linux/kernel/sys.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/sys.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7#include <linux/export.h>
   8#include <linux/mm.h>
   9#include <linux/utsname.h>
  10#include <linux/mman.h>
  11#include <linux/reboot.h>
  12#include <linux/prctl.h>
  13#include <linux/highuid.h>
  14#include <linux/fs.h>
  15#include <linux/kmod.h>
  16#include <linux/perf_event.h>
  17#include <linux/resource.h>
  18#include <linux/kernel.h>
  19#include <linux/kexec.h>
  20#include <linux/workqueue.h>
  21#include <linux/capability.h>
  22#include <linux/device.h>
  23#include <linux/key.h>
  24#include <linux/times.h>
  25#include <linux/posix-timers.h>
  26#include <linux/security.h>
  27#include <linux/dcookies.h>
  28#include <linux/suspend.h>
  29#include <linux/tty.h>
  30#include <linux/signal.h>
  31#include <linux/cn_proc.h>
  32#include <linux/getcpu.h>
  33#include <linux/task_io_accounting_ops.h>
  34#include <linux/seccomp.h>
  35#include <linux/cpu.h>
  36#include <linux/personality.h>
  37#include <linux/ptrace.h>
  38#include <linux/fs_struct.h>
  39#include <linux/gfp.h>
  40#include <linux/syscore_ops.h>
  41#include <linux/version.h>
  42#include <linux/ctype.h>
  43
  44#include <linux/compat.h>
  45#include <linux/syscalls.h>
  46#include <linux/kprobes.h>
  47#include <linux/user_namespace.h>
  48
  49#include <linux/kmsg_dump.h>
  50/* Move somewhere else to avoid recompiling? */
  51#include <generated/utsrelease.h>
  52
  53#include <asm/uaccess.h>
  54#include <asm/io.h>
  55#include <asm/unistd.h>
  56
  57#ifndef SET_UNALIGN_CTL
  58# define SET_UNALIGN_CTL(a,b)   (-EINVAL)
  59#endif
  60#ifndef GET_UNALIGN_CTL
  61# define GET_UNALIGN_CTL(a,b)   (-EINVAL)
  62#endif
  63#ifndef SET_FPEMU_CTL
  64# define SET_FPEMU_CTL(a,b)     (-EINVAL)
  65#endif
  66#ifndef GET_FPEMU_CTL
  67# define GET_FPEMU_CTL(a,b)     (-EINVAL)
  68#endif
  69#ifndef SET_FPEXC_CTL
  70# define SET_FPEXC_CTL(a,b)     (-EINVAL)
  71#endif
  72#ifndef GET_FPEXC_CTL
  73# define GET_FPEXC_CTL(a,b)     (-EINVAL)
  74#endif
  75#ifndef GET_ENDIAN
  76# define GET_ENDIAN(a,b)        (-EINVAL)
  77#endif
  78#ifndef SET_ENDIAN
  79# define SET_ENDIAN(a,b)        (-EINVAL)
  80#endif
  81#ifndef GET_TSC_CTL
  82# define GET_TSC_CTL(a)         (-EINVAL)
  83#endif
  84#ifndef SET_TSC_CTL
  85# define SET_TSC_CTL(a)         (-EINVAL)
  86#endif
  87
  88/*
  89 * this is where the system-wide overflow UID and GID are defined, for
  90 * architectures that now have 32-bit UID/GID but didn't in the past
  91 */
  92
  93int overflowuid = DEFAULT_OVERFLOWUID;
  94int overflowgid = DEFAULT_OVERFLOWGID;
  95
  96#ifdef CONFIG_UID16
  97EXPORT_SYMBOL(overflowuid);
  98EXPORT_SYMBOL(overflowgid);
  99#endif
 100
 101/*
 102 * the same as above, but for filesystems which can only store a 16-bit
 103 * UID and GID. as such, this is needed on all architectures
 104 */
 105
 106int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
 107int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
 108
 109EXPORT_SYMBOL(fs_overflowuid);
 110EXPORT_SYMBOL(fs_overflowgid);
 111
 112/*
 113 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
 114 */
 115
 116int C_A_D = 1;
 117struct pid *cad_pid;
 118EXPORT_SYMBOL(cad_pid);
 119
 120/*
 121 * If set, this is used for preparing the system to power off.
 122 */
 123
 124void (*pm_power_off_prepare)(void);
 125
 126/*
 127 * Returns true if current's euid is same as p's uid or euid,
 128 * or has CAP_SYS_NICE to p's user_ns.
 129 *
 130 * Called with rcu_read_lock, creds are safe
 131 */
 132static bool set_one_prio_perm(struct task_struct *p)
 133{
 134        const struct cred *cred = current_cred(), *pcred = __task_cred(p);
 135
 136        if (pcred->user->user_ns == cred->user->user_ns &&
 137            (pcred->uid  == cred->euid ||
 138             pcred->euid == cred->euid))
 139                return true;
 140        if (ns_capable(pcred->user->user_ns, CAP_SYS_NICE))
 141                return true;
 142        return false;
 143}
 144
 145/*
 146 * set the priority of a task
 147 * - the caller must hold the RCU read lock
 148 */
 149static int set_one_prio(struct task_struct *p, int niceval, int error)
 150{
 151        int no_nice;
 152
 153        if (!set_one_prio_perm(p)) {
 154                error = -EPERM;
 155                goto out;
 156        }
 157        if (niceval < task_nice(p) && !can_nice(p, niceval)) {
 158                error = -EACCES;
 159                goto out;
 160        }
 161        no_nice = security_task_setnice(p, niceval);
 162        if (no_nice) {
 163                error = no_nice;
 164                goto out;
 165        }
 166        if (error == -ESRCH)
 167                error = 0;
 168        set_user_nice(p, niceval);
 169out:
 170        return error;
 171}
 172
 173SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
 174{
 175        struct task_struct *g, *p;
 176        struct user_struct *user;
 177        const struct cred *cred = current_cred();
 178        int error = -EINVAL;
 179        struct pid *pgrp;
 180
 181        if (which > PRIO_USER || which < PRIO_PROCESS)
 182                goto out;
 183
 184        /* normalize: avoid signed division (rounding problems) */
 185        error = -ESRCH;
 186        if (niceval < -20)
 187                niceval = -20;
 188        if (niceval > 19)
 189                niceval = 19;
 190
 191        rcu_read_lock();
 192        read_lock(&tasklist_lock);
 193        switch (which) {
 194                case PRIO_PROCESS:
 195                        if (who)
 196                                p = find_task_by_vpid(who);
 197                        else
 198                                p = current;
 199                        if (p)
 200                                error = set_one_prio(p, niceval, error);
 201                        break;
 202                case PRIO_PGRP:
 203                        if (who)
 204                                pgrp = find_vpid(who);
 205                        else
 206                                pgrp = task_pgrp(current);
 207                        do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
 208                                error = set_one_prio(p, niceval, error);
 209                        } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
 210                        break;
 211                case PRIO_USER:
 212                        user = (struct user_struct *) cred->user;
 213                        if (!who)
 214                                who = cred->uid;
 215                        else if ((who != cred->uid) &&
 216                                 !(user = find_user(who)))
 217                                goto out_unlock;        /* No processes for this user */
 218
 219                        do_each_thread(g, p) {
 220                                if (__task_cred(p)->uid == who)
 221                                        error = set_one_prio(p, niceval, error);
 222                        } while_each_thread(g, p);
 223                        if (who != cred->uid)
 224                                free_uid(user);         /* For find_user() */
 225                        break;
 226        }
 227out_unlock:
 228        read_unlock(&tasklist_lock);
 229        rcu_read_unlock();
 230out:
 231        return error;
 232}
 233
 234/*
 235 * Ugh. To avoid negative return values, "getpriority()" will
 236 * not return the normal nice-value, but a negated value that
 237 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
 238 * to stay compatible.
 239 */
 240SYSCALL_DEFINE2(getpriority, int, which, int, who)
 241{
 242        struct task_struct *g, *p;
 243        struct user_struct *user;
 244        const struct cred *cred = current_cred();
 245        long niceval, retval = -ESRCH;
 246        struct pid *pgrp;
 247
 248        if (which > PRIO_USER || which < PRIO_PROCESS)
 249                return -EINVAL;
 250
 251        rcu_read_lock();
 252        read_lock(&tasklist_lock);
 253        switch (which) {
 254                case PRIO_PROCESS:
 255                        if (who)
 256                                p = find_task_by_vpid(who);
 257                        else
 258                                p = current;
 259                        if (p) {
 260                                niceval = 20 - task_nice(p);
 261                                if (niceval > retval)
 262                                        retval = niceval;
 263                        }
 264                        break;
 265                case PRIO_PGRP:
 266                        if (who)
 267                                pgrp = find_vpid(who);
 268                        else
 269                                pgrp = task_pgrp(current);
 270                        do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
 271                                niceval = 20 - task_nice(p);
 272                                if (niceval > retval)
 273                                        retval = niceval;
 274                        } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
 275                        break;
 276                case PRIO_USER:
 277                        user = (struct user_struct *) cred->user;
 278                        if (!who)
 279                                who = cred->uid;
 280                        else if ((who != cred->uid) &&
 281                                 !(user = find_user(who)))
 282                                goto out_unlock;        /* No processes for this user */
 283
 284                        do_each_thread(g, p) {
 285                                if (__task_cred(p)->uid == who) {
 286                                        niceval = 20 - task_nice(p);
 287                                        if (niceval > retval)
 288                                                retval = niceval;
 289                                }
 290                        } while_each_thread(g, p);
 291                        if (who != cred->uid)
 292                                free_uid(user);         /* for find_user() */
 293                        break;
 294        }
 295out_unlock:
 296        read_unlock(&tasklist_lock);
 297        rcu_read_unlock();
 298
 299        return retval;
 300}
 301
 302/**
 303 *      emergency_restart - reboot the system
 304 *
 305 *      Without shutting down any hardware or taking any locks
 306 *      reboot the system.  This is called when we know we are in
 307 *      trouble so this is our best effort to reboot.  This is
 308 *      safe to call in interrupt context.
 309 */
 310void emergency_restart(void)
 311{
 312        kmsg_dump(KMSG_DUMP_EMERG);
 313        machine_emergency_restart();
 314}
 315EXPORT_SYMBOL_GPL(emergency_restart);
 316
 317void kernel_restart_prepare(char *cmd)
 318{
 319        blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
 320        system_state = SYSTEM_RESTART;
 321        usermodehelper_disable();
 322        device_shutdown();
 323        syscore_shutdown();
 324}
 325
 326/**
 327 *      register_reboot_notifier - Register function to be called at reboot time
 328 *      @nb: Info about notifier function to be called
 329 *
 330 *      Registers a function with the list of functions
 331 *      to be called at reboot time.
 332 *
 333 *      Currently always returns zero, as blocking_notifier_chain_register()
 334 *      always returns zero.
 335 */
 336int register_reboot_notifier(struct notifier_block *nb)
 337{
 338        return blocking_notifier_chain_register(&reboot_notifier_list, nb);
 339}
 340EXPORT_SYMBOL(register_reboot_notifier);
 341
 342/**
 343 *      unregister_reboot_notifier - Unregister previously registered reboot notifier
 344 *      @nb: Hook to be unregistered
 345 *
 346 *      Unregisters a previously registered reboot
 347 *      notifier function.
 348 *
 349 *      Returns zero on success, or %-ENOENT on failure.
 350 */
 351int unregister_reboot_notifier(struct notifier_block *nb)
 352{
 353        return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
 354}
 355EXPORT_SYMBOL(unregister_reboot_notifier);
 356
 357/**
 358 *      kernel_restart - reboot the system
 359 *      @cmd: pointer to buffer containing command to execute for restart
 360 *              or %NULL
 361 *
 362 *      Shutdown everything and perform a clean reboot.
 363 *      This is not safe to call in interrupt context.
 364 */
 365void kernel_restart(char *cmd)
 366{
 367        kernel_restart_prepare(cmd);
 368        if (!cmd)
 369                printk(KERN_EMERG "Restarting system.\n");
 370        else
 371                printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
 372        kmsg_dump(KMSG_DUMP_RESTART);
 373        machine_restart(cmd);
 374}
 375EXPORT_SYMBOL_GPL(kernel_restart);
 376
 377static void kernel_shutdown_prepare(enum system_states state)
 378{
 379        blocking_notifier_call_chain(&reboot_notifier_list,
 380                (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
 381        system_state = state;
 382        usermodehelper_disable();
 383        device_shutdown();
 384}
 385/**
 386 *      kernel_halt - halt the system
 387 *
 388 *      Shutdown everything and perform a clean system halt.
 389 */
 390void kernel_halt(void)
 391{
 392        kernel_shutdown_prepare(SYSTEM_HALT);
 393        syscore_shutdown();
 394        printk(KERN_EMERG "System halted.\n");
 395        kmsg_dump(KMSG_DUMP_HALT);
 396        machine_halt();
 397}
 398
 399EXPORT_SYMBOL_GPL(kernel_halt);
 400
 401/**
 402 *      kernel_power_off - power_off the system
 403 *
 404 *      Shutdown everything and perform a clean system power_off.
 405 */
 406void kernel_power_off(void)
 407{
 408        kernel_shutdown_prepare(SYSTEM_POWER_OFF);
 409        if (pm_power_off_prepare)
 410                pm_power_off_prepare();
 411        disable_nonboot_cpus();
 412        syscore_shutdown();
 413        printk(KERN_EMERG "Power down.\n");
 414        kmsg_dump(KMSG_DUMP_POWEROFF);
 415        machine_power_off();
 416}
 417EXPORT_SYMBOL_GPL(kernel_power_off);
 418
 419static DEFINE_MUTEX(reboot_mutex);
 420
 421/*
 422 * Reboot system call: for obvious reasons only root may call it,
 423 * and even root needs to set up some magic numbers in the registers
 424 * so that some mistake won't make this reboot the whole machine.
 425 * You can also set the meaning of the ctrl-alt-del-key here.
 426 *
 427 * reboot doesn't sync: do that yourself before calling this.
 428 */
 429SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
 430                void __user *, arg)
 431{
 432        char buffer[256];
 433        int ret = 0;
 434
 435        /* We only trust the superuser with rebooting the system. */
 436        if (!capable(CAP_SYS_BOOT))
 437                return -EPERM;
 438
 439        /* For safety, we require "magic" arguments. */
 440        if (magic1 != LINUX_REBOOT_MAGIC1 ||
 441            (magic2 != LINUX_REBOOT_MAGIC2 &&
 442                        magic2 != LINUX_REBOOT_MAGIC2A &&
 443                        magic2 != LINUX_REBOOT_MAGIC2B &&
 444                        magic2 != LINUX_REBOOT_MAGIC2C))
 445                return -EINVAL;
 446
 447        /* Instead of trying to make the power_off code look like
 448         * halt when pm_power_off is not set do it the easy way.
 449         */
 450        if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
 451                cmd = LINUX_REBOOT_CMD_HALT;
 452
 453        mutex_lock(&reboot_mutex);
 454        switch (cmd) {
 455        case LINUX_REBOOT_CMD_RESTART:
 456                kernel_restart(NULL);
 457                break;
 458
 459        case LINUX_REBOOT_CMD_CAD_ON:
 460                C_A_D = 1;
 461                break;
 462
 463        case LINUX_REBOOT_CMD_CAD_OFF:
 464                C_A_D = 0;
 465                break;
 466
 467        case LINUX_REBOOT_CMD_HALT:
 468                kernel_halt();
 469                do_exit(0);
 470                panic("cannot halt");
 471
 472        case LINUX_REBOOT_CMD_POWER_OFF:
 473                kernel_power_off();
 474                do_exit(0);
 475                break;
 476
 477        case LINUX_REBOOT_CMD_RESTART2:
 478                if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
 479                        ret = -EFAULT;
 480                        break;
 481                }
 482                buffer[sizeof(buffer) - 1] = '\0';
 483
 484                kernel_restart(buffer);
 485                break;
 486
 487#ifdef CONFIG_KEXEC
 488        case LINUX_REBOOT_CMD_KEXEC:
 489                ret = kernel_kexec();
 490                break;
 491#endif
 492
 493#ifdef CONFIG_HIBERNATION
 494        case LINUX_REBOOT_CMD_SW_SUSPEND:
 495                ret = hibernate();
 496                break;
 497#endif
 498
 499        default:
 500                ret = -EINVAL;
 501                break;
 502        }
 503        mutex_unlock(&reboot_mutex);
 504        return ret;
 505}
 506
 507static void deferred_cad(struct work_struct *dummy)
 508{
 509        kernel_restart(NULL);
 510}
 511
 512/*
 513 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
 514 * As it's called within an interrupt, it may NOT sync: the only choice
 515 * is whether to reboot at once, or just ignore the ctrl-alt-del.
 516 */
 517void ctrl_alt_del(void)
 518{
 519        static DECLARE_WORK(cad_work, deferred_cad);
 520
 521        if (C_A_D)
 522                schedule_work(&cad_work);
 523        else
 524                kill_cad_pid(SIGINT, 1);
 525}
 526        
 527/*
 528 * Unprivileged users may change the real gid to the effective gid
 529 * or vice versa.  (BSD-style)
 530 *
 531 * If you set the real gid at all, or set the effective gid to a value not
 532 * equal to the real gid, then the saved gid is set to the new effective gid.
 533 *
 534 * This makes it possible for a setgid program to completely drop its
 535 * privileges, which is often a useful assertion to make when you are doing
 536 * a security audit over a program.
 537 *
 538 * The general idea is that a program which uses just setregid() will be
 539 * 100% compatible with BSD.  A program which uses just setgid() will be
 540 * 100% compatible with POSIX with saved IDs. 
 541 *
 542 * SMP: There are not races, the GIDs are checked only by filesystem
 543 *      operations (as far as semantic preservation is concerned).
 544 */
 545SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
 546{
 547        const struct cred *old;
 548        struct cred *new;
 549        int retval;
 550
 551        new = prepare_creds();
 552        if (!new)
 553                return -ENOMEM;
 554        old = current_cred();
 555
 556        retval = -EPERM;
 557        if (rgid != (gid_t) -1) {
 558                if (old->gid == rgid ||
 559                    old->egid == rgid ||
 560                    nsown_capable(CAP_SETGID))
 561                        new->gid = rgid;
 562                else
 563                        goto error;
 564        }
 565        if (egid != (gid_t) -1) {
 566                if (old->gid == egid ||
 567                    old->egid == egid ||
 568                    old->sgid == egid ||
 569                    nsown_capable(CAP_SETGID))
 570                        new->egid = egid;
 571                else
 572                        goto error;
 573        }
 574
 575        if (rgid != (gid_t) -1 ||
 576            (egid != (gid_t) -1 && egid != old->gid))
 577                new->sgid = new->egid;
 578        new->fsgid = new->egid;
 579
 580        return commit_creds(new);
 581
 582error:
 583        abort_creds(new);
 584        return retval;
 585}
 586
 587/*
 588 * setgid() is implemented like SysV w/ SAVED_IDS 
 589 *
 590 * SMP: Same implicit races as above.
 591 */
 592SYSCALL_DEFINE1(setgid, gid_t, gid)
 593{
 594        const struct cred *old;
 595        struct cred *new;
 596        int retval;
 597
 598        new = prepare_creds();
 599        if (!new)
 600                return -ENOMEM;
 601        old = current_cred();
 602
 603        retval = -EPERM;
 604        if (nsown_capable(CAP_SETGID))
 605                new->gid = new->egid = new->sgid = new->fsgid = gid;
 606        else if (gid == old->gid || gid == old->sgid)
 607                new->egid = new->fsgid = gid;
 608        else
 609                goto error;
 610
 611        return commit_creds(new);
 612
 613error:
 614        abort_creds(new);
 615        return retval;
 616}
 617
 618/*
 619 * change the user struct in a credentials set to match the new UID
 620 */
 621static int set_user(struct cred *new)
 622{
 623        struct user_struct *new_user;
 624
 625        new_user = alloc_uid(current_user_ns(), new->uid);
 626        if (!new_user)
 627                return -EAGAIN;
 628
 629        /*
 630         * We don't fail in case of NPROC limit excess here because too many
 631         * poorly written programs don't check set*uid() return code, assuming
 632         * it never fails if called by root.  We may still enforce NPROC limit
 633         * for programs doing set*uid()+execve() by harmlessly deferring the
 634         * failure to the execve() stage.
 635         */
 636        if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
 637                        new_user != INIT_USER)
 638                current->flags |= PF_NPROC_EXCEEDED;
 639        else
 640                current->flags &= ~PF_NPROC_EXCEEDED;
 641
 642        free_uid(new->user);
 643        new->user = new_user;
 644        return 0;
 645}
 646
 647/*
 648 * Unprivileged users may change the real uid to the effective uid
 649 * or vice versa.  (BSD-style)
 650 *
 651 * If you set the real uid at all, or set the effective uid to a value not
 652 * equal to the real uid, then the saved uid is set to the new effective uid.
 653 *
 654 * This makes it possible for a setuid program to completely drop its
 655 * privileges, which is often a useful assertion to make when you are doing
 656 * a security audit over a program.
 657 *
 658 * The general idea is that a program which uses just setreuid() will be
 659 * 100% compatible with BSD.  A program which uses just setuid() will be
 660 * 100% compatible with POSIX with saved IDs. 
 661 */
 662SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
 663{
 664        const struct cred *old;
 665        struct cred *new;
 666        int retval;
 667
 668        new = prepare_creds();
 669        if (!new)
 670                return -ENOMEM;
 671        old = current_cred();
 672
 673        retval = -EPERM;
 674        if (ruid != (uid_t) -1) {
 675                new->uid = ruid;
 676                if (old->uid != ruid &&
 677                    old->euid != ruid &&
 678                    !nsown_capable(CAP_SETUID))
 679                        goto error;
 680        }
 681
 682        if (euid != (uid_t) -1) {
 683                new->euid = euid;
 684                if (old->uid != euid &&
 685                    old->euid != euid &&
 686                    old->suid != euid &&
 687                    !nsown_capable(CAP_SETUID))
 688                        goto error;
 689        }
 690
 691        if (new->uid != old->uid) {
 692                retval = set_user(new);
 693                if (retval < 0)
 694                        goto error;
 695        }
 696        if (ruid != (uid_t) -1 ||
 697            (euid != (uid_t) -1 && euid != old->uid))
 698                new->suid = new->euid;
 699        new->fsuid = new->euid;
 700
 701        retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
 702        if (retval < 0)
 703                goto error;
 704
 705        return commit_creds(new);
 706
 707error:
 708        abort_creds(new);
 709        return retval;
 710}
 711                
 712/*
 713 * setuid() is implemented like SysV with SAVED_IDS 
 714 * 
 715 * Note that SAVED_ID's is deficient in that a setuid root program
 716 * like sendmail, for example, cannot set its uid to be a normal 
 717 * user and then switch back, because if you're root, setuid() sets
 718 * the saved uid too.  If you don't like this, blame the bright people
 719 * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
 720 * will allow a root program to temporarily drop privileges and be able to
 721 * regain them by swapping the real and effective uid.  
 722 */
 723SYSCALL_DEFINE1(setuid, uid_t, uid)
 724{
 725        const struct cred *old;
 726        struct cred *new;
 727        int retval;
 728
 729        new = prepare_creds();
 730        if (!new)
 731                return -ENOMEM;
 732        old = current_cred();
 733
 734        retval = -EPERM;
 735        if (nsown_capable(CAP_SETUID)) {
 736                new->suid = new->uid = uid;
 737                if (uid != old->uid) {
 738                        retval = set_user(new);
 739                        if (retval < 0)
 740                                goto error;
 741                }
 742        } else if (uid != old->uid && uid != new->suid) {
 743                goto error;
 744        }
 745
 746        new->fsuid = new->euid = uid;
 747
 748        retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
 749        if (retval < 0)
 750                goto error;
 751
 752        return commit_creds(new);
 753
 754error:
 755        abort_creds(new);
 756        return retval;
 757}
 758
 759
 760/*
 761 * This function implements a generic ability to update ruid, euid,
 762 * and suid.  This allows you to implement the 4.4 compatible seteuid().
 763 */
 764SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
 765{
 766        const struct cred *old;
 767        struct cred *new;
 768        int retval;
 769
 770        new = prepare_creds();
 771        if (!new)
 772                return -ENOMEM;
 773
 774        old = current_cred();
 775
 776        retval = -EPERM;
 777        if (!nsown_capable(CAP_SETUID)) {
 778                if (ruid != (uid_t) -1 && ruid != old->uid &&
 779                    ruid != old->euid  && ruid != old->suid)
 780                        goto error;
 781                if (euid != (uid_t) -1 && euid != old->uid &&
 782                    euid != old->euid  && euid != old->suid)
 783                        goto error;
 784                if (suid != (uid_t) -1 && suid != old->uid &&
 785                    suid != old->euid  && suid != old->suid)
 786                        goto error;
 787        }
 788
 789        if (ruid != (uid_t) -1) {
 790                new->uid = ruid;
 791                if (ruid != old->uid) {
 792                        retval = set_user(new);
 793                        if (retval < 0)
 794                                goto error;
 795                }
 796        }
 797        if (euid != (uid_t) -1)
 798                new->euid = euid;
 799        if (suid != (uid_t) -1)
 800                new->suid = suid;
 801        new->fsuid = new->euid;
 802
 803        retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
 804        if (retval < 0)
 805                goto error;
 806
 807        return commit_creds(new);
 808
 809error:
 810        abort_creds(new);
 811        return retval;
 812}
 813
 814SYSCALL_DEFINE3(getresuid, uid_t __user *, ruid, uid_t __user *, euid, uid_t __user *, suid)
 815{
 816        const struct cred *cred = current_cred();
 817        int retval;
 818
 819        if (!(retval   = put_user(cred->uid,  ruid)) &&
 820            !(retval   = put_user(cred->euid, euid)))
 821                retval = put_user(cred->suid, suid);
 822
 823        return retval;
 824}
 825
 826/*
 827 * Same as above, but for rgid, egid, sgid.
 828 */
 829SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
 830{
 831        const struct cred *old;
 832        struct cred *new;
 833        int retval;
 834
 835        new = prepare_creds();
 836        if (!new)
 837                return -ENOMEM;
 838        old = current_cred();
 839
 840        retval = -EPERM;
 841        if (!nsown_capable(CAP_SETGID)) {
 842                if (rgid != (gid_t) -1 && rgid != old->gid &&
 843                    rgid != old->egid  && rgid != old->sgid)
 844                        goto error;
 845                if (egid != (gid_t) -1 && egid != old->gid &&
 846                    egid != old->egid  && egid != old->sgid)
 847                        goto error;
 848                if (sgid != (gid_t) -1 && sgid != old->gid &&
 849                    sgid != old->egid  && sgid != old->sgid)
 850                        goto error;
 851        }
 852
 853        if (rgid != (gid_t) -1)
 854                new->gid = rgid;
 855        if (egid != (gid_t) -1)
 856                new->egid = egid;
 857        if (sgid != (gid_t) -1)
 858                new->sgid = sgid;
 859        new->fsgid = new->egid;
 860
 861        return commit_creds(new);
 862
 863error:
 864        abort_creds(new);
 865        return retval;
 866}
 867
 868SYSCALL_DEFINE3(getresgid, gid_t __user *, rgid, gid_t __user *, egid, gid_t __user *, sgid)
 869{
 870        const struct cred *cred = current_cred();
 871        int retval;
 872
 873        if (!(retval   = put_user(cred->gid,  rgid)) &&
 874            !(retval   = put_user(cred->egid, egid)))
 875                retval = put_user(cred->sgid, sgid);
 876
 877        return retval;
 878}
 879
 880
 881/*
 882 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
 883 * is used for "access()" and for the NFS daemon (letting nfsd stay at
 884 * whatever uid it wants to). It normally shadows "euid", except when
 885 * explicitly set by setfsuid() or for access..
 886 */
 887SYSCALL_DEFINE1(setfsuid, uid_t, uid)
 888{
 889        const struct cred *old;
 890        struct cred *new;
 891        uid_t old_fsuid;
 892
 893        new = prepare_creds();
 894        if (!new)
 895                return current_fsuid();
 896        old = current_cred();
 897        old_fsuid = old->fsuid;
 898
 899        if (uid == old->uid  || uid == old->euid  ||
 900            uid == old->suid || uid == old->fsuid ||
 901            nsown_capable(CAP_SETUID)) {
 902                if (uid != old_fsuid) {
 903                        new->fsuid = uid;
 904                        if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
 905                                goto change_okay;
 906                }
 907        }
 908
 909        abort_creds(new);
 910        return old_fsuid;
 911
 912change_okay:
 913        commit_creds(new);
 914        return old_fsuid;
 915}
 916
 917/*
 918 * Samma på svenska..
 919 */
 920SYSCALL_DEFINE1(setfsgid, gid_t, gid)
 921{
 922        const struct cred *old;
 923        struct cred *new;
 924        gid_t old_fsgid;
 925
 926        new = prepare_creds();
 927        if (!new)
 928                return current_fsgid();
 929        old = current_cred();
 930        old_fsgid = old->fsgid;
 931
 932        if (gid == old->gid  || gid == old->egid  ||
 933            gid == old->sgid || gid == old->fsgid ||
 934            nsown_capable(CAP_SETGID)) {
 935                if (gid != old_fsgid) {
 936                        new->fsgid = gid;
 937                        goto change_okay;
 938                }
 939        }
 940
 941        abort_creds(new);
 942        return old_fsgid;
 943
 944change_okay:
 945        commit_creds(new);
 946        return old_fsgid;
 947}
 948
 949void do_sys_times(struct tms *tms)
 950{
 951        cputime_t tgutime, tgstime, cutime, cstime;
 952
 953        spin_lock_irq(&current->sighand->siglock);
 954        thread_group_times(current, &tgutime, &tgstime);
 955        cutime = current->signal->cutime;
 956        cstime = current->signal->cstime;
 957        spin_unlock_irq(&current->sighand->siglock);
 958        tms->tms_utime = cputime_to_clock_t(tgutime);
 959        tms->tms_stime = cputime_to_clock_t(tgstime);
 960        tms->tms_cutime = cputime_to_clock_t(cutime);
 961        tms->tms_cstime = cputime_to_clock_t(cstime);
 962}
 963
 964SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
 965{
 966        if (tbuf) {
 967                struct tms tmp;
 968
 969                do_sys_times(&tmp);
 970                if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
 971                        return -EFAULT;
 972        }
 973        force_successful_syscall_return();
 974        return (long) jiffies_64_to_clock_t(get_jiffies_64());
 975}
 976
 977/*
 978 * This needs some heavy checking ...
 979 * I just haven't the stomach for it. I also don't fully
 980 * understand sessions/pgrp etc. Let somebody who does explain it.
 981 *
 982 * OK, I think I have the protection semantics right.... this is really
 983 * only important on a multi-user system anyway, to make sure one user
 984 * can't send a signal to a process owned by another.  -TYT, 12/12/91
 985 *
 986 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
 987 * LBT 04.03.94
 988 */
 989SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
 990{
 991        struct task_struct *p;
 992        struct task_struct *group_leader = current->group_leader;
 993        struct pid *pgrp;
 994        int err;
 995
 996        if (!pid)
 997                pid = task_pid_vnr(group_leader);
 998        if (!pgid)
 999                pgid = pid;
1000        if (pgid < 0)
1001                return -EINVAL;
1002        rcu_read_lock();
1003
1004        /* From this point forward we keep holding onto the tasklist lock
1005         * so that our parent does not change from under us. -DaveM
1006         */
1007        write_lock_irq(&tasklist_lock);
1008
1009        err = -ESRCH;
1010        p = find_task_by_vpid(pid);
1011        if (!p)
1012                goto out;
1013
1014        err = -EINVAL;
1015        if (!thread_group_leader(p))
1016                goto out;
1017
1018        if (same_thread_group(p->real_parent, group_leader)) {
1019                err = -EPERM;
1020                if (task_session(p) != task_session(group_leader))
1021                        goto out;
1022                err = -EACCES;
1023                if (p->did_exec)
1024                        goto out;
1025        } else {
1026                err = -ESRCH;
1027                if (p != group_leader)
1028                        goto out;
1029        }
1030
1031        err = -EPERM;
1032        if (p->signal->leader)
1033                goto out;
1034
1035        pgrp = task_pid(p);
1036        if (pgid != pid) {
1037                struct task_struct *g;
1038
1039                pgrp = find_vpid(pgid);
1040                g = pid_task(pgrp, PIDTYPE_PGID);
1041                if (!g || task_session(g) != task_session(group_leader))
1042                        goto out;
1043        }
1044
1045        err = security_task_setpgid(p, pgid);
1046        if (err)
1047                goto out;
1048
1049        if (task_pgrp(p) != pgrp)
1050                change_pid(p, PIDTYPE_PGID, pgrp);
1051
1052        err = 0;
1053out:
1054        /* All paths lead to here, thus we are safe. -DaveM */
1055        write_unlock_irq(&tasklist_lock);
1056        rcu_read_unlock();
1057        return err;
1058}
1059
1060SYSCALL_DEFINE1(getpgid, pid_t, pid)
1061{
1062        struct task_struct *p;
1063        struct pid *grp;
1064        int retval;
1065
1066        rcu_read_lock();
1067        if (!pid)
1068                grp = task_pgrp(current);
1069        else {
1070                retval = -ESRCH;
1071                p = find_task_by_vpid(pid);
1072                if (!p)
1073                        goto out;
1074                grp = task_pgrp(p);
1075                if (!grp)
1076                        goto out;
1077
1078                retval = security_task_getpgid(p);
1079                if (retval)
1080                        goto out;
1081        }
1082        retval = pid_vnr(grp);
1083out:
1084        rcu_read_unlock();
1085        return retval;
1086}
1087
1088#ifdef __ARCH_WANT_SYS_GETPGRP
1089
1090SYSCALL_DEFINE0(getpgrp)
1091{
1092        return sys_getpgid(0);
1093}
1094
1095#endif
1096
1097SYSCALL_DEFINE1(getsid, pid_t, pid)
1098{
1099        struct task_struct *p;
1100        struct pid *sid;
1101        int retval;
1102
1103        rcu_read_lock();
1104        if (!pid)
1105                sid = task_session(current);
1106        else {
1107                retval = -ESRCH;
1108                p = find_task_by_vpid(pid);
1109                if (!p)
1110                        goto out;
1111                sid = task_session(p);
1112                if (!sid)
1113                        goto out;
1114
1115                retval = security_task_getsid(p);
1116                if (retval)
1117                        goto out;
1118        }
1119        retval = pid_vnr(sid);
1120out:
1121        rcu_read_unlock();
1122        return retval;
1123}
1124
1125SYSCALL_DEFINE0(setsid)
1126{
1127        struct task_struct *group_leader = current->group_leader;
1128        struct pid *sid = task_pid(group_leader);
1129        pid_t session = pid_vnr(sid);
1130        int err = -EPERM;
1131
1132        write_lock_irq(&tasklist_lock);
1133        /* Fail if I am already a session leader */
1134        if (group_leader->signal->leader)
1135                goto out;
1136
1137        /* Fail if a process group id already exists that equals the
1138         * proposed session id.
1139         */
1140        if (pid_task(sid, PIDTYPE_PGID))
1141                goto out;
1142
1143        group_leader->signal->leader = 1;
1144        __set_special_pids(sid);
1145
1146        proc_clear_tty(group_leader);
1147
1148        err = session;
1149out:
1150        write_unlock_irq(&tasklist_lock);
1151        if (err > 0) {
1152                proc_sid_connector(group_leader);
1153                sched_autogroup_create_attach(group_leader);
1154        }
1155        return err;
1156}
1157
1158DECLARE_RWSEM(uts_sem);
1159
1160#ifdef COMPAT_UTS_MACHINE
1161#define override_architecture(name) \
1162        (personality(current->personality) == PER_LINUX32 && \
1163         copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1164                      sizeof(COMPAT_UTS_MACHINE)))
1165#else
1166#define override_architecture(name)     0
1167#endif
1168
1169/*
1170 * Work around broken programs that cannot handle "Linux 3.0".
1171 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1172 */
1173static int override_release(char __user *release, int len)
1174{
1175        int ret = 0;
1176        char buf[65];
1177
1178        if (current->personality & UNAME26) {
1179                char *rest = UTS_RELEASE;
1180                int ndots = 0;
1181                unsigned v;
1182
1183                while (*rest) {
1184                        if (*rest == '.' && ++ndots >= 3)
1185                                break;
1186                        if (!isdigit(*rest) && *rest != '.')
1187                                break;
1188                        rest++;
1189                }
1190                v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 40;
1191                snprintf(buf, len, "2.6.%u%s", v, rest);
1192                ret = copy_to_user(release, buf, len);
1193        }
1194        return ret;
1195}
1196
1197SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1198{
1199        int errno = 0;
1200
1201        down_read(&uts_sem);
1202        if (copy_to_user(name, utsname(), sizeof *name))
1203                errno = -EFAULT;
1204        up_read(&uts_sem);
1205
1206        if (!errno && override_release(name->release, sizeof(name->release)))
1207                errno = -EFAULT;
1208        if (!errno && override_architecture(name))
1209                errno = -EFAULT;
1210        return errno;
1211}
1212
1213#ifdef __ARCH_WANT_SYS_OLD_UNAME
1214/*
1215 * Old cruft
1216 */
1217SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1218{
1219        int error = 0;
1220
1221        if (!name)
1222                return -EFAULT;
1223
1224        down_read(&uts_sem);
1225        if (copy_to_user(name, utsname(), sizeof(*name)))
1226                error = -EFAULT;
1227        up_read(&uts_sem);
1228
1229        if (!error && override_release(name->release, sizeof(name->release)))
1230                error = -EFAULT;
1231        if (!error && override_architecture(name))
1232                error = -EFAULT;
1233        return error;
1234}
1235
1236SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1237{
1238        int error;
1239
1240        if (!name)
1241                return -EFAULT;
1242        if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1243                return -EFAULT;
1244
1245        down_read(&uts_sem);
1246        error = __copy_to_user(&name->sysname, &utsname()->sysname,
1247                               __OLD_UTS_LEN);
1248        error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1249        error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1250                                __OLD_UTS_LEN);
1251        error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1252        error |= __copy_to_user(&name->release, &utsname()->release,
1253                                __OLD_UTS_LEN);
1254        error |= __put_user(0, name->release + __OLD_UTS_LEN);
1255        error |= __copy_to_user(&name->version, &utsname()->version,
1256                                __OLD_UTS_LEN);
1257        error |= __put_user(0, name->version + __OLD_UTS_LEN);
1258        error |= __copy_to_user(&name->machine, &utsname()->machine,
1259                                __OLD_UTS_LEN);
1260        error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1261        up_read(&uts_sem);
1262
1263        if (!error && override_architecture(name))
1264                error = -EFAULT;
1265        if (!error && override_release(name->release, sizeof(name->release)))
1266                error = -EFAULT;
1267        return error ? -EFAULT : 0;
1268}
1269#endif
1270
1271SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1272{
1273        int errno;
1274        char tmp[__NEW_UTS_LEN];
1275
1276        if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1277                return -EPERM;
1278
1279        if (len < 0 || len > __NEW_UTS_LEN)
1280                return -EINVAL;
1281        down_write(&uts_sem);
1282        errno = -EFAULT;
1283        if (!copy_from_user(tmp, name, len)) {
1284                struct new_utsname *u = utsname();
1285
1286                memcpy(u->nodename, tmp, len);
1287                memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1288                errno = 0;
1289        }
1290        uts_proc_notify(UTS_PROC_HOSTNAME);
1291        up_write(&uts_sem);
1292        return errno;
1293}
1294
1295#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1296
1297SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1298{
1299        int i, errno;
1300        struct new_utsname *u;
1301
1302        if (len < 0)
1303                return -EINVAL;
1304        down_read(&uts_sem);
1305        u = utsname();
1306        i = 1 + strlen(u->nodename);
1307        if (i > len)
1308                i = len;
1309        errno = 0;
1310        if (copy_to_user(name, u->nodename, i))
1311                errno = -EFAULT;
1312        up_read(&uts_sem);
1313        return errno;
1314}
1315
1316#endif
1317
1318/*
1319 * Only setdomainname; getdomainname can be implemented by calling
1320 * uname()
1321 */
1322SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1323{
1324        int errno;
1325        char tmp[__NEW_UTS_LEN];
1326
1327        if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1328                return -EPERM;
1329        if (len < 0 || len > __NEW_UTS_LEN)
1330                return -EINVAL;
1331
1332        down_write(&uts_sem);
1333        errno = -EFAULT;
1334        if (!copy_from_user(tmp, name, len)) {
1335                struct new_utsname *u = utsname();
1336
1337                memcpy(u->domainname, tmp, len);
1338                memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1339                errno = 0;
1340        }
1341        uts_proc_notify(UTS_PROC_DOMAINNAME);
1342        up_write(&uts_sem);
1343        return errno;
1344}
1345
1346SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1347{
1348        struct rlimit value;
1349        int ret;
1350
1351        ret = do_prlimit(current, resource, NULL, &value);
1352        if (!ret)
1353                ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1354
1355        return ret;
1356}
1357
1358#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1359
1360/*
1361 *      Back compatibility for getrlimit. Needed for some apps.
1362 */
1363 
1364SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1365                struct rlimit __user *, rlim)
1366{
1367        struct rlimit x;
1368        if (resource >= RLIM_NLIMITS)
1369                return -EINVAL;
1370
1371        task_lock(current->group_leader);
1372        x = current->signal->rlim[resource];
1373        task_unlock(current->group_leader);
1374        if (x.rlim_cur > 0x7FFFFFFF)
1375                x.rlim_cur = 0x7FFFFFFF;
1376        if (x.rlim_max > 0x7FFFFFFF)
1377                x.rlim_max = 0x7FFFFFFF;
1378        return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1379}
1380
1381#endif
1382
1383static inline bool rlim64_is_infinity(__u64 rlim64)
1384{
1385#if BITS_PER_LONG < 64
1386        return rlim64 >= ULONG_MAX;
1387#else
1388        return rlim64 == RLIM64_INFINITY;
1389#endif
1390}
1391
1392static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1393{
1394        if (rlim->rlim_cur == RLIM_INFINITY)
1395                rlim64->rlim_cur = RLIM64_INFINITY;
1396        else
1397                rlim64->rlim_cur = rlim->rlim_cur;
1398        if (rlim->rlim_max == RLIM_INFINITY)
1399                rlim64->rlim_max = RLIM64_INFINITY;
1400        else
1401                rlim64->rlim_max = rlim->rlim_max;
1402}
1403
1404static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1405{
1406        if (rlim64_is_infinity(rlim64->rlim_cur))
1407                rlim->rlim_cur = RLIM_INFINITY;
1408        else
1409                rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1410        if (rlim64_is_infinity(rlim64->rlim_max))
1411                rlim->rlim_max = RLIM_INFINITY;
1412        else
1413                rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1414}
1415
1416/* make sure you are allowed to change @tsk limits before calling this */
1417int do_prlimit(struct task_struct *tsk, unsigned int resource,
1418                struct rlimit *new_rlim, struct rlimit *old_rlim)
1419{
1420        struct rlimit *rlim;
1421        int retval = 0;
1422
1423        if (resource >= RLIM_NLIMITS)
1424                return -EINVAL;
1425        if (new_rlim) {
1426                if (new_rlim->rlim_cur > new_rlim->rlim_max)
1427                        return -EINVAL;
1428                if (resource == RLIMIT_NOFILE &&
1429                                new_rlim->rlim_max > sysctl_nr_open)
1430                        return -EPERM;
1431        }
1432
1433        /* protect tsk->signal and tsk->sighand from disappearing */
1434        read_lock(&tasklist_lock);
1435        if (!tsk->sighand) {
1436                retval = -ESRCH;
1437                goto out;
1438        }
1439
1440        rlim = tsk->signal->rlim + resource;
1441        task_lock(tsk->group_leader);
1442        if (new_rlim) {
1443                /* Keep the capable check against init_user_ns until
1444                   cgroups can contain all limits */
1445                if (new_rlim->rlim_max > rlim->rlim_max &&
1446                                !capable(CAP_SYS_RESOURCE))
1447                        retval = -EPERM;
1448                if (!retval)
1449                        retval = security_task_setrlimit(tsk->group_leader,
1450                                        resource, new_rlim);
1451                if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1452                        /*
1453                         * The caller is asking for an immediate RLIMIT_CPU
1454                         * expiry.  But we use the zero value to mean "it was
1455                         * never set".  So let's cheat and make it one second
1456                         * instead
1457                         */
1458                        new_rlim->rlim_cur = 1;
1459                }
1460        }
1461        if (!retval) {
1462                if (old_rlim)
1463                        *old_rlim = *rlim;
1464                if (new_rlim)
1465                        *rlim = *new_rlim;
1466        }
1467        task_unlock(tsk->group_leader);
1468
1469        /*
1470         * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1471         * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1472         * very long-standing error, and fixing it now risks breakage of
1473         * applications, so we live with it
1474         */
1475         if (!retval && new_rlim && resource == RLIMIT_CPU &&
1476                         new_rlim->rlim_cur != RLIM_INFINITY)
1477                update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1478out:
1479        read_unlock(&tasklist_lock);
1480        return retval;
1481}
1482
1483/* rcu lock must be held */
1484static int check_prlimit_permission(struct task_struct *task)
1485{
1486        const struct cred *cred = current_cred(), *tcred;
1487
1488        if (current == task)
1489                return 0;
1490
1491        tcred = __task_cred(task);
1492        if (cred->user->user_ns == tcred->user->user_ns &&
1493            (cred->uid == tcred->euid &&
1494             cred->uid == tcred->suid &&
1495             cred->uid == tcred->uid  &&
1496             cred->gid == tcred->egid &&
1497             cred->gid == tcred->sgid &&
1498             cred->gid == tcred->gid))
1499                return 0;
1500        if (ns_capable(tcred->user->user_ns, CAP_SYS_RESOURCE))
1501                return 0;
1502
1503        return -EPERM;
1504}
1505
1506SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1507                const struct rlimit64 __user *, new_rlim,
1508                struct rlimit64 __user *, old_rlim)
1509{
1510        struct rlimit64 old64, new64;
1511        struct rlimit old, new;
1512        struct task_struct *tsk;
1513        int ret;
1514
1515        if (new_rlim) {
1516                if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1517                        return -EFAULT;
1518                rlim64_to_rlim(&new64, &new);
1519        }
1520
1521        rcu_read_lock();
1522        tsk = pid ? find_task_by_vpid(pid) : current;
1523        if (!tsk) {
1524                rcu_read_unlock();
1525                return -ESRCH;
1526        }
1527        ret = check_prlimit_permission(tsk);
1528        if (ret) {
1529                rcu_read_unlock();
1530                return ret;
1531        }
1532        get_task_struct(tsk);
1533        rcu_read_unlock();
1534
1535        ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1536                        old_rlim ? &old : NULL);
1537
1538        if (!ret && old_rlim) {
1539                rlim_to_rlim64(&old, &old64);
1540                if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1541                        ret = -EFAULT;
1542        }
1543
1544        put_task_struct(tsk);
1545        return ret;
1546}
1547
1548SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1549{
1550        struct rlimit new_rlim;
1551
1552        if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1553                return -EFAULT;
1554        return do_prlimit(current, resource, &new_rlim, NULL);
1555}
1556
1557/*
1558 * It would make sense to put struct rusage in the task_struct,
1559 * except that would make the task_struct be *really big*.  After
1560 * task_struct gets moved into malloc'ed memory, it would
1561 * make sense to do this.  It will make moving the rest of the information
1562 * a lot simpler!  (Which we're not doing right now because we're not
1563 * measuring them yet).
1564 *
1565 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1566 * races with threads incrementing their own counters.  But since word
1567 * reads are atomic, we either get new values or old values and we don't
1568 * care which for the sums.  We always take the siglock to protect reading
1569 * the c* fields from p->signal from races with exit.c updating those
1570 * fields when reaping, so a sample either gets all the additions of a
1571 * given child after it's reaped, or none so this sample is before reaping.
1572 *
1573 * Locking:
1574 * We need to take the siglock for CHILDEREN, SELF and BOTH
1575 * for  the cases current multithreaded, non-current single threaded
1576 * non-current multithreaded.  Thread traversal is now safe with
1577 * the siglock held.
1578 * Strictly speaking, we donot need to take the siglock if we are current and
1579 * single threaded,  as no one else can take our signal_struct away, no one
1580 * else can  reap the  children to update signal->c* counters, and no one else
1581 * can race with the signal-> fields. If we do not take any lock, the
1582 * signal-> fields could be read out of order while another thread was just
1583 * exiting. So we should  place a read memory barrier when we avoid the lock.
1584 * On the writer side,  write memory barrier is implied in  __exit_signal
1585 * as __exit_signal releases  the siglock spinlock after updating the signal->
1586 * fields. But we don't do this yet to keep things simple.
1587 *
1588 */
1589
1590static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1591{
1592        r->ru_nvcsw += t->nvcsw;
1593        r->ru_nivcsw += t->nivcsw;
1594        r->ru_minflt += t->min_flt;
1595        r->ru_majflt += t->maj_flt;
1596        r->ru_inblock += task_io_get_inblock(t);
1597        r->ru_oublock += task_io_get_oublock(t);
1598}
1599
1600static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1601{
1602        struct task_struct *t;
1603        unsigned long flags;
1604        cputime_t tgutime, tgstime, utime, stime;
1605        unsigned long maxrss = 0;
1606
1607        memset((char *) r, 0, sizeof *r);
1608        utime = stime = 0;
1609
1610        if (who == RUSAGE_THREAD) {
1611                task_times(current, &utime, &stime);
1612                accumulate_thread_rusage(p, r);
1613                maxrss = p->signal->maxrss;
1614                goto out;
1615        }
1616
1617        if (!lock_task_sighand(p, &flags))
1618                return;
1619
1620        switch (who) {
1621                case RUSAGE_BOTH:
1622                case RUSAGE_CHILDREN:
1623                        utime = p->signal->cutime;
1624                        stime = p->signal->cstime;
1625                        r->ru_nvcsw = p->signal->cnvcsw;
1626                        r->ru_nivcsw = p->signal->cnivcsw;
1627                        r->ru_minflt = p->signal->cmin_flt;
1628                        r->ru_majflt = p->signal->cmaj_flt;
1629                        r->ru_inblock = p->signal->cinblock;
1630                        r->ru_oublock = p->signal->coublock;
1631                        maxrss = p->signal->cmaxrss;
1632
1633                        if (who == RUSAGE_CHILDREN)
1634                                break;
1635
1636                case RUSAGE_SELF:
1637                        thread_group_times(p, &tgutime, &tgstime);
1638                        utime += tgutime;
1639                        stime += tgstime;
1640                        r->ru_nvcsw += p->signal->nvcsw;
1641                        r->ru_nivcsw += p->signal->nivcsw;
1642                        r->ru_minflt += p->signal->min_flt;
1643                        r->ru_majflt += p->signal->maj_flt;
1644                        r->ru_inblock += p->signal->inblock;
1645                        r->ru_oublock += p->signal->oublock;
1646                        if (maxrss < p->signal->maxrss)
1647                                maxrss = p->signal->maxrss;
1648                        t = p;
1649                        do {
1650                                accumulate_thread_rusage(t, r);
1651                                t = next_thread(t);
1652                        } while (t != p);
1653                        break;
1654
1655                default:
1656                        BUG();
1657        }
1658        unlock_task_sighand(p, &flags);
1659
1660out:
1661        cputime_to_timeval(utime, &r->ru_utime);
1662        cputime_to_timeval(stime, &r->ru_stime);
1663
1664        if (who != RUSAGE_CHILDREN) {
1665                struct mm_struct *mm = get_task_mm(p);
1666                if (mm) {
1667                        setmax_mm_hiwater_rss(&maxrss, mm);
1668                        mmput(mm);
1669                }
1670        }
1671        r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1672}
1673
1674int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1675{
1676        struct rusage r;
1677        k_getrusage(p, who, &r);
1678        return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1679}
1680
1681SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1682{
1683        if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1684            who != RUSAGE_THREAD)
1685                return -EINVAL;
1686        return getrusage(current, who, ru);
1687}
1688
1689SYSCALL_DEFINE1(umask, int, mask)
1690{
1691        mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1692        return mask;
1693}
1694
1695#ifdef CONFIG_CHECKPOINT_RESTORE
1696static int prctl_set_mm(int opt, unsigned long addr,
1697                        unsigned long arg4, unsigned long arg5)
1698{
1699        unsigned long rlim = rlimit(RLIMIT_DATA);
1700        unsigned long vm_req_flags;
1701        unsigned long vm_bad_flags;
1702        struct vm_area_struct *vma;
1703        int error = 0;
1704        struct mm_struct *mm = current->mm;
1705
1706        if (arg4 | arg5)
1707                return -EINVAL;
1708
1709        if (!capable(CAP_SYS_RESOURCE))
1710                return -EPERM;
1711
1712        if (addr >= TASK_SIZE)
1713                return -EINVAL;
1714
1715        down_read(&mm->mmap_sem);
1716        vma = find_vma(mm, addr);
1717
1718        if (opt != PR_SET_MM_START_BRK && opt != PR_SET_MM_BRK) {
1719                /* It must be existing VMA */
1720                if (!vma || vma->vm_start > addr)
1721                        goto out;
1722        }
1723
1724        error = -EINVAL;
1725        switch (opt) {
1726        case PR_SET_MM_START_CODE:
1727        case PR_SET_MM_END_CODE:
1728                vm_req_flags = VM_READ | VM_EXEC;
1729                vm_bad_flags = VM_WRITE | VM_MAYSHARE;
1730
1731                if ((vma->vm_flags & vm_req_flags) != vm_req_flags ||
1732                    (vma->vm_flags & vm_bad_flags))
1733                        goto out;
1734
1735                if (opt == PR_SET_MM_START_CODE)
1736                        mm->start_code = addr;
1737                else
1738                        mm->end_code = addr;
1739                break;
1740
1741        case PR_SET_MM_START_DATA:
1742        case PR_SET_MM_END_DATA:
1743                vm_req_flags = VM_READ | VM_WRITE;
1744                vm_bad_flags = VM_EXEC | VM_MAYSHARE;
1745
1746                if ((vma->vm_flags & vm_req_flags) != vm_req_flags ||
1747                    (vma->vm_flags & vm_bad_flags))
1748                        goto out;
1749
1750                if (opt == PR_SET_MM_START_DATA)
1751                        mm->start_data = addr;
1752                else
1753                        mm->end_data = addr;
1754                break;
1755
1756        case PR_SET_MM_START_STACK:
1757
1758#ifdef CONFIG_STACK_GROWSUP
1759                vm_req_flags = VM_READ | VM_WRITE | VM_GROWSUP;
1760#else
1761                vm_req_flags = VM_READ | VM_WRITE | VM_GROWSDOWN;
1762#endif
1763                if ((vma->vm_flags & vm_req_flags) != vm_req_flags)
1764                        goto out;
1765
1766                mm->start_stack = addr;
1767                break;
1768
1769        case PR_SET_MM_START_BRK:
1770                if (addr <= mm->end_data)
1771                        goto out;
1772
1773                if (rlim < RLIM_INFINITY &&
1774                    (mm->brk - addr) +
1775                    (mm->end_data - mm->start_data) > rlim)
1776                        goto out;
1777
1778                mm->start_brk = addr;
1779                break;
1780
1781        case PR_SET_MM_BRK:
1782                if (addr <= mm->end_data)
1783                        goto out;
1784
1785                if (rlim < RLIM_INFINITY &&
1786                    (addr - mm->start_brk) +
1787                    (mm->end_data - mm->start_data) > rlim)
1788                        goto out;
1789
1790                mm->brk = addr;
1791                break;
1792
1793        default:
1794                error = -EINVAL;
1795                goto out;
1796        }
1797
1798        error = 0;
1799
1800out:
1801        up_read(&mm->mmap_sem);
1802
1803        return error;
1804}
1805#else /* CONFIG_CHECKPOINT_RESTORE */
1806static int prctl_set_mm(int opt, unsigned long addr,
1807                        unsigned long arg4, unsigned long arg5)
1808{
1809        return -EINVAL;
1810}
1811#endif
1812
1813SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1814                unsigned long, arg4, unsigned long, arg5)
1815{
1816        struct task_struct *me = current;
1817        unsigned char comm[sizeof(me->comm)];
1818        long error;
1819
1820        error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1821        if (error != -ENOSYS)
1822                return error;
1823
1824        error = 0;
1825        switch (option) {
1826                case PR_SET_PDEATHSIG:
1827                        if (!valid_signal(arg2)) {
1828                                error = -EINVAL;
1829                                break;
1830                        }
1831                        me->pdeath_signal = arg2;
1832                        error = 0;
1833                        break;
1834                case PR_GET_PDEATHSIG:
1835                        error = put_user(me->pdeath_signal, (int __user *)arg2);
1836                        break;
1837                case PR_GET_DUMPABLE:
1838                        error = get_dumpable(me->mm);
1839                        break;
1840                case PR_SET_DUMPABLE:
1841                        if (arg2 < 0 || arg2 > 1) {
1842                                error = -EINVAL;
1843                                break;
1844                        }
1845                        set_dumpable(me->mm, arg2);
1846                        error = 0;
1847                        break;
1848
1849                case PR_SET_UNALIGN:
1850                        error = SET_UNALIGN_CTL(me, arg2);
1851                        break;
1852                case PR_GET_UNALIGN:
1853                        error = GET_UNALIGN_CTL(me, arg2);
1854                        break;
1855                case PR_SET_FPEMU:
1856                        error = SET_FPEMU_CTL(me, arg2);
1857                        break;
1858                case PR_GET_FPEMU:
1859                        error = GET_FPEMU_CTL(me, arg2);
1860                        break;
1861                case PR_SET_FPEXC:
1862                        error = SET_FPEXC_CTL(me, arg2);
1863                        break;
1864                case PR_GET_FPEXC:
1865                        error = GET_FPEXC_CTL(me, arg2);
1866                        break;
1867                case PR_GET_TIMING:
1868                        error = PR_TIMING_STATISTICAL;
1869                        break;
1870                case PR_SET_TIMING:
1871                        if (arg2 != PR_TIMING_STATISTICAL)
1872                                error = -EINVAL;
1873                        else
1874                                error = 0;
1875                        break;
1876
1877                case PR_SET_NAME:
1878                        comm[sizeof(me->comm)-1] = 0;
1879                        if (strncpy_from_user(comm, (char __user *)arg2,
1880                                              sizeof(me->comm) - 1) < 0)
1881                                return -EFAULT;
1882                        set_task_comm(me, comm);
1883                        proc_comm_connector(me);
1884                        return 0;
1885                case PR_GET_NAME:
1886                        get_task_comm(comm, me);
1887                        if (copy_to_user((char __user *)arg2, comm,
1888                                         sizeof(comm)))
1889                                return -EFAULT;
1890                        return 0;
1891                case PR_GET_ENDIAN:
1892                        error = GET_ENDIAN(me, arg2);
1893                        break;
1894                case PR_SET_ENDIAN:
1895                        error = SET_ENDIAN(me, arg2);
1896                        break;
1897
1898                case PR_GET_SECCOMP:
1899                        error = prctl_get_seccomp();
1900                        break;
1901                case PR_SET_SECCOMP:
1902                        error = prctl_set_seccomp(arg2);
1903                        break;
1904                case PR_GET_TSC:
1905                        error = GET_TSC_CTL(arg2);
1906                        break;
1907                case PR_SET_TSC:
1908                        error = SET_TSC_CTL(arg2);
1909                        break;
1910                case PR_TASK_PERF_EVENTS_DISABLE:
1911                        error = perf_event_task_disable();
1912                        break;
1913                case PR_TASK_PERF_EVENTS_ENABLE:
1914                        error = perf_event_task_enable();
1915                        break;
1916                case PR_GET_TIMERSLACK:
1917                        error = current->timer_slack_ns;
1918                        break;
1919                case PR_SET_TIMERSLACK:
1920                        if (arg2 <= 0)
1921                                current->timer_slack_ns =
1922                                        current->default_timer_slack_ns;
1923                        else
1924                                current->timer_slack_ns = arg2;
1925                        error = 0;
1926                        break;
1927                case PR_MCE_KILL:
1928                        if (arg4 | arg5)
1929                                return -EINVAL;
1930                        switch (arg2) {
1931                        case PR_MCE_KILL_CLEAR:
1932                                if (arg3 != 0)
1933                                        return -EINVAL;
1934                                current->flags &= ~PF_MCE_PROCESS;
1935                                break;
1936                        case PR_MCE_KILL_SET:
1937                                current->flags |= PF_MCE_PROCESS;
1938                                if (arg3 == PR_MCE_KILL_EARLY)
1939                                        current->flags |= PF_MCE_EARLY;
1940                                else if (arg3 == PR_MCE_KILL_LATE)
1941                                        current->flags &= ~PF_MCE_EARLY;
1942                                else if (arg3 == PR_MCE_KILL_DEFAULT)
1943                                        current->flags &=
1944                                                ~(PF_MCE_EARLY|PF_MCE_PROCESS);
1945                                else
1946                                        return -EINVAL;
1947                                break;
1948                        default:
1949                                return -EINVAL;
1950                        }
1951                        error = 0;
1952                        break;
1953                case PR_MCE_KILL_GET:
1954                        if (arg2 | arg3 | arg4 | arg5)
1955                                return -EINVAL;
1956                        if (current->flags & PF_MCE_PROCESS)
1957                                error = (current->flags & PF_MCE_EARLY) ?
1958                                        PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
1959                        else
1960                                error = PR_MCE_KILL_DEFAULT;
1961                        break;
1962                case PR_SET_MM:
1963                        error = prctl_set_mm(arg2, arg3, arg4, arg5);
1964                        break;
1965                default:
1966                        error = -EINVAL;
1967                        break;
1968        }
1969        return error;
1970}
1971
1972SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
1973                struct getcpu_cache __user *, unused)
1974{
1975        int err = 0;
1976        int cpu = raw_smp_processor_id();
1977        if (cpup)
1978                err |= put_user(cpu, cpup);
1979        if (nodep)
1980                err |= put_user(cpu_to_node(cpu), nodep);
1981        return err ? -EFAULT : 0;
1982}
1983
1984char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
1985
1986static void argv_cleanup(struct subprocess_info *info)
1987{
1988        argv_free(info->argv);
1989}
1990
1991/**
1992 * orderly_poweroff - Trigger an orderly system poweroff
1993 * @force: force poweroff if command execution fails
1994 *
1995 * This may be called from any context to trigger a system shutdown.
1996 * If the orderly shutdown fails, it will force an immediate shutdown.
1997 */
1998int orderly_poweroff(bool force)
1999{
2000        int argc;
2001        char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
2002        static char *envp[] = {
2003                "HOME=/",
2004                "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
2005                NULL
2006        };
2007        int ret = -ENOMEM;
2008        struct subprocess_info *info;
2009
2010        if (argv == NULL) {
2011                printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
2012                       __func__, poweroff_cmd);
2013                goto out;
2014        }
2015
2016        info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC);
2017        if (info == NULL) {
2018                argv_free(argv);
2019                goto out;
2020        }
2021
2022        call_usermodehelper_setfns(info, NULL, argv_cleanup, NULL);
2023
2024        ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
2025
2026  out:
2027        if (ret && force) {
2028                printk(KERN_WARNING "Failed to start orderly shutdown: "
2029                       "forcing the issue\n");
2030
2031                /* I guess this should try to kick off some daemon to
2032                   sync and poweroff asap.  Or not even bother syncing
2033                   if we're doing an emergency shutdown? */
2034                emergency_sync();
2035                kernel_power_off();
2036        }
2037
2038        return ret;
2039}
2040EXPORT_SYMBOL_GPL(orderly_poweroff);
2041