linux/kernel/rcutree.c
<<
>>
Prefs
   1/*
   2 * Read-Copy Update mechanism for mutual exclusion
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  17 *
  18 * Copyright IBM Corporation, 2008
  19 *
  20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
  21 *          Manfred Spraul <manfred@colorfullife.com>
  22 *          Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
  23 *
  24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
  25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  26 *
  27 * For detailed explanation of Read-Copy Update mechanism see -
  28 *      Documentation/RCU
  29 */
  30#include <linux/types.h>
  31#include <linux/kernel.h>
  32#include <linux/init.h>
  33#include <linux/spinlock.h>
  34#include <linux/smp.h>
  35#include <linux/rcupdate.h>
  36#include <linux/interrupt.h>
  37#include <linux/sched.h>
  38#include <linux/nmi.h>
  39#include <linux/atomic.h>
  40#include <linux/bitops.h>
  41#include <linux/export.h>
  42#include <linux/completion.h>
  43#include <linux/moduleparam.h>
  44#include <linux/percpu.h>
  45#include <linux/notifier.h>
  46#include <linux/cpu.h>
  47#include <linux/mutex.h>
  48#include <linux/time.h>
  49#include <linux/kernel_stat.h>
  50#include <linux/wait.h>
  51#include <linux/kthread.h>
  52#include <linux/prefetch.h>
  53
  54#include "rcutree.h"
  55#include <trace/events/rcu.h>
  56
  57#include "rcu.h"
  58
  59/* Data structures. */
  60
  61static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
  62
  63#define RCU_STATE_INITIALIZER(structname) { \
  64        .level = { &structname##_state.node[0] }, \
  65        .levelcnt = { \
  66                NUM_RCU_LVL_0,  /* root of hierarchy. */ \
  67                NUM_RCU_LVL_1, \
  68                NUM_RCU_LVL_2, \
  69                NUM_RCU_LVL_3, \
  70                NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
  71        }, \
  72        .fqs_state = RCU_GP_IDLE, \
  73        .gpnum = -300, \
  74        .completed = -300, \
  75        .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.onofflock), \
  76        .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.fqslock), \
  77        .n_force_qs = 0, \
  78        .n_force_qs_ngp = 0, \
  79        .name = #structname, \
  80}
  81
  82struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched);
  83DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
  84
  85struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh);
  86DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
  87
  88static struct rcu_state *rcu_state;
  89
  90/*
  91 * The rcu_scheduler_active variable transitions from zero to one just
  92 * before the first task is spawned.  So when this variable is zero, RCU
  93 * can assume that there is but one task, allowing RCU to (for example)
  94 * optimized synchronize_sched() to a simple barrier().  When this variable
  95 * is one, RCU must actually do all the hard work required to detect real
  96 * grace periods.  This variable is also used to suppress boot-time false
  97 * positives from lockdep-RCU error checking.
  98 */
  99int rcu_scheduler_active __read_mostly;
 100EXPORT_SYMBOL_GPL(rcu_scheduler_active);
 101
 102/*
 103 * The rcu_scheduler_fully_active variable transitions from zero to one
 104 * during the early_initcall() processing, which is after the scheduler
 105 * is capable of creating new tasks.  So RCU processing (for example,
 106 * creating tasks for RCU priority boosting) must be delayed until after
 107 * rcu_scheduler_fully_active transitions from zero to one.  We also
 108 * currently delay invocation of any RCU callbacks until after this point.
 109 *
 110 * It might later prove better for people registering RCU callbacks during
 111 * early boot to take responsibility for these callbacks, but one step at
 112 * a time.
 113 */
 114static int rcu_scheduler_fully_active __read_mostly;
 115
 116#ifdef CONFIG_RCU_BOOST
 117
 118/*
 119 * Control variables for per-CPU and per-rcu_node kthreads.  These
 120 * handle all flavors of RCU.
 121 */
 122static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
 123DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
 124DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
 125DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
 126DEFINE_PER_CPU(char, rcu_cpu_has_work);
 127
 128#endif /* #ifdef CONFIG_RCU_BOOST */
 129
 130static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
 131static void invoke_rcu_core(void);
 132static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
 133
 134/*
 135 * Track the rcutorture test sequence number and the update version
 136 * number within a given test.  The rcutorture_testseq is incremented
 137 * on every rcutorture module load and unload, so has an odd value
 138 * when a test is running.  The rcutorture_vernum is set to zero
 139 * when rcutorture starts and is incremented on each rcutorture update.
 140 * These variables enable correlating rcutorture output with the
 141 * RCU tracing information.
 142 */
 143unsigned long rcutorture_testseq;
 144unsigned long rcutorture_vernum;
 145
 146/*
 147 * Return true if an RCU grace period is in progress.  The ACCESS_ONCE()s
 148 * permit this function to be invoked without holding the root rcu_node
 149 * structure's ->lock, but of course results can be subject to change.
 150 */
 151static int rcu_gp_in_progress(struct rcu_state *rsp)
 152{
 153        return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
 154}
 155
 156/*
 157 * Note a quiescent state.  Because we do not need to know
 158 * how many quiescent states passed, just if there was at least
 159 * one since the start of the grace period, this just sets a flag.
 160 * The caller must have disabled preemption.
 161 */
 162void rcu_sched_qs(int cpu)
 163{
 164        struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
 165
 166        rdp->passed_quiesce_gpnum = rdp->gpnum;
 167        barrier();
 168        if (rdp->passed_quiesce == 0)
 169                trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
 170        rdp->passed_quiesce = 1;
 171}
 172
 173void rcu_bh_qs(int cpu)
 174{
 175        struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
 176
 177        rdp->passed_quiesce_gpnum = rdp->gpnum;
 178        barrier();
 179        if (rdp->passed_quiesce == 0)
 180                trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
 181        rdp->passed_quiesce = 1;
 182}
 183
 184/*
 185 * Note a context switch.  This is a quiescent state for RCU-sched,
 186 * and requires special handling for preemptible RCU.
 187 * The caller must have disabled preemption.
 188 */
 189void rcu_note_context_switch(int cpu)
 190{
 191        trace_rcu_utilization("Start context switch");
 192        rcu_sched_qs(cpu);
 193        rcu_preempt_note_context_switch(cpu);
 194        trace_rcu_utilization("End context switch");
 195}
 196EXPORT_SYMBOL_GPL(rcu_note_context_switch);
 197
 198DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
 199        .dynticks_nesting = DYNTICK_TASK_NESTING,
 200        .dynticks = ATOMIC_INIT(1),
 201};
 202
 203static int blimit = 10;         /* Maximum callbacks per rcu_do_batch. */
 204static int qhimark = 10000;     /* If this many pending, ignore blimit. */
 205static int qlowmark = 100;      /* Once only this many pending, use blimit. */
 206
 207module_param(blimit, int, 0);
 208module_param(qhimark, int, 0);
 209module_param(qlowmark, int, 0);
 210
 211int rcu_cpu_stall_suppress __read_mostly;
 212module_param(rcu_cpu_stall_suppress, int, 0644);
 213
 214static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
 215static int rcu_pending(int cpu);
 216
 217/*
 218 * Return the number of RCU-sched batches processed thus far for debug & stats.
 219 */
 220long rcu_batches_completed_sched(void)
 221{
 222        return rcu_sched_state.completed;
 223}
 224EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
 225
 226/*
 227 * Return the number of RCU BH batches processed thus far for debug & stats.
 228 */
 229long rcu_batches_completed_bh(void)
 230{
 231        return rcu_bh_state.completed;
 232}
 233EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
 234
 235/*
 236 * Force a quiescent state for RCU BH.
 237 */
 238void rcu_bh_force_quiescent_state(void)
 239{
 240        force_quiescent_state(&rcu_bh_state, 0);
 241}
 242EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
 243
 244/*
 245 * Record the number of times rcutorture tests have been initiated and
 246 * terminated.  This information allows the debugfs tracing stats to be
 247 * correlated to the rcutorture messages, even when the rcutorture module
 248 * is being repeatedly loaded and unloaded.  In other words, we cannot
 249 * store this state in rcutorture itself.
 250 */
 251void rcutorture_record_test_transition(void)
 252{
 253        rcutorture_testseq++;
 254        rcutorture_vernum = 0;
 255}
 256EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
 257
 258/*
 259 * Record the number of writer passes through the current rcutorture test.
 260 * This is also used to correlate debugfs tracing stats with the rcutorture
 261 * messages.
 262 */
 263void rcutorture_record_progress(unsigned long vernum)
 264{
 265        rcutorture_vernum++;
 266}
 267EXPORT_SYMBOL_GPL(rcutorture_record_progress);
 268
 269/*
 270 * Force a quiescent state for RCU-sched.
 271 */
 272void rcu_sched_force_quiescent_state(void)
 273{
 274        force_quiescent_state(&rcu_sched_state, 0);
 275}
 276EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
 277
 278/*
 279 * Does the CPU have callbacks ready to be invoked?
 280 */
 281static int
 282cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
 283{
 284        return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
 285}
 286
 287/*
 288 * Does the current CPU require a yet-as-unscheduled grace period?
 289 */
 290static int
 291cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
 292{
 293        return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
 294}
 295
 296/*
 297 * Return the root node of the specified rcu_state structure.
 298 */
 299static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
 300{
 301        return &rsp->node[0];
 302}
 303
 304#ifdef CONFIG_SMP
 305
 306/*
 307 * If the specified CPU is offline, tell the caller that it is in
 308 * a quiescent state.  Otherwise, whack it with a reschedule IPI.
 309 * Grace periods can end up waiting on an offline CPU when that
 310 * CPU is in the process of coming online -- it will be added to the
 311 * rcu_node bitmasks before it actually makes it online.  The same thing
 312 * can happen while a CPU is in the process of coming online.  Because this
 313 * race is quite rare, we check for it after detecting that the grace
 314 * period has been delayed rather than checking each and every CPU
 315 * each and every time we start a new grace period.
 316 */
 317static int rcu_implicit_offline_qs(struct rcu_data *rdp)
 318{
 319        /*
 320         * If the CPU is offline, it is in a quiescent state.  We can
 321         * trust its state not to change because interrupts are disabled.
 322         */
 323        if (cpu_is_offline(rdp->cpu)) {
 324                trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
 325                rdp->offline_fqs++;
 326                return 1;
 327        }
 328
 329        /*
 330         * The CPU is online, so send it a reschedule IPI.  This forces
 331         * it through the scheduler, and (inefficiently) also handles cases
 332         * where idle loops fail to inform RCU about the CPU being idle.
 333         */
 334        if (rdp->cpu != smp_processor_id())
 335                smp_send_reschedule(rdp->cpu);
 336        else
 337                set_need_resched();
 338        rdp->resched_ipi++;
 339        return 0;
 340}
 341
 342#endif /* #ifdef CONFIG_SMP */
 343
 344/*
 345 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
 346 *
 347 * If the new value of the ->dynticks_nesting counter now is zero,
 348 * we really have entered idle, and must do the appropriate accounting.
 349 * The caller must have disabled interrupts.
 350 */
 351static void rcu_idle_enter_common(struct rcu_dynticks *rdtp, long long oldval)
 352{
 353        trace_rcu_dyntick("Start", oldval, 0);
 354        if (!is_idle_task(current)) {
 355                struct task_struct *idle = idle_task(smp_processor_id());
 356
 357                trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
 358                ftrace_dump(DUMP_ALL);
 359                WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
 360                          current->pid, current->comm,
 361                          idle->pid, idle->comm); /* must be idle task! */
 362        }
 363        rcu_prepare_for_idle(smp_processor_id());
 364        /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
 365        smp_mb__before_atomic_inc();  /* See above. */
 366        atomic_inc(&rdtp->dynticks);
 367        smp_mb__after_atomic_inc();  /* Force ordering with next sojourn. */
 368        WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
 369}
 370
 371/**
 372 * rcu_idle_enter - inform RCU that current CPU is entering idle
 373 *
 374 * Enter idle mode, in other words, -leave- the mode in which RCU
 375 * read-side critical sections can occur.  (Though RCU read-side
 376 * critical sections can occur in irq handlers in idle, a possibility
 377 * handled by irq_enter() and irq_exit().)
 378 *
 379 * We crowbar the ->dynticks_nesting field to zero to allow for
 380 * the possibility of usermode upcalls having messed up our count
 381 * of interrupt nesting level during the prior busy period.
 382 */
 383void rcu_idle_enter(void)
 384{
 385        unsigned long flags;
 386        long long oldval;
 387        struct rcu_dynticks *rdtp;
 388
 389        local_irq_save(flags);
 390        rdtp = &__get_cpu_var(rcu_dynticks);
 391        oldval = rdtp->dynticks_nesting;
 392        rdtp->dynticks_nesting = 0;
 393        rcu_idle_enter_common(rdtp, oldval);
 394        local_irq_restore(flags);
 395}
 396
 397/**
 398 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 399 *
 400 * Exit from an interrupt handler, which might possibly result in entering
 401 * idle mode, in other words, leaving the mode in which read-side critical
 402 * sections can occur.
 403 *
 404 * This code assumes that the idle loop never does anything that might
 405 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 406 * architecture violates this assumption, RCU will give you what you
 407 * deserve, good and hard.  But very infrequently and irreproducibly.
 408 *
 409 * Use things like work queues to work around this limitation.
 410 *
 411 * You have been warned.
 412 */
 413void rcu_irq_exit(void)
 414{
 415        unsigned long flags;
 416        long long oldval;
 417        struct rcu_dynticks *rdtp;
 418
 419        local_irq_save(flags);
 420        rdtp = &__get_cpu_var(rcu_dynticks);
 421        oldval = rdtp->dynticks_nesting;
 422        rdtp->dynticks_nesting--;
 423        WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
 424        if (rdtp->dynticks_nesting)
 425                trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
 426        else
 427                rcu_idle_enter_common(rdtp, oldval);
 428        local_irq_restore(flags);
 429}
 430
 431/*
 432 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
 433 *
 434 * If the new value of the ->dynticks_nesting counter was previously zero,
 435 * we really have exited idle, and must do the appropriate accounting.
 436 * The caller must have disabled interrupts.
 437 */
 438static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval)
 439{
 440        smp_mb__before_atomic_inc();  /* Force ordering w/previous sojourn. */
 441        atomic_inc(&rdtp->dynticks);
 442        /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
 443        smp_mb__after_atomic_inc();  /* See above. */
 444        WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
 445        rcu_cleanup_after_idle(smp_processor_id());
 446        trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
 447        if (!is_idle_task(current)) {
 448                struct task_struct *idle = idle_task(smp_processor_id());
 449
 450                trace_rcu_dyntick("Error on exit: not idle task",
 451                                  oldval, rdtp->dynticks_nesting);
 452                ftrace_dump(DUMP_ALL);
 453                WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
 454                          current->pid, current->comm,
 455                          idle->pid, idle->comm); /* must be idle task! */
 456        }
 457}
 458
 459/**
 460 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 461 *
 462 * Exit idle mode, in other words, -enter- the mode in which RCU
 463 * read-side critical sections can occur.
 464 *
 465 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NESTING to
 466 * allow for the possibility of usermode upcalls messing up our count
 467 * of interrupt nesting level during the busy period that is just
 468 * now starting.
 469 */
 470void rcu_idle_exit(void)
 471{
 472        unsigned long flags;
 473        struct rcu_dynticks *rdtp;
 474        long long oldval;
 475
 476        local_irq_save(flags);
 477        rdtp = &__get_cpu_var(rcu_dynticks);
 478        oldval = rdtp->dynticks_nesting;
 479        WARN_ON_ONCE(oldval != 0);
 480        rdtp->dynticks_nesting = DYNTICK_TASK_NESTING;
 481        rcu_idle_exit_common(rdtp, oldval);
 482        local_irq_restore(flags);
 483}
 484
 485/**
 486 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 487 *
 488 * Enter an interrupt handler, which might possibly result in exiting
 489 * idle mode, in other words, entering the mode in which read-side critical
 490 * sections can occur.
 491 *
 492 * Note that the Linux kernel is fully capable of entering an interrupt
 493 * handler that it never exits, for example when doing upcalls to
 494 * user mode!  This code assumes that the idle loop never does upcalls to
 495 * user mode.  If your architecture does do upcalls from the idle loop (or
 496 * does anything else that results in unbalanced calls to the irq_enter()
 497 * and irq_exit() functions), RCU will give you what you deserve, good
 498 * and hard.  But very infrequently and irreproducibly.
 499 *
 500 * Use things like work queues to work around this limitation.
 501 *
 502 * You have been warned.
 503 */
 504void rcu_irq_enter(void)
 505{
 506        unsigned long flags;
 507        struct rcu_dynticks *rdtp;
 508        long long oldval;
 509
 510        local_irq_save(flags);
 511        rdtp = &__get_cpu_var(rcu_dynticks);
 512        oldval = rdtp->dynticks_nesting;
 513        rdtp->dynticks_nesting++;
 514        WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
 515        if (oldval)
 516                trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
 517        else
 518                rcu_idle_exit_common(rdtp, oldval);
 519        local_irq_restore(flags);
 520}
 521
 522/**
 523 * rcu_nmi_enter - inform RCU of entry to NMI context
 524 *
 525 * If the CPU was idle with dynamic ticks active, and there is no
 526 * irq handler running, this updates rdtp->dynticks_nmi to let the
 527 * RCU grace-period handling know that the CPU is active.
 528 */
 529void rcu_nmi_enter(void)
 530{
 531        struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
 532
 533        if (rdtp->dynticks_nmi_nesting == 0 &&
 534            (atomic_read(&rdtp->dynticks) & 0x1))
 535                return;
 536        rdtp->dynticks_nmi_nesting++;
 537        smp_mb__before_atomic_inc();  /* Force delay from prior write. */
 538        atomic_inc(&rdtp->dynticks);
 539        /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
 540        smp_mb__after_atomic_inc();  /* See above. */
 541        WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
 542}
 543
 544/**
 545 * rcu_nmi_exit - inform RCU of exit from NMI context
 546 *
 547 * If the CPU was idle with dynamic ticks active, and there is no
 548 * irq handler running, this updates rdtp->dynticks_nmi to let the
 549 * RCU grace-period handling know that the CPU is no longer active.
 550 */
 551void rcu_nmi_exit(void)
 552{
 553        struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
 554
 555        if (rdtp->dynticks_nmi_nesting == 0 ||
 556            --rdtp->dynticks_nmi_nesting != 0)
 557                return;
 558        /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
 559        smp_mb__before_atomic_inc();  /* See above. */
 560        atomic_inc(&rdtp->dynticks);
 561        smp_mb__after_atomic_inc();  /* Force delay to next write. */
 562        WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
 563}
 564
 565#ifdef CONFIG_PROVE_RCU
 566
 567/**
 568 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
 569 *
 570 * If the current CPU is in its idle loop and is neither in an interrupt
 571 * or NMI handler, return true.
 572 */
 573int rcu_is_cpu_idle(void)
 574{
 575        int ret;
 576
 577        preempt_disable();
 578        ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
 579        preempt_enable();
 580        return ret;
 581}
 582EXPORT_SYMBOL(rcu_is_cpu_idle);
 583
 584#endif /* #ifdef CONFIG_PROVE_RCU */
 585
 586/**
 587 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
 588 *
 589 * If the current CPU is idle or running at a first-level (not nested)
 590 * interrupt from idle, return true.  The caller must have at least
 591 * disabled preemption.
 592 */
 593int rcu_is_cpu_rrupt_from_idle(void)
 594{
 595        return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
 596}
 597
 598#ifdef CONFIG_SMP
 599
 600/*
 601 * Snapshot the specified CPU's dynticks counter so that we can later
 602 * credit them with an implicit quiescent state.  Return 1 if this CPU
 603 * is in dynticks idle mode, which is an extended quiescent state.
 604 */
 605static int dyntick_save_progress_counter(struct rcu_data *rdp)
 606{
 607        rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
 608        return (rdp->dynticks_snap & 0x1) == 0;
 609}
 610
 611/*
 612 * Return true if the specified CPU has passed through a quiescent
 613 * state by virtue of being in or having passed through an dynticks
 614 * idle state since the last call to dyntick_save_progress_counter()
 615 * for this same CPU.
 616 */
 617static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
 618{
 619        unsigned int curr;
 620        unsigned int snap;
 621
 622        curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
 623        snap = (unsigned int)rdp->dynticks_snap;
 624
 625        /*
 626         * If the CPU passed through or entered a dynticks idle phase with
 627         * no active irq/NMI handlers, then we can safely pretend that the CPU
 628         * already acknowledged the request to pass through a quiescent
 629         * state.  Either way, that CPU cannot possibly be in an RCU
 630         * read-side critical section that started before the beginning
 631         * of the current RCU grace period.
 632         */
 633        if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
 634                trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
 635                rdp->dynticks_fqs++;
 636                return 1;
 637        }
 638
 639        /* Go check for the CPU being offline. */
 640        return rcu_implicit_offline_qs(rdp);
 641}
 642
 643#endif /* #ifdef CONFIG_SMP */
 644
 645static void record_gp_stall_check_time(struct rcu_state *rsp)
 646{
 647        rsp->gp_start = jiffies;
 648        rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
 649}
 650
 651static void print_other_cpu_stall(struct rcu_state *rsp)
 652{
 653        int cpu;
 654        long delta;
 655        unsigned long flags;
 656        int ndetected;
 657        struct rcu_node *rnp = rcu_get_root(rsp);
 658
 659        /* Only let one CPU complain about others per time interval. */
 660
 661        raw_spin_lock_irqsave(&rnp->lock, flags);
 662        delta = jiffies - rsp->jiffies_stall;
 663        if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
 664                raw_spin_unlock_irqrestore(&rnp->lock, flags);
 665                return;
 666        }
 667        rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
 668
 669        /*
 670         * Now rat on any tasks that got kicked up to the root rcu_node
 671         * due to CPU offlining.
 672         */
 673        ndetected = rcu_print_task_stall(rnp);
 674        raw_spin_unlock_irqrestore(&rnp->lock, flags);
 675
 676        /*
 677         * OK, time to rat on our buddy...
 678         * See Documentation/RCU/stallwarn.txt for info on how to debug
 679         * RCU CPU stall warnings.
 680         */
 681        printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks: {",
 682               rsp->name);
 683        rcu_for_each_leaf_node(rsp, rnp) {
 684                raw_spin_lock_irqsave(&rnp->lock, flags);
 685                ndetected += rcu_print_task_stall(rnp);
 686                raw_spin_unlock_irqrestore(&rnp->lock, flags);
 687                if (rnp->qsmask == 0)
 688                        continue;
 689                for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
 690                        if (rnp->qsmask & (1UL << cpu)) {
 691                                printk(" %d", rnp->grplo + cpu);
 692                                ndetected++;
 693                        }
 694        }
 695        printk("} (detected by %d, t=%ld jiffies)\n",
 696               smp_processor_id(), (long)(jiffies - rsp->gp_start));
 697        if (ndetected == 0)
 698                printk(KERN_ERR "INFO: Stall ended before state dump start\n");
 699        else if (!trigger_all_cpu_backtrace())
 700                dump_stack();
 701
 702        /* If so configured, complain about tasks blocking the grace period. */
 703
 704        rcu_print_detail_task_stall(rsp);
 705
 706        force_quiescent_state(rsp, 0);  /* Kick them all. */
 707}
 708
 709static void print_cpu_stall(struct rcu_state *rsp)
 710{
 711        unsigned long flags;
 712        struct rcu_node *rnp = rcu_get_root(rsp);
 713
 714        /*
 715         * OK, time to rat on ourselves...
 716         * See Documentation/RCU/stallwarn.txt for info on how to debug
 717         * RCU CPU stall warnings.
 718         */
 719        printk(KERN_ERR "INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
 720               rsp->name, smp_processor_id(), jiffies - rsp->gp_start);
 721        if (!trigger_all_cpu_backtrace())
 722                dump_stack();
 723
 724        raw_spin_lock_irqsave(&rnp->lock, flags);
 725        if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
 726                rsp->jiffies_stall =
 727                        jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
 728        raw_spin_unlock_irqrestore(&rnp->lock, flags);
 729
 730        set_need_resched();  /* kick ourselves to get things going. */
 731}
 732
 733static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
 734{
 735        unsigned long j;
 736        unsigned long js;
 737        struct rcu_node *rnp;
 738
 739        if (rcu_cpu_stall_suppress)
 740                return;
 741        j = ACCESS_ONCE(jiffies);
 742        js = ACCESS_ONCE(rsp->jiffies_stall);
 743        rnp = rdp->mynode;
 744        if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
 745
 746                /* We haven't checked in, so go dump stack. */
 747                print_cpu_stall(rsp);
 748
 749        } else if (rcu_gp_in_progress(rsp) &&
 750                   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
 751
 752                /* They had a few time units to dump stack, so complain. */
 753                print_other_cpu_stall(rsp);
 754        }
 755}
 756
 757static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
 758{
 759        rcu_cpu_stall_suppress = 1;
 760        return NOTIFY_DONE;
 761}
 762
 763/**
 764 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 765 *
 766 * Set the stall-warning timeout way off into the future, thus preventing
 767 * any RCU CPU stall-warning messages from appearing in the current set of
 768 * RCU grace periods.
 769 *
 770 * The caller must disable hard irqs.
 771 */
 772void rcu_cpu_stall_reset(void)
 773{
 774        rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
 775        rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
 776        rcu_preempt_stall_reset();
 777}
 778
 779static struct notifier_block rcu_panic_block = {
 780        .notifier_call = rcu_panic,
 781};
 782
 783static void __init check_cpu_stall_init(void)
 784{
 785        atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
 786}
 787
 788/*
 789 * Update CPU-local rcu_data state to record the newly noticed grace period.
 790 * This is used both when we started the grace period and when we notice
 791 * that someone else started the grace period.  The caller must hold the
 792 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
 793 *  and must have irqs disabled.
 794 */
 795static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
 796{
 797        if (rdp->gpnum != rnp->gpnum) {
 798                /*
 799                 * If the current grace period is waiting for this CPU,
 800                 * set up to detect a quiescent state, otherwise don't
 801                 * go looking for one.
 802                 */
 803                rdp->gpnum = rnp->gpnum;
 804                trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
 805                if (rnp->qsmask & rdp->grpmask) {
 806                        rdp->qs_pending = 1;
 807                        rdp->passed_quiesce = 0;
 808                } else
 809                        rdp->qs_pending = 0;
 810        }
 811}
 812
 813static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
 814{
 815        unsigned long flags;
 816        struct rcu_node *rnp;
 817
 818        local_irq_save(flags);
 819        rnp = rdp->mynode;
 820        if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
 821            !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
 822                local_irq_restore(flags);
 823                return;
 824        }
 825        __note_new_gpnum(rsp, rnp, rdp);
 826        raw_spin_unlock_irqrestore(&rnp->lock, flags);
 827}
 828
 829/*
 830 * Did someone else start a new RCU grace period start since we last
 831 * checked?  Update local state appropriately if so.  Must be called
 832 * on the CPU corresponding to rdp.
 833 */
 834static int
 835check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
 836{
 837        unsigned long flags;
 838        int ret = 0;
 839
 840        local_irq_save(flags);
 841        if (rdp->gpnum != rsp->gpnum) {
 842                note_new_gpnum(rsp, rdp);
 843                ret = 1;
 844        }
 845        local_irq_restore(flags);
 846        return ret;
 847}
 848
 849/*
 850 * Advance this CPU's callbacks, but only if the current grace period
 851 * has ended.  This may be called only from the CPU to whom the rdp
 852 * belongs.  In addition, the corresponding leaf rcu_node structure's
 853 * ->lock must be held by the caller, with irqs disabled.
 854 */
 855static void
 856__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
 857{
 858        /* Did another grace period end? */
 859        if (rdp->completed != rnp->completed) {
 860
 861                /* Advance callbacks.  No harm if list empty. */
 862                rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
 863                rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
 864                rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
 865
 866                /* Remember that we saw this grace-period completion. */
 867                rdp->completed = rnp->completed;
 868                trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
 869
 870                /*
 871                 * If we were in an extended quiescent state, we may have
 872                 * missed some grace periods that others CPUs handled on
 873                 * our behalf. Catch up with this state to avoid noting
 874                 * spurious new grace periods.  If another grace period
 875                 * has started, then rnp->gpnum will have advanced, so
 876                 * we will detect this later on.
 877                 */
 878                if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
 879                        rdp->gpnum = rdp->completed;
 880
 881                /*
 882                 * If RCU does not need a quiescent state from this CPU,
 883                 * then make sure that this CPU doesn't go looking for one.
 884                 */
 885                if ((rnp->qsmask & rdp->grpmask) == 0)
 886                        rdp->qs_pending = 0;
 887        }
 888}
 889
 890/*
 891 * Advance this CPU's callbacks, but only if the current grace period
 892 * has ended.  This may be called only from the CPU to whom the rdp
 893 * belongs.
 894 */
 895static void
 896rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
 897{
 898        unsigned long flags;
 899        struct rcu_node *rnp;
 900
 901        local_irq_save(flags);
 902        rnp = rdp->mynode;
 903        if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
 904            !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
 905                local_irq_restore(flags);
 906                return;
 907        }
 908        __rcu_process_gp_end(rsp, rnp, rdp);
 909        raw_spin_unlock_irqrestore(&rnp->lock, flags);
 910}
 911
 912/*
 913 * Do per-CPU grace-period initialization for running CPU.  The caller
 914 * must hold the lock of the leaf rcu_node structure corresponding to
 915 * this CPU.
 916 */
 917static void
 918rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
 919{
 920        /* Prior grace period ended, so advance callbacks for current CPU. */
 921        __rcu_process_gp_end(rsp, rnp, rdp);
 922
 923        /*
 924         * Because this CPU just now started the new grace period, we know
 925         * that all of its callbacks will be covered by this upcoming grace
 926         * period, even the ones that were registered arbitrarily recently.
 927         * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
 928         *
 929         * Other CPUs cannot be sure exactly when the grace period started.
 930         * Therefore, their recently registered callbacks must pass through
 931         * an additional RCU_NEXT_READY stage, so that they will be handled
 932         * by the next RCU grace period.
 933         */
 934        rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
 935        rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
 936
 937        /* Set state so that this CPU will detect the next quiescent state. */
 938        __note_new_gpnum(rsp, rnp, rdp);
 939}
 940
 941/*
 942 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 943 * in preparation for detecting the next grace period.  The caller must hold
 944 * the root node's ->lock, which is released before return.  Hard irqs must
 945 * be disabled.
 946 */
 947static void
 948rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
 949        __releases(rcu_get_root(rsp)->lock)
 950{
 951        struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
 952        struct rcu_node *rnp = rcu_get_root(rsp);
 953
 954        if (!rcu_scheduler_fully_active ||
 955            !cpu_needs_another_gp(rsp, rdp)) {
 956                /*
 957                 * Either the scheduler hasn't yet spawned the first
 958                 * non-idle task or this CPU does not need another
 959                 * grace period.  Either way, don't start a new grace
 960                 * period.
 961                 */
 962                raw_spin_unlock_irqrestore(&rnp->lock, flags);
 963                return;
 964        }
 965
 966        if (rsp->fqs_active) {
 967                /*
 968                 * This CPU needs a grace period, but force_quiescent_state()
 969                 * is running.  Tell it to start one on this CPU's behalf.
 970                 */
 971                rsp->fqs_need_gp = 1;
 972                raw_spin_unlock_irqrestore(&rnp->lock, flags);
 973                return;
 974        }
 975
 976        /* Advance to a new grace period and initialize state. */
 977        rsp->gpnum++;
 978        trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
 979        WARN_ON_ONCE(rsp->fqs_state == RCU_GP_INIT);
 980        rsp->fqs_state = RCU_GP_INIT; /* Hold off force_quiescent_state. */
 981        rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
 982        record_gp_stall_check_time(rsp);
 983
 984        /* Special-case the common single-level case. */
 985        if (NUM_RCU_NODES == 1) {
 986                rcu_preempt_check_blocked_tasks(rnp);
 987                rnp->qsmask = rnp->qsmaskinit;
 988                rnp->gpnum = rsp->gpnum;
 989                rnp->completed = rsp->completed;
 990                rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state OK */
 991                rcu_start_gp_per_cpu(rsp, rnp, rdp);
 992                rcu_preempt_boost_start_gp(rnp);
 993                trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
 994                                            rnp->level, rnp->grplo,
 995                                            rnp->grphi, rnp->qsmask);
 996                raw_spin_unlock_irqrestore(&rnp->lock, flags);
 997                return;
 998        }
 999
1000        raw_spin_unlock(&rnp->lock);  /* leave irqs disabled. */
1001
1002
1003        /* Exclude any concurrent CPU-hotplug operations. */
1004        raw_spin_lock(&rsp->onofflock);  /* irqs already disabled. */
1005
1006        /*
1007         * Set the quiescent-state-needed bits in all the rcu_node
1008         * structures for all currently online CPUs in breadth-first
1009         * order, starting from the root rcu_node structure.  This
1010         * operation relies on the layout of the hierarchy within the
1011         * rsp->node[] array.  Note that other CPUs will access only
1012         * the leaves of the hierarchy, which still indicate that no
1013         * grace period is in progress, at least until the corresponding
1014         * leaf node has been initialized.  In addition, we have excluded
1015         * CPU-hotplug operations.
1016         *
1017         * Note that the grace period cannot complete until we finish
1018         * the initialization process, as there will be at least one
1019         * qsmask bit set in the root node until that time, namely the
1020         * one corresponding to this CPU, due to the fact that we have
1021         * irqs disabled.
1022         */
1023        rcu_for_each_node_breadth_first(rsp, rnp) {
1024                raw_spin_lock(&rnp->lock);      /* irqs already disabled. */
1025                rcu_preempt_check_blocked_tasks(rnp);
1026                rnp->qsmask = rnp->qsmaskinit;
1027                rnp->gpnum = rsp->gpnum;
1028                rnp->completed = rsp->completed;
1029                if (rnp == rdp->mynode)
1030                        rcu_start_gp_per_cpu(rsp, rnp, rdp);
1031                rcu_preempt_boost_start_gp(rnp);
1032                trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1033                                            rnp->level, rnp->grplo,
1034                                            rnp->grphi, rnp->qsmask);
1035                raw_spin_unlock(&rnp->lock);    /* irqs remain disabled. */
1036        }
1037
1038        rnp = rcu_get_root(rsp);
1039        raw_spin_lock(&rnp->lock);              /* irqs already disabled. */
1040        rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
1041        raw_spin_unlock(&rnp->lock);            /* irqs remain disabled. */
1042        raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
1043}
1044
1045/*
1046 * Report a full set of quiescent states to the specified rcu_state
1047 * data structure.  This involves cleaning up after the prior grace
1048 * period and letting rcu_start_gp() start up the next grace period
1049 * if one is needed.  Note that the caller must hold rnp->lock, as
1050 * required by rcu_start_gp(), which will release it.
1051 */
1052static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1053        __releases(rcu_get_root(rsp)->lock)
1054{
1055        unsigned long gp_duration;
1056        struct rcu_node *rnp = rcu_get_root(rsp);
1057        struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1058
1059        WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1060
1061        /*
1062         * Ensure that all grace-period and pre-grace-period activity
1063         * is seen before the assignment to rsp->completed.
1064         */
1065        smp_mb(); /* See above block comment. */
1066        gp_duration = jiffies - rsp->gp_start;
1067        if (gp_duration > rsp->gp_max)
1068                rsp->gp_max = gp_duration;
1069
1070        /*
1071         * We know the grace period is complete, but to everyone else
1072         * it appears to still be ongoing.  But it is also the case
1073         * that to everyone else it looks like there is nothing that
1074         * they can do to advance the grace period.  It is therefore
1075         * safe for us to drop the lock in order to mark the grace
1076         * period as completed in all of the rcu_node structures.
1077         *
1078         * But if this CPU needs another grace period, it will take
1079         * care of this while initializing the next grace period.
1080         * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
1081         * because the callbacks have not yet been advanced: Those
1082         * callbacks are waiting on the grace period that just now
1083         * completed.
1084         */
1085        if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) {
1086                raw_spin_unlock(&rnp->lock);     /* irqs remain disabled. */
1087
1088                /*
1089                 * Propagate new ->completed value to rcu_node structures
1090                 * so that other CPUs don't have to wait until the start
1091                 * of the next grace period to process their callbacks.
1092                 */
1093                rcu_for_each_node_breadth_first(rsp, rnp) {
1094                        raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1095                        rnp->completed = rsp->gpnum;
1096                        raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1097                }
1098                rnp = rcu_get_root(rsp);
1099                raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1100        }
1101
1102        rsp->completed = rsp->gpnum;  /* Declare the grace period complete. */
1103        trace_rcu_grace_period(rsp->name, rsp->completed, "end");
1104        rsp->fqs_state = RCU_GP_IDLE;
1105        rcu_start_gp(rsp, flags);  /* releases root node's rnp->lock. */
1106}
1107
1108/*
1109 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1110 * Allows quiescent states for a group of CPUs to be reported at one go
1111 * to the specified rcu_node structure, though all the CPUs in the group
1112 * must be represented by the same rcu_node structure (which need not be
1113 * a leaf rcu_node structure, though it often will be).  That structure's
1114 * lock must be held upon entry, and it is released before return.
1115 */
1116static void
1117rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1118                  struct rcu_node *rnp, unsigned long flags)
1119        __releases(rnp->lock)
1120{
1121        struct rcu_node *rnp_c;
1122
1123        /* Walk up the rcu_node hierarchy. */
1124        for (;;) {
1125                if (!(rnp->qsmask & mask)) {
1126
1127                        /* Our bit has already been cleared, so done. */
1128                        raw_spin_unlock_irqrestore(&rnp->lock, flags);
1129                        return;
1130                }
1131                rnp->qsmask &= ~mask;
1132                trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1133                                                 mask, rnp->qsmask, rnp->level,
1134                                                 rnp->grplo, rnp->grphi,
1135                                                 !!rnp->gp_tasks);
1136                if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1137
1138                        /* Other bits still set at this level, so done. */
1139                        raw_spin_unlock_irqrestore(&rnp->lock, flags);
1140                        return;
1141                }
1142                mask = rnp->grpmask;
1143                if (rnp->parent == NULL) {
1144
1145                        /* No more levels.  Exit loop holding root lock. */
1146
1147                        break;
1148                }
1149                raw_spin_unlock_irqrestore(&rnp->lock, flags);
1150                rnp_c = rnp;
1151                rnp = rnp->parent;
1152                raw_spin_lock_irqsave(&rnp->lock, flags);
1153                WARN_ON_ONCE(rnp_c->qsmask);
1154        }
1155
1156        /*
1157         * Get here if we are the last CPU to pass through a quiescent
1158         * state for this grace period.  Invoke rcu_report_qs_rsp()
1159         * to clean up and start the next grace period if one is needed.
1160         */
1161        rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1162}
1163
1164/*
1165 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1166 * structure.  This must be either called from the specified CPU, or
1167 * called when the specified CPU is known to be offline (and when it is
1168 * also known that no other CPU is concurrently trying to help the offline
1169 * CPU).  The lastcomp argument is used to make sure we are still in the
1170 * grace period of interest.  We don't want to end the current grace period
1171 * based on quiescent states detected in an earlier grace period!
1172 */
1173static void
1174rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
1175{
1176        unsigned long flags;
1177        unsigned long mask;
1178        struct rcu_node *rnp;
1179
1180        rnp = rdp->mynode;
1181        raw_spin_lock_irqsave(&rnp->lock, flags);
1182        if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
1183
1184                /*
1185                 * The grace period in which this quiescent state was
1186                 * recorded has ended, so don't report it upwards.
1187                 * We will instead need a new quiescent state that lies
1188                 * within the current grace period.
1189                 */
1190                rdp->passed_quiesce = 0;        /* need qs for new gp. */
1191                raw_spin_unlock_irqrestore(&rnp->lock, flags);
1192                return;
1193        }
1194        mask = rdp->grpmask;
1195        if ((rnp->qsmask & mask) == 0) {
1196                raw_spin_unlock_irqrestore(&rnp->lock, flags);
1197        } else {
1198                rdp->qs_pending = 0;
1199
1200                /*
1201                 * This GP can't end until cpu checks in, so all of our
1202                 * callbacks can be processed during the next GP.
1203                 */
1204                rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1205
1206                rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1207        }
1208}
1209
1210/*
1211 * Check to see if there is a new grace period of which this CPU
1212 * is not yet aware, and if so, set up local rcu_data state for it.
1213 * Otherwise, see if this CPU has just passed through its first
1214 * quiescent state for this grace period, and record that fact if so.
1215 */
1216static void
1217rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1218{
1219        /* If there is now a new grace period, record and return. */
1220        if (check_for_new_grace_period(rsp, rdp))
1221                return;
1222
1223        /*
1224         * Does this CPU still need to do its part for current grace period?
1225         * If no, return and let the other CPUs do their part as well.
1226         */
1227        if (!rdp->qs_pending)
1228                return;
1229
1230        /*
1231         * Was there a quiescent state since the beginning of the grace
1232         * period? If no, then exit and wait for the next call.
1233         */
1234        if (!rdp->passed_quiesce)
1235                return;
1236
1237        /*
1238         * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1239         * judge of that).
1240         */
1241        rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
1242}
1243
1244#ifdef CONFIG_HOTPLUG_CPU
1245
1246/*
1247 * Move a dying CPU's RCU callbacks to online CPU's callback list.
1248 * Synchronization is not required because this function executes
1249 * in stop_machine() context.
1250 */
1251static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1252{
1253        int i;
1254        /* current DYING CPU is cleared in the cpu_online_mask */
1255        int receive_cpu = cpumask_any(cpu_online_mask);
1256        struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1257        struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu);
1258
1259        if (rdp->nxtlist == NULL)
1260                return;  /* irqs disabled, so comparison is stable. */
1261
1262        *receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
1263        receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1264        receive_rdp->qlen += rdp->qlen;
1265        receive_rdp->n_cbs_adopted += rdp->qlen;
1266        rdp->n_cbs_orphaned += rdp->qlen;
1267
1268        rdp->nxtlist = NULL;
1269        for (i = 0; i < RCU_NEXT_SIZE; i++)
1270                rdp->nxttail[i] = &rdp->nxtlist;
1271        rdp->qlen = 0;
1272}
1273
1274/*
1275 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
1276 * and move all callbacks from the outgoing CPU to the current one.
1277 * There can only be one CPU hotplug operation at a time, so no other
1278 * CPU can be attempting to update rcu_cpu_kthread_task.
1279 */
1280static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
1281{
1282        unsigned long flags;
1283        unsigned long mask;
1284        int need_report = 0;
1285        struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1286        struct rcu_node *rnp;
1287
1288        rcu_stop_cpu_kthread(cpu);
1289
1290        /* Exclude any attempts to start a new grace period. */
1291        raw_spin_lock_irqsave(&rsp->onofflock, flags);
1292
1293        /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1294        rnp = rdp->mynode;      /* this is the outgoing CPU's rnp. */
1295        mask = rdp->grpmask;    /* rnp->grplo is constant. */
1296        do {
1297                raw_spin_lock(&rnp->lock);      /* irqs already disabled. */
1298                rnp->qsmaskinit &= ~mask;
1299                if (rnp->qsmaskinit != 0) {
1300                        if (rnp != rdp->mynode)
1301                                raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1302                        else
1303                                trace_rcu_grace_period(rsp->name,
1304                                                       rnp->gpnum + 1 -
1305                                                       !!(rnp->qsmask & mask),
1306                                                       "cpuofl");
1307                        break;
1308                }
1309                if (rnp == rdp->mynode) {
1310                        trace_rcu_grace_period(rsp->name,
1311                                               rnp->gpnum + 1 -
1312                                               !!(rnp->qsmask & mask),
1313                                               "cpuofl");
1314                        need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1315                } else
1316                        raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1317                mask = rnp->grpmask;
1318                rnp = rnp->parent;
1319        } while (rnp != NULL);
1320
1321        /*
1322         * We still hold the leaf rcu_node structure lock here, and
1323         * irqs are still disabled.  The reason for this subterfuge is
1324         * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1325         * held leads to deadlock.
1326         */
1327        raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1328        rnp = rdp->mynode;
1329        if (need_report & RCU_OFL_TASKS_NORM_GP)
1330                rcu_report_unblock_qs_rnp(rnp, flags);
1331        else
1332                raw_spin_unlock_irqrestore(&rnp->lock, flags);
1333        if (need_report & RCU_OFL_TASKS_EXP_GP)
1334                rcu_report_exp_rnp(rsp, rnp, true);
1335        rcu_node_kthread_setaffinity(rnp, -1);
1336}
1337
1338/*
1339 * Remove the specified CPU from the RCU hierarchy and move any pending
1340 * callbacks that it might have to the current CPU.  This code assumes
1341 * that at least one CPU in the system will remain running at all times.
1342 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
1343 */
1344static void rcu_offline_cpu(int cpu)
1345{
1346        __rcu_offline_cpu(cpu, &rcu_sched_state);
1347        __rcu_offline_cpu(cpu, &rcu_bh_state);
1348        rcu_preempt_offline_cpu(cpu);
1349}
1350
1351#else /* #ifdef CONFIG_HOTPLUG_CPU */
1352
1353static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1354{
1355}
1356
1357static void rcu_offline_cpu(int cpu)
1358{
1359}
1360
1361#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1362
1363/*
1364 * Invoke any RCU callbacks that have made it to the end of their grace
1365 * period.  Thottle as specified by rdp->blimit.
1366 */
1367static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1368{
1369        unsigned long flags;
1370        struct rcu_head *next, *list, **tail;
1371        int bl, count;
1372
1373        /* If no callbacks are ready, just return.*/
1374        if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1375                trace_rcu_batch_start(rsp->name, 0, 0);
1376                trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1377                                    need_resched(), is_idle_task(current),
1378                                    rcu_is_callbacks_kthread());
1379                return;
1380        }
1381
1382        /*
1383         * Extract the list of ready callbacks, disabling to prevent
1384         * races with call_rcu() from interrupt handlers.
1385         */
1386        local_irq_save(flags);
1387        bl = rdp->blimit;
1388        trace_rcu_batch_start(rsp->name, rdp->qlen, bl);
1389        list = rdp->nxtlist;
1390        rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1391        *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1392        tail = rdp->nxttail[RCU_DONE_TAIL];
1393        for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1394                if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1395                        rdp->nxttail[count] = &rdp->nxtlist;
1396        local_irq_restore(flags);
1397
1398        /* Invoke callbacks. */
1399        count = 0;
1400        while (list) {
1401                next = list->next;
1402                prefetch(next);
1403                debug_rcu_head_unqueue(list);
1404                __rcu_reclaim(rsp->name, list);
1405                list = next;
1406                /* Stop only if limit reached and CPU has something to do. */
1407                if (++count >= bl &&
1408                    (need_resched() ||
1409                     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
1410                        break;
1411        }
1412
1413        local_irq_save(flags);
1414        trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
1415                            is_idle_task(current),
1416                            rcu_is_callbacks_kthread());
1417
1418        /* Update count, and requeue any remaining callbacks. */
1419        rdp->qlen -= count;
1420        rdp->n_cbs_invoked += count;
1421        if (list != NULL) {
1422                *tail = rdp->nxtlist;
1423                rdp->nxtlist = list;
1424                for (count = 0; count < RCU_NEXT_SIZE; count++)
1425                        if (&rdp->nxtlist == rdp->nxttail[count])
1426                                rdp->nxttail[count] = tail;
1427                        else
1428                                break;
1429        }
1430
1431        /* Reinstate batch limit if we have worked down the excess. */
1432        if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1433                rdp->blimit = blimit;
1434
1435        /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1436        if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1437                rdp->qlen_last_fqs_check = 0;
1438                rdp->n_force_qs_snap = rsp->n_force_qs;
1439        } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1440                rdp->qlen_last_fqs_check = rdp->qlen;
1441
1442        local_irq_restore(flags);
1443
1444        /* Re-invoke RCU core processing if there are callbacks remaining. */
1445        if (cpu_has_callbacks_ready_to_invoke(rdp))
1446                invoke_rcu_core();
1447}
1448
1449/*
1450 * Check to see if this CPU is in a non-context-switch quiescent state
1451 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1452 * Also schedule RCU core processing.
1453 *
1454 * This function must be called from hardirq context.  It is normally
1455 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
1456 * false, there is no point in invoking rcu_check_callbacks().
1457 */
1458void rcu_check_callbacks(int cpu, int user)
1459{
1460        trace_rcu_utilization("Start scheduler-tick");
1461        if (user || rcu_is_cpu_rrupt_from_idle()) {
1462
1463                /*
1464                 * Get here if this CPU took its interrupt from user
1465                 * mode or from the idle loop, and if this is not a
1466                 * nested interrupt.  In this case, the CPU is in
1467                 * a quiescent state, so note it.
1468                 *
1469                 * No memory barrier is required here because both
1470                 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1471                 * variables that other CPUs neither access nor modify,
1472                 * at least not while the corresponding CPU is online.
1473                 */
1474
1475                rcu_sched_qs(cpu);
1476                rcu_bh_qs(cpu);
1477
1478        } else if (!in_softirq()) {
1479
1480                /*
1481                 * Get here if this CPU did not take its interrupt from
1482                 * softirq, in other words, if it is not interrupting
1483                 * a rcu_bh read-side critical section.  This is an _bh
1484                 * critical section, so note it.
1485                 */
1486
1487                rcu_bh_qs(cpu);
1488        }
1489        rcu_preempt_check_callbacks(cpu);
1490        if (rcu_pending(cpu))
1491                invoke_rcu_core();
1492        trace_rcu_utilization("End scheduler-tick");
1493}
1494
1495#ifdef CONFIG_SMP
1496
1497/*
1498 * Scan the leaf rcu_node structures, processing dyntick state for any that
1499 * have not yet encountered a quiescent state, using the function specified.
1500 * Also initiate boosting for any threads blocked on the root rcu_node.
1501 *
1502 * The caller must have suppressed start of new grace periods.
1503 */
1504static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1505{
1506        unsigned long bit;
1507        int cpu;
1508        unsigned long flags;
1509        unsigned long mask;
1510        struct rcu_node *rnp;
1511
1512        rcu_for_each_leaf_node(rsp, rnp) {
1513                mask = 0;
1514                raw_spin_lock_irqsave(&rnp->lock, flags);
1515                if (!rcu_gp_in_progress(rsp)) {
1516                        raw_spin_unlock_irqrestore(&rnp->lock, flags);
1517                        return;
1518                }
1519                if (rnp->qsmask == 0) {
1520                        rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1521                        continue;
1522                }
1523                cpu = rnp->grplo;
1524                bit = 1;
1525                for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1526                        if ((rnp->qsmask & bit) != 0 &&
1527                            f(per_cpu_ptr(rsp->rda, cpu)))
1528                                mask |= bit;
1529                }
1530                if (mask != 0) {
1531
1532                        /* rcu_report_qs_rnp() releases rnp->lock. */
1533                        rcu_report_qs_rnp(mask, rsp, rnp, flags);
1534                        continue;
1535                }
1536                raw_spin_unlock_irqrestore(&rnp->lock, flags);
1537        }
1538        rnp = rcu_get_root(rsp);
1539        if (rnp->qsmask == 0) {
1540                raw_spin_lock_irqsave(&rnp->lock, flags);
1541                rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1542        }
1543}
1544
1545/*
1546 * Force quiescent states on reluctant CPUs, and also detect which
1547 * CPUs are in dyntick-idle mode.
1548 */
1549static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1550{
1551        unsigned long flags;
1552        struct rcu_node *rnp = rcu_get_root(rsp);
1553
1554        trace_rcu_utilization("Start fqs");
1555        if (!rcu_gp_in_progress(rsp)) {
1556                trace_rcu_utilization("End fqs");
1557                return;  /* No grace period in progress, nothing to force. */
1558        }
1559        if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1560                rsp->n_force_qs_lh++; /* Inexact, can lose counts.  Tough! */
1561                trace_rcu_utilization("End fqs");
1562                return; /* Someone else is already on the job. */
1563        }
1564        if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1565                goto unlock_fqs_ret; /* no emergency and done recently. */
1566        rsp->n_force_qs++;
1567        raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1568        rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1569        if(!rcu_gp_in_progress(rsp)) {
1570                rsp->n_force_qs_ngp++;
1571                raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1572                goto unlock_fqs_ret;  /* no GP in progress, time updated. */
1573        }
1574        rsp->fqs_active = 1;
1575        switch (rsp->fqs_state) {
1576        case RCU_GP_IDLE:
1577        case RCU_GP_INIT:
1578
1579                break; /* grace period idle or initializing, ignore. */
1580
1581        case RCU_SAVE_DYNTICK:
1582                if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1583                        break; /* So gcc recognizes the dead code. */
1584
1585                raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1586
1587                /* Record dyntick-idle state. */
1588                force_qs_rnp(rsp, dyntick_save_progress_counter);
1589                raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1590                if (rcu_gp_in_progress(rsp))
1591                        rsp->fqs_state = RCU_FORCE_QS;
1592                break;
1593
1594        case RCU_FORCE_QS:
1595
1596                /* Check dyntick-idle state, send IPI to laggarts. */
1597                raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1598                force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1599
1600                /* Leave state in case more forcing is required. */
1601
1602                raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1603                break;
1604        }
1605        rsp->fqs_active = 0;
1606        if (rsp->fqs_need_gp) {
1607                raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1608                rsp->fqs_need_gp = 0;
1609                rcu_start_gp(rsp, flags); /* releases rnp->lock */
1610                trace_rcu_utilization("End fqs");
1611                return;
1612        }
1613        raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1614unlock_fqs_ret:
1615        raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1616        trace_rcu_utilization("End fqs");
1617}
1618
1619#else /* #ifdef CONFIG_SMP */
1620
1621static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1622{
1623        set_need_resched();
1624}
1625
1626#endif /* #else #ifdef CONFIG_SMP */
1627
1628/*
1629 * This does the RCU core processing work for the specified rcu_state
1630 * and rcu_data structures.  This may be called only from the CPU to
1631 * whom the rdp belongs.
1632 */
1633static void
1634__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1635{
1636        unsigned long flags;
1637
1638        WARN_ON_ONCE(rdp->beenonline == 0);
1639
1640        /*
1641         * If an RCU GP has gone long enough, go check for dyntick
1642         * idle CPUs and, if needed, send resched IPIs.
1643         */
1644        if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1645                force_quiescent_state(rsp, 1);
1646
1647        /*
1648         * Advance callbacks in response to end of earlier grace
1649         * period that some other CPU ended.
1650         */
1651        rcu_process_gp_end(rsp, rdp);
1652
1653        /* Update RCU state based on any recent quiescent states. */
1654        rcu_check_quiescent_state(rsp, rdp);
1655
1656        /* Does this CPU require a not-yet-started grace period? */
1657        if (cpu_needs_another_gp(rsp, rdp)) {
1658                raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1659                rcu_start_gp(rsp, flags);  /* releases above lock */
1660        }
1661
1662        /* If there are callbacks ready, invoke them. */
1663        if (cpu_has_callbacks_ready_to_invoke(rdp))
1664                invoke_rcu_callbacks(rsp, rdp);
1665}
1666
1667/*
1668 * Do RCU core processing for the current CPU.
1669 */
1670static void rcu_process_callbacks(struct softirq_action *unused)
1671{
1672        trace_rcu_utilization("Start RCU core");
1673        __rcu_process_callbacks(&rcu_sched_state,
1674                                &__get_cpu_var(rcu_sched_data));
1675        __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1676        rcu_preempt_process_callbacks();
1677        trace_rcu_utilization("End RCU core");
1678}
1679
1680/*
1681 * Schedule RCU callback invocation.  If the specified type of RCU
1682 * does not support RCU priority boosting, just do a direct call,
1683 * otherwise wake up the per-CPU kernel kthread.  Note that because we
1684 * are running on the current CPU with interrupts disabled, the
1685 * rcu_cpu_kthread_task cannot disappear out from under us.
1686 */
1687static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1688{
1689        if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
1690                return;
1691        if (likely(!rsp->boost)) {
1692                rcu_do_batch(rsp, rdp);
1693                return;
1694        }
1695        invoke_rcu_callbacks_kthread();
1696}
1697
1698static void invoke_rcu_core(void)
1699{
1700        raise_softirq(RCU_SOFTIRQ);
1701}
1702
1703static void
1704__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1705           struct rcu_state *rsp)
1706{
1707        unsigned long flags;
1708        struct rcu_data *rdp;
1709
1710        debug_rcu_head_queue(head);
1711        head->func = func;
1712        head->next = NULL;
1713
1714        smp_mb(); /* Ensure RCU update seen before callback registry. */
1715
1716        /*
1717         * Opportunistically note grace-period endings and beginnings.
1718         * Note that we might see a beginning right after we see an
1719         * end, but never vice versa, since this CPU has to pass through
1720         * a quiescent state betweentimes.
1721         */
1722        local_irq_save(flags);
1723        rdp = this_cpu_ptr(rsp->rda);
1724
1725        /* Add the callback to our list. */
1726        *rdp->nxttail[RCU_NEXT_TAIL] = head;
1727        rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1728        rdp->qlen++;
1729
1730        if (__is_kfree_rcu_offset((unsigned long)func))
1731                trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
1732                                         rdp->qlen);
1733        else
1734                trace_rcu_callback(rsp->name, head, rdp->qlen);
1735
1736        /* If interrupts were disabled, don't dive into RCU core. */
1737        if (irqs_disabled_flags(flags)) {
1738                local_irq_restore(flags);
1739                return;
1740        }
1741
1742        /*
1743         * Force the grace period if too many callbacks or too long waiting.
1744         * Enforce hysteresis, and don't invoke force_quiescent_state()
1745         * if some other CPU has recently done so.  Also, don't bother
1746         * invoking force_quiescent_state() if the newly enqueued callback
1747         * is the only one waiting for a grace period to complete.
1748         */
1749        if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1750
1751                /* Are we ignoring a completed grace period? */
1752                rcu_process_gp_end(rsp, rdp);
1753                check_for_new_grace_period(rsp, rdp);
1754
1755                /* Start a new grace period if one not already started. */
1756                if (!rcu_gp_in_progress(rsp)) {
1757                        unsigned long nestflag;
1758                        struct rcu_node *rnp_root = rcu_get_root(rsp);
1759
1760                        raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1761                        rcu_start_gp(rsp, nestflag);  /* rlses rnp_root->lock */
1762                } else {
1763                        /* Give the grace period a kick. */
1764                        rdp->blimit = LONG_MAX;
1765                        if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1766                            *rdp->nxttail[RCU_DONE_TAIL] != head)
1767                                force_quiescent_state(rsp, 0);
1768                        rdp->n_force_qs_snap = rsp->n_force_qs;
1769                        rdp->qlen_last_fqs_check = rdp->qlen;
1770                }
1771        } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1772                force_quiescent_state(rsp, 1);
1773        local_irq_restore(flags);
1774}
1775
1776/*
1777 * Queue an RCU-sched callback for invocation after a grace period.
1778 */
1779void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1780{
1781        __call_rcu(head, func, &rcu_sched_state);
1782}
1783EXPORT_SYMBOL_GPL(call_rcu_sched);
1784
1785/*
1786 * Queue an RCU for invocation after a quicker grace period.
1787 */
1788void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1789{
1790        __call_rcu(head, func, &rcu_bh_state);
1791}
1792EXPORT_SYMBOL_GPL(call_rcu_bh);
1793
1794/**
1795 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1796 *
1797 * Control will return to the caller some time after a full rcu-sched
1798 * grace period has elapsed, in other words after all currently executing
1799 * rcu-sched read-side critical sections have completed.   These read-side
1800 * critical sections are delimited by rcu_read_lock_sched() and
1801 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
1802 * local_irq_disable(), and so on may be used in place of
1803 * rcu_read_lock_sched().
1804 *
1805 * This means that all preempt_disable code sequences, including NMI and
1806 * hardware-interrupt handlers, in progress on entry will have completed
1807 * before this primitive returns.  However, this does not guarantee that
1808 * softirq handlers will have completed, since in some kernels, these
1809 * handlers can run in process context, and can block.
1810 *
1811 * This primitive provides the guarantees made by the (now removed)
1812 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
1813 * guarantees that rcu_read_lock() sections will have completed.
1814 * In "classic RCU", these two guarantees happen to be one and
1815 * the same, but can differ in realtime RCU implementations.
1816 */
1817void synchronize_sched(void)
1818{
1819        if (rcu_blocking_is_gp())
1820                return;
1821        wait_rcu_gp(call_rcu_sched);
1822}
1823EXPORT_SYMBOL_GPL(synchronize_sched);
1824
1825/**
1826 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1827 *
1828 * Control will return to the caller some time after a full rcu_bh grace
1829 * period has elapsed, in other words after all currently executing rcu_bh
1830 * read-side critical sections have completed.  RCU read-side critical
1831 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1832 * and may be nested.
1833 */
1834void synchronize_rcu_bh(void)
1835{
1836        if (rcu_blocking_is_gp())
1837                return;
1838        wait_rcu_gp(call_rcu_bh);
1839}
1840EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1841
1842/*
1843 * Check to see if there is any immediate RCU-related work to be done
1844 * by the current CPU, for the specified type of RCU, returning 1 if so.
1845 * The checks are in order of increasing expense: checks that can be
1846 * carried out against CPU-local state are performed first.  However,
1847 * we must check for CPU stalls first, else we might not get a chance.
1848 */
1849static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1850{
1851        struct rcu_node *rnp = rdp->mynode;
1852
1853        rdp->n_rcu_pending++;
1854
1855        /* Check for CPU stalls, if enabled. */
1856        check_cpu_stall(rsp, rdp);
1857
1858        /* Is the RCU core waiting for a quiescent state from this CPU? */
1859        if (rcu_scheduler_fully_active &&
1860            rdp->qs_pending && !rdp->passed_quiesce) {
1861
1862                /*
1863                 * If force_quiescent_state() coming soon and this CPU
1864                 * needs a quiescent state, and this is either RCU-sched
1865                 * or RCU-bh, force a local reschedule.
1866                 */
1867                rdp->n_rp_qs_pending++;
1868                if (!rdp->preemptible &&
1869                    ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
1870                                 jiffies))
1871                        set_need_resched();
1872        } else if (rdp->qs_pending && rdp->passed_quiesce) {
1873                rdp->n_rp_report_qs++;
1874                return 1;
1875        }
1876
1877        /* Does this CPU have callbacks ready to invoke? */
1878        if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1879                rdp->n_rp_cb_ready++;
1880                return 1;
1881        }
1882
1883        /* Has RCU gone idle with this CPU needing another grace period? */
1884        if (cpu_needs_another_gp(rsp, rdp)) {
1885                rdp->n_rp_cpu_needs_gp++;
1886                return 1;
1887        }
1888
1889        /* Has another RCU grace period completed?  */
1890        if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
1891                rdp->n_rp_gp_completed++;
1892                return 1;
1893        }
1894
1895        /* Has a new RCU grace period started? */
1896        if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
1897                rdp->n_rp_gp_started++;
1898                return 1;
1899        }
1900
1901        /* Has an RCU GP gone long enough to send resched IPIs &c? */
1902        if (rcu_gp_in_progress(rsp) &&
1903            ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
1904                rdp->n_rp_need_fqs++;
1905                return 1;
1906        }
1907
1908        /* nothing to do */
1909        rdp->n_rp_need_nothing++;
1910        return 0;
1911}
1912
1913/*
1914 * Check to see if there is any immediate RCU-related work to be done
1915 * by the current CPU, returning 1 if so.  This function is part of the
1916 * RCU implementation; it is -not- an exported member of the RCU API.
1917 */
1918static int rcu_pending(int cpu)
1919{
1920        return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
1921               __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1922               rcu_preempt_pending(cpu);
1923}
1924
1925/*
1926 * Check to see if any future RCU-related work will need to be done
1927 * by the current CPU, even if none need be done immediately, returning
1928 * 1 if so.
1929 */
1930static int rcu_cpu_has_callbacks(int cpu)
1931{
1932        /* RCU callbacks either ready or pending? */
1933        return per_cpu(rcu_sched_data, cpu).nxtlist ||
1934               per_cpu(rcu_bh_data, cpu).nxtlist ||
1935               rcu_preempt_needs_cpu(cpu);
1936}
1937
1938static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
1939static atomic_t rcu_barrier_cpu_count;
1940static DEFINE_MUTEX(rcu_barrier_mutex);
1941static struct completion rcu_barrier_completion;
1942
1943static void rcu_barrier_callback(struct rcu_head *notused)
1944{
1945        if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1946                complete(&rcu_barrier_completion);
1947}
1948
1949/*
1950 * Called with preemption disabled, and from cross-cpu IRQ context.
1951 */
1952static void rcu_barrier_func(void *type)
1953{
1954        int cpu = smp_processor_id();
1955        struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
1956        void (*call_rcu_func)(struct rcu_head *head,
1957                              void (*func)(struct rcu_head *head));
1958
1959        atomic_inc(&rcu_barrier_cpu_count);
1960        call_rcu_func = type;
1961        call_rcu_func(head, rcu_barrier_callback);
1962}
1963
1964/*
1965 * Orchestrate the specified type of RCU barrier, waiting for all
1966 * RCU callbacks of the specified type to complete.
1967 */
1968static void _rcu_barrier(struct rcu_state *rsp,
1969                         void (*call_rcu_func)(struct rcu_head *head,
1970                                               void (*func)(struct rcu_head *head)))
1971{
1972        BUG_ON(in_interrupt());
1973        /* Take mutex to serialize concurrent rcu_barrier() requests. */
1974        mutex_lock(&rcu_barrier_mutex);
1975        init_completion(&rcu_barrier_completion);
1976        /*
1977         * Initialize rcu_barrier_cpu_count to 1, then invoke
1978         * rcu_barrier_func() on each CPU, so that each CPU also has
1979         * incremented rcu_barrier_cpu_count.  Only then is it safe to
1980         * decrement rcu_barrier_cpu_count -- otherwise the first CPU
1981         * might complete its grace period before all of the other CPUs
1982         * did their increment, causing this function to return too
1983         * early.  Note that on_each_cpu() disables irqs, which prevents
1984         * any CPUs from coming online or going offline until each online
1985         * CPU has queued its RCU-barrier callback.
1986         */
1987        atomic_set(&rcu_barrier_cpu_count, 1);
1988        on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
1989        if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1990                complete(&rcu_barrier_completion);
1991        wait_for_completion(&rcu_barrier_completion);
1992        mutex_unlock(&rcu_barrier_mutex);
1993}
1994
1995/**
1996 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
1997 */
1998void rcu_barrier_bh(void)
1999{
2000        _rcu_barrier(&rcu_bh_state, call_rcu_bh);
2001}
2002EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2003
2004/**
2005 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2006 */
2007void rcu_barrier_sched(void)
2008{
2009        _rcu_barrier(&rcu_sched_state, call_rcu_sched);
2010}
2011EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2012
2013/*
2014 * Do boot-time initialization of a CPU's per-CPU RCU data.
2015 */
2016static void __init
2017rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2018{
2019        unsigned long flags;
2020        int i;
2021        struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2022        struct rcu_node *rnp = rcu_get_root(rsp);
2023
2024        /* Set up local state, ensuring consistent view of global state. */
2025        raw_spin_lock_irqsave(&rnp->lock, flags);
2026        rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2027        rdp->nxtlist = NULL;
2028        for (i = 0; i < RCU_NEXT_SIZE; i++)
2029                rdp->nxttail[i] = &rdp->nxtlist;
2030        rdp->qlen = 0;
2031        rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2032        WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_NESTING);
2033        WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2034        rdp->cpu = cpu;
2035        rdp->rsp = rsp;
2036        raw_spin_unlock_irqrestore(&rnp->lock, flags);
2037}
2038
2039/*
2040 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
2041 * offline event can be happening at a given time.  Note also that we
2042 * can accept some slop in the rsp->completed access due to the fact
2043 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2044 */
2045static void __cpuinit
2046rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2047{
2048        unsigned long flags;
2049        unsigned long mask;
2050        struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2051        struct rcu_node *rnp = rcu_get_root(rsp);
2052
2053        /* Set up local state, ensuring consistent view of global state. */
2054        raw_spin_lock_irqsave(&rnp->lock, flags);
2055        rdp->beenonline = 1;     /* We have now been online. */
2056        rdp->preemptible = preemptible;
2057        rdp->qlen_last_fqs_check = 0;
2058        rdp->n_force_qs_snap = rsp->n_force_qs;
2059        rdp->blimit = blimit;
2060        rdp->dynticks->dynticks_nesting = DYNTICK_TASK_NESTING;
2061        atomic_set(&rdp->dynticks->dynticks,
2062                   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
2063        rcu_prepare_for_idle_init(cpu);
2064        raw_spin_unlock(&rnp->lock);            /* irqs remain disabled. */
2065
2066        /*
2067         * A new grace period might start here.  If so, we won't be part
2068         * of it, but that is OK, as we are currently in a quiescent state.
2069         */
2070
2071        /* Exclude any attempts to start a new GP on large systems. */
2072        raw_spin_lock(&rsp->onofflock);         /* irqs already disabled. */
2073
2074        /* Add CPU to rcu_node bitmasks. */
2075        rnp = rdp->mynode;
2076        mask = rdp->grpmask;
2077        do {
2078                /* Exclude any attempts to start a new GP on small systems. */
2079                raw_spin_lock(&rnp->lock);      /* irqs already disabled. */
2080                rnp->qsmaskinit |= mask;
2081                mask = rnp->grpmask;
2082                if (rnp == rdp->mynode) {
2083                        /*
2084                         * If there is a grace period in progress, we will
2085                         * set up to wait for it next time we run the
2086                         * RCU core code.
2087                         */
2088                        rdp->gpnum = rnp->completed;
2089                        rdp->completed = rnp->completed;
2090                        rdp->passed_quiesce = 0;
2091                        rdp->qs_pending = 0;
2092                        rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
2093                        trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
2094                }
2095                raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2096                rnp = rnp->parent;
2097        } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2098
2099        raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2100}
2101
2102static void __cpuinit rcu_prepare_cpu(int cpu)
2103{
2104        rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
2105        rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
2106        rcu_preempt_init_percpu_data(cpu);
2107}
2108
2109/*
2110 * Handle CPU online/offline notification events.
2111 */
2112static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2113                                    unsigned long action, void *hcpu)
2114{
2115        long cpu = (long)hcpu;
2116        struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2117        struct rcu_node *rnp = rdp->mynode;
2118
2119        trace_rcu_utilization("Start CPU hotplug");
2120        switch (action) {
2121        case CPU_UP_PREPARE:
2122        case CPU_UP_PREPARE_FROZEN:
2123                rcu_prepare_cpu(cpu);
2124                rcu_prepare_kthreads(cpu);
2125                break;
2126        case CPU_ONLINE:
2127        case CPU_DOWN_FAILED:
2128                rcu_node_kthread_setaffinity(rnp, -1);
2129                rcu_cpu_kthread_setrt(cpu, 1);
2130                break;
2131        case CPU_DOWN_PREPARE:
2132                rcu_node_kthread_setaffinity(rnp, cpu);
2133                rcu_cpu_kthread_setrt(cpu, 0);
2134                break;
2135        case CPU_DYING:
2136        case CPU_DYING_FROZEN:
2137                /*
2138                 * The whole machine is "stopped" except this CPU, so we can
2139                 * touch any data without introducing corruption. We send the
2140                 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2141                 */
2142                rcu_send_cbs_to_online(&rcu_bh_state);
2143                rcu_send_cbs_to_online(&rcu_sched_state);
2144                rcu_preempt_send_cbs_to_online();
2145                rcu_cleanup_after_idle(cpu);
2146                break;
2147        case CPU_DEAD:
2148        case CPU_DEAD_FROZEN:
2149        case CPU_UP_CANCELED:
2150        case CPU_UP_CANCELED_FROZEN:
2151                rcu_offline_cpu(cpu);
2152                break;
2153        default:
2154                break;
2155        }
2156        trace_rcu_utilization("End CPU hotplug");
2157        return NOTIFY_OK;
2158}
2159
2160/*
2161 * This function is invoked towards the end of the scheduler's initialization
2162 * process.  Before this is called, the idle task might contain
2163 * RCU read-side critical sections (during which time, this idle
2164 * task is booting the system).  After this function is called, the
2165 * idle tasks are prohibited from containing RCU read-side critical
2166 * sections.  This function also enables RCU lockdep checking.
2167 */
2168void rcu_scheduler_starting(void)
2169{
2170        WARN_ON(num_online_cpus() != 1);
2171        WARN_ON(nr_context_switches() > 0);
2172        rcu_scheduler_active = 1;
2173}
2174
2175/*
2176 * Compute the per-level fanout, either using the exact fanout specified
2177 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2178 */
2179#ifdef CONFIG_RCU_FANOUT_EXACT
2180static void __init rcu_init_levelspread(struct rcu_state *rsp)
2181{
2182        int i;
2183
2184        for (i = NUM_RCU_LVLS - 1; i > 0; i--)
2185                rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2186        rsp->levelspread[0] = RCU_FANOUT_LEAF;
2187}
2188#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2189static void __init rcu_init_levelspread(struct rcu_state *rsp)
2190{
2191        int ccur;
2192        int cprv;
2193        int i;
2194
2195        cprv = NR_CPUS;
2196        for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2197                ccur = rsp->levelcnt[i];
2198                rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2199                cprv = ccur;
2200        }
2201}
2202#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2203
2204/*
2205 * Helper function for rcu_init() that initializes one rcu_state structure.
2206 */
2207static void __init rcu_init_one(struct rcu_state *rsp,
2208                struct rcu_data __percpu *rda)
2209{
2210        static char *buf[] = { "rcu_node_level_0",
2211                               "rcu_node_level_1",
2212                               "rcu_node_level_2",
2213                               "rcu_node_level_3" };  /* Match MAX_RCU_LVLS */
2214        int cpustride = 1;
2215        int i;
2216        int j;
2217        struct rcu_node *rnp;
2218
2219        BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
2220
2221        /* Initialize the level-tracking arrays. */
2222
2223        for (i = 1; i < NUM_RCU_LVLS; i++)
2224                rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2225        rcu_init_levelspread(rsp);
2226
2227        /* Initialize the elements themselves, starting from the leaves. */
2228
2229        for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2230                cpustride *= rsp->levelspread[i];
2231                rnp = rsp->level[i];
2232                for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
2233                        raw_spin_lock_init(&rnp->lock);
2234                        lockdep_set_class_and_name(&rnp->lock,
2235                                                   &rcu_node_class[i], buf[i]);
2236                        rnp->gpnum = 0;
2237                        rnp->qsmask = 0;
2238                        rnp->qsmaskinit = 0;
2239                        rnp->grplo = j * cpustride;
2240                        rnp->grphi = (j + 1) * cpustride - 1;
2241                        if (rnp->grphi >= NR_CPUS)
2242                                rnp->grphi = NR_CPUS - 1;
2243                        if (i == 0) {
2244                                rnp->grpnum = 0;
2245                                rnp->grpmask = 0;
2246                                rnp->parent = NULL;
2247                        } else {
2248                                rnp->grpnum = j % rsp->levelspread[i - 1];
2249                                rnp->grpmask = 1UL << rnp->grpnum;
2250                                rnp->parent = rsp->level[i - 1] +
2251                                              j / rsp->levelspread[i - 1];
2252                        }
2253                        rnp->level = i;
2254                        INIT_LIST_HEAD(&rnp->blkd_tasks);
2255                }
2256        }
2257
2258        rsp->rda = rda;
2259        rnp = rsp->level[NUM_RCU_LVLS - 1];
2260        for_each_possible_cpu(i) {
2261                while (i > rnp->grphi)
2262                        rnp++;
2263                per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2264                rcu_boot_init_percpu_data(i, rsp);
2265        }
2266}
2267
2268void __init rcu_init(void)
2269{
2270        int cpu;
2271
2272        rcu_bootup_announce();
2273        rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2274        rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2275        __rcu_init_preempt();
2276         open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
2277
2278        /*
2279         * We don't need protection against CPU-hotplug here because
2280         * this is called early in boot, before either interrupts
2281         * or the scheduler are operational.
2282         */
2283        cpu_notifier(rcu_cpu_notify, 0);
2284        for_each_online_cpu(cpu)
2285                rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2286        check_cpu_stall_init();
2287}
2288
2289#include "rcutree_plugin.h"
2290