linux/kernel/rcutree_plugin.h
<<
>>
Prefs
   1/*
   2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
   3 * Internal non-public definitions that provide either classic
   4 * or preemptible semantics.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software
  18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19 *
  20 * Copyright Red Hat, 2009
  21 * Copyright IBM Corporation, 2009
  22 *
  23 * Author: Ingo Molnar <mingo@elte.hu>
  24 *         Paul E. McKenney <paulmck@linux.vnet.ibm.com>
  25 */
  26
  27#include <linux/delay.h>
  28#include <linux/stop_machine.h>
  29
  30#define RCU_KTHREAD_PRIO 1
  31
  32#ifdef CONFIG_RCU_BOOST
  33#define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
  34#else
  35#define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
  36#endif
  37
  38/*
  39 * Check the RCU kernel configuration parameters and print informative
  40 * messages about anything out of the ordinary.  If you like #ifdef, you
  41 * will love this function.
  42 */
  43static void __init rcu_bootup_announce_oddness(void)
  44{
  45#ifdef CONFIG_RCU_TRACE
  46        printk(KERN_INFO "\tRCU debugfs-based tracing is enabled.\n");
  47#endif
  48#if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
  49        printk(KERN_INFO "\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
  50               CONFIG_RCU_FANOUT);
  51#endif
  52#ifdef CONFIG_RCU_FANOUT_EXACT
  53        printk(KERN_INFO "\tHierarchical RCU autobalancing is disabled.\n");
  54#endif
  55#ifdef CONFIG_RCU_FAST_NO_HZ
  56        printk(KERN_INFO
  57               "\tRCU dyntick-idle grace-period acceleration is enabled.\n");
  58#endif
  59#ifdef CONFIG_PROVE_RCU
  60        printk(KERN_INFO "\tRCU lockdep checking is enabled.\n");
  61#endif
  62#ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
  63        printk(KERN_INFO "\tRCU torture testing starts during boot.\n");
  64#endif
  65#if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
  66        printk(KERN_INFO "\tVerbose stalled-CPUs detection is disabled.\n");
  67#endif
  68#if NUM_RCU_LVL_4 != 0
  69        printk(KERN_INFO "\tExperimental four-level hierarchy is enabled.\n");
  70#endif
  71}
  72
  73#ifdef CONFIG_TREE_PREEMPT_RCU
  74
  75struct rcu_state rcu_preempt_state = RCU_STATE_INITIALIZER(rcu_preempt);
  76DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data);
  77static struct rcu_state *rcu_state = &rcu_preempt_state;
  78
  79static void rcu_read_unlock_special(struct task_struct *t);
  80static int rcu_preempted_readers_exp(struct rcu_node *rnp);
  81
  82/*
  83 * Tell them what RCU they are running.
  84 */
  85static void __init rcu_bootup_announce(void)
  86{
  87        printk(KERN_INFO "Preemptible hierarchical RCU implementation.\n");
  88        rcu_bootup_announce_oddness();
  89}
  90
  91/*
  92 * Return the number of RCU-preempt batches processed thus far
  93 * for debug and statistics.
  94 */
  95long rcu_batches_completed_preempt(void)
  96{
  97        return rcu_preempt_state.completed;
  98}
  99EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
 100
 101/*
 102 * Return the number of RCU batches processed thus far for debug & stats.
 103 */
 104long rcu_batches_completed(void)
 105{
 106        return rcu_batches_completed_preempt();
 107}
 108EXPORT_SYMBOL_GPL(rcu_batches_completed);
 109
 110/*
 111 * Force a quiescent state for preemptible RCU.
 112 */
 113void rcu_force_quiescent_state(void)
 114{
 115        force_quiescent_state(&rcu_preempt_state, 0);
 116}
 117EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
 118
 119/*
 120 * Record a preemptible-RCU quiescent state for the specified CPU.  Note
 121 * that this just means that the task currently running on the CPU is
 122 * not in a quiescent state.  There might be any number of tasks blocked
 123 * while in an RCU read-side critical section.
 124 *
 125 * Unlike the other rcu_*_qs() functions, callers to this function
 126 * must disable irqs in order to protect the assignment to
 127 * ->rcu_read_unlock_special.
 128 */
 129static void rcu_preempt_qs(int cpu)
 130{
 131        struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
 132
 133        rdp->passed_quiesce_gpnum = rdp->gpnum;
 134        barrier();
 135        if (rdp->passed_quiesce == 0)
 136                trace_rcu_grace_period("rcu_preempt", rdp->gpnum, "cpuqs");
 137        rdp->passed_quiesce = 1;
 138        current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
 139}
 140
 141/*
 142 * We have entered the scheduler, and the current task might soon be
 143 * context-switched away from.  If this task is in an RCU read-side
 144 * critical section, we will no longer be able to rely on the CPU to
 145 * record that fact, so we enqueue the task on the blkd_tasks list.
 146 * The task will dequeue itself when it exits the outermost enclosing
 147 * RCU read-side critical section.  Therefore, the current grace period
 148 * cannot be permitted to complete until the blkd_tasks list entries
 149 * predating the current grace period drain, in other words, until
 150 * rnp->gp_tasks becomes NULL.
 151 *
 152 * Caller must disable preemption.
 153 */
 154static void rcu_preempt_note_context_switch(int cpu)
 155{
 156        struct task_struct *t = current;
 157        unsigned long flags;
 158        struct rcu_data *rdp;
 159        struct rcu_node *rnp;
 160
 161        if (t->rcu_read_lock_nesting > 0 &&
 162            (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
 163
 164                /* Possibly blocking in an RCU read-side critical section. */
 165                rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
 166                rnp = rdp->mynode;
 167                raw_spin_lock_irqsave(&rnp->lock, flags);
 168                t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
 169                t->rcu_blocked_node = rnp;
 170
 171                /*
 172                 * If this CPU has already checked in, then this task
 173                 * will hold up the next grace period rather than the
 174                 * current grace period.  Queue the task accordingly.
 175                 * If the task is queued for the current grace period
 176                 * (i.e., this CPU has not yet passed through a quiescent
 177                 * state for the current grace period), then as long
 178                 * as that task remains queued, the current grace period
 179                 * cannot end.  Note that there is some uncertainty as
 180                 * to exactly when the current grace period started.
 181                 * We take a conservative approach, which can result
 182                 * in unnecessarily waiting on tasks that started very
 183                 * slightly after the current grace period began.  C'est
 184                 * la vie!!!
 185                 *
 186                 * But first, note that the current CPU must still be
 187                 * on line!
 188                 */
 189                WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
 190                WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
 191                if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
 192                        list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
 193                        rnp->gp_tasks = &t->rcu_node_entry;
 194#ifdef CONFIG_RCU_BOOST
 195                        if (rnp->boost_tasks != NULL)
 196                                rnp->boost_tasks = rnp->gp_tasks;
 197#endif /* #ifdef CONFIG_RCU_BOOST */
 198                } else {
 199                        list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
 200                        if (rnp->qsmask & rdp->grpmask)
 201                                rnp->gp_tasks = &t->rcu_node_entry;
 202                }
 203                trace_rcu_preempt_task(rdp->rsp->name,
 204                                       t->pid,
 205                                       (rnp->qsmask & rdp->grpmask)
 206                                       ? rnp->gpnum
 207                                       : rnp->gpnum + 1);
 208                raw_spin_unlock_irqrestore(&rnp->lock, flags);
 209        } else if (t->rcu_read_lock_nesting < 0 &&
 210                   t->rcu_read_unlock_special) {
 211
 212                /*
 213                 * Complete exit from RCU read-side critical section on
 214                 * behalf of preempted instance of __rcu_read_unlock().
 215                 */
 216                rcu_read_unlock_special(t);
 217        }
 218
 219        /*
 220         * Either we were not in an RCU read-side critical section to
 221         * begin with, or we have now recorded that critical section
 222         * globally.  Either way, we can now note a quiescent state
 223         * for this CPU.  Again, if we were in an RCU read-side critical
 224         * section, and if that critical section was blocking the current
 225         * grace period, then the fact that the task has been enqueued
 226         * means that we continue to block the current grace period.
 227         */
 228        local_irq_save(flags);
 229        rcu_preempt_qs(cpu);
 230        local_irq_restore(flags);
 231}
 232
 233/*
 234 * Tree-preemptible RCU implementation for rcu_read_lock().
 235 * Just increment ->rcu_read_lock_nesting, shared state will be updated
 236 * if we block.
 237 */
 238void __rcu_read_lock(void)
 239{
 240        current->rcu_read_lock_nesting++;
 241        barrier();  /* needed if we ever invoke rcu_read_lock in rcutree.c */
 242}
 243EXPORT_SYMBOL_GPL(__rcu_read_lock);
 244
 245/*
 246 * Check for preempted RCU readers blocking the current grace period
 247 * for the specified rcu_node structure.  If the caller needs a reliable
 248 * answer, it must hold the rcu_node's ->lock.
 249 */
 250static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
 251{
 252        return rnp->gp_tasks != NULL;
 253}
 254
 255/*
 256 * Record a quiescent state for all tasks that were previously queued
 257 * on the specified rcu_node structure and that were blocking the current
 258 * RCU grace period.  The caller must hold the specified rnp->lock with
 259 * irqs disabled, and this lock is released upon return, but irqs remain
 260 * disabled.
 261 */
 262static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
 263        __releases(rnp->lock)
 264{
 265        unsigned long mask;
 266        struct rcu_node *rnp_p;
 267
 268        if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
 269                raw_spin_unlock_irqrestore(&rnp->lock, flags);
 270                return;  /* Still need more quiescent states! */
 271        }
 272
 273        rnp_p = rnp->parent;
 274        if (rnp_p == NULL) {
 275                /*
 276                 * Either there is only one rcu_node in the tree,
 277                 * or tasks were kicked up to root rcu_node due to
 278                 * CPUs going offline.
 279                 */
 280                rcu_report_qs_rsp(&rcu_preempt_state, flags);
 281                return;
 282        }
 283
 284        /* Report up the rest of the hierarchy. */
 285        mask = rnp->grpmask;
 286        raw_spin_unlock(&rnp->lock);    /* irqs remain disabled. */
 287        raw_spin_lock(&rnp_p->lock);    /* irqs already disabled. */
 288        rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
 289}
 290
 291/*
 292 * Advance a ->blkd_tasks-list pointer to the next entry, instead
 293 * returning NULL if at the end of the list.
 294 */
 295static struct list_head *rcu_next_node_entry(struct task_struct *t,
 296                                             struct rcu_node *rnp)
 297{
 298        struct list_head *np;
 299
 300        np = t->rcu_node_entry.next;
 301        if (np == &rnp->blkd_tasks)
 302                np = NULL;
 303        return np;
 304}
 305
 306/*
 307 * Handle special cases during rcu_read_unlock(), such as needing to
 308 * notify RCU core processing or task having blocked during the RCU
 309 * read-side critical section.
 310 */
 311static noinline void rcu_read_unlock_special(struct task_struct *t)
 312{
 313        int empty;
 314        int empty_exp;
 315        int empty_exp_now;
 316        unsigned long flags;
 317        struct list_head *np;
 318#ifdef CONFIG_RCU_BOOST
 319        struct rt_mutex *rbmp = NULL;
 320#endif /* #ifdef CONFIG_RCU_BOOST */
 321        struct rcu_node *rnp;
 322        int special;
 323
 324        /* NMI handlers cannot block and cannot safely manipulate state. */
 325        if (in_nmi())
 326                return;
 327
 328        local_irq_save(flags);
 329
 330        /*
 331         * If RCU core is waiting for this CPU to exit critical section,
 332         * let it know that we have done so.
 333         */
 334        special = t->rcu_read_unlock_special;
 335        if (special & RCU_READ_UNLOCK_NEED_QS) {
 336                rcu_preempt_qs(smp_processor_id());
 337        }
 338
 339        /* Hardware IRQ handlers cannot block. */
 340        if (in_irq() || in_serving_softirq()) {
 341                local_irq_restore(flags);
 342                return;
 343        }
 344
 345        /* Clean up if blocked during RCU read-side critical section. */
 346        if (special & RCU_READ_UNLOCK_BLOCKED) {
 347                t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
 348
 349                /*
 350                 * Remove this task from the list it blocked on.  The
 351                 * task can migrate while we acquire the lock, but at
 352                 * most one time.  So at most two passes through loop.
 353                 */
 354                for (;;) {
 355                        rnp = t->rcu_blocked_node;
 356                        raw_spin_lock(&rnp->lock);  /* irqs already disabled. */
 357                        if (rnp == t->rcu_blocked_node)
 358                                break;
 359                        raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
 360                }
 361                empty = !rcu_preempt_blocked_readers_cgp(rnp);
 362                empty_exp = !rcu_preempted_readers_exp(rnp);
 363                smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
 364                np = rcu_next_node_entry(t, rnp);
 365                list_del_init(&t->rcu_node_entry);
 366                t->rcu_blocked_node = NULL;
 367                trace_rcu_unlock_preempted_task("rcu_preempt",
 368                                                rnp->gpnum, t->pid);
 369                if (&t->rcu_node_entry == rnp->gp_tasks)
 370                        rnp->gp_tasks = np;
 371                if (&t->rcu_node_entry == rnp->exp_tasks)
 372                        rnp->exp_tasks = np;
 373#ifdef CONFIG_RCU_BOOST
 374                if (&t->rcu_node_entry == rnp->boost_tasks)
 375                        rnp->boost_tasks = np;
 376                /* Snapshot/clear ->rcu_boost_mutex with rcu_node lock held. */
 377                if (t->rcu_boost_mutex) {
 378                        rbmp = t->rcu_boost_mutex;
 379                        t->rcu_boost_mutex = NULL;
 380                }
 381#endif /* #ifdef CONFIG_RCU_BOOST */
 382
 383                /*
 384                 * If this was the last task on the current list, and if
 385                 * we aren't waiting on any CPUs, report the quiescent state.
 386                 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
 387                 * so we must take a snapshot of the expedited state.
 388                 */
 389                empty_exp_now = !rcu_preempted_readers_exp(rnp);
 390                if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
 391                        trace_rcu_quiescent_state_report("preempt_rcu",
 392                                                         rnp->gpnum,
 393                                                         0, rnp->qsmask,
 394                                                         rnp->level,
 395                                                         rnp->grplo,
 396                                                         rnp->grphi,
 397                                                         !!rnp->gp_tasks);
 398                        rcu_report_unblock_qs_rnp(rnp, flags);
 399                } else
 400                        raw_spin_unlock_irqrestore(&rnp->lock, flags);
 401
 402#ifdef CONFIG_RCU_BOOST
 403                /* Unboost if we were boosted. */
 404                if (rbmp)
 405                        rt_mutex_unlock(rbmp);
 406#endif /* #ifdef CONFIG_RCU_BOOST */
 407
 408                /*
 409                 * If this was the last task on the expedited lists,
 410                 * then we need to report up the rcu_node hierarchy.
 411                 */
 412                if (!empty_exp && empty_exp_now)
 413                        rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
 414        } else {
 415                local_irq_restore(flags);
 416        }
 417}
 418
 419/*
 420 * Tree-preemptible RCU implementation for rcu_read_unlock().
 421 * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
 422 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
 423 * invoke rcu_read_unlock_special() to clean up after a context switch
 424 * in an RCU read-side critical section and other special cases.
 425 */
 426void __rcu_read_unlock(void)
 427{
 428        struct task_struct *t = current;
 429
 430        if (t->rcu_read_lock_nesting != 1)
 431                --t->rcu_read_lock_nesting;
 432        else {
 433                barrier();  /* critical section before exit code. */
 434                t->rcu_read_lock_nesting = INT_MIN;
 435                barrier();  /* assign before ->rcu_read_unlock_special load */
 436                if (unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))
 437                        rcu_read_unlock_special(t);
 438                barrier();  /* ->rcu_read_unlock_special load before assign */
 439                t->rcu_read_lock_nesting = 0;
 440        }
 441#ifdef CONFIG_PROVE_LOCKING
 442        {
 443                int rrln = ACCESS_ONCE(t->rcu_read_lock_nesting);
 444
 445                WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
 446        }
 447#endif /* #ifdef CONFIG_PROVE_LOCKING */
 448}
 449EXPORT_SYMBOL_GPL(__rcu_read_unlock);
 450
 451#ifdef CONFIG_RCU_CPU_STALL_VERBOSE
 452
 453/*
 454 * Dump detailed information for all tasks blocking the current RCU
 455 * grace period on the specified rcu_node structure.
 456 */
 457static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
 458{
 459        unsigned long flags;
 460        struct task_struct *t;
 461
 462        if (!rcu_preempt_blocked_readers_cgp(rnp))
 463                return;
 464        raw_spin_lock_irqsave(&rnp->lock, flags);
 465        t = list_entry(rnp->gp_tasks,
 466                       struct task_struct, rcu_node_entry);
 467        list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
 468                sched_show_task(t);
 469        raw_spin_unlock_irqrestore(&rnp->lock, flags);
 470}
 471
 472/*
 473 * Dump detailed information for all tasks blocking the current RCU
 474 * grace period.
 475 */
 476static void rcu_print_detail_task_stall(struct rcu_state *rsp)
 477{
 478        struct rcu_node *rnp = rcu_get_root(rsp);
 479
 480        rcu_print_detail_task_stall_rnp(rnp);
 481        rcu_for_each_leaf_node(rsp, rnp)
 482                rcu_print_detail_task_stall_rnp(rnp);
 483}
 484
 485#else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
 486
 487static void rcu_print_detail_task_stall(struct rcu_state *rsp)
 488{
 489}
 490
 491#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
 492
 493/*
 494 * Scan the current list of tasks blocked within RCU read-side critical
 495 * sections, printing out the tid of each.
 496 */
 497static int rcu_print_task_stall(struct rcu_node *rnp)
 498{
 499        struct task_struct *t;
 500        int ndetected = 0;
 501
 502        if (!rcu_preempt_blocked_readers_cgp(rnp))
 503                return 0;
 504        t = list_entry(rnp->gp_tasks,
 505                       struct task_struct, rcu_node_entry);
 506        list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
 507                printk(" P%d", t->pid);
 508                ndetected++;
 509        }
 510        return ndetected;
 511}
 512
 513/*
 514 * Suppress preemptible RCU's CPU stall warnings by pushing the
 515 * time of the next stall-warning message comfortably far into the
 516 * future.
 517 */
 518static void rcu_preempt_stall_reset(void)
 519{
 520        rcu_preempt_state.jiffies_stall = jiffies + ULONG_MAX / 2;
 521}
 522
 523/*
 524 * Check that the list of blocked tasks for the newly completed grace
 525 * period is in fact empty.  It is a serious bug to complete a grace
 526 * period that still has RCU readers blocked!  This function must be
 527 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
 528 * must be held by the caller.
 529 *
 530 * Also, if there are blocked tasks on the list, they automatically
 531 * block the newly created grace period, so set up ->gp_tasks accordingly.
 532 */
 533static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
 534{
 535        WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
 536        if (!list_empty(&rnp->blkd_tasks))
 537                rnp->gp_tasks = rnp->blkd_tasks.next;
 538        WARN_ON_ONCE(rnp->qsmask);
 539}
 540
 541#ifdef CONFIG_HOTPLUG_CPU
 542
 543/*
 544 * Handle tasklist migration for case in which all CPUs covered by the
 545 * specified rcu_node have gone offline.  Move them up to the root
 546 * rcu_node.  The reason for not just moving them to the immediate
 547 * parent is to remove the need for rcu_read_unlock_special() to
 548 * make more than two attempts to acquire the target rcu_node's lock.
 549 * Returns true if there were tasks blocking the current RCU grace
 550 * period.
 551 *
 552 * Returns 1 if there was previously a task blocking the current grace
 553 * period on the specified rcu_node structure.
 554 *
 555 * The caller must hold rnp->lock with irqs disabled.
 556 */
 557static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
 558                                     struct rcu_node *rnp,
 559                                     struct rcu_data *rdp)
 560{
 561        struct list_head *lp;
 562        struct list_head *lp_root;
 563        int retval = 0;
 564        struct rcu_node *rnp_root = rcu_get_root(rsp);
 565        struct task_struct *t;
 566
 567        if (rnp == rnp_root) {
 568                WARN_ONCE(1, "Last CPU thought to be offlined?");
 569                return 0;  /* Shouldn't happen: at least one CPU online. */
 570        }
 571
 572        /* If we are on an internal node, complain bitterly. */
 573        WARN_ON_ONCE(rnp != rdp->mynode);
 574
 575        /*
 576         * Move tasks up to root rcu_node.  Don't try to get fancy for
 577         * this corner-case operation -- just put this node's tasks
 578         * at the head of the root node's list, and update the root node's
 579         * ->gp_tasks and ->exp_tasks pointers to those of this node's,
 580         * if non-NULL.  This might result in waiting for more tasks than
 581         * absolutely necessary, but this is a good performance/complexity
 582         * tradeoff.
 583         */
 584        if (rcu_preempt_blocked_readers_cgp(rnp))
 585                retval |= RCU_OFL_TASKS_NORM_GP;
 586        if (rcu_preempted_readers_exp(rnp))
 587                retval |= RCU_OFL_TASKS_EXP_GP;
 588        lp = &rnp->blkd_tasks;
 589        lp_root = &rnp_root->blkd_tasks;
 590        while (!list_empty(lp)) {
 591                t = list_entry(lp->next, typeof(*t), rcu_node_entry);
 592                raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
 593                list_del(&t->rcu_node_entry);
 594                t->rcu_blocked_node = rnp_root;
 595                list_add(&t->rcu_node_entry, lp_root);
 596                if (&t->rcu_node_entry == rnp->gp_tasks)
 597                        rnp_root->gp_tasks = rnp->gp_tasks;
 598                if (&t->rcu_node_entry == rnp->exp_tasks)
 599                        rnp_root->exp_tasks = rnp->exp_tasks;
 600#ifdef CONFIG_RCU_BOOST
 601                if (&t->rcu_node_entry == rnp->boost_tasks)
 602                        rnp_root->boost_tasks = rnp->boost_tasks;
 603#endif /* #ifdef CONFIG_RCU_BOOST */
 604                raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
 605        }
 606
 607#ifdef CONFIG_RCU_BOOST
 608        /* In case root is being boosted and leaf is not. */
 609        raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
 610        if (rnp_root->boost_tasks != NULL &&
 611            rnp_root->boost_tasks != rnp_root->gp_tasks)
 612                rnp_root->boost_tasks = rnp_root->gp_tasks;
 613        raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
 614#endif /* #ifdef CONFIG_RCU_BOOST */
 615
 616        rnp->gp_tasks = NULL;
 617        rnp->exp_tasks = NULL;
 618        return retval;
 619}
 620
 621/*
 622 * Do CPU-offline processing for preemptible RCU.
 623 */
 624static void rcu_preempt_offline_cpu(int cpu)
 625{
 626        __rcu_offline_cpu(cpu, &rcu_preempt_state);
 627}
 628
 629#endif /* #ifdef CONFIG_HOTPLUG_CPU */
 630
 631/*
 632 * Check for a quiescent state from the current CPU.  When a task blocks,
 633 * the task is recorded in the corresponding CPU's rcu_node structure,
 634 * which is checked elsewhere.
 635 *
 636 * Caller must disable hard irqs.
 637 */
 638static void rcu_preempt_check_callbacks(int cpu)
 639{
 640        struct task_struct *t = current;
 641
 642        if (t->rcu_read_lock_nesting == 0) {
 643                rcu_preempt_qs(cpu);
 644                return;
 645        }
 646        if (t->rcu_read_lock_nesting > 0 &&
 647            per_cpu(rcu_preempt_data, cpu).qs_pending)
 648                t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
 649}
 650
 651/*
 652 * Process callbacks for preemptible RCU.
 653 */
 654static void rcu_preempt_process_callbacks(void)
 655{
 656        __rcu_process_callbacks(&rcu_preempt_state,
 657                                &__get_cpu_var(rcu_preempt_data));
 658}
 659
 660#ifdef CONFIG_RCU_BOOST
 661
 662static void rcu_preempt_do_callbacks(void)
 663{
 664        rcu_do_batch(&rcu_preempt_state, &__get_cpu_var(rcu_preempt_data));
 665}
 666
 667#endif /* #ifdef CONFIG_RCU_BOOST */
 668
 669/*
 670 * Queue a preemptible-RCU callback for invocation after a grace period.
 671 */
 672void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
 673{
 674        __call_rcu(head, func, &rcu_preempt_state);
 675}
 676EXPORT_SYMBOL_GPL(call_rcu);
 677
 678/**
 679 * synchronize_rcu - wait until a grace period has elapsed.
 680 *
 681 * Control will return to the caller some time after a full grace
 682 * period has elapsed, in other words after all currently executing RCU
 683 * read-side critical sections have completed.  Note, however, that
 684 * upon return from synchronize_rcu(), the caller might well be executing
 685 * concurrently with new RCU read-side critical sections that began while
 686 * synchronize_rcu() was waiting.  RCU read-side critical sections are
 687 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
 688 */
 689void synchronize_rcu(void)
 690{
 691        if (!rcu_scheduler_active)
 692                return;
 693        wait_rcu_gp(call_rcu);
 694}
 695EXPORT_SYMBOL_GPL(synchronize_rcu);
 696
 697static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
 698static long sync_rcu_preempt_exp_count;
 699static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
 700
 701/*
 702 * Return non-zero if there are any tasks in RCU read-side critical
 703 * sections blocking the current preemptible-RCU expedited grace period.
 704 * If there is no preemptible-RCU expedited grace period currently in
 705 * progress, returns zero unconditionally.
 706 */
 707static int rcu_preempted_readers_exp(struct rcu_node *rnp)
 708{
 709        return rnp->exp_tasks != NULL;
 710}
 711
 712/*
 713 * return non-zero if there is no RCU expedited grace period in progress
 714 * for the specified rcu_node structure, in other words, if all CPUs and
 715 * tasks covered by the specified rcu_node structure have done their bit
 716 * for the current expedited grace period.  Works only for preemptible
 717 * RCU -- other RCU implementation use other means.
 718 *
 719 * Caller must hold sync_rcu_preempt_exp_mutex.
 720 */
 721static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
 722{
 723        return !rcu_preempted_readers_exp(rnp) &&
 724               ACCESS_ONCE(rnp->expmask) == 0;
 725}
 726
 727/*
 728 * Report the exit from RCU read-side critical section for the last task
 729 * that queued itself during or before the current expedited preemptible-RCU
 730 * grace period.  This event is reported either to the rcu_node structure on
 731 * which the task was queued or to one of that rcu_node structure's ancestors,
 732 * recursively up the tree.  (Calm down, calm down, we do the recursion
 733 * iteratively!)
 734 *
 735 * Most callers will set the "wake" flag, but the task initiating the
 736 * expedited grace period need not wake itself.
 737 *
 738 * Caller must hold sync_rcu_preempt_exp_mutex.
 739 */
 740static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
 741                               bool wake)
 742{
 743        unsigned long flags;
 744        unsigned long mask;
 745
 746        raw_spin_lock_irqsave(&rnp->lock, flags);
 747        for (;;) {
 748                if (!sync_rcu_preempt_exp_done(rnp)) {
 749                        raw_spin_unlock_irqrestore(&rnp->lock, flags);
 750                        break;
 751                }
 752                if (rnp->parent == NULL) {
 753                        raw_spin_unlock_irqrestore(&rnp->lock, flags);
 754                        if (wake)
 755                                wake_up(&sync_rcu_preempt_exp_wq);
 756                        break;
 757                }
 758                mask = rnp->grpmask;
 759                raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
 760                rnp = rnp->parent;
 761                raw_spin_lock(&rnp->lock); /* irqs already disabled */
 762                rnp->expmask &= ~mask;
 763        }
 764}
 765
 766/*
 767 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
 768 * grace period for the specified rcu_node structure.  If there are no such
 769 * tasks, report it up the rcu_node hierarchy.
 770 *
 771 * Caller must hold sync_rcu_preempt_exp_mutex and rsp->onofflock.
 772 */
 773static void
 774sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
 775{
 776        unsigned long flags;
 777        int must_wait = 0;
 778
 779        raw_spin_lock_irqsave(&rnp->lock, flags);
 780        if (list_empty(&rnp->blkd_tasks))
 781                raw_spin_unlock_irqrestore(&rnp->lock, flags);
 782        else {
 783                rnp->exp_tasks = rnp->blkd_tasks.next;
 784                rcu_initiate_boost(rnp, flags);  /* releases rnp->lock */
 785                must_wait = 1;
 786        }
 787        if (!must_wait)
 788                rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
 789}
 790
 791/*
 792 * Wait for an rcu-preempt grace period, but expedite it.  The basic idea
 793 * is to invoke synchronize_sched_expedited() to push all the tasks to
 794 * the ->blkd_tasks lists and wait for this list to drain.
 795 */
 796void synchronize_rcu_expedited(void)
 797{
 798        unsigned long flags;
 799        struct rcu_node *rnp;
 800        struct rcu_state *rsp = &rcu_preempt_state;
 801        long snap;
 802        int trycount = 0;
 803
 804        smp_mb(); /* Caller's modifications seen first by other CPUs. */
 805        snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
 806        smp_mb(); /* Above access cannot bleed into critical section. */
 807
 808        /*
 809         * Acquire lock, falling back to synchronize_rcu() if too many
 810         * lock-acquisition failures.  Of course, if someone does the
 811         * expedited grace period for us, just leave.
 812         */
 813        while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
 814                if (trycount++ < 10)
 815                        udelay(trycount * num_online_cpus());
 816                else {
 817                        synchronize_rcu();
 818                        return;
 819                }
 820                if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0)
 821                        goto mb_ret; /* Others did our work for us. */
 822        }
 823        if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0)
 824                goto unlock_mb_ret; /* Others did our work for us. */
 825
 826        /* force all RCU readers onto ->blkd_tasks lists. */
 827        synchronize_sched_expedited();
 828
 829        raw_spin_lock_irqsave(&rsp->onofflock, flags);
 830
 831        /* Initialize ->expmask for all non-leaf rcu_node structures. */
 832        rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
 833                raw_spin_lock(&rnp->lock); /* irqs already disabled. */
 834                rnp->expmask = rnp->qsmaskinit;
 835                raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
 836        }
 837
 838        /* Snapshot current state of ->blkd_tasks lists. */
 839        rcu_for_each_leaf_node(rsp, rnp)
 840                sync_rcu_preempt_exp_init(rsp, rnp);
 841        if (NUM_RCU_NODES > 1)
 842                sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
 843
 844        raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
 845
 846        /* Wait for snapshotted ->blkd_tasks lists to drain. */
 847        rnp = rcu_get_root(rsp);
 848        wait_event(sync_rcu_preempt_exp_wq,
 849                   sync_rcu_preempt_exp_done(rnp));
 850
 851        /* Clean up and exit. */
 852        smp_mb(); /* ensure expedited GP seen before counter increment. */
 853        ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
 854unlock_mb_ret:
 855        mutex_unlock(&sync_rcu_preempt_exp_mutex);
 856mb_ret:
 857        smp_mb(); /* ensure subsequent action seen after grace period. */
 858}
 859EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
 860
 861/*
 862 * Check to see if there is any immediate preemptible-RCU-related work
 863 * to be done.
 864 */
 865static int rcu_preempt_pending(int cpu)
 866{
 867        return __rcu_pending(&rcu_preempt_state,
 868                             &per_cpu(rcu_preempt_data, cpu));
 869}
 870
 871/*
 872 * Does preemptible RCU need the CPU to stay out of dynticks mode?
 873 */
 874static int rcu_preempt_needs_cpu(int cpu)
 875{
 876        return !!per_cpu(rcu_preempt_data, cpu).nxtlist;
 877}
 878
 879/**
 880 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
 881 */
 882void rcu_barrier(void)
 883{
 884        _rcu_barrier(&rcu_preempt_state, call_rcu);
 885}
 886EXPORT_SYMBOL_GPL(rcu_barrier);
 887
 888/*
 889 * Initialize preemptible RCU's per-CPU data.
 890 */
 891static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
 892{
 893        rcu_init_percpu_data(cpu, &rcu_preempt_state, 1);
 894}
 895
 896/*
 897 * Move preemptible RCU's callbacks from dying CPU to other online CPU.
 898 */
 899static void rcu_preempt_send_cbs_to_online(void)
 900{
 901        rcu_send_cbs_to_online(&rcu_preempt_state);
 902}
 903
 904/*
 905 * Initialize preemptible RCU's state structures.
 906 */
 907static void __init __rcu_init_preempt(void)
 908{
 909        rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
 910}
 911
 912/*
 913 * Check for a task exiting while in a preemptible-RCU read-side
 914 * critical section, clean up if so.  No need to issue warnings,
 915 * as debug_check_no_locks_held() already does this if lockdep
 916 * is enabled.
 917 */
 918void exit_rcu(void)
 919{
 920        struct task_struct *t = current;
 921
 922        if (t->rcu_read_lock_nesting == 0)
 923                return;
 924        t->rcu_read_lock_nesting = 1;
 925        __rcu_read_unlock();
 926}
 927
 928#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
 929
 930static struct rcu_state *rcu_state = &rcu_sched_state;
 931
 932/*
 933 * Tell them what RCU they are running.
 934 */
 935static void __init rcu_bootup_announce(void)
 936{
 937        printk(KERN_INFO "Hierarchical RCU implementation.\n");
 938        rcu_bootup_announce_oddness();
 939}
 940
 941/*
 942 * Return the number of RCU batches processed thus far for debug & stats.
 943 */
 944long rcu_batches_completed(void)
 945{
 946        return rcu_batches_completed_sched();
 947}
 948EXPORT_SYMBOL_GPL(rcu_batches_completed);
 949
 950/*
 951 * Force a quiescent state for RCU, which, because there is no preemptible
 952 * RCU, becomes the same as rcu-sched.
 953 */
 954void rcu_force_quiescent_state(void)
 955{
 956        rcu_sched_force_quiescent_state();
 957}
 958EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
 959
 960/*
 961 * Because preemptible RCU does not exist, we never have to check for
 962 * CPUs being in quiescent states.
 963 */
 964static void rcu_preempt_note_context_switch(int cpu)
 965{
 966}
 967
 968/*
 969 * Because preemptible RCU does not exist, there are never any preempted
 970 * RCU readers.
 971 */
 972static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
 973{
 974        return 0;
 975}
 976
 977#ifdef CONFIG_HOTPLUG_CPU
 978
 979/* Because preemptible RCU does not exist, no quieting of tasks. */
 980static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
 981{
 982        raw_spin_unlock_irqrestore(&rnp->lock, flags);
 983}
 984
 985#endif /* #ifdef CONFIG_HOTPLUG_CPU */
 986
 987/*
 988 * Because preemptible RCU does not exist, we never have to check for
 989 * tasks blocked within RCU read-side critical sections.
 990 */
 991static void rcu_print_detail_task_stall(struct rcu_state *rsp)
 992{
 993}
 994
 995/*
 996 * Because preemptible RCU does not exist, we never have to check for
 997 * tasks blocked within RCU read-side critical sections.
 998 */
 999static int rcu_print_task_stall(struct rcu_node *rnp)
1000{
1001        return 0;
1002}
1003
1004/*
1005 * Because preemptible RCU does not exist, there is no need to suppress
1006 * its CPU stall warnings.
1007 */
1008static void rcu_preempt_stall_reset(void)
1009{
1010}
1011
1012/*
1013 * Because there is no preemptible RCU, there can be no readers blocked,
1014 * so there is no need to check for blocked tasks.  So check only for
1015 * bogus qsmask values.
1016 */
1017static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
1018{
1019        WARN_ON_ONCE(rnp->qsmask);
1020}
1021
1022#ifdef CONFIG_HOTPLUG_CPU
1023
1024/*
1025 * Because preemptible RCU does not exist, it never needs to migrate
1026 * tasks that were blocked within RCU read-side critical sections, and
1027 * such non-existent tasks cannot possibly have been blocking the current
1028 * grace period.
1029 */
1030static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
1031                                     struct rcu_node *rnp,
1032                                     struct rcu_data *rdp)
1033{
1034        return 0;
1035}
1036
1037/*
1038 * Because preemptible RCU does not exist, it never needs CPU-offline
1039 * processing.
1040 */
1041static void rcu_preempt_offline_cpu(int cpu)
1042{
1043}
1044
1045#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1046
1047/*
1048 * Because preemptible RCU does not exist, it never has any callbacks
1049 * to check.
1050 */
1051static void rcu_preempt_check_callbacks(int cpu)
1052{
1053}
1054
1055/*
1056 * Because preemptible RCU does not exist, it never has any callbacks
1057 * to process.
1058 */
1059static void rcu_preempt_process_callbacks(void)
1060{
1061}
1062
1063/*
1064 * Wait for an rcu-preempt grace period, but make it happen quickly.
1065 * But because preemptible RCU does not exist, map to rcu-sched.
1066 */
1067void synchronize_rcu_expedited(void)
1068{
1069        synchronize_sched_expedited();
1070}
1071EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
1072
1073#ifdef CONFIG_HOTPLUG_CPU
1074
1075/*
1076 * Because preemptible RCU does not exist, there is never any need to
1077 * report on tasks preempted in RCU read-side critical sections during
1078 * expedited RCU grace periods.
1079 */
1080static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
1081                               bool wake)
1082{
1083}
1084
1085#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1086
1087/*
1088 * Because preemptible RCU does not exist, it never has any work to do.
1089 */
1090static int rcu_preempt_pending(int cpu)
1091{
1092        return 0;
1093}
1094
1095/*
1096 * Because preemptible RCU does not exist, it never needs any CPU.
1097 */
1098static int rcu_preempt_needs_cpu(int cpu)
1099{
1100        return 0;
1101}
1102
1103/*
1104 * Because preemptible RCU does not exist, rcu_barrier() is just
1105 * another name for rcu_barrier_sched().
1106 */
1107void rcu_barrier(void)
1108{
1109        rcu_barrier_sched();
1110}
1111EXPORT_SYMBOL_GPL(rcu_barrier);
1112
1113/*
1114 * Because preemptible RCU does not exist, there is no per-CPU
1115 * data to initialize.
1116 */
1117static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
1118{
1119}
1120
1121/*
1122 * Because there is no preemptible RCU, there are no callbacks to move.
1123 */
1124static void rcu_preempt_send_cbs_to_online(void)
1125{
1126}
1127
1128/*
1129 * Because preemptible RCU does not exist, it need not be initialized.
1130 */
1131static void __init __rcu_init_preempt(void)
1132{
1133}
1134
1135#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1136
1137#ifdef CONFIG_RCU_BOOST
1138
1139#include "rtmutex_common.h"
1140
1141#ifdef CONFIG_RCU_TRACE
1142
1143static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1144{
1145        if (list_empty(&rnp->blkd_tasks))
1146                rnp->n_balk_blkd_tasks++;
1147        else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
1148                rnp->n_balk_exp_gp_tasks++;
1149        else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
1150                rnp->n_balk_boost_tasks++;
1151        else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
1152                rnp->n_balk_notblocked++;
1153        else if (rnp->gp_tasks != NULL &&
1154                 ULONG_CMP_LT(jiffies, rnp->boost_time))
1155                rnp->n_balk_notyet++;
1156        else
1157                rnp->n_balk_nos++;
1158}
1159
1160#else /* #ifdef CONFIG_RCU_TRACE */
1161
1162static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1163{
1164}
1165
1166#endif /* #else #ifdef CONFIG_RCU_TRACE */
1167
1168/*
1169 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1170 * or ->boost_tasks, advancing the pointer to the next task in the
1171 * ->blkd_tasks list.
1172 *
1173 * Note that irqs must be enabled: boosting the task can block.
1174 * Returns 1 if there are more tasks needing to be boosted.
1175 */
1176static int rcu_boost(struct rcu_node *rnp)
1177{
1178        unsigned long flags;
1179        struct rt_mutex mtx;
1180        struct task_struct *t;
1181        struct list_head *tb;
1182
1183        if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
1184                return 0;  /* Nothing left to boost. */
1185
1186        raw_spin_lock_irqsave(&rnp->lock, flags);
1187
1188        /*
1189         * Recheck under the lock: all tasks in need of boosting
1190         * might exit their RCU read-side critical sections on their own.
1191         */
1192        if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1193                raw_spin_unlock_irqrestore(&rnp->lock, flags);
1194                return 0;
1195        }
1196
1197        /*
1198         * Preferentially boost tasks blocking expedited grace periods.
1199         * This cannot starve the normal grace periods because a second
1200         * expedited grace period must boost all blocked tasks, including
1201         * those blocking the pre-existing normal grace period.
1202         */
1203        if (rnp->exp_tasks != NULL) {
1204                tb = rnp->exp_tasks;
1205                rnp->n_exp_boosts++;
1206        } else {
1207                tb = rnp->boost_tasks;
1208                rnp->n_normal_boosts++;
1209        }
1210        rnp->n_tasks_boosted++;
1211
1212        /*
1213         * We boost task t by manufacturing an rt_mutex that appears to
1214         * be held by task t.  We leave a pointer to that rt_mutex where
1215         * task t can find it, and task t will release the mutex when it
1216         * exits its outermost RCU read-side critical section.  Then
1217         * simply acquiring this artificial rt_mutex will boost task
1218         * t's priority.  (Thanks to tglx for suggesting this approach!)
1219         *
1220         * Note that task t must acquire rnp->lock to remove itself from
1221         * the ->blkd_tasks list, which it will do from exit() if from
1222         * nowhere else.  We therefore are guaranteed that task t will
1223         * stay around at least until we drop rnp->lock.  Note that
1224         * rnp->lock also resolves races between our priority boosting
1225         * and task t's exiting its outermost RCU read-side critical
1226         * section.
1227         */
1228        t = container_of(tb, struct task_struct, rcu_node_entry);
1229        rt_mutex_init_proxy_locked(&mtx, t);
1230        t->rcu_boost_mutex = &mtx;
1231        raw_spin_unlock_irqrestore(&rnp->lock, flags);
1232        rt_mutex_lock(&mtx);  /* Side effect: boosts task t's priority. */
1233        rt_mutex_unlock(&mtx);  /* Keep lockdep happy. */
1234
1235        return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
1236               ACCESS_ONCE(rnp->boost_tasks) != NULL;
1237}
1238
1239/*
1240 * Timer handler to initiate waking up of boost kthreads that
1241 * have yielded the CPU due to excessive numbers of tasks to
1242 * boost.  We wake up the per-rcu_node kthread, which in turn
1243 * will wake up the booster kthread.
1244 */
1245static void rcu_boost_kthread_timer(unsigned long arg)
1246{
1247        invoke_rcu_node_kthread((struct rcu_node *)arg);
1248}
1249
1250/*
1251 * Priority-boosting kthread.  One per leaf rcu_node and one for the
1252 * root rcu_node.
1253 */
1254static int rcu_boost_kthread(void *arg)
1255{
1256        struct rcu_node *rnp = (struct rcu_node *)arg;
1257        int spincnt = 0;
1258        int more2boost;
1259
1260        trace_rcu_utilization("Start boost kthread@init");
1261        for (;;) {
1262                rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1263                trace_rcu_utilization("End boost kthread@rcu_wait");
1264                rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1265                trace_rcu_utilization("Start boost kthread@rcu_wait");
1266                rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1267                more2boost = rcu_boost(rnp);
1268                if (more2boost)
1269                        spincnt++;
1270                else
1271                        spincnt = 0;
1272                if (spincnt > 10) {
1273                        trace_rcu_utilization("End boost kthread@rcu_yield");
1274                        rcu_yield(rcu_boost_kthread_timer, (unsigned long)rnp);
1275                        trace_rcu_utilization("Start boost kthread@rcu_yield");
1276                        spincnt = 0;
1277                }
1278        }
1279        /* NOTREACHED */
1280        trace_rcu_utilization("End boost kthread@notreached");
1281        return 0;
1282}
1283
1284/*
1285 * Check to see if it is time to start boosting RCU readers that are
1286 * blocking the current grace period, and, if so, tell the per-rcu_node
1287 * kthread to start boosting them.  If there is an expedited grace
1288 * period in progress, it is always time to boost.
1289 *
1290 * The caller must hold rnp->lock, which this function releases,
1291 * but irqs remain disabled.  The ->boost_kthread_task is immortal,
1292 * so we don't need to worry about it going away.
1293 */
1294static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1295{
1296        struct task_struct *t;
1297
1298        if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1299                rnp->n_balk_exp_gp_tasks++;
1300                raw_spin_unlock_irqrestore(&rnp->lock, flags);
1301                return;
1302        }
1303        if (rnp->exp_tasks != NULL ||
1304            (rnp->gp_tasks != NULL &&
1305             rnp->boost_tasks == NULL &&
1306             rnp->qsmask == 0 &&
1307             ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1308                if (rnp->exp_tasks == NULL)
1309                        rnp->boost_tasks = rnp->gp_tasks;
1310                raw_spin_unlock_irqrestore(&rnp->lock, flags);
1311                t = rnp->boost_kthread_task;
1312                if (t != NULL)
1313                        wake_up_process(t);
1314        } else {
1315                rcu_initiate_boost_trace(rnp);
1316                raw_spin_unlock_irqrestore(&rnp->lock, flags);
1317        }
1318}
1319
1320/*
1321 * Wake up the per-CPU kthread to invoke RCU callbacks.
1322 */
1323static void invoke_rcu_callbacks_kthread(void)
1324{
1325        unsigned long flags;
1326
1327        local_irq_save(flags);
1328        __this_cpu_write(rcu_cpu_has_work, 1);
1329        if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1330            current != __this_cpu_read(rcu_cpu_kthread_task))
1331                wake_up_process(__this_cpu_read(rcu_cpu_kthread_task));
1332        local_irq_restore(flags);
1333}
1334
1335/*
1336 * Is the current CPU running the RCU-callbacks kthread?
1337 * Caller must have preemption disabled.
1338 */
1339static bool rcu_is_callbacks_kthread(void)
1340{
1341        return __get_cpu_var(rcu_cpu_kthread_task) == current;
1342}
1343
1344/*
1345 * Set the affinity of the boost kthread.  The CPU-hotplug locks are
1346 * held, so no one should be messing with the existence of the boost
1347 * kthread.
1348 */
1349static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp,
1350                                          cpumask_var_t cm)
1351{
1352        struct task_struct *t;
1353
1354        t = rnp->boost_kthread_task;
1355        if (t != NULL)
1356                set_cpus_allowed_ptr(rnp->boost_kthread_task, cm);
1357}
1358
1359#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1360
1361/*
1362 * Do priority-boost accounting for the start of a new grace period.
1363 */
1364static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1365{
1366        rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1367}
1368
1369/*
1370 * Create an RCU-boost kthread for the specified node if one does not
1371 * already exist.  We only create this kthread for preemptible RCU.
1372 * Returns zero if all is well, a negated errno otherwise.
1373 */
1374static int __cpuinit rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1375                                                 struct rcu_node *rnp,
1376                                                 int rnp_index)
1377{
1378        unsigned long flags;
1379        struct sched_param sp;
1380        struct task_struct *t;
1381
1382        if (&rcu_preempt_state != rsp)
1383                return 0;
1384        rsp->boost = 1;
1385        if (rnp->boost_kthread_task != NULL)
1386                return 0;
1387        t = kthread_create(rcu_boost_kthread, (void *)rnp,
1388                           "rcub/%d", rnp_index);
1389        if (IS_ERR(t))
1390                return PTR_ERR(t);
1391        raw_spin_lock_irqsave(&rnp->lock, flags);
1392        rnp->boost_kthread_task = t;
1393        raw_spin_unlock_irqrestore(&rnp->lock, flags);
1394        sp.sched_priority = RCU_BOOST_PRIO;
1395        sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1396        wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1397        return 0;
1398}
1399
1400#ifdef CONFIG_HOTPLUG_CPU
1401
1402/*
1403 * Stop the RCU's per-CPU kthread when its CPU goes offline,.
1404 */
1405static void rcu_stop_cpu_kthread(int cpu)
1406{
1407        struct task_struct *t;
1408
1409        /* Stop the CPU's kthread. */
1410        t = per_cpu(rcu_cpu_kthread_task, cpu);
1411        if (t != NULL) {
1412                per_cpu(rcu_cpu_kthread_task, cpu) = NULL;
1413                kthread_stop(t);
1414        }
1415}
1416
1417#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1418
1419static void rcu_kthread_do_work(void)
1420{
1421        rcu_do_batch(&rcu_sched_state, &__get_cpu_var(rcu_sched_data));
1422        rcu_do_batch(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1423        rcu_preempt_do_callbacks();
1424}
1425
1426/*
1427 * Wake up the specified per-rcu_node-structure kthread.
1428 * Because the per-rcu_node kthreads are immortal, we don't need
1429 * to do anything to keep them alive.
1430 */
1431static void invoke_rcu_node_kthread(struct rcu_node *rnp)
1432{
1433        struct task_struct *t;
1434
1435        t = rnp->node_kthread_task;
1436        if (t != NULL)
1437                wake_up_process(t);
1438}
1439
1440/*
1441 * Set the specified CPU's kthread to run RT or not, as specified by
1442 * the to_rt argument.  The CPU-hotplug locks are held, so the task
1443 * is not going away.
1444 */
1445static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
1446{
1447        int policy;
1448        struct sched_param sp;
1449        struct task_struct *t;
1450
1451        t = per_cpu(rcu_cpu_kthread_task, cpu);
1452        if (t == NULL)
1453                return;
1454        if (to_rt) {
1455                policy = SCHED_FIFO;
1456                sp.sched_priority = RCU_KTHREAD_PRIO;
1457        } else {
1458                policy = SCHED_NORMAL;
1459                sp.sched_priority = 0;
1460        }
1461        sched_setscheduler_nocheck(t, policy, &sp);
1462}
1463
1464/*
1465 * Timer handler to initiate the waking up of per-CPU kthreads that
1466 * have yielded the CPU due to excess numbers of RCU callbacks.
1467 * We wake up the per-rcu_node kthread, which in turn will wake up
1468 * the booster kthread.
1469 */
1470static void rcu_cpu_kthread_timer(unsigned long arg)
1471{
1472        struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, arg);
1473        struct rcu_node *rnp = rdp->mynode;
1474
1475        atomic_or(rdp->grpmask, &rnp->wakemask);
1476        invoke_rcu_node_kthread(rnp);
1477}
1478
1479/*
1480 * Drop to non-real-time priority and yield, but only after posting a
1481 * timer that will cause us to regain our real-time priority if we
1482 * remain preempted.  Either way, we restore our real-time priority
1483 * before returning.
1484 */
1485static void rcu_yield(void (*f)(unsigned long), unsigned long arg)
1486{
1487        struct sched_param sp;
1488        struct timer_list yield_timer;
1489        int prio = current->rt_priority;
1490
1491        setup_timer_on_stack(&yield_timer, f, arg);
1492        mod_timer(&yield_timer, jiffies + 2);
1493        sp.sched_priority = 0;
1494        sched_setscheduler_nocheck(current, SCHED_NORMAL, &sp);
1495        set_user_nice(current, 19);
1496        schedule();
1497        set_user_nice(current, 0);
1498        sp.sched_priority = prio;
1499        sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1500        del_timer(&yield_timer);
1501}
1502
1503/*
1504 * Handle cases where the rcu_cpu_kthread() ends up on the wrong CPU.
1505 * This can happen while the corresponding CPU is either coming online
1506 * or going offline.  We cannot wait until the CPU is fully online
1507 * before starting the kthread, because the various notifier functions
1508 * can wait for RCU grace periods.  So we park rcu_cpu_kthread() until
1509 * the corresponding CPU is online.
1510 *
1511 * Return 1 if the kthread needs to stop, 0 otherwise.
1512 *
1513 * Caller must disable bh.  This function can momentarily enable it.
1514 */
1515static int rcu_cpu_kthread_should_stop(int cpu)
1516{
1517        while (cpu_is_offline(cpu) ||
1518               !cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)) ||
1519               smp_processor_id() != cpu) {
1520                if (kthread_should_stop())
1521                        return 1;
1522                per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1523                per_cpu(rcu_cpu_kthread_cpu, cpu) = raw_smp_processor_id();
1524                local_bh_enable();
1525                schedule_timeout_uninterruptible(1);
1526                if (!cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)))
1527                        set_cpus_allowed_ptr(current, cpumask_of(cpu));
1528                local_bh_disable();
1529        }
1530        per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
1531        return 0;
1532}
1533
1534/*
1535 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1536 * RCU softirq used in flavors and configurations of RCU that do not
1537 * support RCU priority boosting.
1538 */
1539static int rcu_cpu_kthread(void *arg)
1540{
1541        int cpu = (int)(long)arg;
1542        unsigned long flags;
1543        int spincnt = 0;
1544        unsigned int *statusp = &per_cpu(rcu_cpu_kthread_status, cpu);
1545        char work;
1546        char *workp = &per_cpu(rcu_cpu_has_work, cpu);
1547
1548        trace_rcu_utilization("Start CPU kthread@init");
1549        for (;;) {
1550                *statusp = RCU_KTHREAD_WAITING;
1551                trace_rcu_utilization("End CPU kthread@rcu_wait");
1552                rcu_wait(*workp != 0 || kthread_should_stop());
1553                trace_rcu_utilization("Start CPU kthread@rcu_wait");
1554                local_bh_disable();
1555                if (rcu_cpu_kthread_should_stop(cpu)) {
1556                        local_bh_enable();
1557                        break;
1558                }
1559                *statusp = RCU_KTHREAD_RUNNING;
1560                per_cpu(rcu_cpu_kthread_loops, cpu)++;
1561                local_irq_save(flags);
1562                work = *workp;
1563                *workp = 0;
1564                local_irq_restore(flags);
1565                if (work)
1566                        rcu_kthread_do_work();
1567                local_bh_enable();
1568                if (*workp != 0)
1569                        spincnt++;
1570                else
1571                        spincnt = 0;
1572                if (spincnt > 10) {
1573                        *statusp = RCU_KTHREAD_YIELDING;
1574                        trace_rcu_utilization("End CPU kthread@rcu_yield");
1575                        rcu_yield(rcu_cpu_kthread_timer, (unsigned long)cpu);
1576                        trace_rcu_utilization("Start CPU kthread@rcu_yield");
1577                        spincnt = 0;
1578                }
1579        }
1580        *statusp = RCU_KTHREAD_STOPPED;
1581        trace_rcu_utilization("End CPU kthread@term");
1582        return 0;
1583}
1584
1585/*
1586 * Spawn a per-CPU kthread, setting up affinity and priority.
1587 * Because the CPU hotplug lock is held, no other CPU will be attempting
1588 * to manipulate rcu_cpu_kthread_task.  There might be another CPU
1589 * attempting to access it during boot, but the locking in kthread_bind()
1590 * will enforce sufficient ordering.
1591 *
1592 * Please note that we cannot simply refuse to wake up the per-CPU
1593 * kthread because kthreads are created in TASK_UNINTERRUPTIBLE state,
1594 * which can result in softlockup complaints if the task ends up being
1595 * idle for more than a couple of minutes.
1596 *
1597 * However, please note also that we cannot bind the per-CPU kthread to its
1598 * CPU until that CPU is fully online.  We also cannot wait until the
1599 * CPU is fully online before we create its per-CPU kthread, as this would
1600 * deadlock the system when CPU notifiers tried waiting for grace
1601 * periods.  So we bind the per-CPU kthread to its CPU only if the CPU
1602 * is online.  If its CPU is not yet fully online, then the code in
1603 * rcu_cpu_kthread() will wait until it is fully online, and then do
1604 * the binding.
1605 */
1606static int __cpuinit rcu_spawn_one_cpu_kthread(int cpu)
1607{
1608        struct sched_param sp;
1609        struct task_struct *t;
1610
1611        if (!rcu_scheduler_fully_active ||
1612            per_cpu(rcu_cpu_kthread_task, cpu) != NULL)
1613                return 0;
1614        t = kthread_create_on_node(rcu_cpu_kthread,
1615                                   (void *)(long)cpu,
1616                                   cpu_to_node(cpu),
1617                                   "rcuc/%d", cpu);
1618        if (IS_ERR(t))
1619                return PTR_ERR(t);
1620        if (cpu_online(cpu))
1621                kthread_bind(t, cpu);
1622        per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
1623        WARN_ON_ONCE(per_cpu(rcu_cpu_kthread_task, cpu) != NULL);
1624        sp.sched_priority = RCU_KTHREAD_PRIO;
1625        sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1626        per_cpu(rcu_cpu_kthread_task, cpu) = t;
1627        wake_up_process(t); /* Get to TASK_INTERRUPTIBLE quickly. */
1628        return 0;
1629}
1630
1631/*
1632 * Per-rcu_node kthread, which is in charge of waking up the per-CPU
1633 * kthreads when needed.  We ignore requests to wake up kthreads
1634 * for offline CPUs, which is OK because force_quiescent_state()
1635 * takes care of this case.
1636 */
1637static int rcu_node_kthread(void *arg)
1638{
1639        int cpu;
1640        unsigned long flags;
1641        unsigned long mask;
1642        struct rcu_node *rnp = (struct rcu_node *)arg;
1643        struct sched_param sp;
1644        struct task_struct *t;
1645
1646        for (;;) {
1647                rnp->node_kthread_status = RCU_KTHREAD_WAITING;
1648                rcu_wait(atomic_read(&rnp->wakemask) != 0);
1649                rnp->node_kthread_status = RCU_KTHREAD_RUNNING;
1650                raw_spin_lock_irqsave(&rnp->lock, flags);
1651                mask = atomic_xchg(&rnp->wakemask, 0);
1652                rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1653                for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1) {
1654                        if ((mask & 0x1) == 0)
1655                                continue;
1656                        preempt_disable();
1657                        t = per_cpu(rcu_cpu_kthread_task, cpu);
1658                        if (!cpu_online(cpu) || t == NULL) {
1659                                preempt_enable();
1660                                continue;
1661                        }
1662                        per_cpu(rcu_cpu_has_work, cpu) = 1;
1663                        sp.sched_priority = RCU_KTHREAD_PRIO;
1664                        sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1665                        preempt_enable();
1666                }
1667        }
1668        /* NOTREACHED */
1669        rnp->node_kthread_status = RCU_KTHREAD_STOPPED;
1670        return 0;
1671}
1672
1673/*
1674 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1675 * served by the rcu_node in question.  The CPU hotplug lock is still
1676 * held, so the value of rnp->qsmaskinit will be stable.
1677 *
1678 * We don't include outgoingcpu in the affinity set, use -1 if there is
1679 * no outgoing CPU.  If there are no CPUs left in the affinity set,
1680 * this function allows the kthread to execute on any CPU.
1681 */
1682static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1683{
1684        cpumask_var_t cm;
1685        int cpu;
1686        unsigned long mask = rnp->qsmaskinit;
1687
1688        if (rnp->node_kthread_task == NULL)
1689                return;
1690        if (!alloc_cpumask_var(&cm, GFP_KERNEL))
1691                return;
1692        cpumask_clear(cm);
1693        for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1694                if ((mask & 0x1) && cpu != outgoingcpu)
1695                        cpumask_set_cpu(cpu, cm);
1696        if (cpumask_weight(cm) == 0) {
1697                cpumask_setall(cm);
1698                for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1699                        cpumask_clear_cpu(cpu, cm);
1700                WARN_ON_ONCE(cpumask_weight(cm) == 0);
1701        }
1702        set_cpus_allowed_ptr(rnp->node_kthread_task, cm);
1703        rcu_boost_kthread_setaffinity(rnp, cm);
1704        free_cpumask_var(cm);
1705}
1706
1707/*
1708 * Spawn a per-rcu_node kthread, setting priority and affinity.
1709 * Called during boot before online/offline can happen, or, if
1710 * during runtime, with the main CPU-hotplug locks held.  So only
1711 * one of these can be executing at a time.
1712 */
1713static int __cpuinit rcu_spawn_one_node_kthread(struct rcu_state *rsp,
1714                                                struct rcu_node *rnp)
1715{
1716        unsigned long flags;
1717        int rnp_index = rnp - &rsp->node[0];
1718        struct sched_param sp;
1719        struct task_struct *t;
1720
1721        if (!rcu_scheduler_fully_active ||
1722            rnp->qsmaskinit == 0)
1723                return 0;
1724        if (rnp->node_kthread_task == NULL) {
1725                t = kthread_create(rcu_node_kthread, (void *)rnp,
1726                                   "rcun/%d", rnp_index);
1727                if (IS_ERR(t))
1728                        return PTR_ERR(t);
1729                raw_spin_lock_irqsave(&rnp->lock, flags);
1730                rnp->node_kthread_task = t;
1731                raw_spin_unlock_irqrestore(&rnp->lock, flags);
1732                sp.sched_priority = 99;
1733                sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1734                wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1735        }
1736        return rcu_spawn_one_boost_kthread(rsp, rnp, rnp_index);
1737}
1738
1739/*
1740 * Spawn all kthreads -- called as soon as the scheduler is running.
1741 */
1742static int __init rcu_spawn_kthreads(void)
1743{
1744        int cpu;
1745        struct rcu_node *rnp;
1746
1747        rcu_scheduler_fully_active = 1;
1748        for_each_possible_cpu(cpu) {
1749                per_cpu(rcu_cpu_has_work, cpu) = 0;
1750                if (cpu_online(cpu))
1751                        (void)rcu_spawn_one_cpu_kthread(cpu);
1752        }
1753        rnp = rcu_get_root(rcu_state);
1754        (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1755        if (NUM_RCU_NODES > 1) {
1756                rcu_for_each_leaf_node(rcu_state, rnp)
1757                        (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1758        }
1759        return 0;
1760}
1761early_initcall(rcu_spawn_kthreads);
1762
1763static void __cpuinit rcu_prepare_kthreads(int cpu)
1764{
1765        struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
1766        struct rcu_node *rnp = rdp->mynode;
1767
1768        /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1769        if (rcu_scheduler_fully_active) {
1770                (void)rcu_spawn_one_cpu_kthread(cpu);
1771                if (rnp->node_kthread_task == NULL)
1772                        (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1773        }
1774}
1775
1776#else /* #ifdef CONFIG_RCU_BOOST */
1777
1778static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1779{
1780        raw_spin_unlock_irqrestore(&rnp->lock, flags);
1781}
1782
1783static void invoke_rcu_callbacks_kthread(void)
1784{
1785        WARN_ON_ONCE(1);
1786}
1787
1788static bool rcu_is_callbacks_kthread(void)
1789{
1790        return false;
1791}
1792
1793static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1794{
1795}
1796
1797#ifdef CONFIG_HOTPLUG_CPU
1798
1799static void rcu_stop_cpu_kthread(int cpu)
1800{
1801}
1802
1803#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1804
1805static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1806{
1807}
1808
1809static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
1810{
1811}
1812
1813static int __init rcu_scheduler_really_started(void)
1814{
1815        rcu_scheduler_fully_active = 1;
1816        return 0;
1817}
1818early_initcall(rcu_scheduler_really_started);
1819
1820static void __cpuinit rcu_prepare_kthreads(int cpu)
1821{
1822}
1823
1824#endif /* #else #ifdef CONFIG_RCU_BOOST */
1825
1826#ifndef CONFIG_SMP
1827
1828void synchronize_sched_expedited(void)
1829{
1830        cond_resched();
1831}
1832EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
1833
1834#else /* #ifndef CONFIG_SMP */
1835
1836static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
1837static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);
1838
1839static int synchronize_sched_expedited_cpu_stop(void *data)
1840{
1841        /*
1842         * There must be a full memory barrier on each affected CPU
1843         * between the time that try_stop_cpus() is called and the
1844         * time that it returns.
1845         *
1846         * In the current initial implementation of cpu_stop, the
1847         * above condition is already met when the control reaches
1848         * this point and the following smp_mb() is not strictly
1849         * necessary.  Do smp_mb() anyway for documentation and
1850         * robustness against future implementation changes.
1851         */
1852        smp_mb(); /* See above comment block. */
1853        return 0;
1854}
1855
1856/*
1857 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
1858 * approach to force grace period to end quickly.  This consumes
1859 * significant time on all CPUs, and is thus not recommended for
1860 * any sort of common-case code.
1861 *
1862 * Note that it is illegal to call this function while holding any
1863 * lock that is acquired by a CPU-hotplug notifier.  Failing to
1864 * observe this restriction will result in deadlock.
1865 *
1866 * This implementation can be thought of as an application of ticket
1867 * locking to RCU, with sync_sched_expedited_started and
1868 * sync_sched_expedited_done taking on the roles of the halves
1869 * of the ticket-lock word.  Each task atomically increments
1870 * sync_sched_expedited_started upon entry, snapshotting the old value,
1871 * then attempts to stop all the CPUs.  If this succeeds, then each
1872 * CPU will have executed a context switch, resulting in an RCU-sched
1873 * grace period.  We are then done, so we use atomic_cmpxchg() to
1874 * update sync_sched_expedited_done to match our snapshot -- but
1875 * only if someone else has not already advanced past our snapshot.
1876 *
1877 * On the other hand, if try_stop_cpus() fails, we check the value
1878 * of sync_sched_expedited_done.  If it has advanced past our
1879 * initial snapshot, then someone else must have forced a grace period
1880 * some time after we took our snapshot.  In this case, our work is
1881 * done for us, and we can simply return.  Otherwise, we try again,
1882 * but keep our initial snapshot for purposes of checking for someone
1883 * doing our work for us.
1884 *
1885 * If we fail too many times in a row, we fall back to synchronize_sched().
1886 */
1887void synchronize_sched_expedited(void)
1888{
1889        int firstsnap, s, snap, trycount = 0;
1890
1891        /* Note that atomic_inc_return() implies full memory barrier. */
1892        firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
1893        get_online_cpus();
1894
1895        /*
1896         * Each pass through the following loop attempts to force a
1897         * context switch on each CPU.
1898         */
1899        while (try_stop_cpus(cpu_online_mask,
1900                             synchronize_sched_expedited_cpu_stop,
1901                             NULL) == -EAGAIN) {
1902                put_online_cpus();
1903
1904                /* No joy, try again later.  Or just synchronize_sched(). */
1905                if (trycount++ < 10)
1906                        udelay(trycount * num_online_cpus());
1907                else {
1908                        synchronize_sched();
1909                        return;
1910                }
1911
1912                /* Check to see if someone else did our work for us. */
1913                s = atomic_read(&sync_sched_expedited_done);
1914                if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
1915                        smp_mb(); /* ensure test happens before caller kfree */
1916                        return;
1917                }
1918
1919                /*
1920                 * Refetching sync_sched_expedited_started allows later
1921                 * callers to piggyback on our grace period.  We subtract
1922                 * 1 to get the same token that the last incrementer got.
1923                 * We retry after they started, so our grace period works
1924                 * for them, and they started after our first try, so their
1925                 * grace period works for us.
1926                 */
1927                get_online_cpus();
1928                snap = atomic_read(&sync_sched_expedited_started);
1929                smp_mb(); /* ensure read is before try_stop_cpus(). */
1930        }
1931
1932        /*
1933         * Everyone up to our most recent fetch is covered by our grace
1934         * period.  Update the counter, but only if our work is still
1935         * relevant -- which it won't be if someone who started later
1936         * than we did beat us to the punch.
1937         */
1938        do {
1939                s = atomic_read(&sync_sched_expedited_done);
1940                if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
1941                        smp_mb(); /* ensure test happens before caller kfree */
1942                        break;
1943                }
1944        } while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);
1945
1946        put_online_cpus();
1947}
1948EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
1949
1950#endif /* #else #ifndef CONFIG_SMP */
1951
1952#if !defined(CONFIG_RCU_FAST_NO_HZ)
1953
1954/*
1955 * Check to see if any future RCU-related work will need to be done
1956 * by the current CPU, even if none need be done immediately, returning
1957 * 1 if so.  This function is part of the RCU implementation; it is -not-
1958 * an exported member of the RCU API.
1959 *
1960 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1961 * any flavor of RCU.
1962 */
1963int rcu_needs_cpu(int cpu)
1964{
1965        return rcu_cpu_has_callbacks(cpu);
1966}
1967
1968/*
1969 * Because we do not have RCU_FAST_NO_HZ, don't bother initializing for it.
1970 */
1971static void rcu_prepare_for_idle_init(int cpu)
1972{
1973}
1974
1975/*
1976 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1977 * after it.
1978 */
1979static void rcu_cleanup_after_idle(int cpu)
1980{
1981}
1982
1983/*
1984 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=y,
1985 * is nothing.
1986 */
1987static void rcu_prepare_for_idle(int cpu)
1988{
1989}
1990
1991#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1992
1993/*
1994 * This code is invoked when a CPU goes idle, at which point we want
1995 * to have the CPU do everything required for RCU so that it can enter
1996 * the energy-efficient dyntick-idle mode.  This is handled by a
1997 * state machine implemented by rcu_prepare_for_idle() below.
1998 *
1999 * The following three proprocessor symbols control this state machine:
2000 *
2001 * RCU_IDLE_FLUSHES gives the maximum number of times that we will attempt
2002 *      to satisfy RCU.  Beyond this point, it is better to incur a periodic
2003 *      scheduling-clock interrupt than to loop through the state machine
2004 *      at full power.
2005 * RCU_IDLE_OPT_FLUSHES gives the number of RCU_IDLE_FLUSHES that are
2006 *      optional if RCU does not need anything immediately from this
2007 *      CPU, even if this CPU still has RCU callbacks queued.  The first
2008 *      times through the state machine are mandatory: we need to give
2009 *      the state machine a chance to communicate a quiescent state
2010 *      to the RCU core.
2011 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
2012 *      to sleep in dyntick-idle mode with RCU callbacks pending.  This
2013 *      is sized to be roughly one RCU grace period.  Those energy-efficiency
2014 *      benchmarkers who might otherwise be tempted to set this to a large
2015 *      number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
2016 *      system.  And if you are -that- concerned about energy efficiency,
2017 *      just power the system down and be done with it!
2018 *
2019 * The values below work well in practice.  If future workloads require
2020 * adjustment, they can be converted into kernel config parameters, though
2021 * making the state machine smarter might be a better option.
2022 */
2023#define RCU_IDLE_FLUSHES 5              /* Number of dyntick-idle tries. */
2024#define RCU_IDLE_OPT_FLUSHES 3          /* Optional dyntick-idle tries. */
2025#define RCU_IDLE_GP_DELAY 6             /* Roughly one grace period. */
2026
2027static DEFINE_PER_CPU(int, rcu_dyntick_drain);
2028static DEFINE_PER_CPU(unsigned long, rcu_dyntick_holdoff);
2029static DEFINE_PER_CPU(struct hrtimer, rcu_idle_gp_timer);
2030static ktime_t rcu_idle_gp_wait;
2031
2032/*
2033 * Allow the CPU to enter dyntick-idle mode if either: (1) There are no
2034 * callbacks on this CPU, (2) this CPU has not yet attempted to enter
2035 * dyntick-idle mode, or (3) this CPU is in the process of attempting to
2036 * enter dyntick-idle mode.  Otherwise, if we have recently tried and failed
2037 * to enter dyntick-idle mode, we refuse to try to enter it.  After all,
2038 * it is better to incur scheduling-clock interrupts than to spin
2039 * continuously for the same time duration!
2040 */
2041int rcu_needs_cpu(int cpu)
2042{
2043        /* If no callbacks, RCU doesn't need the CPU. */
2044        if (!rcu_cpu_has_callbacks(cpu))
2045                return 0;
2046        /* Otherwise, RCU needs the CPU only if it recently tried and failed. */
2047        return per_cpu(rcu_dyntick_holdoff, cpu) == jiffies;
2048}
2049
2050/*
2051 * Timer handler used to force CPU to start pushing its remaining RCU
2052 * callbacks in the case where it entered dyntick-idle mode with callbacks
2053 * pending.  The hander doesn't really need to do anything because the
2054 * real work is done upon re-entry to idle, or by the next scheduling-clock
2055 * interrupt should idle not be re-entered.
2056 */
2057static enum hrtimer_restart rcu_idle_gp_timer_func(struct hrtimer *hrtp)
2058{
2059        trace_rcu_prep_idle("Timer");
2060        return HRTIMER_NORESTART;
2061}
2062
2063/*
2064 * Initialize the timer used to pull CPUs out of dyntick-idle mode.
2065 */
2066static void rcu_prepare_for_idle_init(int cpu)
2067{
2068        static int firsttime = 1;
2069        struct hrtimer *hrtp = &per_cpu(rcu_idle_gp_timer, cpu);
2070
2071        hrtimer_init(hrtp, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2072        hrtp->function = rcu_idle_gp_timer_func;
2073        if (firsttime) {
2074                unsigned int upj = jiffies_to_usecs(RCU_IDLE_GP_DELAY);
2075
2076                rcu_idle_gp_wait = ns_to_ktime(upj * (u64)1000);
2077                firsttime = 0;
2078        }
2079}
2080
2081/*
2082 * Clean up for exit from idle.  Because we are exiting from idle, there
2083 * is no longer any point to rcu_idle_gp_timer, so cancel it.  This will
2084 * do nothing if this timer is not active, so just cancel it unconditionally.
2085 */
2086static void rcu_cleanup_after_idle(int cpu)
2087{
2088        hrtimer_cancel(&per_cpu(rcu_idle_gp_timer, cpu));
2089}
2090
2091/*
2092 * Check to see if any RCU-related work can be done by the current CPU,
2093 * and if so, schedule a softirq to get it done.  This function is part
2094 * of the RCU implementation; it is -not- an exported member of the RCU API.
2095 *
2096 * The idea is for the current CPU to clear out all work required by the
2097 * RCU core for the current grace period, so that this CPU can be permitted
2098 * to enter dyntick-idle mode.  In some cases, it will need to be awakened
2099 * at the end of the grace period by whatever CPU ends the grace period.
2100 * This allows CPUs to go dyntick-idle more quickly, and to reduce the
2101 * number of wakeups by a modest integer factor.
2102 *
2103 * Because it is not legal to invoke rcu_process_callbacks() with irqs
2104 * disabled, we do one pass of force_quiescent_state(), then do a
2105 * invoke_rcu_core() to cause rcu_process_callbacks() to be invoked
2106 * later.  The per-cpu rcu_dyntick_drain variable controls the sequencing.
2107 *
2108 * The caller must have disabled interrupts.
2109 */
2110static void rcu_prepare_for_idle(int cpu)
2111{
2112        unsigned long flags;
2113
2114        local_irq_save(flags);
2115
2116        /*
2117         * If there are no callbacks on this CPU, enter dyntick-idle mode.
2118         * Also reset state to avoid prejudicing later attempts.
2119         */
2120        if (!rcu_cpu_has_callbacks(cpu)) {
2121                per_cpu(rcu_dyntick_holdoff, cpu) = jiffies - 1;
2122                per_cpu(rcu_dyntick_drain, cpu) = 0;
2123                local_irq_restore(flags);
2124                trace_rcu_prep_idle("No callbacks");
2125                return;
2126        }
2127
2128        /*
2129         * If in holdoff mode, just return.  We will presumably have
2130         * refrained from disabling the scheduling-clock tick.
2131         */
2132        if (per_cpu(rcu_dyntick_holdoff, cpu) == jiffies) {
2133                local_irq_restore(flags);
2134                trace_rcu_prep_idle("In holdoff");
2135                return;
2136        }
2137
2138        /* Check and update the rcu_dyntick_drain sequencing. */
2139        if (per_cpu(rcu_dyntick_drain, cpu) <= 0) {
2140                /* First time through, initialize the counter. */
2141                per_cpu(rcu_dyntick_drain, cpu) = RCU_IDLE_FLUSHES;
2142        } else if (per_cpu(rcu_dyntick_drain, cpu) <= RCU_IDLE_OPT_FLUSHES &&
2143                   !rcu_pending(cpu)) {
2144                /* Can we go dyntick-idle despite still having callbacks? */
2145                trace_rcu_prep_idle("Dyntick with callbacks");
2146                per_cpu(rcu_dyntick_drain, cpu) = 0;
2147                per_cpu(rcu_dyntick_holdoff, cpu) = jiffies - 1;
2148                hrtimer_start(&per_cpu(rcu_idle_gp_timer, cpu),
2149                              rcu_idle_gp_wait, HRTIMER_MODE_REL);
2150                return; /* Nothing more to do immediately. */
2151        } else if (--per_cpu(rcu_dyntick_drain, cpu) <= 0) {
2152                /* We have hit the limit, so time to give up. */
2153                per_cpu(rcu_dyntick_holdoff, cpu) = jiffies;
2154                local_irq_restore(flags);
2155                trace_rcu_prep_idle("Begin holdoff");
2156                invoke_rcu_core();  /* Force the CPU out of dyntick-idle. */
2157                return;
2158        }
2159
2160        /*
2161         * Do one step of pushing the remaining RCU callbacks through
2162         * the RCU core state machine.
2163         */
2164#ifdef CONFIG_TREE_PREEMPT_RCU
2165        if (per_cpu(rcu_preempt_data, cpu).nxtlist) {
2166                local_irq_restore(flags);
2167                rcu_preempt_qs(cpu);
2168                force_quiescent_state(&rcu_preempt_state, 0);
2169                local_irq_save(flags);
2170        }
2171#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
2172        if (per_cpu(rcu_sched_data, cpu).nxtlist) {
2173                local_irq_restore(flags);
2174                rcu_sched_qs(cpu);
2175                force_quiescent_state(&rcu_sched_state, 0);
2176                local_irq_save(flags);
2177        }
2178        if (per_cpu(rcu_bh_data, cpu).nxtlist) {
2179                local_irq_restore(flags);
2180                rcu_bh_qs(cpu);
2181                force_quiescent_state(&rcu_bh_state, 0);
2182                local_irq_save(flags);
2183        }
2184
2185        /*
2186         * If RCU callbacks are still pending, RCU still needs this CPU.
2187         * So try forcing the callbacks through the grace period.
2188         */
2189        if (rcu_cpu_has_callbacks(cpu)) {
2190                local_irq_restore(flags);
2191                trace_rcu_prep_idle("More callbacks");
2192                invoke_rcu_core();
2193        } else {
2194                local_irq_restore(flags);
2195                trace_rcu_prep_idle("Callbacks drained");
2196        }
2197}
2198
2199#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
2200