         * user-space does not rely on any kernel feature
5878         * extensions we dont know about yet.
5879         */
5880        if (size > sizeof(*attr)) {
5881                unsigned char __user *addr;
5882                unsigned char __user *end;
5883                unsigned char val;
5884
5885                addr = (void __user *)uattr + sizeof(*attr);
5886                end  = (void __user *)uattr + size;
5887
5888                for (; addr < end; addr++) {
5889                        ret = get_user(val, addr);
5890                        if (ret)
5891                                return ret;
5892                        if (val)
5893                                goto err_size;
5894                }
5895                size = sizeof(*attr);
5896        }
5897
5898        ret = copy_from_user(attr, uattr, size);
5899        if (ret)
5900                return -EFAULT;
5901
5902        if (attr->__reserved_1)
5903                return -EINVAL;
5904
5905        if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5906                return -EINVAL;
5907
5908        if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5909                return -EINVAL;
5910
5911out:
5912        return ret;
5913
5914err_size:
5915        put_user(sizeof(*attr), &uattr->size);
5916        ret = -E2BIG;
5917        goto out;
5918}
5919
5920static int
5921perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5922{
5923        struct ring_buffer *rb = NULL, *old_rb = NULL;
5924        int ret = -EINVAL;
5925
5926        if (!output_event)
5927                goto set;
5928
5929        /* don't allow circular references */
5930        if (event == output_event)
5931                goto out;
5932
5933        /*
5934         * Don't allow cross-cpu buffers
5935         */
5936        if (output_event->cpu != event->cpu)
5937                goto out;
5938
5939        /*
5940         * If its not a per-cpu rb, it must be the same task.
5941         */
5942        if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5943                goto out;
5944
5945set:
5946        mutex_lock(&event->mmap_mutex);
5947        /* Can't redirect output if we've got an active mmap() */
5948        if (atomic_read(&event->mmap_count))
5949                goto unlock;
5950
5951        if (output_event) {
5952                /* get the rb we want to redirect to */
5953                rb = ring_buffer_get(output_event);
5954                if (!rb)
5955                        goto unlock;
5956        }
5957
5958        old_rb = event->rb;
5959        rcu_assign_pointer(event->rb, rb);
5960        if (old_rb)
5961                ring_buffer_detach(event, old_rb);
5962        ret = 0;
5963unlock:
5964        mutex_unlock(&event->mmap_mutex);
5965
5966        if (old_rb)
5967                ring_buffer_put(old_rb);
5968out:
5969        return ret;
5970}
5971
5972/**
5973 * sys_perf_event_open - open a performance event, associate it to a task/cpu
5974 *
5975 * @attr_uptr:  event_id type attributes for monitoring/sampling
5976 * @pid:                target pid
5977 * @cpu:                target cpu
5978 * @group_fd:           group leader event fd
5979 */
5980SYSCALL_DEFINE5(perf_event_open,
5981                struct perf_event_attr __user *, attr_uptr,
5982                pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5983{
5984        struct perf_event *group_leader = NULL, *output_event = NULL;
5985        struct perf_event *event, *sibling;
5986        struct perf_event_attr attr;
5987        struct perf_event_context *ctx;
5988        struct file *event_file = NULL;
5989        struct file *group_file = NULL;
5990        struct task_struct *task = NULL;
5991        struct pmu *pmu;
5992        int event_fd;
5993        int move_group = 0;
5994        int fput_needed = 0;
5995        int err;
5996
5997        /* for future expandability... */
5998        if (flags & ~PERF_FLAG_ALL)
5999                return -EINVAL;
6000
6001        err = perf_copy_attr(attr_uptr, &attr);
6002        if (err)
6003                return err;
6004
6005        if (!attr.exclude_kernel) {
6006                if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6007                        return -EACCES;
6008        }
6009
6010        if (attr.freq) {
6011                if (attr.sample_freq > sysctl_perf_event_sample_rate)
6012                        return -EINVAL;
6013        }
6014
6015        /*
6016         * In cgroup mode, the pid argument is used to pass the fd
6017         * opened to the cgroup directory in cgroupfs. The cpu argument
6018         * designates the cpu on which to monitor threads from that
6019         * cgroup.
6020         */
6021        if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6022                return -EINVAL;
6023
6024        event_fd = get_unused_fd_flags(O_RDWR);
6025        if (event_fd < 0)
6026                return event_fd;
6027
6028        if (group_fd != -1) {
6029                group_leader = perf_fget_light(group_fd, &fput_needed);
6030                if (IS_ERR(group_leader)) {
6031                        err = PTR_ERR(group_leader);
6032                        goto err_fd;
6033                }
6034                group_file = group_leader->filp;
6035                if (flags & PERF_FLAG_FD_OUTPUT)
6036                        output_event = group_leader;
6037                if (flags & PERF_FLAG_FD_NO_GROUP)
6038                        group_leader = NULL;
6039        }
6040
6041        if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6042                task = find_lively_task_by_vpid(pid);
6043                if (IS_ERR(task)) {
6044                        err = PTR_ERR(task);
6045                        goto err_group_fd;
6046                }
6047        }
6048
6049        event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6050                                 NULL, NULL);
6051        if (IS_ERR(event)) {
6052                err = PTR_ERR(event);
6053                goto err_task;
6054        }
6055
6056        if (flags & PERF_FLAG_PID_CGROUP) {
6057                err = perf_cgroup_connect(pid, event, &attr, group_leader);
6058                if (err)
6059                        goto err_alloc;
6060                /*
6061                 * one more event:
6062                 * - that has cgroup constraint on event->cpu
6063                 * - that may need work on context switch
6064                 */
6065                atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6066                jump_label_inc(&perf_sched_events.key);
6067        }
6068
6069        /*
6070         * Special case software events and allow them to be part of
6071         * any hardware group.
6072         */
6073        pmu = event->pmu;
6074
6075        if (group_leader &&
6076            (is_software_event(event) != is_software_event(group_leader))) {
6077                if (is_software_event(event)) {
6078                        /*
6079                         * If event and group_leader are not both a software
6080                         * event, and event is, then group leader is not.
6081                         *
6082                         * Allow the addition of software events to !software
6083                         * groups, this is safe because software events never
6084                         * fail to schedule.
6085                         */
6086                        pmu = group_leader->pmu;
6087                } else if (is_software_event(group_leader) &&
6088                           (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6089                        /*
6090                         * In case the group is a pure software group, and we
6091                         * try to add a hardware event, move the whole group to
6092                         * the hardware context.
6093                         */
6094                        move_group = 1;
6095                }
6096        }
6097
6098        /*
6099         * Get the target context (task or percpu):
6100         */
6101        ctx = find_get_context(pmu, task, cpu);
6102        if (IS_ERR(ctx)) {
6103                err = PTR_ERR(ctx);
6104                goto err_alloc;
6105        }
6106
6107        if (task) {
6108                put_task_struct(task);
6109                task = NULL;
6110        }
6111
6112        /*
6113         * Look up the group leader (we will attach this event to it):
6114         */
6115        if (group_leader) {
6116                err = -EINVAL;
6117
6118                /*
6119                 * Do not allow a recursive hierarchy (this new sibling
6120                 * becoming part of another group-sibling):
6121                 */
6122                if (group_leader->group_leader != group_leader)
6123                        goto err_context;
6124                /*
6125                 * Do not allow to attach to a group in a different
6126                 * task or CPU context:
6127                 */
6128                if (move_group) {
6129                        if (group_leader->ctx->type != ctx->type)
6130                                goto err_context;
6131                } else {
6132                        if (group_leader->ctx != ctx)
6133                                goto err_context;
6134                }
6135
6136                /*
6137                 * Only a group leader can be exclusive or pinned
6138                 */
6139                if (attr.exclusive || attr.pinned)
6140                        goto err_context;
6141        }
6142
6143        if (output_event) {
6144                err = perf_event_set_output(event, output_event);
6145                if (err)
6146                        goto err_context;
6147        }
6148
6149        event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6150        if (IS_ERR(event_file)) {
6151                err = PTR_ERR(event_file);
6152                goto err_context;
6153        }
6154
6155        if (move_group) {
6156                struct perf_event_context *gctx = group_leader->ctx;
6157
6158                mutex_lock(&gctx->mutex);
6159                perf_remove_from_context(group_leader);
6160                list_for_each_entry(sibling, &group_leader->sibling_list,
6161                                    group_entry) {
6162                        perf_remove_from_context(sibling);
6163                        put_ctx(gctx);
6164                }
6165                mutex_unlock(&gctx->mutex);
6166                put_ctx(gctx);
6167        }
6168
6169        event->filp = event_file;
6170        WARN_ON_ONCE(ctx->parent_ctx);
6171        mutex_lock(&ctx->mutex);
6172
6173        if (move_group) {
6174                perf_install_in_context(ctx, group_leader, cpu);
6175                get_ctx(ctx);
6176                list_for_each_entry(sibling, &group_leader->sibling_list,
6177                                    group_entry) {
6178                        perf_install_in_context(ctx, sibling, cpu);
6179                        get_ctx(ctx);
6180                }
6181        }
6182
6183        perf_install_in_context(ctx, event, cpu);
6184        ++ctx->generation;
6185        perf_unpin_context(ctx);
6186        mutex_unlock(&ctx->mutex);
6187
6188        event->owner = current;
6189
6190        mutex_lock(&current->perf_event_mutex);
6191        list_add_tail(&event->owner_entry, &current->perf_event_list);
6192        mutex_unlock(&current->perf_event_mutex);
6193
6194        /*
6195         * Precalculate sample_data sizes
6196         */
6197        perf_event__header_size(event);
6198        perf_event__id_header_size(event);
6199
6200        /*
6201         * Drop the reference on the group_event after placing the
6202         * new event on the sibling_list. This ensures destruction
6203         * of the group leader will find the pointer to itself in
6204         * perf_group_detach().
6205         */
6206        fput_light(group_file, fput_needed);
6207        fd_install(event_fd, event_file);
6208        return event_fd;
6209
6210err_context:
6211        perf_unpin_context(ctx);
6212        put_ctx(ctx);
6213err_alloc:
6214        free_event(event);
6215err_task:
6216        if (task)
6217                put_task_struct(task);
6218err_group_fd:
6219        fput_light(group_file, fput_needed);
6220err_fd:
6221        put_unused_fd(event_fd);
6222        return err;
6223}
6224
6225/**
6226 * perf_event_create_kernel_counter
6227 *
6228 * @attr: attributes of the counter to create
6229 * @cpu: cpu in which the counter is bound
6230 * @task: task to profile (NULL for percpu)
6231 */
6232struct perf_event *
6233perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6234                                 struct task_struct *task,
6235                                 perf_overflow_handler_t overflow_handler,
6236                                 void *context)
6237{
6238        struct perf_event_context *ctx;
6239        struct perf_event *event;
6240        int err;
6241
6242        /*
6243         * Get the target context (task or percpu):
6244         */
6245
6246        event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6247                                 overflow_handler, context);
6248        if (IS_ERR(event)) {
6249                err = PTR_ERR(event);
6250                goto err;
6251        }
6252
6253        ctx = find_get_context(event->pmu, task, cpu);
6254        if (IS_ERR(ctx)) {
6255                err = PTR_ERR(ctx);
6256                goto err_free;
6257        }
6258
6259        event->filp = NULL;
6260        WARN_ON_ONCE(ctx->parent_ctx);
6261        mutex_lock(&ctx->mutex);
6262        perf_install_in_context(ctx, event, cpu);
6263        ++ctx->generation;
6264        perf_unpin_context(ctx);
6265        mutex_unlock(&ctx->mutex);
6266
6267        return event;
6268
6269err_free:
6270        free_event(event);
6271err:
6272        return ERR_PTR(err);
6273}
6274EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6275
6276static void sync_child_event(struct perf_event *child_event,
6277                               struct task_struct *child)
6278{
6279        struct perf_event *parent_event = child_event->parent;
6280        u64 child_val;
6281
6282        if (child_event->attr.inherit_stat)
6283                perf_event_read_event(child_event, child);
6284
6285        child_val = perf_event_count(child_event);
6286
6287        /*
6288         * Add back the child's count to the parent's count:
6289         */
6290        atomic64_add(child_val, &parent_event->child_count);
6291        atomic64_add(child_event->total_time_enabled,
6292                     &parent_event->child_total_time_enabled);
6293        atomic64_add(child_event->total_time_running,
6294                     &parent_event->child_total_time_running);
6295
6296        /*
6297         * Remove this event from the parent's list
6298         */
6299        WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6300        mutex_lock(&parent_event->child_mutex);
6301        list_del_init(&child_event->child_list);
6302        mutex_unlock(&parent_event->child_mutex);
6303
6304        /*
6305         * Release the parent event, if this was the last
6306         * reference to it.
6307         */
6308        fput(parent_event->filp);
6309}
6310
6311static void
6312__perf_event_exit_task(struct perf_event *child_event,
6313                         struct perf_event_context *child_ctx,
6314                         struct task_struct *child)
6315{
6316        if (child_event->parent) {
6317                raw_spin_lock_irq(&child_ctx->lock);
6318                perf_group_detach(child_event);
6319                raw_spin_unlock_irq(&child_ctx->lock);
6320        }
6321
6322        perf_remove_from_context(child_event);
6323
6324        /*
6325         * It can happen that the parent exits first, and has events
6326         * that are still around due to the child reference. These
6327         * events need to be zapped.
6328         */
6329        if (child_event->parent) {
6330                sync_child_event(child_event, child);
6331                free_event(child_event);
6332        }
6333}
6334
6335static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6336{
6337        struct perf_event *child_event, *tmp;
6338        struct perf_event_context *child_ctx;
6339        unsigned long flags;
6340
6341        if (likely(!child->perf_event_ctxp[ctxn])) {
6342                perf_event_task(child, NULL, 0);
6343                return;
6344        }
6345
6346        local_irq_save(flags);
6347        /*
6348         * We can't reschedule here because interrupts are disabled,
6349         * and either child is current or it is a task that can't be
6350         * scheduled, so we are now safe from rescheduling changing
6351         * our context.
6352         */
6353        child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6354
6355        /*
6356         * Take the context lock here so that if find_get_context is
6357         * reading child->perf_event_ctxp, we wait until it has
6358         * incremented the context's refcount before we do put_ctx below.
6359         */
6360        raw_spin_lock(&child_ctx->lock);
6361        task_ctx_sched_out(child_ctx);
6362        child->perf_event_ctxp[ctxn] = NULL;
6363        /*
6364         * If this context is a clone; unclone it so it can't get
6365         * swapped to another process while we're removing all
6366         * the events from it.
6367         */
6368        unclone_ctx(child_ctx);
6369        update_context_time(child_ctx);
6370        raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6371
6372        /*
6373         * Report the task dead after unscheduling the events so that we
6374         * won't get any samples after PERF_RECORD_EXIT. We can however still
6375         * get a few PERF_RECORD_READ events.
6376         */
6377        perf_event_task(child, child_ctx, 0);
6378
6379        /*
6380         * We can recurse on the same lock type through:
6381         *
6382         *   __perf_event_exit_task()
6383         *     sync_child_event()
6384         *       fput(parent_event->filp)
6385         *         perf_release()
6386         *           mutex_lock(&ctx->mutex)
6387         *
6388         * But since its the parent context it won't be the same instance.
6389         */
6390        mutex_lock(&child_ctx->mutex);
6391
6392again:
6393        list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6394                                 group_entry)
6395                __perf_event_exit_task(child_event, child_ctx, child);
6396
6397        list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6398                                 group_entry)
6399                __perf_event_exit_task(child_event, child_ctx, child);
6400
6401        /*
6402         * If the last event was a group event, it will have appended all
6403         * its siblings to the list, but we obtained 'tmp' before that which
6404         * will still point to the list head terminating the iteration.
6405         */
6406        if (!list_empty(&child_ctx->pinned_groups) ||
6407            !list_empty(&child_ctx->flexible_groups))
6408                goto again;
6409
6410        mutex_unlock(&child_ctx->mutex);
6411
6412        put_ctx(child_ctx);
6413}
6414
6415/*
6416 * When a child task exits, feed back event values to parent events.
6417 */
6418void perf_event_exit_task(struct task_struct *child)
6419{
6420        struct perf_event *event, *tmp;
6421        int ctxn;
6422
6423        mutex_lock(&child->perf_event_mutex);
6424        list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6425                                 owner_entry) {
6426                list_del_init(&event->owner_entry);
6427
6428                /*
6429                 * Ensure the list deletion is visible before we clear
6430                 * the owner, closes a race against perf_release() where
6431                 * we need to serialize on the owner->perf_event_mutex.
6432                 */
6433                smp_wmb();
6434                event->owner = NULL;
6435        }
6436        mutex_unlock(&child->perf_event_mutex);
6437
6438        for_each_task_context_nr(ctxn)
6439                perf_event_exit_task_context(child, ctxn);
6440}
6441
6442static void perf_free_event(struct perf_event *event,
6443                            struct perf_event_context *ctx)
6444{
6445        struct perf_event *parent = event->parent;
6446
6447        if (WARN_ON_ONCE(!parent))
6448                return;
6449
6450        mutex_lock(&parent->child_mutex);
6451        list_del_init(&event->child_list);
6452        mutex_unlock(&parent->child_mutex);
6453
6454        fput(parent->filp);
6455
6456        perf_group_detach(event);
6457        list_del_event(event, ctx);
6458        free_event(event);
6459}
6460
6461/*
6462 * free an unexposed, unused context as created by inheritance by
6463 * perf_event_init_task below, used by fork() in case of fail.
6464 */
6465void perf_event_free_task(struct task_struct *task)
6466{
6467        struct perf_event_context *ctx;
6468        struct perf_event *event, *tmp;
6469        int ctxn;
6470
6471        for_each_task_context_nr(ctxn) {
6472                ctx = task->perf_event_ctxp[ctxn];
6473                if (!ctx)
6474                        continue;
6475
6476                mutex_lock(&ctx->mutex);
6477again:
6478                list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6479                                group_entry)
6480                        perf_free_event(event, ctx);
6481
6482                list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6483                                group_entry)
6484                        perf_free_event(event, ctx);
6485
6486                if (!list_empty(&ctx->pinned_groups) ||
6487                                !list_empty(&ctx->flexible_groups))
6488                        goto again;
6489
6490                mutex_unlock(&ctx->mutex);
6491
6492                put_ctx(ctx);
6493        }
6494}
6495
6496void perf_event_delayed_put(struct task_struct *task)
6497{
6498        int ctxn;
6499
6500        for_each_task_context_nr(ctxn)
6501                WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6502}
6503
6504/*
6505 * inherit a event from parent task to child task:
6506 */
6507static struct perf_event *
6508inherit_event(struct perf_event *parent_event,
6509              struct task_struct *parent,
6510              struct perf_event_context *parent_ctx,
6511              struct task_struct *child,
6512              struct perf_event *group_leader,
6513              struct perf_event_context *child_ctx)
6514{
6515        struct perf_event *child_event;
6516        unsigned long flags;
6517
6518        /*
6519         * Instead of creating recursive hierarchies of events,
6520         * we link inherited events back to the original parent,
6521         * which has a filp for sure, which we use as the reference
6522         * count:
6523         */
6524        if (parent_event->parent)
6525                parent_event = parent_event->parent;
6526
6527        child_event = perf_event_alloc(&parent_event->attr,
6528                                           parent_event->cpu,
6529                                           child,
6530                                           group_leader, parent_event,
6531                                           NULL, NULL);
6532        if (IS_ERR(child_event))
6533                return child_event;
6534        get_ctx(child_ctx);
6535
6536        /*
6537         * Make the child state follow the state of the parent event,
6538         * not its attr.disabled bit.  We hold the parent's mutex,
6539         * so we won't race with perf_event_{en, dis}able_family.
6540         */
6541        if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6542                child_event->state = PERF_EVENT_STATE_INACTIVE;
6543        else
6544                child_event->state = PERF_EVENT_STATE_OFF;
6545
6546        if (parent_event->attr.freq) {
6547                u64 sample_period = parent_event->hw.sample_period;
6548                struct hw_perf_event *hwc = &child_event->hw;
6549
6550                hwc->sample_period = sample_period;
6551                hwc->last_period   = sample_period;
6552
6553                local64_set(&hwc->period_left, sample_period);
6554        }
6555
6556        child_event->ctx = child_ctx;
6557        child_event->overflow_handler = parent_event->overflow_handler;
6558        child_event->overflow_handler_context
6559                = parent_event->overflow_handler_context;
6560
6561        /*
6562         * Precalculate sample_data sizes
6563         */
6564        perf_event__header_size(child_event);
6565        perf_event__id_header_size(child_event);
6566
6567        /*
6568         * Link it up in the child's context:
6569         */
6570        raw_spin_lock_irqsave(&child_ctx->lock, flags);
6571        add_event_to_ctx(child_event, child_ctx);
6572        raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6573
6574        /*
6575         * Get a reference to the parent filp - we will fput it
6576         * when the child event exits. This is safe to do because
6577         * we are in the parent and we know that the filp still
6578         * exists and has a nonzero count:
6579         */
6580        atomic_long_inc(&parent_event->filp->f_count);
6581
6582        /*
6583         * Link this into the parent event's child list
6584         */
6585        WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6586        mutex_lock(&parent_event->child_mutex);
6587        list_add_tail(&child_event->child_list, &parent_event->child_list);
6588        mutex_unlock(&parent_event->child_mutex);
6589
6590        return child_event;
6591}
6592
6593static int inherit_group(struct perf_event *parent_event,
6594              struct task_struct *parent,
6595              struct perf_event_context *parent_ctx,
6596              struct task_struct *child,
6597              struct perf_event_context *child_ctx)
6598{
6599        struct perf_event *leader;
6600        struct perf_event *sub;
6601        struct perf_event *child_ctr;
6602
6603        leader = inherit_event(parent_event, parent, parent_ctx,
6604                                 child, NULL, child_ctx);
6605        if (IS_ERR(leader))
6606                return PTR_ERR(leader);
6607        list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6608                child_ctr = inherit_event(sub, parent, parent_ctx,
6609                                            child, leader, child_ctx);
6610                if (IS_ERR(child_ctr))
6611                        return PTR_ERR(child_ctr);
6612        }
6613        return 0;
6614}
6615
6616static int
6617inherit_task_group(struct perf_event *event, struct task_struct *parent,
6618                   struct perf_event_context *parent_ctx,
6619                   struct task_struct *child, int ctxn,
6620                   int *inherited_all)
6621{
6622        int ret;
6623        struct perf_event_context *child_ctx;
6624
6625        if (!event->attr.inherit) {
6626                *inherited_all = 0;
6627                return 0;
6628        }
6629
6630        child_ctx = child->perf_event_ctxp[ctxn];
6631        if (!child_ctx) {
6632                /*
6633                 * This is executed from the parent task context, so
6634                 * inherit events that have been marked for cloning.
6635                 * First allocate and initialize a context for the
6636                 * child.
6637                 */
6638
6639                child_ctx = alloc_perf_context(event->pmu, child);
6640                if (!child_ctx)
6641                        return -ENOMEM;
6642
6643                child->perf_event_ctxp[ctxn] = child_ctx;
6644        }
6645
6646        ret = inherit_group(event, parent, parent_ctx,
6647                            child, child_ctx);
6648
6649        if (ret)
6650                *inherited_all = 0;
6651
6652        return ret;
6653}
6654
6655/*
6656 * Initialize the perf_event context in task_struct
6657 */
6658int perf_event_init_context(struct task_struct *child, int ctxn)
6659{
6660        struct perf_event_context *child_ctx, *parent_ctx;
6661        struct perf_event_context *cloned_ctx;
6662        struct perf_event *event;
6663        struct task_struct *parent = current;
6664        int inherited_all = 1;
6665        unsigned long flags;
6666        int ret = 0;
6667
6668        if (likely(!parent->perf_event_ctxp[ctxn]))
6669                return 0;
6670
6671        /*
6672         * If the parent's context is a clone, pin it so it won't get
6673         * swapped under us.
6674         */
6675        parent_ctx = perf_pin_task_context(parent, ctxn);
6676
6677        /*
6678         * No need to check if parent_ctx != NULL here; since we saw
6679         * it non-NULL earlier, the only reason for it to become NULL
6680         * is if we exit, and since we're currently in the middle of
6681         * a fork we can't be exiting at the same time.
6682         */
6683
6684        /*
6685         * Lock the parent list. No need to lock the child - not PID
6686         * hashed yet and not running, so nobody can access it.
6687         */
6688        mutex_lock(&parent_ctx->mutex);
6689
6690        /*
6691         * We dont have to disable NMIs - we are only looking at
6692         * the list, not manipulating it:
6693         */
6694        list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6695                ret = inherit_task_group(event, parent, parent_ctx,
6696                                         child, ctxn, &inherited_all);
6697                if (ret)
6698                        break;
6699        }
6700
6701        /*
6702         * We can't hold ctx->lock when iterating the ->flexible_group list due
6703         * to allocations, but we need to prevent rotation because
6704         * rotate_ctx() will change the list from interrupt context.
6705         */
6706        raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6707        parent_ctx->rotate_disable = 1;
6708        raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6709
6710        list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6711                ret = inherit_task_group(event, parent, parent_ctx,
6712                                         child, ctxn, &inherited_all);
6713                if (ret)
6714                        break;
6715        }
6716
6717        raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6718        parent_ctx->rotate_disable = 0;
6719
6720        child_ctx = child->perf_event_ctxp[ctxn];
6721
6722        if (child_ctx && inherited_all) {
6723                /*
6724                 * Mark the child context as a clone of the parent
6725                 * context, or of whatever the parent is a clone of.
6726                 *
6727                 * Note that if the parent is a clone, the holding of
6728                 * parent_ctx->lock avoids it from being uncloned.
6729                 */
6730                cloned_ctx = parent_ctx->parent_ctx;
6731                if (cloned_ctx) {
6732                        child_ctx->parent_ctx = cloned_ctx;
6733                        child_ctx->parent_gen = parent_ctx->parent_gen;
6734                } else {
6735                        child_ctx->parent_ctx = parent_ctx;
6736                        child_ctx->parent_gen = parent_ctx->generation;
6737                }
6738                get_ctx(child_ctx->parent_ctx);
6739        }
6740
6741        raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6742        mutex_unlock(&parent_ctx->mutex);
6743
6744        perf_unpin_context(parent_ctx);
6745        put_ctx(parent_ctx);
6746
6747        return ret;
6748}
6749
6750/*
6751 * Initialize the perf_event context in task_struct
6752 */
6753int perf_event_init_task(struct task_struct *child)
6754{
6755        int ctxn, ret;
6756
6757        memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
6758        mutex_init(&child->perf_event_mutex);
6759        INIT_LIST_HEAD(&child->perf_event_list);
6760
6761        for_each_task_context_nr(ctxn) {
6762                ret = perf_event_init_context(child, ctxn);
6763                if (ret)
6764                        return ret;
6765        }
6766
6767        return 0;
6768}
6769
6770static void __init perf_event_init_all_cpus(void)
6771{
6772        struct swevent_htable *swhash;
6773        int cpu;
6774
6775        for_each_possible_cpu(cpu) {
6776                swhash = &per_cpu(swevent_htable, cpu);
6777                mutex_init(&swhash->hlist_mutex);
6778                INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6779        }
6780}
6781
6782static void __cpuinit perf_event_init_cpu(int cpu)
6783{
6784        struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6785
6786        mutex_lock(&swhash->hlist_mutex);
6787        if (swhash->hlist_refcount > 0) {
6788                struct swevent_hlist *hlist;
6789
6790                hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6791                WARN_ON(!hlist);
6792                rcu_assign_pointer(swhash->swevent_hlist, hlist);
6793        }
6794        mutex_unlock(&swhash->hlist_mutex);
6795}
6796
6797#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
6798static void perf_pmu_rotate_stop(struct pmu *pmu)
6799{
6800        struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6801
6802        WARN_ON(!irqs_disabled());
6803
6804        list_del_init(&cpuctx->rotation_list);
6805}
6806
6807static void __perf_event_exit_context(void *__info)
6808{
6809        struct perf_event_context *ctx = __info;
6810        struct perf_event *event, *tmp;
6811
6812        perf_pmu_rotate_stop(ctx->pmu);
6813
6814        list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6815                __perf_remove_from_context(event);
6816        list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6817                __perf_remove_from_context(event);
6818}
6819
6820static void perf_event_exit_cpu_context(int cpu)
6821{
6822        struct perf_event_context *ctx;
6823        struct pmu *pmu;
6824        int idx;
6825
6826        idx = srcu_read_lock(&pmus_srcu);
6827        list_for_each_entry_rcu(pmu, &pmus, entry) {
6828                ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
6829
6830                mutex_lock(&ctx->mutex);
6831                smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6832                mutex_unlock(&ctx->mutex);
6833        }
6834        srcu_read_unlock(&pmus_srcu, idx);
6835}
6836
6837static void perf_event_exit_cpu(int cpu)
6838{
6839        struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6840
6841        mutex_lock(&swhash->hlist_mutex);
6842        swevent_hlist_release(swhash);
6843        mutex_unlock(&swhash->hlist_mutex);
6844
6845        perf_event_exit_cpu_context(cpu);
6846}
6847#else
6848static inline void perf_event_exit_cpu(int cpu) { }
6849#endif
6850
6851static int
6852perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
6853{
6854        int cpu;
6855
6856        for_each_online_cpu(cpu)
6857                perf_event_exit_cpu(cpu);
6858
6859        return NOTIFY_OK;
6860}
6861
6862/*
6863 * Run the perf reboot notifier at the very last possible moment so that
6864 * the generic watchdog code runs as long as possible.
6865 */
6866static struct notifier_block perf_reboot_notifier = {
6867        .notifier_call = perf_reboot,
6868        .priority = INT_MIN,
6869};
6870
6871static int __cpuinit
6872perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6873{
6874        unsigned int cpu = (long)hcpu;
6875
6876        switch (action & ~CPU_TASKS_FROZEN) {
6877
6878        case CPU_UP_PREPARE:
6879        case CPU_DOWN_FAILED:
6880                perf_event_init_cpu(cpu);
6881                break;
6882
6883        case CPU_UP_CANCELED:
6884        case CPU_DOWN_PREPARE:
6885                perf_event_exit_cpu(cpu);
6886                break;
6887
6888        default:
6889                break;
6890        }
6891
6892        return NOTIFY_OK;
6893}
6894
6895void __init perf_event_init(void)
6896{
6897        int ret;
6898
6899        idr_init(&pmu_idr);
6900
6901        perf_event_init_all_cpus();
6902        init_srcu_struct(&pmus_srcu);
6903        perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
6904        perf_pmu_register(&perf_cpu_clock, NULL, -1);
6905        perf_pmu_register(&perf_task_clock, NULL, -1);
6906        perf_tp_register();
6907        perf_cpu_notifier(perf_cpu_notify);
6908        register_reboot_notifier(&perf_reboot_notifier);
6909
6910        ret = init_hw_breakpoint();
6911        WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
6912
6913        /* do not patch jump label more than once per second */
6914        jump_label_rate_limit(&perf_sched_events, HZ);
6915}
6916
6917static int __init perf_event_sysfs_init(void)
6918{
6919        struct pmu *pmu;
6920        int ret;
6921
6922        mutex_lock(&pmus_lock);
6923
6924        ret = bus_register(&pmu_bus);
6925        if (ret)
6926                goto unlock;
6927
6928        list_for_each_entry(pmu, &pmus, entry) {
6929                if (!pmu->name || pmu->type < 0)
6930                        continue;
6931
6932                ret = pmu_dev_alloc(pmu);
6933                WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
6934        }
6935        pmu_bus_running = 1;
6936        ret = 0;
6937
6938unlock:
6939        mutex_unlock(&pmus_lock);
6940
6941        return ret;
6942}
6943device_initcall(perf_event_sysfs_init);
6944
6945#ifdef CONFIG_CGROUP_PERF
6946static struct cgroup_subsys_state *perf_cgroup_create(
6947        struct cgroup_subsys *ss, struct cgroup *cont)
6948{
6949        struct perf_cgroup *jc;
6950
6951        jc = kzalloc(sizeof(*jc), GFP_KERNEL);
6952        if (!jc)
6953                return ERR_PTR(-ENOMEM);
6954
6955        jc->info = alloc_percpu(struct perf_cgroup_info);
6956        if (!jc->info) {
6957                kfree(jc);
6958                return ERR_PTR(-ENOMEM);
6959        }
6960
6961        return &jc->css;
6962}
6963
6964static void perf_cgroup_destroy(struct cgroup_subsys *ss,
6965                                struct cgroup *cont)
6966{
6967        struct perf_cgroup *jc;
6968        jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
6969                          struct perf_cgroup, css);
6970        free_percpu(jc->info);
6971        kfree(jc);
6972}
6973
6974static int __perf_cgroup_move(void *info)
6975{
6976        struct task_struct *task = info;
6977        perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
6978        return 0;
6979}
6980
6981static void perf_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
6982                               struct cgroup_taskset *tset)
6983{
6984        struct task_struct *task;
6985
6986        cgroup_taskset_for_each(task, cgrp, tset)
6987                task_function_call(task, __perf_cgroup_move, task);
6988}
6989
6990static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
6991                struct cgroup *old_cgrp, struct task_struct *task)
6992{
6993        /*
6994         * cgroup_exit() is called in the copy_process() failure path.
6995         * Ignore this case since the task hasn't ran yet, this avoids
6996         * trying to poke a half freed task state from generic code.
6997         */
6998        if (!(task->flags & PF_EXITING))
6999                return;
7000
7001        task_function_call(task, __perf_cgroup_move, task);
7002}
7003
7004struct cgroup_subsys perf_subsys = {
7005        .name           = "perf_event",
7006        .subsys_id      = perf_subsys_id,
7007        .create         = perf_cgroup_create,
7008        .destroy        = perf_cgroup_destroy,
7009        .exit           = perf_cgroup_exit,
7010        .attach         = perf_cgroup_attach,
7011};
7012#endif /* CONFIG_CGROUP_PERF */
7013