linux/kernel/exit.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/exit.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7#include <linux/mm.h>
   8#include <linux/slab.h>
   9#include <linux/interrupt.h>
  10#include <linux/module.h>
  11#include <linux/capability.h>
  12#include <linux/completion.h>
  13#include <linux/personality.h>
  14#include <linux/tty.h>
  15#include <linux/iocontext.h>
  16#include <linux/key.h>
  17#include <linux/security.h>
  18#include <linux/cpu.h>
  19#include <linux/acct.h>
  20#include <linux/tsacct_kern.h>
  21#include <linux/file.h>
  22#include <linux/fdtable.h>
  23#include <linux/binfmts.h>
  24#include <linux/nsproxy.h>
  25#include <linux/pid_namespace.h>
  26#include <linux/ptrace.h>
  27#include <linux/profile.h>
  28#include <linux/mount.h>
  29#include <linux/proc_fs.h>
  30#include <linux/kthread.h>
  31#include <linux/mempolicy.h>
  32#include <linux/taskstats_kern.h>
  33#include <linux/delayacct.h>
  34#include <linux/freezer.h>
  35#include <linux/cgroup.h>
  36#include <linux/syscalls.h>
  37#include <linux/signal.h>
  38#include <linux/posix-timers.h>
  39#include <linux/cn_proc.h>
  40#include <linux/mutex.h>
  41#include <linux/futex.h>
  42#include <linux/pipe_fs_i.h>
  43#include <linux/audit.h> /* for audit_free() */
  44#include <linux/resource.h>
  45#include <linux/blkdev.h>
  46#include <linux/task_io_accounting_ops.h>
  47#include <linux/tracehook.h>
  48#include <linux/fs_struct.h>
  49#include <linux/init_task.h>
  50#include <linux/perf_event.h>
  51#include <trace/events/sched.h>
  52#include <linux/hw_breakpoint.h>
  53#include <linux/oom.h>
  54#include <linux/writeback.h>
  55
  56#include <asm/uaccess.h>
  57#include <asm/unistd.h>
  58#include <asm/pgtable.h>
  59#include <asm/mmu_context.h>
  60
  61static void exit_mm(struct task_struct * tsk);
  62
  63static void __unhash_process(struct task_struct *p, bool group_dead)
  64{
  65        nr_threads--;
  66        detach_pid(p, PIDTYPE_PID);
  67        if (group_dead) {
  68                detach_pid(p, PIDTYPE_PGID);
  69                detach_pid(p, PIDTYPE_SID);
  70
  71                list_del_rcu(&p->tasks);
  72                list_del_init(&p->sibling);
  73                __this_cpu_dec(process_counts);
  74        }
  75        list_del_rcu(&p->thread_group);
  76}
  77
  78/*
  79 * This function expects the tasklist_lock write-locked.
  80 */
  81static void __exit_signal(struct task_struct *tsk)
  82{
  83        struct signal_struct *sig = tsk->signal;
  84        bool group_dead = thread_group_leader(tsk);
  85        struct sighand_struct *sighand;
  86        struct tty_struct *uninitialized_var(tty);
  87
  88        sighand = rcu_dereference_check(tsk->sighand,
  89                                        lockdep_tasklist_lock_is_held());
  90        spin_lock(&sighand->siglock);
  91
  92        posix_cpu_timers_exit(tsk);
  93        if (group_dead) {
  94                posix_cpu_timers_exit_group(tsk);
  95                tty = sig->tty;
  96                sig->tty = NULL;
  97        } else {
  98                /*
  99                 * This can only happen if the caller is de_thread().
 100                 * FIXME: this is the temporary hack, we should teach
 101                 * posix-cpu-timers to handle this case correctly.
 102                 */
 103                if (unlikely(has_group_leader_pid(tsk)))
 104                        posix_cpu_timers_exit_group(tsk);
 105
 106                /*
 107                 * If there is any task waiting for the group exit
 108                 * then notify it:
 109                 */
 110                if (sig->notify_count > 0 && !--sig->notify_count)
 111                        wake_up_process(sig->group_exit_task);
 112
 113                if (tsk == sig->curr_target)
 114                        sig->curr_target = next_thread(tsk);
 115                /*
 116                 * Accumulate here the counters for all threads but the
 117                 * group leader as they die, so they can be added into
 118                 * the process-wide totals when those are taken.
 119                 * The group leader stays around as a zombie as long
 120                 * as there are other threads.  When it gets reaped,
 121                 * the exit.c code will add its counts into these totals.
 122                 * We won't ever get here for the group leader, since it
 123                 * will have been the last reference on the signal_struct.
 124                 */
 125                sig->utime += tsk->utime;
 126                sig->stime += tsk->stime;
 127                sig->gtime += tsk->gtime;
 128                sig->min_flt += tsk->min_flt;
 129                sig->maj_flt += tsk->maj_flt;
 130                sig->nvcsw += tsk->nvcsw;
 131                sig->nivcsw += tsk->nivcsw;
 132                sig->inblock += task_io_get_inblock(tsk);
 133                sig->oublock += task_io_get_oublock(tsk);
 134                task_io_accounting_add(&sig->ioac, &tsk->ioac);
 135                sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
 136        }
 137
 138        sig->nr_threads--;
 139        __unhash_process(tsk, group_dead);
 140
 141        /*
 142         * Do this under ->siglock, we can race with another thread
 143         * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
 144         */
 145        flush_sigqueue(&tsk->pending);
 146        tsk->sighand = NULL;
 147        spin_unlock(&sighand->siglock);
 148
 149        __cleanup_sighand(sighand);
 150        clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
 151        if (group_dead) {
 152                flush_sigqueue(&sig->shared_pending);
 153                tty_kref_put(tty);
 154        }
 155}
 156
 157static void delayed_put_task_struct(struct rcu_head *rhp)
 158{
 159        struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
 160
 161        perf_event_delayed_put(tsk);
 162        trace_sched_process_free(tsk);
 163        put_task_struct(tsk);
 164}
 165
 166
 167void release_task(struct task_struct * p)
 168{
 169        struct task_struct *leader;
 170        int zap_leader;
 171repeat:
 172        /* don't need to get the RCU readlock here - the process is dead and
 173         * can't be modifying its own credentials. But shut RCU-lockdep up */
 174        rcu_read_lock();
 175        atomic_dec(&__task_cred(p)->user->processes);
 176        rcu_read_unlock();
 177
 178        proc_flush_task(p);
 179
 180        write_lock_irq(&tasklist_lock);
 181        ptrace_release_task(p);
 182        __exit_signal(p);
 183
 184        /*
 185         * If we are the last non-leader member of the thread
 186         * group, and the leader is zombie, then notify the
 187         * group leader's parent process. (if it wants notification.)
 188         */
 189        zap_leader = 0;
 190        leader = p->group_leader;
 191        if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
 192                /*
 193                 * If we were the last child thread and the leader has
 194                 * exited already, and the leader's parent ignores SIGCHLD,
 195                 * then we are the one who should release the leader.
 196                 */
 197                zap_leader = do_notify_parent(leader, leader->exit_signal);
 198                if (zap_leader)
 199                        leader->exit_state = EXIT_DEAD;
 200        }
 201
 202        write_unlock_irq(&tasklist_lock);
 203        release_thread(p);
 204        call_rcu(&p->rcu, delayed_put_task_struct);
 205
 206        p = leader;
 207        if (unlikely(zap_leader))
 208                goto repeat;
 209}
 210
 211/*
 212 * This checks not only the pgrp, but falls back on the pid if no
 213 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
 214 * without this...
 215 *
 216 * The caller must hold rcu lock or the tasklist lock.
 217 */
 218struct pid *session_of_pgrp(struct pid *pgrp)
 219{
 220        struct task_struct *p;
 221        struct pid *sid = NULL;
 222
 223        p = pid_task(pgrp, PIDTYPE_PGID);
 224        if (p == NULL)
 225                p = pid_task(pgrp, PIDTYPE_PID);
 226        if (p != NULL)
 227                sid = task_session(p);
 228
 229        return sid;
 230}
 231
 232/*
 233 * Determine if a process group is "orphaned", according to the POSIX
 234 * definition in 2.2.2.52.  Orphaned process groups are not to be affected
 235 * by terminal-generated stop signals.  Newly orphaned process groups are
 236 * to receive a SIGHUP and a SIGCONT.
 237 *
 238 * "I ask you, have you ever known what it is to be an orphan?"
 239 */
 240static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
 241{
 242        struct task_struct *p;
 243
 244        do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
 245                if ((p == ignored_task) ||
 246                    (p->exit_state && thread_group_empty(p)) ||
 247                    is_global_init(p->real_parent))
 248                        continue;
 249
 250                if (task_pgrp(p->real_parent) != pgrp &&
 251                    task_session(p->real_parent) == task_session(p))
 252                        return 0;
 253        } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
 254
 255        return 1;
 256}
 257
 258int is_current_pgrp_orphaned(void)
 259{
 260        int retval;
 261
 262        read_lock(&tasklist_lock);
 263        retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
 264        read_unlock(&tasklist_lock);
 265
 266        return retval;
 267}
 268
 269static bool has_stopped_jobs(struct pid *pgrp)
 270{
 271        struct task_struct *p;
 272
 273        do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
 274                if (p->signal->flags & SIGNAL_STOP_STOPPED)
 275                        return true;
 276        } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
 277
 278        return false;
 279}
 280
 281/*
 282 * Check to see if any process groups have become orphaned as
 283 * a result of our exiting, and if they have any stopped jobs,
 284 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
 285 */
 286static void
 287kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
 288{
 289        struct pid *pgrp = task_pgrp(tsk);
 290        struct task_struct *ignored_task = tsk;
 291
 292        if (!parent)
 293                 /* exit: our father is in a different pgrp than
 294                  * we are and we were the only connection outside.
 295                  */
 296                parent = tsk->real_parent;
 297        else
 298                /* reparent: our child is in a different pgrp than
 299                 * we are, and it was the only connection outside.
 300                 */
 301                ignored_task = NULL;
 302
 303        if (task_pgrp(parent) != pgrp &&
 304            task_session(parent) == task_session(tsk) &&
 305            will_become_orphaned_pgrp(pgrp, ignored_task) &&
 306            has_stopped_jobs(pgrp)) {
 307                __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
 308                __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
 309        }
 310}
 311
 312/**
 313 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
 314 *
 315 * If a kernel thread is launched as a result of a system call, or if
 316 * it ever exits, it should generally reparent itself to kthreadd so it
 317 * isn't in the way of other processes and is correctly cleaned up on exit.
 318 *
 319 * The various task state such as scheduling policy and priority may have
 320 * been inherited from a user process, so we reset them to sane values here.
 321 *
 322 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
 323 */
 324static void reparent_to_kthreadd(void)
 325{
 326        write_lock_irq(&tasklist_lock);
 327
 328        ptrace_unlink(current);
 329        /* Reparent to init */
 330        current->real_parent = current->parent = kthreadd_task;
 331        list_move_tail(&current->sibling, &current->real_parent->children);
 332
 333        /* Set the exit signal to SIGCHLD so we signal init on exit */
 334        current->exit_signal = SIGCHLD;
 335
 336        if (task_nice(current) < 0)
 337                set_user_nice(current, 0);
 338        /* cpus_allowed? */
 339        /* rt_priority? */
 340        /* signals? */
 341        memcpy(current->signal->rlim, init_task.signal->rlim,
 342               sizeof(current->signal->rlim));
 343
 344        atomic_inc(&init_cred.usage);
 345        commit_creds(&init_cred);
 346        write_unlock_irq(&tasklist_lock);
 347}
 348
 349void __set_special_pids(struct pid *pid)
 350{
 351        struct task_struct *curr = current->group_leader;
 352
 353        if (task_session(curr) != pid)
 354                change_pid(curr, PIDTYPE_SID, pid);
 355
 356        if (task_pgrp(curr) != pid)
 357                change_pid(curr, PIDTYPE_PGID, pid);
 358}
 359
 360static void set_special_pids(struct pid *pid)
 361{
 362        write_lock_irq(&tasklist_lock);
 363        __set_special_pids(pid);
 364        write_unlock_irq(&tasklist_lock);
 365}
 366
 367/*
 368 * Let kernel threads use this to say that they allow a certain signal.
 369 * Must not be used if kthread was cloned with CLONE_SIGHAND.
 370 */
 371int allow_signal(int sig)
 372{
 373        if (!valid_signal(sig) || sig < 1)
 374                return -EINVAL;
 375
 376        spin_lock_irq(&current->sighand->siglock);
 377        /* This is only needed for daemonize()'ed kthreads */
 378        sigdelset(&current->blocked, sig);
 379        /*
 380         * Kernel threads handle their own signals. Let the signal code
 381         * know it'll be handled, so that they don't get converted to
 382         * SIGKILL or just silently dropped.
 383         */
 384        current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
 385        recalc_sigpending();
 386        spin_unlock_irq(&current->sighand->siglock);
 387        return 0;
 388}
 389
 390EXPORT_SYMBOL(allow_signal);
 391
 392int disallow_signal(int sig)
 393{
 394        if (!valid_signal(sig) || sig < 1)
 395                return -EINVAL;
 396
 397        spin_lock_irq(&current->sighand->siglock);
 398        current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
 399        recalc_sigpending();
 400        spin_unlock_irq(&current->sighand->siglock);
 401        return 0;
 402}
 403
 404EXPORT_SYMBOL(disallow_signal);
 405
 406/*
 407 *      Put all the gunge required to become a kernel thread without
 408 *      attached user resources in one place where it belongs.
 409 */
 410
 411void daemonize(const char *name, ...)
 412{
 413        va_list args;
 414        sigset_t blocked;
 415
 416        va_start(args, name);
 417        vsnprintf(current->comm, sizeof(current->comm), name, args);
 418        va_end(args);
 419
 420        /*
 421         * If we were started as result of loading a module, close all of the
 422         * user space pages.  We don't need them, and if we didn't close them
 423         * they would be locked into memory.
 424         */
 425        exit_mm(current);
 426        /*
 427         * We don't want to have TIF_FREEZE set if the system-wide hibernation
 428         * or suspend transition begins right now.
 429         */
 430        current->flags |= (PF_NOFREEZE | PF_KTHREAD);
 431
 432        if (current->nsproxy != &init_nsproxy) {
 433                get_nsproxy(&init_nsproxy);
 434                switch_task_namespaces(current, &init_nsproxy);
 435        }
 436        set_special_pids(&init_struct_pid);
 437        proc_clear_tty(current);
 438
 439        /* Block and flush all signals */
 440        sigfillset(&blocked);
 441        sigprocmask(SIG_BLOCK, &blocked, NULL);
 442        flush_signals(current);
 443
 444        /* Become as one with the init task */
 445
 446        daemonize_fs_struct();
 447        exit_files(current);
 448        current->files = init_task.files;
 449        atomic_inc(&current->files->count);
 450
 451        reparent_to_kthreadd();
 452}
 453
 454EXPORT_SYMBOL(daemonize);
 455
 456static void close_files(struct files_struct * files)
 457{
 458        int i, j;
 459        struct fdtable *fdt;
 460
 461        j = 0;
 462
 463        /*
 464         * It is safe to dereference the fd table without RCU or
 465         * ->file_lock because this is the last reference to the
 466         * files structure.  But use RCU to shut RCU-lockdep up.
 467         */
 468        rcu_read_lock();
 469        fdt = files_fdtable(files);
 470        rcu_read_unlock();
 471        for (;;) {
 472                unsigned long set;
 473                i = j * __NFDBITS;
 474                if (i >= fdt->max_fds)
 475                        break;
 476                set = fdt->open_fds->fds_bits[j++];
 477                while (set) {
 478                        if (set & 1) {
 479                                struct file * file = xchg(&fdt->fd[i], NULL);
 480                                if (file) {
 481                                        filp_close(file, files);
 482                                        cond_resched();
 483                                }
 484                        }
 485                        i++;
 486                        set >>= 1;
 487                }
 488        }
 489}
 490
 491struct files_struct *get_files_struct(struct task_struct *task)
 492{
 493        struct files_struct *files;
 494
 495        task_lock(task);
 496        files = task->files;
 497        if (files)
 498                atomic_inc(&files->count);
 499        task_unlock(task);
 500
 501        return files;
 502}
 503
 504void put_files_struct(struct files_struct *files)
 505{
 506        struct fdtable *fdt;
 507
 508        if (atomic_dec_and_test(&files->count)) {
 509                close_files(files);
 510                /*
 511                 * Free the fd and fdset arrays if we expanded them.
 512                 * If the fdtable was embedded, pass files for freeing
 513                 * at the end of the RCU grace period. Otherwise,
 514                 * you can free files immediately.
 515                 */
 516                rcu_read_lock();
 517                fdt = files_fdtable(files);
 518                if (fdt != &files->fdtab)
 519                        kmem_cache_free(files_cachep, files);
 520                free_fdtable(fdt);
 521                rcu_read_unlock();
 522        }
 523}
 524
 525void reset_files_struct(struct files_struct *files)
 526{
 527        struct task_struct *tsk = current;
 528        struct files_struct *old;
 529
 530        old = tsk->files;
 531        task_lock(tsk);
 532        tsk->files = files;
 533        task_unlock(tsk);
 534        put_files_struct(old);
 535}
 536
 537void exit_files(struct task_struct *tsk)
 538{
 539        struct files_struct * files = tsk->files;
 540
 541        if (files) {
 542                task_lock(tsk);
 543                tsk->files = NULL;
 544                task_unlock(tsk);
 545                put_files_struct(files);
 546        }
 547}
 548
 549#ifdef CONFIG_MM_OWNER
 550/*
 551 * A task is exiting.   If it owned this mm, find a new owner for the mm.
 552 */
 553void mm_update_next_owner(struct mm_struct *mm)
 554{
 555        struct task_struct *c, *g, *p = current;
 556
 557retry:
 558        /*
 559         * If the exiting or execing task is not the owner, it's
 560         * someone else's problem.
 561         */
 562        if (mm->owner != p)
 563                return;
 564        /*
 565         * The current owner is exiting/execing and there are no other
 566         * candidates.  Do not leave the mm pointing to a possibly
 567         * freed task structure.
 568         */
 569        if (atomic_read(&mm->mm_users) <= 1) {
 570                mm->owner = NULL;
 571                return;
 572        }
 573
 574        read_lock(&tasklist_lock);
 575        /*
 576         * Search in the children
 577         */
 578        list_for_each_entry(c, &p->children, sibling) {
 579                if (c->mm == mm)
 580                        goto assign_new_owner;
 581        }
 582
 583        /*
 584         * Search in the siblings
 585         */
 586        list_for_each_entry(c, &p->real_parent->children, sibling) {
 587                if (c->mm == mm)
 588                        goto assign_new_owner;
 589        }
 590
 591        /*
 592         * Search through everything else. We should not get
 593         * here often
 594         */
 595        do_each_thread(g, c) {
 596                if (c->mm == mm)
 597                        goto assign_new_owner;
 598        } while_each_thread(g, c);
 599
 600        read_unlock(&tasklist_lock);
 601        /*
 602         * We found no owner yet mm_users > 1: this implies that we are
 603         * most likely racing with swapoff (try_to_unuse()) or /proc or
 604         * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
 605         */
 606        mm->owner = NULL;
 607        return;
 608
 609assign_new_owner:
 610        BUG_ON(c == p);
 611        get_task_struct(c);
 612        /*
 613         * The task_lock protects c->mm from changing.
 614         * We always want mm->owner->mm == mm
 615         */
 616        task_lock(c);
 617        /*
 618         * Delay read_unlock() till we have the task_lock()
 619         * to ensure that c does not slip away underneath us
 620         */
 621        read_unlock(&tasklist_lock);
 622        if (c->mm != mm) {
 623                task_unlock(c);
 624                put_task_struct(c);
 625                goto retry;
 626        }
 627        mm->owner = c;
 628        task_unlock(c);
 629        put_task_struct(c);
 630}
 631#endif /* CONFIG_MM_OWNER */
 632
 633/*
 634 * Turn us into a lazy TLB process if we
 635 * aren't already..
 636 */
 637static void exit_mm(struct task_struct * tsk)
 638{
 639        struct mm_struct *mm = tsk->mm;
 640        struct core_state *core_state;
 641
 642        mm_release(tsk, mm);
 643        if (!mm)
 644                return;
 645        /*
 646         * Serialize with any possible pending coredump.
 647         * We must hold mmap_sem around checking core_state
 648         * and clearing tsk->mm.  The core-inducing thread
 649         * will increment ->nr_threads for each thread in the
 650         * group with ->mm != NULL.
 651         */
 652        down_read(&mm->mmap_sem);
 653        core_state = mm->core_state;
 654        if (core_state) {
 655                struct core_thread self;
 656                up_read(&mm->mmap_sem);
 657
 658                self.task = tsk;
 659                self.next = xchg(&core_state->dumper.next, &self);
 660                /*
 661                 * Implies mb(), the result of xchg() must be visible
 662                 * to core_state->dumper.
 663                 */
 664                if (atomic_dec_and_test(&core_state->nr_threads))
 665                        complete(&core_state->startup);
 666
 667                for (;;) {
 668                        set_task_state(tsk, TASK_UNINTERRUPTIBLE);
 669                        if (!self.task) /* see coredump_finish() */
 670                                break;
 671                        schedule();
 672                }
 673                __set_task_state(tsk, TASK_RUNNING);
 674                down_read(&mm->mmap_sem);
 675        }
 676        atomic_inc(&mm->mm_count);
 677        BUG_ON(mm != tsk->active_mm);
 678        /* more a memory barrier than a real lock */
 679        task_lock(tsk);
 680        tsk->mm = NULL;
 681        up_read(&mm->mmap_sem);
 682        enter_lazy_tlb(mm, current);
 683        task_unlock(tsk);
 684        mm_update_next_owner(mm);
 685        mmput(mm);
 686}
 687
 688/*
 689 * When we die, we re-parent all our children.
 690 * Try to give them to another thread in our thread
 691 * group, and if no such member exists, give it to
 692 * the child reaper process (ie "init") in our pid
 693 * space.
 694 */
 695static struct task_struct *find_new_reaper(struct task_struct *father)
 696        __releases(&tasklist_lock)
 697        __acquires(&tasklist_lock)
 698{
 699        struct pid_namespace *pid_ns = task_active_pid_ns(father);
 700        struct task_struct *thread;
 701
 702        thread = father;
 703        while_each_thread(father, thread) {
 704                if (thread->flags & PF_EXITING)
 705                        continue;
 706                if (unlikely(pid_ns->child_reaper == father))
 707                        pid_ns->child_reaper = thread;
 708                return thread;
 709        }
 710
 711        if (unlikely(pid_ns->child_reaper == father)) {
 712                write_unlock_irq(&tasklist_lock);
 713                if (unlikely(pid_ns == &init_pid_ns))
 714                        panic("Attempted to kill init!");
 715
 716                zap_pid_ns_processes(pid_ns);
 717                write_lock_irq(&tasklist_lock);
 718                /*
 719                 * We can not clear ->child_reaper or leave it alone.
 720                 * There may by stealth EXIT_DEAD tasks on ->children,
 721                 * forget_original_parent() must move them somewhere.
 722                 */
 723                pid_ns->child_reaper = init_pid_ns.child_reaper;
 724        }
 725
 726        return pid_ns->child_reaper;
 727}
 728
 729/*
 730* Any that need to be release_task'd are put on the @dead list.
 731 */
 732static void reparent_leader(struct task_struct *father, struct task_struct *p,
 733                                struct list_head *dead)
 734{
 735        list_move_tail(&p->sibling, &p->real_parent->children);
 736
 737        if (p->exit_state == EXIT_DEAD)
 738                return;
 739        /*
 740         * If this is a threaded reparent there is no need to
 741         * notify anyone anything has happened.
 742         */
 743        if (same_thread_group(p->real_parent, father))
 744                return;
 745
 746        /* We don't want people slaying init.  */
 747        p->exit_signal = SIGCHLD;
 748
 749        /* If it has exited notify the new parent about this child's death. */
 750        if (!p->ptrace &&
 751            p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
 752                if (do_notify_parent(p, p->exit_signal)) {
 753                        p->exit_state = EXIT_DEAD;
 754                        list_move_tail(&p->sibling, dead);
 755                }
 756        }
 757
 758        kill_orphaned_pgrp(p, father);
 759}
 760
 761static void forget_original_parent(struct task_struct *father)
 762{
 763        struct task_struct *p, *n, *reaper;
 764        LIST_HEAD(dead_children);
 765
 766        write_lock_irq(&tasklist_lock);
 767        /*
 768         * Note that exit_ptrace() and find_new_reaper() might
 769         * drop tasklist_lock and reacquire it.
 770         */
 771        exit_ptrace(father);
 772        reaper = find_new_reaper(father);
 773
 774        list_for_each_entry_safe(p, n, &father->children, sibling) {
 775                struct task_struct *t = p;
 776                do {
 777                        t->real_parent = reaper;
 778                        if (t->parent == father) {
 779                                BUG_ON(t->ptrace);
 780                                t->parent = t->real_parent;
 781                        }
 782                        if (t->pdeath_signal)
 783                                group_send_sig_info(t->pdeath_signal,
 784                                                    SEND_SIG_NOINFO, t);
 785                } while_each_thread(p, t);
 786                reparent_leader(father, p, &dead_children);
 787        }
 788        write_unlock_irq(&tasklist_lock);
 789
 790        BUG_ON(!list_empty(&father->children));
 791
 792        list_for_each_entry_safe(p, n, &dead_children, sibling) {
 793                list_del_init(&p->sibling);
 794                release_task(p);
 795        }
 796}
 797
 798/*
 799 * Send signals to all our closest relatives so that they know
 800 * to properly mourn us..
 801 */
 802static void exit_notify(struct task_struct *tsk, int group_dead)
 803{
 804        bool autoreap;
 805
 806        /*
 807         * This does two things:
 808         *
 809         * A.  Make init inherit all the child processes
 810         * B.  Check to see if any process groups have become orphaned
 811         *      as a result of our exiting, and if they have any stopped
 812         *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
 813         */
 814        forget_original_parent(tsk);
 815        exit_task_namespaces(tsk);
 816
 817        write_lock_irq(&tasklist_lock);
 818        if (group_dead)
 819                kill_orphaned_pgrp(tsk->group_leader, NULL);
 820
 821        /* Let father know we died
 822         *
 823         * Thread signals are configurable, but you aren't going to use
 824         * that to send signals to arbitrary processes.
 825         * That stops right now.
 826         *
 827         * If the parent exec id doesn't match the exec id we saved
 828         * when we started then we know the parent has changed security
 829         * domain.
 830         *
 831         * If our self_exec id doesn't match our parent_exec_id then
 832         * we have changed execution domain as these two values started
 833         * the same after a fork.
 834         */
 835        if (thread_group_leader(tsk) && tsk->exit_signal != SIGCHLD &&
 836            (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
 837             tsk->self_exec_id != tsk->parent_exec_id))
 838                tsk->exit_signal = SIGCHLD;
 839
 840        if (unlikely(tsk->ptrace)) {
 841                int sig = thread_group_leader(tsk) &&
 842                                thread_group_empty(tsk) &&
 843                                !ptrace_reparented(tsk) ?
 844                        tsk->exit_signal : SIGCHLD;
 845                autoreap = do_notify_parent(tsk, sig);
 846        } else if (thread_group_leader(tsk)) {
 847                autoreap = thread_group_empty(tsk) &&
 848                        do_notify_parent(tsk, tsk->exit_signal);
 849        } else {
 850                autoreap = true;
 851        }
 852
 853        tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
 854
 855        /* mt-exec, de_thread() is waiting for group leader */
 856        if (unlikely(tsk->signal->notify_count < 0))
 857                wake_up_process(tsk->signal->group_exit_task);
 858        write_unlock_irq(&tasklist_lock);
 859
 860        /* If the process is dead, release it - nobody will wait for it */
 861        if (autoreap)
 862                release_task(tsk);
 863}
 864
 865#ifdef CONFIG_DEBUG_STACK_USAGE
 866static void check_stack_usage(void)
 867{
 868        static DEFINE_SPINLOCK(low_water_lock);
 869        static int lowest_to_date = THREAD_SIZE;
 870        unsigned long free;
 871
 872        free = stack_not_used(current);
 873
 874        if (free >= lowest_to_date)
 875                return;
 876
 877        spin_lock(&low_water_lock);
 878        if (free < lowest_to_date) {
 879                printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
 880                                "left\n",
 881                                current->comm, free);
 882                lowest_to_date = free;
 883        }
 884        spin_unlock(&low_water_lock);
 885}
 886#else
 887static inline void check_stack_usage(void) {}
 888#endif
 889
 890void do_exit(long code)
 891{
 892        struct task_struct *tsk = current;
 893        int group_dead;
 894
 895        profile_task_exit(tsk);
 896
 897        WARN_ON(blk_needs_flush_plug(tsk));
 898
 899        if (unlikely(in_interrupt()))
 900                panic("Aiee, killing interrupt handler!");
 901        if (unlikely(!tsk->pid))
 902                panic("Attempted to kill the idle task!");
 903
 904        /*
 905         * If do_exit is called because this processes oopsed, it's possible
 906         * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
 907         * continuing. Amongst other possible reasons, this is to prevent
 908         * mm_release()->clear_child_tid() from writing to a user-controlled
 909         * kernel address.
 910         */
 911        set_fs(USER_DS);
 912
 913        ptrace_event(PTRACE_EVENT_EXIT, code);
 914
 915        validate_creds_for_do_exit(tsk);
 916
 917        /*
 918         * We're taking recursive faults here in do_exit. Safest is to just
 919         * leave this task alone and wait for reboot.
 920         */
 921        if (unlikely(tsk->flags & PF_EXITING)) {
 922                printk(KERN_ALERT
 923                        "Fixing recursive fault but reboot is needed!\n");
 924                /*
 925                 * We can do this unlocked here. The futex code uses
 926                 * this flag just to verify whether the pi state
 927                 * cleanup has been done or not. In the worst case it
 928                 * loops once more. We pretend that the cleanup was
 929                 * done as there is no way to return. Either the
 930                 * OWNER_DIED bit is set by now or we push the blocked
 931                 * task into the wait for ever nirwana as well.
 932                 */
 933                tsk->flags |= PF_EXITPIDONE;
 934                set_current_state(TASK_UNINTERRUPTIBLE);
 935                schedule();
 936        }
 937
 938        exit_irq_thread();
 939
 940        exit_signals(tsk);  /* sets PF_EXITING */
 941        /*
 942         * tsk->flags are checked in the futex code to protect against
 943         * an exiting task cleaning up the robust pi futexes.
 944         */
 945        smp_mb();
 946        raw_spin_unlock_wait(&tsk->pi_lock);
 947
 948        if (unlikely(in_atomic()))
 949                printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
 950                                current->comm, task_pid_nr(current),
 951                                preempt_count());
 952
 953        acct_update_integrals(tsk);
 954        /* sync mm's RSS info before statistics gathering */
 955        if (tsk->mm)
 956                sync_mm_rss(tsk, tsk->mm);
 957        group_dead = atomic_dec_and_test(&tsk->signal->live);
 958        if (group_dead) {
 959                hrtimer_cancel(&tsk->signal->real_timer);
 960                exit_itimers(tsk->signal);
 961                if (tsk->mm)
 962                        setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
 963        }
 964        acct_collect(code, group_dead);
 965        if (group_dead)
 966                tty_audit_exit();
 967        audit_free(tsk);
 968
 969        tsk->exit_code = code;
 970        taskstats_exit(tsk, group_dead);
 971
 972        exit_mm(tsk);
 973
 974        if (group_dead)
 975                acct_process();
 976        trace_sched_process_exit(tsk);
 977
 978        exit_sem(tsk);
 979        exit_shm(tsk);
 980        exit_files(tsk);
 981        exit_fs(tsk);
 982        check_stack_usage();
 983        exit_thread();
 984
 985        /*
 986         * Flush inherited counters to the parent - before the parent
 987         * gets woken up by child-exit notifications.
 988         *
 989         * because of cgroup mode, must be called before cgroup_exit()
 990         */
 991        perf_event_exit_task(tsk);
 992
 993        cgroup_exit(tsk, 1);
 994
 995        if (group_dead)
 996                disassociate_ctty(1);
 997
 998        module_put(task_thread_info(tsk)->exec_domain->module);
 999
1000        proc_exit_connector(tsk);
1001
1002        /*
1003         * FIXME: do that only when needed, using sched_exit tracepoint
1004         */
1005        ptrace_put_breakpoints(tsk);
1006
1007        exit_notify(tsk, group_dead);
1008#ifdef CONFIG_NUMA
1009        task_lock(tsk);
1010        mpol_put(tsk->mempolicy);
1011        tsk->mempolicy = NULL;
1012        task_unlock(tsk);
1013#endif
1014#ifdef CONFIG_FUTEX
1015        if (unlikely(current->pi_state_cache))
1016                kfree(current->pi_state_cache);
1017#endif
1018        /*
1019         * Make sure we are holding no locks:
1020         */
1021        debug_check_no_locks_held(tsk);
1022        /*
1023         * We can do this unlocked here. The futex code uses this flag
1024         * just to verify whether the pi state cleanup has been done
1025         * or not. In the worst case it loops once more.
1026         */
1027        tsk->flags |= PF_EXITPIDONE;
1028
1029        if (tsk->io_context)
1030                exit_io_context(tsk);
1031
1032        if (tsk->splice_pipe)
1033                __free_pipe_info(tsk->splice_pipe);
1034
1035        validate_creds_for_do_exit(tsk);
1036
1037        preempt_disable();
1038        if (tsk->nr_dirtied)
1039                __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
1040        exit_rcu();
1041
1042        /*
1043         * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
1044         * when the following two conditions become true.
1045         *   - There is race condition of mmap_sem (It is acquired by
1046         *     exit_mm()), and
1047         *   - SMI occurs before setting TASK_RUNINNG.
1048         *     (or hypervisor of virtual machine switches to other guest)
1049         *  As a result, we may become TASK_RUNNING after becoming TASK_DEAD
1050         *
1051         * To avoid it, we have to wait for releasing tsk->pi_lock which
1052         * is held by try_to_wake_up()
1053         */
1054        smp_mb();
1055        raw_spin_unlock_wait(&tsk->pi_lock);
1056
1057        /* causes final put_task_struct in finish_task_switch(). */
1058        tsk->state = TASK_DEAD;
1059        tsk->flags |= PF_NOFREEZE;      /* tell freezer to ignore us */
1060        schedule();
1061        BUG();
1062        /* Avoid "noreturn function does return".  */
1063        for (;;)
1064                cpu_relax();    /* For when BUG is null */
1065}
1066
1067EXPORT_SYMBOL_GPL(do_exit);
1068
1069void complete_and_exit(struct completion *comp, long code)
1070{
1071        if (comp)
1072                complete(comp);
1073
1074        do_exit(code);
1075}
1076
1077EXPORT_SYMBOL(complete_and_exit);
1078
1079SYSCALL_DEFINE1(exit, int, error_code)
1080{
1081        do_exit((error_code&0xff)<<8);
1082}
1083
1084/*
1085 * Take down every thread in the group.  This is called by fatal signals
1086 * as well as by sys_exit_group (below).
1087 */
1088void
1089do_group_exit(int exit_code)
1090{
1091        struct signal_struct *sig = current->signal;
1092
1093        BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1094
1095        if (signal_group_exit(sig))
1096                exit_code = sig->group_exit_code;
1097        else if (!thread_group_empty(current)) {
1098                struct sighand_struct *const sighand = current->sighand;
1099                spin_lock_irq(&sighand->siglock);
1100                if (signal_group_exit(sig))
1101                        /* Another thread got here before we took the lock.  */
1102                        exit_code = sig->group_exit_code;
1103                else {
1104                        sig->group_exit_code = exit_code;
1105                        sig->flags = SIGNAL_GROUP_EXIT;
1106                        zap_other_threads(current);
1107                }
1108                spin_unlock_irq(&sighand->siglock);
1109        }
1110
1111        do_exit(exit_code);
1112        /* NOTREACHED */
1113}
1114
1115/*
1116 * this kills every thread in the thread group. Note that any externally
1117 * wait4()-ing process will get the correct exit code - even if this
1118 * thread is not the thread group leader.
1119 */
1120SYSCALL_DEFINE1(exit_group, int, error_code)
1121{
1122        do_group_exit((error_code & 0xff) << 8);
1123        /* NOTREACHED */
1124        return 0;
1125}
1126
1127struct wait_opts {
1128        enum pid_type           wo_type;
1129        int                     wo_flags;
1130        struct pid              *wo_pid;
1131
1132        struct siginfo __user   *wo_info;
1133        int __user              *wo_stat;
1134        struct rusage __user    *wo_rusage;
1135
1136        wait_queue_t            child_wait;
1137        int                     notask_error;
1138};
1139
1140static inline
1141struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1142{
1143        if (type != PIDTYPE_PID)
1144                task = task->group_leader;
1145        return task->pids[type].pid;
1146}
1147
1148static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1149{
1150        return  wo->wo_type == PIDTYPE_MAX ||
1151                task_pid_type(p, wo->wo_type) == wo->wo_pid;
1152}
1153
1154static int eligible_child(struct wait_opts *wo, struct task_struct *p)
1155{
1156        if (!eligible_pid(wo, p))
1157                return 0;
1158        /* Wait for all children (clone and not) if __WALL is set;
1159         * otherwise, wait for clone children *only* if __WCLONE is
1160         * set; otherwise, wait for non-clone children *only*.  (Note:
1161         * A "clone" child here is one that reports to its parent
1162         * using a signal other than SIGCHLD.) */
1163        if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1164            && !(wo->wo_flags & __WALL))
1165                return 0;
1166
1167        return 1;
1168}
1169
1170static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1171                                pid_t pid, uid_t uid, int why, int status)
1172{
1173        struct siginfo __user *infop;
1174        int retval = wo->wo_rusage
1175                ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1176
1177        put_task_struct(p);
1178        infop = wo->wo_info;
1179        if (infop) {
1180                if (!retval)
1181                        retval = put_user(SIGCHLD, &infop->si_signo);
1182                if (!retval)
1183                        retval = put_user(0, &infop->si_errno);
1184                if (!retval)
1185                        retval = put_user((short)why, &infop->si_code);
1186                if (!retval)
1187                        retval = put_user(pid, &infop->si_pid);
1188                if (!retval)
1189                        retval = put_user(uid, &infop->si_uid);
1190                if (!retval)
1191                        retval = put_user(status, &infop->si_status);
1192        }
1193        if (!retval)
1194                retval = pid;
1195        return retval;
1196}
1197
1198/*
1199 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1200 * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1201 * the lock and this task is uninteresting.  If we return nonzero, we have
1202 * released the lock and the system call should return.
1203 */
1204static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1205{
1206        unsigned long state;
1207        int retval, status, traced;
1208        pid_t pid = task_pid_vnr(p);
1209        uid_t uid = __task_cred(p)->uid;
1210        struct siginfo __user *infop;
1211
1212        if (!likely(wo->wo_flags & WEXITED))
1213                return 0;
1214
1215        if (unlikely(wo->wo_flags & WNOWAIT)) {
1216                int exit_code = p->exit_code;
1217                int why;
1218
1219                get_task_struct(p);
1220                read_unlock(&tasklist_lock);
1221                if ((exit_code & 0x7f) == 0) {
1222                        why = CLD_EXITED;
1223                        status = exit_code >> 8;
1224                } else {
1225                        why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1226                        status = exit_code & 0x7f;
1227                }
1228                return wait_noreap_copyout(wo, p, pid, uid, why, status);
1229        }
1230
1231        /*
1232         * Try to move the task's state to DEAD
1233         * only one thread is allowed to do this:
1234         */
1235        state = xchg(&p->exit_state, EXIT_DEAD);
1236        if (state != EXIT_ZOMBIE) {
1237                BUG_ON(state != EXIT_DEAD);
1238                return 0;
1239        }
1240
1241        traced = ptrace_reparented(p);
1242        /*
1243         * It can be ptraced but not reparented, check
1244         * thread_group_leader() to filter out sub-threads.
1245         */
1246        if (likely(!traced) && thread_group_leader(p)) {
1247                struct signal_struct *psig;
1248                struct signal_struct *sig;
1249                unsigned long maxrss;
1250                cputime_t tgutime, tgstime;
1251
1252                /*
1253                 * The resource counters for the group leader are in its
1254                 * own task_struct.  Those for dead threads in the group
1255                 * are in its signal_struct, as are those for the child
1256                 * processes it has previously reaped.  All these
1257                 * accumulate in the parent's signal_struct c* fields.
1258                 *
1259                 * We don't bother to take a lock here to protect these
1260                 * p->signal fields, because they are only touched by
1261                 * __exit_signal, which runs with tasklist_lock
1262                 * write-locked anyway, and so is excluded here.  We do
1263                 * need to protect the access to parent->signal fields,
1264                 * as other threads in the parent group can be right
1265                 * here reaping other children at the same time.
1266                 *
1267                 * We use thread_group_times() to get times for the thread
1268                 * group, which consolidates times for all threads in the
1269                 * group including the group leader.
1270                 */
1271                thread_group_times(p, &tgutime, &tgstime);
1272                spin_lock_irq(&p->real_parent->sighand->siglock);
1273                psig = p->real_parent->signal;
1274                sig = p->signal;
1275                psig->cutime += tgutime + sig->cutime;
1276                psig->cstime += tgstime + sig->cstime;
1277                psig->cgtime += p->gtime + sig->gtime + sig->cgtime;
1278                psig->cmin_flt +=
1279                        p->min_flt + sig->min_flt + sig->cmin_flt;
1280                psig->cmaj_flt +=
1281                        p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1282                psig->cnvcsw +=
1283                        p->nvcsw + sig->nvcsw + sig->cnvcsw;
1284                psig->cnivcsw +=
1285                        p->nivcsw + sig->nivcsw + sig->cnivcsw;
1286                psig->cinblock +=
1287                        task_io_get_inblock(p) +
1288                        sig->inblock + sig->cinblock;
1289                psig->coublock +=
1290                        task_io_get_oublock(p) +
1291                        sig->oublock + sig->coublock;
1292                maxrss = max(sig->maxrss, sig->cmaxrss);
1293                if (psig->cmaxrss < maxrss)
1294                        psig->cmaxrss = maxrss;
1295                task_io_accounting_add(&psig->ioac, &p->ioac);
1296                task_io_accounting_add(&psig->ioac, &sig->ioac);
1297                spin_unlock_irq(&p->real_parent->sighand->siglock);
1298        }
1299
1300        /*
1301         * Now we are sure this task is interesting, and no other
1302         * thread can reap it because we set its state to EXIT_DEAD.
1303         */
1304        read_unlock(&tasklist_lock);
1305
1306        retval = wo->wo_rusage
1307                ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1308        status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1309                ? p->signal->group_exit_code : p->exit_code;
1310        if (!retval && wo->wo_stat)
1311                retval = put_user(status, wo->wo_stat);
1312
1313        infop = wo->wo_info;
1314        if (!retval && infop)
1315                retval = put_user(SIGCHLD, &infop->si_signo);
1316        if (!retval && infop)
1317                retval = put_user(0, &infop->si_errno);
1318        if (!retval && infop) {
1319                int why;
1320
1321                if ((status & 0x7f) == 0) {
1322                        why = CLD_EXITED;
1323                        status >>= 8;
1324                } else {
1325                        why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1326                        status &= 0x7f;
1327                }
1328                retval = put_user((short)why, &infop->si_code);
1329                if (!retval)
1330                        retval = put_user(status, &infop->si_status);
1331        }
1332        if (!retval && infop)
1333                retval = put_user(pid, &infop->si_pid);
1334        if (!retval && infop)
1335                retval = put_user(uid, &infop->si_uid);
1336        if (!retval)
1337                retval = pid;
1338
1339        if (traced) {
1340                write_lock_irq(&tasklist_lock);
1341                /* We dropped tasklist, ptracer could die and untrace */
1342                ptrace_unlink(p);
1343                /*
1344                 * If this is not a sub-thread, notify the parent.
1345                 * If parent wants a zombie, don't release it now.
1346                 */
1347                if (thread_group_leader(p) &&
1348                    !do_notify_parent(p, p->exit_signal)) {
1349                        p->exit_state = EXIT_ZOMBIE;
1350                        p = NULL;
1351                }
1352                write_unlock_irq(&tasklist_lock);
1353        }
1354        if (p != NULL)
1355                release_task(p);
1356
1357        return retval;
1358}
1359
1360static int *task_stopped_code(struct task_struct *p, bool ptrace)
1361{
1362        if (ptrace) {
1363                if (task_is_stopped_or_traced(p) &&
1364                    !(p->jobctl & JOBCTL_LISTENING))
1365                        return &p->exit_code;
1366        } else {
1367                if (p->signal->flags & SIGNAL_STOP_STOPPED)
1368                        return &p->signal->group_exit_code;
1369        }
1370        return NULL;
1371}
1372
1373/**
1374 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1375 * @wo: wait options
1376 * @ptrace: is the wait for ptrace
1377 * @p: task to wait for
1378 *
1379 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1380 *
1381 * CONTEXT:
1382 * read_lock(&tasklist_lock), which is released if return value is
1383 * non-zero.  Also, grabs and releases @p->sighand->siglock.
1384 *
1385 * RETURNS:
1386 * 0 if wait condition didn't exist and search for other wait conditions
1387 * should continue.  Non-zero return, -errno on failure and @p's pid on
1388 * success, implies that tasklist_lock is released and wait condition
1389 * search should terminate.
1390 */
1391static int wait_task_stopped(struct wait_opts *wo,
1392                                int ptrace, struct task_struct *p)
1393{
1394        struct siginfo __user *infop;
1395        int retval, exit_code, *p_code, why;
1396        uid_t uid = 0; /* unneeded, required by compiler */
1397        pid_t pid;
1398
1399        /*
1400         * Traditionally we see ptrace'd stopped tasks regardless of options.
1401         */
1402        if (!ptrace && !(wo->wo_flags & WUNTRACED))
1403                return 0;
1404
1405        if (!task_stopped_code(p, ptrace))
1406                return 0;
1407
1408        exit_code = 0;
1409        spin_lock_irq(&p->sighand->siglock);
1410
1411        p_code = task_stopped_code(p, ptrace);
1412        if (unlikely(!p_code))
1413                goto unlock_sig;
1414
1415        exit_code = *p_code;
1416        if (!exit_code)
1417                goto unlock_sig;
1418
1419        if (!unlikely(wo->wo_flags & WNOWAIT))
1420                *p_code = 0;
1421
1422        uid = task_uid(p);
1423unlock_sig:
1424        spin_unlock_irq(&p->sighand->siglock);
1425        if (!exit_code)
1426                return 0;
1427
1428        /*
1429         * Now we are pretty sure this task is interesting.
1430         * Make sure it doesn't get reaped out from under us while we
1431         * give up the lock and then examine it below.  We don't want to
1432         * keep holding onto the tasklist_lock while we call getrusage and
1433         * possibly take page faults for user memory.
1434         */
1435        get_task_struct(p);
1436        pid = task_pid_vnr(p);
1437        why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1438        read_unlock(&tasklist_lock);
1439
1440        if (unlikely(wo->wo_flags & WNOWAIT))
1441                return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1442
1443        retval = wo->wo_rusage
1444                ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1445        if (!retval && wo->wo_stat)
1446                retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1447
1448        infop = wo->wo_info;
1449        if (!retval && infop)
1450                retval = put_user(SIGCHLD, &infop->si_signo);
1451        if (!retval && infop)
1452                retval = put_user(0, &infop->si_errno);
1453        if (!retval && infop)
1454                retval = put_user((short)why, &infop->si_code);
1455        if (!retval && infop)
1456                retval = put_user(exit_code, &infop->si_status);
1457        if (!retval && infop)
1458                retval = put_user(pid, &infop->si_pid);
1459        if (!retval && infop)
1460                retval = put_user(uid, &infop->si_uid);
1461        if (!retval)
1462                retval = pid;
1463        put_task_struct(p);
1464
1465        BUG_ON(!retval);
1466        return retval;
1467}
1468
1469/*
1470 * Handle do_wait work for one task in a live, non-stopped state.
1471 * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1472 * the lock and this task is uninteresting.  If we return nonzero, we have
1473 * released the lock and the system call should return.
1474 */
1475static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1476{
1477        int retval;
1478        pid_t pid;
1479        uid_t uid;
1480
1481        if (!unlikely(wo->wo_flags & WCONTINUED))
1482                return 0;
1483
1484        if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1485                return 0;
1486
1487        spin_lock_irq(&p->sighand->siglock);
1488        /* Re-check with the lock held.  */
1489        if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1490                spin_unlock_irq(&p->sighand->siglock);
1491                return 0;
1492        }
1493        if (!unlikely(wo->wo_flags & WNOWAIT))
1494                p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1495        uid = task_uid(p);
1496        spin_unlock_irq(&p->sighand->siglock);
1497
1498        pid = task_pid_vnr(p);
1499        get_task_struct(p);
1500        read_unlock(&tasklist_lock);
1501
1502        if (!wo->wo_info) {
1503                retval = wo->wo_rusage
1504                        ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1505                put_task_struct(p);
1506                if (!retval && wo->wo_stat)
1507                        retval = put_user(0xffff, wo->wo_stat);
1508                if (!retval)
1509                        retval = pid;
1510        } else {
1511                retval = wait_noreap_copyout(wo, p, pid, uid,
1512                                             CLD_CONTINUED, SIGCONT);
1513                BUG_ON(retval == 0);
1514        }
1515
1516        return retval;
1517}
1518
1519/*
1520 * Consider @p for a wait by @parent.
1521 *
1522 * -ECHILD should be in ->notask_error before the first call.
1523 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1524 * Returns zero if the search for a child should continue;
1525 * then ->notask_error is 0 if @p is an eligible child,
1526 * or another error from security_task_wait(), or still -ECHILD.
1527 */
1528static int wait_consider_task(struct wait_opts *wo, int ptrace,
1529                                struct task_struct *p)
1530{
1531        int ret = eligible_child(wo, p);
1532        if (!ret)
1533                return ret;
1534
1535        ret = security_task_wait(p);
1536        if (unlikely(ret < 0)) {
1537                /*
1538                 * If we have not yet seen any eligible child,
1539                 * then let this error code replace -ECHILD.
1540                 * A permission error will give the user a clue
1541                 * to look for security policy problems, rather
1542                 * than for mysterious wait bugs.
1543                 */
1544                if (wo->notask_error)
1545                        wo->notask_error = ret;
1546                return 0;
1547        }
1548
1549        /* dead body doesn't have much to contribute */
1550        if (unlikely(p->exit_state == EXIT_DEAD)) {
1551                /*
1552                 * But do not ignore this task until the tracer does
1553                 * wait_task_zombie()->do_notify_parent().
1554                 */
1555                if (likely(!ptrace) && unlikely(ptrace_reparented(p)))
1556                        wo->notask_error = 0;
1557                return 0;
1558        }
1559
1560        /* slay zombie? */
1561        if (p->exit_state == EXIT_ZOMBIE) {
1562                /*
1563                 * A zombie ptracee is only visible to its ptracer.
1564                 * Notification and reaping will be cascaded to the real
1565                 * parent when the ptracer detaches.
1566                 */
1567                if (likely(!ptrace) && unlikely(p->ptrace)) {
1568                        /* it will become visible, clear notask_error */
1569                        wo->notask_error = 0;
1570                        return 0;
1571                }
1572
1573                /* we don't reap group leaders with subthreads */
1574                if (!delay_group_leader(p))
1575                        return wait_task_zombie(wo, p);
1576
1577                /*
1578                 * Allow access to stopped/continued state via zombie by
1579                 * falling through.  Clearing of notask_error is complex.
1580                 *
1581                 * When !@ptrace:
1582                 *
1583                 * If WEXITED is set, notask_error should naturally be
1584                 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1585                 * so, if there are live subthreads, there are events to
1586                 * wait for.  If all subthreads are dead, it's still safe
1587                 * to clear - this function will be called again in finite
1588                 * amount time once all the subthreads are released and
1589                 * will then return without clearing.
1590                 *
1591                 * When @ptrace:
1592                 *
1593                 * Stopped state is per-task and thus can't change once the
1594                 * target task dies.  Only continued and exited can happen.
1595                 * Clear notask_error if WCONTINUED | WEXITED.
1596                 */
1597                if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1598                        wo->notask_error = 0;
1599        } else {
1600                /*
1601                 * If @p is ptraced by a task in its real parent's group,
1602                 * hide group stop/continued state when looking at @p as
1603                 * the real parent; otherwise, a single stop can be
1604                 * reported twice as group and ptrace stops.
1605                 *
1606                 * If a ptracer wants to distinguish the two events for its
1607                 * own children, it should create a separate process which
1608                 * takes the role of real parent.
1609                 */
1610                if (likely(!ptrace) && p->ptrace && !ptrace_reparented(p))
1611                        return 0;
1612
1613                /*
1614                 * @p is alive and it's gonna stop, continue or exit, so
1615                 * there always is something to wait for.
1616                 */
1617                wo->notask_error = 0;
1618        }
1619
1620        /*
1621         * Wait for stopped.  Depending on @ptrace, different stopped state
1622         * is used and the two don't interact with each other.
1623         */
1624        ret = wait_task_stopped(wo, ptrace, p);
1625        if (ret)
1626                return ret;
1627
1628        /*
1629         * Wait for continued.  There's only one continued state and the
1630         * ptracer can consume it which can confuse the real parent.  Don't
1631         * use WCONTINUED from ptracer.  You don't need or want it.
1632         */
1633        return wait_task_continued(wo, p);
1634}
1635
1636/*
1637 * Do the work of do_wait() for one thread in the group, @tsk.
1638 *
1639 * -ECHILD should be in ->notask_error before the first call.
1640 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1641 * Returns zero if the search for a child should continue; then
1642 * ->notask_error is 0 if there were any eligible children,
1643 * or another error from security_task_wait(), or still -ECHILD.
1644 */
1645static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1646{
1647        struct task_struct *p;
1648
1649        list_for_each_entry(p, &tsk->children, sibling) {
1650                int ret = wait_consider_task(wo, 0, p);
1651                if (ret)
1652                        return ret;
1653        }
1654
1655        return 0;
1656}
1657
1658static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1659{
1660        struct task_struct *p;
1661
1662        list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1663                int ret = wait_consider_task(wo, 1, p);
1664                if (ret)
1665                        return ret;
1666        }
1667
1668        return 0;
1669}
1670
1671static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1672                                int sync, void *key)
1673{
1674        struct wait_opts *wo = container_of(wait, struct wait_opts,
1675                                                child_wait);
1676        struct task_struct *p = key;
1677
1678        if (!eligible_pid(wo, p))
1679                return 0;
1680
1681        if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1682                return 0;
1683
1684        return default_wake_function(wait, mode, sync, key);
1685}
1686
1687void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1688{
1689        __wake_up_sync_key(&parent->signal->wait_chldexit,
1690                                TASK_INTERRUPTIBLE, 1, p);
1691}
1692
1693static long do_wait(struct wait_opts *wo)
1694{
1695        struct task_struct *tsk;
1696        int retval;
1697
1698        trace_sched_process_wait(wo->wo_pid);
1699
1700        init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1701        wo->child_wait.private = current;
1702        add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1703repeat:
1704        /*
1705         * If there is nothing that can match our critiera just get out.
1706         * We will clear ->notask_error to zero if we see any child that
1707         * might later match our criteria, even if we are not able to reap
1708         * it yet.
1709         */
1710        wo->notask_error = -ECHILD;
1711        if ((wo->wo_type < PIDTYPE_MAX) &&
1712           (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1713                goto notask;
1714
1715        set_current_state(TASK_INTERRUPTIBLE);
1716        read_lock(&tasklist_lock);
1717        tsk = current;
1718        do {
1719                retval = do_wait_thread(wo, tsk);
1720                if (retval)
1721                        goto end;
1722
1723                retval = ptrace_do_wait(wo, tsk);
1724                if (retval)
1725                        goto end;
1726
1727                if (wo->wo_flags & __WNOTHREAD)
1728                        break;
1729        } while_each_thread(current, tsk);
1730        read_unlock(&tasklist_lock);
1731
1732notask:
1733        retval = wo->notask_error;
1734        if (!retval && !(wo->wo_flags & WNOHANG)) {
1735                retval = -ERESTARTSYS;
1736                if (!signal_pending(current)) {
1737                        schedule();
1738                        goto repeat;
1739                }
1740        }
1741end:
1742        __set_current_state(TASK_RUNNING);
1743        remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1744        return retval;
1745}
1746
1747SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1748                infop, int, options, struct rusage __user *, ru)
1749{
1750        struct wait_opts wo;
1751        struct pid *pid = NULL;
1752        enum pid_type type;
1753        long ret;
1754
1755        if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1756                return -EINVAL;
1757        if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1758                return -EINVAL;
1759
1760        switch (which) {
1761        case P_ALL:
1762                type = PIDTYPE_MAX;
1763                break;
1764        case P_PID:
1765                type = PIDTYPE_PID;
1766                if (upid <= 0)
1767                        return -EINVAL;
1768                break;
1769        case P_PGID:
1770                type = PIDTYPE_PGID;
1771                if (upid <= 0)
1772                        return -EINVAL;
1773                break;
1774        default:
1775                return -EINVAL;
1776        }
1777
1778        if (type < PIDTYPE_MAX)
1779                pid = find_get_pid(upid);
1780
1781        wo.wo_type      = type;
1782        wo.wo_pid       = pid;
1783        wo.wo_flags     = options;
1784        wo.wo_info      = infop;
1785        wo.wo_stat      = NULL;
1786        wo.wo_rusage    = ru;
1787        ret = do_wait(&wo);
1788
1789        if (ret > 0) {
1790                ret = 0;
1791        } else if (infop) {
1792                /*
1793                 * For a WNOHANG return, clear out all the fields
1794                 * we would set so the user can easily tell the
1795                 * difference.
1796                 */
1797                if (!ret)
1798                        ret = put_user(0, &infop->si_signo);
1799                if (!ret)
1800                        ret = put_user(0, &infop->si_errno);
1801                if (!ret)
1802                        ret = put_user(0, &infop->si_code);
1803                if (!ret)
1804                        ret = put_user(0, &infop->si_pid);
1805                if (!ret)
1806                        ret = put_user(0, &infop->si_uid);
1807                if (!ret)
1808                        ret = put_user(0, &infop->si_status);
1809        }
1810
1811        put_pid(pid);
1812
1813        /* avoid REGPARM breakage on x86: */
1814        asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1815        return ret;
1816}
1817
1818SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1819                int, options, struct rusage __user *, ru)
1820{
1821        struct wait_opts wo;
1822        struct pid *pid = NULL;
1823        enum pid_type type;
1824        long ret;
1825
1826        if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1827                        __WNOTHREAD|__WCLONE|__WALL))
1828                return -EINVAL;
1829
1830        if (upid == -1)
1831                type = PIDTYPE_MAX;
1832        else if (upid < 0) {
1833                type = PIDTYPE_PGID;
1834                pid = find_get_pid(-upid);
1835        } else if (upid == 0) {
1836                type = PIDTYPE_PGID;
1837                pid = get_task_pid(current, PIDTYPE_PGID);
1838        } else /* upid > 0 */ {
1839                type = PIDTYPE_PID;
1840                pid = find_get_pid(upid);
1841        }
1842
1843        wo.wo_type      = type;
1844        wo.wo_pid       = pid;
1845        wo.wo_flags     = options | WEXITED;
1846        wo.wo_info      = NULL;
1847        wo.wo_stat      = stat_addr;
1848        wo.wo_rusage    = ru;
1849        ret = do_wait(&wo);
1850        put_pid(pid);
1851
1852        /* avoid REGPARM breakage on x86: */
1853        asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1854        return ret;
1855}
1856
1857#ifdef __ARCH_WANT_SYS_WAITPID
1858
1859/*
1860 * sys_waitpid() remains for compatibility. waitpid() should be
1861 * implemented by calling sys_wait4() from libc.a.
1862 */
1863SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1864{
1865        return sys_wait4(pid, stat_addr, options, NULL);
1866}
1867
1868#endif
1869