linux/mm/slub.c
<<
>>
Prefs
   1/*
   2 * SLUB: A slab allocator that limits cache line use instead of queuing
   3 * objects in per cpu and per node lists.
   4 *
   5 * The allocator synchronizes using per slab locks or atomic operatios
   6 * and only uses a centralized lock to manage a pool of partial slabs.
   7 *
   8 * (C) 2007 SGI, Christoph Lameter
   9 * (C) 2011 Linux Foundation, Christoph Lameter
  10 */
  11
  12#include <linux/mm.h>
  13#include <linux/swap.h> /* struct reclaim_state */
  14#include <linux/module.h>
  15#include <linux/bit_spinlock.h>
  16#include <linux/interrupt.h>
  17#include <linux/bitops.h>
  18#include <linux/slab.h>
  19#include <linux/proc_fs.h>
  20#include <linux/seq_file.h>
  21#include <linux/kmemcheck.h>
  22#include <linux/cpu.h>
  23#include <linux/cpuset.h>
  24#include <linux/mempolicy.h>
  25#include <linux/ctype.h>
  26#include <linux/debugobjects.h>
  27#include <linux/kallsyms.h>
  28#include <linux/memory.h>
  29#include <linux/math64.h>
  30#include <linux/fault-inject.h>
  31#include <linux/stacktrace.h>
  32
  33#include <trace/events/kmem.h>
  34
  35/*
  36 * Lock order:
  37 *   1. slub_lock (Global Semaphore)
  38 *   2. node->list_lock
  39 *   3. slab_lock(page) (Only on some arches and for debugging)
  40 *
  41 *   slub_lock
  42 *
  43 *   The role of the slub_lock is to protect the list of all the slabs
  44 *   and to synchronize major metadata changes to slab cache structures.
  45 *
  46 *   The slab_lock is only used for debugging and on arches that do not
  47 *   have the ability to do a cmpxchg_double. It only protects the second
  48 *   double word in the page struct. Meaning
  49 *      A. page->freelist       -> List of object free in a page
  50 *      B. page->counters       -> Counters of objects
  51 *      C. page->frozen         -> frozen state
  52 *
  53 *   If a slab is frozen then it is exempt from list management. It is not
  54 *   on any list. The processor that froze the slab is the one who can
  55 *   perform list operations on the page. Other processors may put objects
  56 *   onto the freelist but the processor that froze the slab is the only
  57 *   one that can retrieve the objects from the page's freelist.
  58 *
  59 *   The list_lock protects the partial and full list on each node and
  60 *   the partial slab counter. If taken then no new slabs may be added or
  61 *   removed from the lists nor make the number of partial slabs be modified.
  62 *   (Note that the total number of slabs is an atomic value that may be
  63 *   modified without taking the list lock).
  64 *
  65 *   The list_lock is a centralized lock and thus we avoid taking it as
  66 *   much as possible. As long as SLUB does not have to handle partial
  67 *   slabs, operations can continue without any centralized lock. F.e.
  68 *   allocating a long series of objects that fill up slabs does not require
  69 *   the list lock.
  70 *   Interrupts are disabled during allocation and deallocation in order to
  71 *   make the slab allocator safe to use in the context of an irq. In addition
  72 *   interrupts are disabled to ensure that the processor does not change
  73 *   while handling per_cpu slabs, due to kernel preemption.
  74 *
  75 * SLUB assigns one slab for allocation to each processor.
  76 * Allocations only occur from these slabs called cpu slabs.
  77 *
  78 * Slabs with free elements are kept on a partial list and during regular
  79 * operations no list for full slabs is used. If an object in a full slab is
  80 * freed then the slab will show up again on the partial lists.
  81 * We track full slabs for debugging purposes though because otherwise we
  82 * cannot scan all objects.
  83 *
  84 * Slabs are freed when they become empty. Teardown and setup is
  85 * minimal so we rely on the page allocators per cpu caches for
  86 * fast frees and allocs.
  87 *
  88 * Overloading of page flags that are otherwise used for LRU management.
  89 *
  90 * PageActive           The slab is frozen and exempt from list processing.
  91 *                      This means that the slab is dedicated to a purpose
  92 *                      such as satisfying allocations for a specific
  93 *                      processor. Objects may be freed in the slab while
  94 *                      it is frozen but slab_free will then skip the usual
  95 *                      list operations. It is up to the processor holding
  96 *                      the slab to integrate the slab into the slab lists
  97 *                      when the slab is no longer needed.
  98 *
  99 *                      One use of this flag is to mark slabs that are
 100 *                      used for allocations. Then such a slab becomes a cpu
 101 *                      slab. The cpu slab may be equipped with an additional
 102 *                      freelist that allows lockless access to
 103 *                      free objects in addition to the regular freelist
 104 *                      that requires the slab lock.
 105 *
 106 * PageError            Slab requires special handling due to debug
 107 *                      options set. This moves slab handling out of
 108 *                      the fast path and disables lockless freelists.
 109 */
 110
 111#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
 112                SLAB_TRACE | SLAB_DEBUG_FREE)
 113
 114static inline int kmem_cache_debug(struct kmem_cache *s)
 115{
 116#ifdef CONFIG_SLUB_DEBUG
 117        return unlikely(s->flags & SLAB_DEBUG_FLAGS);
 118#else
 119        return 0;
 120#endif
 121}
 122
 123/*
 124 * Issues still to be resolved:
 125 *
 126 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 127 *
 128 * - Variable sizing of the per node arrays
 129 */
 130
 131/* Enable to test recovery from slab corruption on boot */
 132#undef SLUB_RESILIENCY_TEST
 133
 134/* Enable to log cmpxchg failures */
 135#undef SLUB_DEBUG_CMPXCHG
 136
 137/*
 138 * Mininum number of partial slabs. These will be left on the partial
 139 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 140 */
 141#define MIN_PARTIAL 5
 142
 143/*
 144 * Maximum number of desirable partial slabs.
 145 * The existence of more partial slabs makes kmem_cache_shrink
 146 * sort the partial list by the number of objects in the.
 147 */
 148#define MAX_PARTIAL 10
 149
 150#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
 151                                SLAB_POISON | SLAB_STORE_USER)
 152
 153/*
 154 * Debugging flags that require metadata to be stored in the slab.  These get
 155 * disabled when slub_debug=O is used and a cache's min order increases with
 156 * metadata.
 157 */
 158#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
 159
 160/*
 161 * Set of flags that will prevent slab merging
 162 */
 163#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
 164                SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
 165                SLAB_FAILSLAB)
 166
 167#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
 168                SLAB_CACHE_DMA | SLAB_NOTRACK)
 169
 170#define OO_SHIFT        16
 171#define OO_MASK         ((1 << OO_SHIFT) - 1)
 172#define MAX_OBJS_PER_PAGE       32767 /* since page.objects is u15 */
 173
 174/* Internal SLUB flags */
 175#define __OBJECT_POISON         0x80000000UL /* Poison object */
 176#define __CMPXCHG_DOUBLE        0x40000000UL /* Use cmpxchg_double */
 177
 178static int kmem_size = sizeof(struct kmem_cache);
 179
 180#ifdef CONFIG_SMP
 181static struct notifier_block slab_notifier;
 182#endif
 183
 184static enum {
 185        DOWN,           /* No slab functionality available */
 186        PARTIAL,        /* Kmem_cache_node works */
 187        UP,             /* Everything works but does not show up in sysfs */
 188        SYSFS           /* Sysfs up */
 189} slab_state = DOWN;
 190
 191/* A list of all slab caches on the system */
 192static DECLARE_RWSEM(slub_lock);
 193static LIST_HEAD(slab_caches);
 194
 195/*
 196 * Tracking user of a slab.
 197 */
 198#define TRACK_ADDRS_COUNT 16
 199struct track {
 200        unsigned long addr;     /* Called from address */
 201#ifdef CONFIG_STACKTRACE
 202        unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
 203#endif
 204        int cpu;                /* Was running on cpu */
 205        int pid;                /* Pid context */
 206        unsigned long when;     /* When did the operation occur */
 207};
 208
 209enum track_item { TRACK_ALLOC, TRACK_FREE };
 210
 211#ifdef CONFIG_SYSFS
 212static int sysfs_slab_add(struct kmem_cache *);
 213static int sysfs_slab_alias(struct kmem_cache *, const char *);
 214static void sysfs_slab_remove(struct kmem_cache *);
 215
 216#else
 217static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
 218static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
 219                                                        { return 0; }
 220static inline void sysfs_slab_remove(struct kmem_cache *s)
 221{
 222        kfree(s->name);
 223        kfree(s);
 224}
 225
 226#endif
 227
 228static inline void stat(const struct kmem_cache *s, enum stat_item si)
 229{
 230#ifdef CONFIG_SLUB_STATS
 231        __this_cpu_inc(s->cpu_slab->stat[si]);
 232#endif
 233}
 234
 235/********************************************************************
 236 *                      Core slab cache functions
 237 *******************************************************************/
 238
 239int slab_is_available(void)
 240{
 241        return slab_state >= UP;
 242}
 243
 244static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
 245{
 246        return s->node[node];
 247}
 248
 249/* Verify that a pointer has an address that is valid within a slab page */
 250static inline int check_valid_pointer(struct kmem_cache *s,
 251                                struct page *page, const void *object)
 252{
 253        void *base;
 254
 255        if (!object)
 256                return 1;
 257
 258        base = page_address(page);
 259        if (object < base || object >= base + page->objects * s->size ||
 260                (object - base) % s->size) {
 261                return 0;
 262        }
 263
 264        return 1;
 265}
 266
 267static inline void *get_freepointer(struct kmem_cache *s, void *object)
 268{
 269        return *(void **)(object + s->offset);
 270}
 271
 272static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
 273{
 274        void *p;
 275
 276#ifdef CONFIG_DEBUG_PAGEALLOC
 277        probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
 278#else
 279        p = get_freepointer(s, object);
 280#endif
 281        return p;
 282}
 283
 284static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
 285{
 286        *(void **)(object + s->offset) = fp;
 287}
 288
 289/* Loop over all objects in a slab */
 290#define for_each_object(__p, __s, __addr, __objects) \
 291        for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
 292                        __p += (__s)->size)
 293
 294/* Determine object index from a given position */
 295static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
 296{
 297        return (p - addr) / s->size;
 298}
 299
 300static inline size_t slab_ksize(const struct kmem_cache *s)
 301{
 302#ifdef CONFIG_SLUB_DEBUG
 303        /*
 304         * Debugging requires use of the padding between object
 305         * and whatever may come after it.
 306         */
 307        if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
 308                return s->objsize;
 309
 310#endif
 311        /*
 312         * If we have the need to store the freelist pointer
 313         * back there or track user information then we can
 314         * only use the space before that information.
 315         */
 316        if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
 317                return s->inuse;
 318        /*
 319         * Else we can use all the padding etc for the allocation
 320         */
 321        return s->size;
 322}
 323
 324static inline int order_objects(int order, unsigned long size, int reserved)
 325{
 326        return ((PAGE_SIZE << order) - reserved) / size;
 327}
 328
 329static inline struct kmem_cache_order_objects oo_make(int order,
 330                unsigned long size, int reserved)
 331{
 332        struct kmem_cache_order_objects x = {
 333                (order << OO_SHIFT) + order_objects(order, size, reserved)
 334        };
 335
 336        return x;
 337}
 338
 339static inline int oo_order(struct kmem_cache_order_objects x)
 340{
 341        return x.x >> OO_SHIFT;
 342}
 343
 344static inline int oo_objects(struct kmem_cache_order_objects x)
 345{
 346        return x.x & OO_MASK;
 347}
 348
 349/*
 350 * Per slab locking using the pagelock
 351 */
 352static __always_inline void slab_lock(struct page *page)
 353{
 354        bit_spin_lock(PG_locked, &page->flags);
 355}
 356
 357static __always_inline void slab_unlock(struct page *page)
 358{
 359        __bit_spin_unlock(PG_locked, &page->flags);
 360}
 361
 362/* Interrupts must be disabled (for the fallback code to work right) */
 363static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
 364                void *freelist_old, unsigned long counters_old,
 365                void *freelist_new, unsigned long counters_new,
 366                const char *n)
 367{
 368        VM_BUG_ON(!irqs_disabled());
 369#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
 370    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
 371        if (s->flags & __CMPXCHG_DOUBLE) {
 372                if (cmpxchg_double(&page->freelist, &page->counters,
 373                        freelist_old, counters_old,
 374                        freelist_new, counters_new))
 375                return 1;
 376        } else
 377#endif
 378        {
 379                slab_lock(page);
 380                if (page->freelist == freelist_old && page->counters == counters_old) {
 381                        page->freelist = freelist_new;
 382                        page->counters = counters_new;
 383                        slab_unlock(page);
 384                        return 1;
 385                }
 386                slab_unlock(page);
 387        }
 388
 389        cpu_relax();
 390        stat(s, CMPXCHG_DOUBLE_FAIL);
 391
 392#ifdef SLUB_DEBUG_CMPXCHG
 393        printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
 394#endif
 395
 396        return 0;
 397}
 398
 399static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
 400                void *freelist_old, unsigned long counters_old,
 401                void *freelist_new, unsigned long counters_new,
 402                const char *n)
 403{
 404#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
 405    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
 406        if (s->flags & __CMPXCHG_DOUBLE) {
 407                if (cmpxchg_double(&page->freelist, &page->counters,
 408                        freelist_old, counters_old,
 409                        freelist_new, counters_new))
 410                return 1;
 411        } else
 412#endif
 413        {
 414                unsigned long flags;
 415
 416                local_irq_save(flags);
 417                slab_lock(page);
 418                if (page->freelist == freelist_old && page->counters == counters_old) {
 419                        page->freelist = freelist_new;
 420                        page->counters = counters_new;
 421                        slab_unlock(page);
 422                        local_irq_restore(flags);
 423                        return 1;
 424                }
 425                slab_unlock(page);
 426                local_irq_restore(flags);
 427        }
 428
 429        cpu_relax();
 430        stat(s, CMPXCHG_DOUBLE_FAIL);
 431
 432#ifdef SLUB_DEBUG_CMPXCHG
 433        printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
 434#endif
 435
 436        return 0;
 437}
 438
 439#ifdef CONFIG_SLUB_DEBUG
 440/*
 441 * Determine a map of object in use on a page.
 442 *
 443 * Node listlock must be held to guarantee that the page does
 444 * not vanish from under us.
 445 */
 446static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
 447{
 448        void *p;
 449        void *addr = page_address(page);
 450
 451        for (p = page->freelist; p; p = get_freepointer(s, p))
 452                set_bit(slab_index(p, s, addr), map);
 453}
 454
 455/*
 456 * Debug settings:
 457 */
 458#ifdef CONFIG_SLUB_DEBUG_ON
 459static int slub_debug = DEBUG_DEFAULT_FLAGS;
 460#else
 461static int slub_debug;
 462#endif
 463
 464static char *slub_debug_slabs;
 465static int disable_higher_order_debug;
 466
 467/*
 468 * Object debugging
 469 */
 470static void print_section(char *text, u8 *addr, unsigned int length)
 471{
 472        print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
 473                        length, 1);
 474}
 475
 476static struct track *get_track(struct kmem_cache *s, void *object,
 477        enum track_item alloc)
 478{
 479        struct track *p;
 480
 481        if (s->offset)
 482                p = object + s->offset + sizeof(void *);
 483        else
 484                p = object + s->inuse;
 485
 486        return p + alloc;
 487}
 488
 489static void set_track(struct kmem_cache *s, void *object,
 490                        enum track_item alloc, unsigned long addr)
 491{
 492        struct track *p = get_track(s, object, alloc);
 493
 494        if (addr) {
 495#ifdef CONFIG_STACKTRACE
 496                struct stack_trace trace;
 497                int i;
 498
 499                trace.nr_entries = 0;
 500                trace.max_entries = TRACK_ADDRS_COUNT;
 501                trace.entries = p->addrs;
 502                trace.skip = 3;
 503                save_stack_trace(&trace);
 504
 505                /* See rant in lockdep.c */
 506                if (trace.nr_entries != 0 &&
 507                    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
 508                        trace.nr_entries--;
 509
 510                for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
 511                        p->addrs[i] = 0;
 512#endif
 513                p->addr = addr;
 514                p->cpu = smp_processor_id();
 515                p->pid = current->pid;
 516                p->when = jiffies;
 517        } else
 518                memset(p, 0, sizeof(struct track));
 519}
 520
 521static void init_tracking(struct kmem_cache *s, void *object)
 522{
 523        if (!(s->flags & SLAB_STORE_USER))
 524                return;
 525
 526        set_track(s, object, TRACK_FREE, 0UL);
 527        set_track(s, object, TRACK_ALLOC, 0UL);
 528}
 529
 530static void print_track(const char *s, struct track *t)
 531{
 532        if (!t->addr)
 533                return;
 534
 535        printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
 536                s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
 537#ifdef CONFIG_STACKTRACE
 538        {
 539                int i;
 540                for (i = 0; i < TRACK_ADDRS_COUNT; i++)
 541                        if (t->addrs[i])
 542                                printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
 543                        else
 544                                break;
 545        }
 546#endif
 547}
 548
 549static void print_tracking(struct kmem_cache *s, void *object)
 550{
 551        if (!(s->flags & SLAB_STORE_USER))
 552                return;
 553
 554        print_track("Allocated", get_track(s, object, TRACK_ALLOC));
 555        print_track("Freed", get_track(s, object, TRACK_FREE));
 556}
 557
 558static void print_page_info(struct page *page)
 559{
 560        printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
 561                page, page->objects, page->inuse, page->freelist, page->flags);
 562
 563}
 564
 565static void slab_bug(struct kmem_cache *s, char *fmt, ...)
 566{
 567        va_list args;
 568        char buf[100];
 569
 570        va_start(args, fmt);
 571        vsnprintf(buf, sizeof(buf), fmt, args);
 572        va_end(args);
 573        printk(KERN_ERR "========================================"
 574                        "=====================================\n");
 575        printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
 576        printk(KERN_ERR "----------------------------------------"
 577                        "-------------------------------------\n\n");
 578}
 579
 580static void slab_fix(struct kmem_cache *s, char *fmt, ...)
 581{
 582        va_list args;
 583        char buf[100];
 584
 585        va_start(args, fmt);
 586        vsnprintf(buf, sizeof(buf), fmt, args);
 587        va_end(args);
 588        printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
 589}
 590
 591static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
 592{
 593        unsigned int off;       /* Offset of last byte */
 594        u8 *addr = page_address(page);
 595
 596        print_tracking(s, p);
 597
 598        print_page_info(page);
 599
 600        printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
 601                        p, p - addr, get_freepointer(s, p));
 602
 603        if (p > addr + 16)
 604                print_section("Bytes b4 ", p - 16, 16);
 605
 606        print_section("Object ", p, min_t(unsigned long, s->objsize,
 607                                PAGE_SIZE));
 608        if (s->flags & SLAB_RED_ZONE)
 609                print_section("Redzone ", p + s->objsize,
 610                        s->inuse - s->objsize);
 611
 612        if (s->offset)
 613                off = s->offset + sizeof(void *);
 614        else
 615                off = s->inuse;
 616
 617        if (s->flags & SLAB_STORE_USER)
 618                off += 2 * sizeof(struct track);
 619
 620        if (off != s->size)
 621                /* Beginning of the filler is the free pointer */
 622                print_section("Padding ", p + off, s->size - off);
 623
 624        dump_stack();
 625}
 626
 627static void object_err(struct kmem_cache *s, struct page *page,
 628                        u8 *object, char *reason)
 629{
 630        slab_bug(s, "%s", reason);
 631        print_trailer(s, page, object);
 632}
 633
 634static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
 635{
 636        va_list args;
 637        char buf[100];
 638
 639        va_start(args, fmt);
 640        vsnprintf(buf, sizeof(buf), fmt, args);
 641        va_end(args);
 642        slab_bug(s, "%s", buf);
 643        print_page_info(page);
 644        dump_stack();
 645}
 646
 647static void init_object(struct kmem_cache *s, void *object, u8 val)
 648{
 649        u8 *p = object;
 650
 651        if (s->flags & __OBJECT_POISON) {
 652                memset(p, POISON_FREE, s->objsize - 1);
 653                p[s->objsize - 1] = POISON_END;
 654        }
 655
 656        if (s->flags & SLAB_RED_ZONE)
 657                memset(p + s->objsize, val, s->inuse - s->objsize);
 658}
 659
 660static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
 661                                                void *from, void *to)
 662{
 663        slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
 664        memset(from, data, to - from);
 665}
 666
 667static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
 668                        u8 *object, char *what,
 669                        u8 *start, unsigned int value, unsigned int bytes)
 670{
 671        u8 *fault;
 672        u8 *end;
 673
 674        fault = memchr_inv(start, value, bytes);
 675        if (!fault)
 676                return 1;
 677
 678        end = start + bytes;
 679        while (end > fault && end[-1] == value)
 680                end--;
 681
 682        slab_bug(s, "%s overwritten", what);
 683        printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
 684                                        fault, end - 1, fault[0], value);
 685        print_trailer(s, page, object);
 686
 687        restore_bytes(s, what, value, fault, end);
 688        return 0;
 689}
 690
 691/*
 692 * Object layout:
 693 *
 694 * object address
 695 *      Bytes of the object to be managed.
 696 *      If the freepointer may overlay the object then the free
 697 *      pointer is the first word of the object.
 698 *
 699 *      Poisoning uses 0x6b (POISON_FREE) and the last byte is
 700 *      0xa5 (POISON_END)
 701 *
 702 * object + s->objsize
 703 *      Padding to reach word boundary. This is also used for Redzoning.
 704 *      Padding is extended by another word if Redzoning is enabled and
 705 *      objsize == inuse.
 706 *
 707 *      We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 708 *      0xcc (RED_ACTIVE) for objects in use.
 709 *
 710 * object + s->inuse
 711 *      Meta data starts here.
 712 *
 713 *      A. Free pointer (if we cannot overwrite object on free)
 714 *      B. Tracking data for SLAB_STORE_USER
 715 *      C. Padding to reach required alignment boundary or at mininum
 716 *              one word if debugging is on to be able to detect writes
 717 *              before the word boundary.
 718 *
 719 *      Padding is done using 0x5a (POISON_INUSE)
 720 *
 721 * object + s->size
 722 *      Nothing is used beyond s->size.
 723 *
 724 * If slabcaches are merged then the objsize and inuse boundaries are mostly
 725 * ignored. And therefore no slab options that rely on these boundaries
 726 * may be used with merged slabcaches.
 727 */
 728
 729static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
 730{
 731        unsigned long off = s->inuse;   /* The end of info */
 732
 733        if (s->offset)
 734                /* Freepointer is placed after the object. */
 735                off += sizeof(void *);
 736
 737        if (s->flags & SLAB_STORE_USER)
 738                /* We also have user information there */
 739                off += 2 * sizeof(struct track);
 740
 741        if (s->size == off)
 742                return 1;
 743
 744        return check_bytes_and_report(s, page, p, "Object padding",
 745                                p + off, POISON_INUSE, s->size - off);
 746}
 747
 748/* Check the pad bytes at the end of a slab page */
 749static int slab_pad_check(struct kmem_cache *s, struct page *page)
 750{
 751        u8 *start;
 752        u8 *fault;
 753        u8 *end;
 754        int length;
 755        int remainder;
 756
 757        if (!(s->flags & SLAB_POISON))
 758                return 1;
 759
 760        start = page_address(page);
 761        length = (PAGE_SIZE << compound_order(page)) - s->reserved;
 762        end = start + length;
 763        remainder = length % s->size;
 764        if (!remainder)
 765                return 1;
 766
 767        fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
 768        if (!fault)
 769                return 1;
 770        while (end > fault && end[-1] == POISON_INUSE)
 771                end--;
 772
 773        slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
 774        print_section("Padding ", end - remainder, remainder);
 775
 776        restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
 777        return 0;
 778}
 779
 780static int check_object(struct kmem_cache *s, struct page *page,
 781                                        void *object, u8 val)
 782{
 783        u8 *p = object;
 784        u8 *endobject = object + s->objsize;
 785
 786        if (s->flags & SLAB_RED_ZONE) {
 787                if (!check_bytes_and_report(s, page, object, "Redzone",
 788                        endobject, val, s->inuse - s->objsize))
 789                        return 0;
 790        } else {
 791                if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
 792                        check_bytes_and_report(s, page, p, "Alignment padding",
 793                                endobject, POISON_INUSE, s->inuse - s->objsize);
 794                }
 795        }
 796
 797        if (s->flags & SLAB_POISON) {
 798                if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
 799                        (!check_bytes_and_report(s, page, p, "Poison", p,
 800                                        POISON_FREE, s->objsize - 1) ||
 801                         !check_bytes_and_report(s, page, p, "Poison",
 802                                p + s->objsize - 1, POISON_END, 1)))
 803                        return 0;
 804                /*
 805                 * check_pad_bytes cleans up on its own.
 806                 */
 807                check_pad_bytes(s, page, p);
 808        }
 809
 810        if (!s->offset && val == SLUB_RED_ACTIVE)
 811                /*
 812                 * Object and freepointer overlap. Cannot check
 813                 * freepointer while object is allocated.
 814                 */
 815                return 1;
 816
 817        /* Check free pointer validity */
 818        if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
 819                object_err(s, page, p, "Freepointer corrupt");
 820                /*
 821                 * No choice but to zap it and thus lose the remainder
 822                 * of the free objects in this slab. May cause
 823                 * another error because the object count is now wrong.
 824                 */
 825                set_freepointer(s, p, NULL);
 826                return 0;
 827        }
 828        return 1;
 829}
 830
 831static int check_slab(struct kmem_cache *s, struct page *page)
 832{
 833        int maxobj;
 834
 835        VM_BUG_ON(!irqs_disabled());
 836
 837        if (!PageSlab(page)) {
 838                slab_err(s, page, "Not a valid slab page");
 839                return 0;
 840        }
 841
 842        maxobj = order_objects(compound_order(page), s->size, s->reserved);
 843        if (page->objects > maxobj) {
 844                slab_err(s, page, "objects %u > max %u",
 845                        s->name, page->objects, maxobj);
 846                return 0;
 847        }
 848        if (page->inuse > page->objects) {
 849                slab_err(s, page, "inuse %u > max %u",
 850                        s->name, page->inuse, page->objects);
 851                return 0;
 852        }
 853        /* Slab_pad_check fixes things up after itself */
 854        slab_pad_check(s, page);
 855        return 1;
 856}
 857
 858/*
 859 * Determine if a certain object on a page is on the freelist. Must hold the
 860 * slab lock to guarantee that the chains are in a consistent state.
 861 */
 862static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
 863{
 864        int nr = 0;
 865        void *fp;
 866        void *object = NULL;
 867        unsigned long max_objects;
 868
 869        fp = page->freelist;
 870        while (fp && nr <= page->objects) {
 871                if (fp == search)
 872                        return 1;
 873                if (!check_valid_pointer(s, page, fp)) {
 874                        if (object) {
 875                                object_err(s, page, object,
 876                                        "Freechain corrupt");
 877                                set_freepointer(s, object, NULL);
 878                                break;
 879                        } else {
 880                                slab_err(s, page, "Freepointer corrupt");
 881                                page->freelist = NULL;
 882                                page->inuse = page->objects;
 883                                slab_fix(s, "Freelist cleared");
 884                                return 0;
 885                        }
 886                        break;
 887                }
 888                object = fp;
 889                fp = get_freepointer(s, object);
 890                nr++;
 891        }
 892
 893        max_objects = order_objects(compound_order(page), s->size, s->reserved);
 894        if (max_objects > MAX_OBJS_PER_PAGE)
 895                max_objects = MAX_OBJS_PER_PAGE;
 896
 897        if (page->objects != max_objects) {
 898                slab_err(s, page, "Wrong number of objects. Found %d but "
 899                        "should be %d", page->objects, max_objects);
 900                page->objects = max_objects;
 901                slab_fix(s, "Number of objects adjusted.");
 902        }
 903        if (page->inuse != page->objects - nr) {
 904                slab_err(s, page, "Wrong object count. Counter is %d but "
 905                        "counted were %d", page->inuse, page->objects - nr);
 906                page->inuse = page->objects - nr;
 907                slab_fix(s, "Object count adjusted.");
 908        }
 909        return search == NULL;
 910}
 911
 912static void trace(struct kmem_cache *s, struct page *page, void *object,
 913                                                                int alloc)
 914{
 915        if (s->flags & SLAB_TRACE) {
 916                printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
 917                        s->name,
 918                        alloc ? "alloc" : "free",
 919                        object, page->inuse,
 920                        page->freelist);
 921
 922                if (!alloc)
 923                        print_section("Object ", (void *)object, s->objsize);
 924
 925                dump_stack();
 926        }
 927}
 928
 929/*
 930 * Hooks for other subsystems that check memory allocations. In a typical
 931 * production configuration these hooks all should produce no code at all.
 932 */
 933static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
 934{
 935        flags &= gfp_allowed_mask;
 936        lockdep_trace_alloc(flags);
 937        might_sleep_if(flags & __GFP_WAIT);
 938
 939        return should_failslab(s->objsize, flags, s->flags);
 940}
 941
 942static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
 943{
 944        flags &= gfp_allowed_mask;
 945        kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
 946        kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
 947}
 948
 949static inline void slab_free_hook(struct kmem_cache *s, void *x)
 950{
 951        kmemleak_free_recursive(x, s->flags);
 952
 953        /*
 954         * Trouble is that we may no longer disable interupts in the fast path
 955         * So in order to make the debug calls that expect irqs to be
 956         * disabled we need to disable interrupts temporarily.
 957         */
 958#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
 959        {
 960                unsigned long flags;
 961
 962                local_irq_save(flags);
 963                kmemcheck_slab_free(s, x, s->objsize);
 964                debug_check_no_locks_freed(x, s->objsize);
 965                local_irq_restore(flags);
 966        }
 967#endif
 968        if (!(s->flags & SLAB_DEBUG_OBJECTS))
 969                debug_check_no_obj_freed(x, s->objsize);
 970}
 971
 972/*
 973 * Tracking of fully allocated slabs for debugging purposes.
 974 *
 975 * list_lock must be held.
 976 */
 977static void add_full(struct kmem_cache *s,
 978        struct kmem_cache_node *n, struct page *page)
 979{
 980        if (!(s->flags & SLAB_STORE_USER))
 981                return;
 982
 983        list_add(&page->lru, &n->full);
 984}
 985
 986/*
 987 * list_lock must be held.
 988 */
 989static void remove_full(struct kmem_cache *s, struct page *page)
 990{
 991        if (!(s->flags & SLAB_STORE_USER))
 992                return;
 993
 994        list_del(&page->lru);
 995}
 996
 997/* Tracking of the number of slabs for debugging purposes */
 998static inline unsigned long slabs_node(struct kmem_cache *s, int node)
 999{
1000        struct kmem_cache_node *n = get_node(s, node);
1001
1002        return atomic_long_read(&n->nr_slabs);
1003}
1004
1005static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1006{
1007        return atomic_long_read(&n->nr_slabs);
1008}
1009
1010static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1011{
1012        struct kmem_cache_node *n = get_node(s, node);
1013
1014        /*
1015         * May be called early in order to allocate a slab for the
1016         * kmem_cache_node structure. Solve the chicken-egg
1017         * dilemma by deferring the increment of the count during
1018         * bootstrap (see early_kmem_cache_node_alloc).
1019         */
1020        if (n) {
1021                atomic_long_inc(&n->nr_slabs);
1022                atomic_long_add(objects, &n->total_objects);
1023        }
1024}
1025static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1026{
1027        struct kmem_cache_node *n = get_node(s, node);
1028
1029        atomic_long_dec(&n->nr_slabs);
1030        atomic_long_sub(objects, &n->total_objects);
1031}
1032
1033/* Object debug checks for alloc/free paths */
1034static void setup_object_debug(struct kmem_cache *s, struct page *page,
1035                                                                void *object)
1036{
1037        if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1038                return;
1039
1040        init_object(s, object, SLUB_RED_INACTIVE);
1041        init_tracking(s, object);
1042}
1043
1044static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
1045                                        void *object, unsigned long addr)
1046{
1047        if (!check_slab(s, page))
1048                goto bad;
1049
1050        if (!check_valid_pointer(s, page, object)) {
1051                object_err(s, page, object, "Freelist Pointer check fails");
1052                goto bad;
1053        }
1054
1055        if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1056                goto bad;
1057
1058        /* Success perform special debug activities for allocs */
1059        if (s->flags & SLAB_STORE_USER)
1060                set_track(s, object, TRACK_ALLOC, addr);
1061        trace(s, page, object, 1);
1062        init_object(s, object, SLUB_RED_ACTIVE);
1063        return 1;
1064
1065bad:
1066        if (PageSlab(page)) {
1067                /*
1068                 * If this is a slab page then lets do the best we can
1069                 * to avoid issues in the future. Marking all objects
1070                 * as used avoids touching the remaining objects.
1071                 */
1072                slab_fix(s, "Marking all objects used");
1073                page->inuse = page->objects;
1074                page->freelist = NULL;
1075        }
1076        return 0;
1077}
1078
1079static noinline int free_debug_processing(struct kmem_cache *s,
1080                 struct page *page, void *object, unsigned long addr)
1081{
1082        unsigned long flags;
1083        int rc = 0;
1084
1085        local_irq_save(flags);
1086        slab_lock(page);
1087
1088        if (!check_slab(s, page))
1089                goto fail;
1090
1091        if (!check_valid_pointer(s, page, object)) {
1092                slab_err(s, page, "Invalid object pointer 0x%p", object);
1093                goto fail;
1094        }
1095
1096        if (on_freelist(s, page, object)) {
1097                object_err(s, page, object, "Object already free");
1098                goto fail;
1099        }
1100
1101        if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1102                goto out;
1103
1104        if (unlikely(s != page->slab)) {
1105                if (!PageSlab(page)) {
1106                        slab_err(s, page, "Attempt to free object(0x%p) "
1107                                "outside of slab", object);
1108                } else if (!page->slab) {
1109                        printk(KERN_ERR
1110                                "SLUB <none>: no slab for object 0x%p.\n",
1111                                                object);
1112                        dump_stack();
1113                } else
1114                        object_err(s, page, object,
1115                                        "page slab pointer corrupt.");
1116                goto fail;
1117        }
1118
1119        if (s->flags & SLAB_STORE_USER)
1120                set_track(s, object, TRACK_FREE, addr);
1121        trace(s, page, object, 0);
1122        init_object(s, object, SLUB_RED_INACTIVE);
1123        rc = 1;
1124out:
1125        slab_unlock(page);
1126        local_irq_restore(flags);
1127        return rc;
1128
1129fail:
1130        slab_fix(s, "Object at 0x%p not freed", object);
1131        goto out;
1132}
1133
1134static int __init setup_slub_debug(char *str)
1135{
1136        slub_debug = DEBUG_DEFAULT_FLAGS;
1137        if (*str++ != '=' || !*str)
1138                /*
1139                 * No options specified. Switch on full debugging.
1140                 */
1141                goto out;
1142
1143        if (*str == ',')
1144                /*
1145                 * No options but restriction on slabs. This means full
1146                 * debugging for slabs matching a pattern.
1147                 */
1148                goto check_slabs;
1149
1150        if (tolower(*str) == 'o') {
1151                /*
1152                 * Avoid enabling debugging on caches if its minimum order
1153                 * would increase as a result.
1154                 */
1155                disable_higher_order_debug = 1;
1156                goto out;
1157        }
1158
1159        slub_debug = 0;
1160        if (*str == '-')
1161                /*
1162                 * Switch off all debugging measures.
1163                 */
1164                goto out;
1165
1166        /*
1167         * Determine which debug features should be switched on
1168         */
1169        for (; *str && *str != ','; str++) {
1170                switch (tolower(*str)) {
1171                case 'f':
1172                        slub_debug |= SLAB_DEBUG_FREE;
1173                        break;
1174                case 'z':
1175                        slub_debug |= SLAB_RED_ZONE;
1176                        break;
1177                case 'p':
1178                        slub_debug |= SLAB_POISON;
1179                        break;
1180                case 'u':
1181                        slub_debug |= SLAB_STORE_USER;
1182                        break;
1183                case 't':
1184                        slub_debug |= SLAB_TRACE;
1185                        break;
1186                case 'a':
1187                        slub_debug |= SLAB_FAILSLAB;
1188                        break;
1189                default:
1190                        printk(KERN_ERR "slub_debug option '%c' "
1191                                "unknown. skipped\n", *str);
1192                }
1193        }
1194
1195check_slabs:
1196        if (*str == ',')
1197                slub_debug_slabs = str + 1;
1198out:
1199        return 1;
1200}
1201
1202__setup("slub_debug", setup_slub_debug);
1203
1204static unsigned long kmem_cache_flags(unsigned long objsize,
1205        unsigned long flags, const char *name,
1206        void (*ctor)(void *))
1207{
1208        /*
1209         * Enable debugging if selected on the kernel commandline.
1210         */
1211        if (slub_debug && (!slub_debug_slabs ||
1212                !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1213                flags |= slub_debug;
1214
1215        return flags;
1216}
1217#else
1218static inline void setup_object_debug(struct kmem_cache *s,
1219                        struct page *page, void *object) {}
1220
1221static inline int alloc_debug_processing(struct kmem_cache *s,
1222        struct page *page, void *object, unsigned long addr) { return 0; }
1223
1224static inline int free_debug_processing(struct kmem_cache *s,
1225        struct page *page, void *object, unsigned long addr) { return 0; }
1226
1227static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1228                        { return 1; }
1229static inline int check_object(struct kmem_cache *s, struct page *page,
1230                        void *object, u8 val) { return 1; }
1231static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1232                                        struct page *page) {}
1233static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1234static inline unsigned long kmem_cache_flags(unsigned long objsize,
1235        unsigned long flags, const char *name,
1236        void (*ctor)(void *))
1237{
1238        return flags;
1239}
1240#define slub_debug 0
1241
1242#define disable_higher_order_debug 0
1243
1244static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1245                                                        { return 0; }
1246static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1247                                                        { return 0; }
1248static inline void inc_slabs_node(struct kmem_cache *s, int node,
1249                                                        int objects) {}
1250static inline void dec_slabs_node(struct kmem_cache *s, int node,
1251                                                        int objects) {}
1252
1253static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1254                                                        { return 0; }
1255
1256static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1257                void *object) {}
1258
1259static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1260
1261#endif /* CONFIG_SLUB_DEBUG */
1262
1263/*
1264 * Slab allocation and freeing
1265 */
1266static inline struct page *alloc_slab_page(gfp_t flags, int node,
1267                                        struct kmem_cache_order_objects oo)
1268{
1269        int order = oo_order(oo);
1270
1271        flags |= __GFP_NOTRACK;
1272
1273        if (node == NUMA_NO_NODE)
1274                return alloc_pages(flags, order);
1275        else
1276                return alloc_pages_exact_node(node, flags, order);
1277}
1278
1279static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1280{
1281        struct page *page;
1282        struct kmem_cache_order_objects oo = s->oo;
1283        gfp_t alloc_gfp;
1284
1285        flags &= gfp_allowed_mask;
1286
1287        if (flags & __GFP_WAIT)
1288                local_irq_enable();
1289
1290        flags |= s->allocflags;
1291
1292        /*
1293         * Let the initial higher-order allocation fail under memory pressure
1294         * so we fall-back to the minimum order allocation.
1295         */
1296        alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1297
1298        page = alloc_slab_page(alloc_gfp, node, oo);
1299        if (unlikely(!page)) {
1300                oo = s->min;
1301                /*
1302                 * Allocation may have failed due to fragmentation.
1303                 * Try a lower order alloc if possible
1304                 */
1305                page = alloc_slab_page(flags, node, oo);
1306
1307                if (page)
1308                        stat(s, ORDER_FALLBACK);
1309        }
1310
1311        if (flags & __GFP_WAIT)
1312                local_irq_disable();
1313
1314        if (!page)
1315                return NULL;
1316
1317        if (kmemcheck_enabled
1318                && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1319                int pages = 1 << oo_order(oo);
1320
1321                kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1322
1323                /*
1324                 * Objects from caches that have a constructor don't get
1325                 * cleared when they're allocated, so we need to do it here.
1326                 */
1327                if (s->ctor)
1328                        kmemcheck_mark_uninitialized_pages(page, pages);
1329                else
1330                        kmemcheck_mark_unallocated_pages(page, pages);
1331        }
1332
1333        page->objects = oo_objects(oo);
1334        mod_zone_page_state(page_zone(page),
1335                (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1336                NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1337                1 << oo_order(oo));
1338
1339        return page;
1340}
1341
1342static void setup_object(struct kmem_cache *s, struct page *page,
1343                                void *object)
1344{
1345        setup_object_debug(s, page, object);
1346        if (unlikely(s->ctor))
1347                s->ctor(object);
1348}
1349
1350static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1351{
1352        struct page *page;
1353        void *start;
1354        void *last;
1355        void *p;
1356
1357        BUG_ON(flags & GFP_SLAB_BUG_MASK);
1358
1359        page = allocate_slab(s,
1360                flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1361        if (!page)
1362                goto out;
1363
1364        inc_slabs_node(s, page_to_nid(page), page->objects);
1365        page->slab = s;
1366        page->flags |= 1 << PG_slab;
1367
1368        start = page_address(page);
1369
1370        if (unlikely(s->flags & SLAB_POISON))
1371                memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1372
1373        last = start;
1374        for_each_object(p, s, start, page->objects) {
1375                setup_object(s, page, last);
1376                set_freepointer(s, last, p);
1377                last = p;
1378        }
1379        setup_object(s, page, last);
1380        set_freepointer(s, last, NULL);
1381
1382        page->freelist = start;
1383        page->inuse = page->objects;
1384        page->frozen = 1;
1385out:
1386        return page;
1387}
1388
1389static void __free_slab(struct kmem_cache *s, struct page *page)
1390{
1391        int order = compound_order(page);
1392        int pages = 1 << order;
1393
1394        if (kmem_cache_debug(s)) {
1395                void *p;
1396
1397                slab_pad_check(s, page);
1398                for_each_object(p, s, page_address(page),
1399                                                page->objects)
1400                        check_object(s, page, p, SLUB_RED_INACTIVE);
1401        }
1402
1403        kmemcheck_free_shadow(page, compound_order(page));
1404
1405        mod_zone_page_state(page_zone(page),
1406                (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1407                NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1408                -pages);
1409
1410        __ClearPageSlab(page);
1411        reset_page_mapcount(page);
1412        if (current->reclaim_state)
1413                current->reclaim_state->reclaimed_slab += pages;
1414        __free_pages(page, order);
1415}
1416
1417#define need_reserve_slab_rcu                                           \
1418        (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1419
1420static void rcu_free_slab(struct rcu_head *h)
1421{
1422        struct page *page;
1423
1424        if (need_reserve_slab_rcu)
1425                page = virt_to_head_page(h);
1426        else
1427                page = container_of((struct list_head *)h, struct page, lru);
1428
1429        __free_slab(page->slab, page);
1430}
1431
1432static void free_slab(struct kmem_cache *s, struct page *page)
1433{
1434        if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1435                struct rcu_head *head;
1436
1437                if (need_reserve_slab_rcu) {
1438                        int order = compound_order(page);
1439                        int offset = (PAGE_SIZE << order) - s->reserved;
1440
1441                        VM_BUG_ON(s->reserved != sizeof(*head));
1442                        head = page_address(page) + offset;
1443                } else {
1444                        /*
1445                         * RCU free overloads the RCU head over the LRU
1446                         */
1447                        head = (void *)&page->lru;
1448                }
1449
1450                call_rcu(head, rcu_free_slab);
1451        } else
1452                __free_slab(s, page);
1453}
1454
1455static void discard_slab(struct kmem_cache *s, struct page *page)
1456{
1457        dec_slabs_node(s, page_to_nid(page), page->objects);
1458        free_slab(s, page);
1459}
1460
1461/*
1462 * Management of partially allocated slabs.
1463 *
1464 * list_lock must be held.
1465 */
1466static inline void add_partial(struct kmem_cache_node *n,
1467                                struct page *page, int tail)
1468{
1469        n->nr_partial++;
1470        if (tail == DEACTIVATE_TO_TAIL)
1471                list_add_tail(&page->lru, &n->partial);
1472        else
1473                list_add(&page->lru, &n->partial);
1474}
1475
1476/*
1477 * list_lock must be held.
1478 */
1479static inline void remove_partial(struct kmem_cache_node *n,
1480                                        struct page *page)
1481{
1482        list_del(&page->lru);
1483        n->nr_partial--;
1484}
1485
1486/*
1487 * Lock slab, remove from the partial list and put the object into the
1488 * per cpu freelist.
1489 *
1490 * Returns a list of objects or NULL if it fails.
1491 *
1492 * Must hold list_lock.
1493 */
1494static inline void *acquire_slab(struct kmem_cache *s,
1495                struct kmem_cache_node *n, struct page *page,
1496                int mode)
1497{
1498        void *freelist;
1499        unsigned long counters;
1500        struct page new;
1501
1502        /*
1503         * Zap the freelist and set the frozen bit.
1504         * The old freelist is the list of objects for the
1505         * per cpu allocation list.
1506         */
1507        do {
1508                freelist = page->freelist;
1509                counters = page->counters;
1510                new.counters = counters;
1511                if (mode)
1512                        new.inuse = page->objects;
1513
1514                VM_BUG_ON(new.frozen);
1515                new.frozen = 1;
1516
1517        } while (!__cmpxchg_double_slab(s, page,
1518                        freelist, counters,
1519                        NULL, new.counters,
1520                        "lock and freeze"));
1521
1522        remove_partial(n, page);
1523        return freelist;
1524}
1525
1526static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1527
1528/*
1529 * Try to allocate a partial slab from a specific node.
1530 */
1531static void *get_partial_node(struct kmem_cache *s,
1532                struct kmem_cache_node *n, struct kmem_cache_cpu *c)
1533{
1534        struct page *page, *page2;
1535        void *object = NULL;
1536
1537        /*
1538         * Racy check. If we mistakenly see no partial slabs then we
1539         * just allocate an empty slab. If we mistakenly try to get a
1540         * partial slab and there is none available then get_partials()
1541         * will return NULL.
1542         */
1543        if (!n || !n->nr_partial)
1544                return NULL;
1545
1546        spin_lock(&n->list_lock);
1547        list_for_each_entry_safe(page, page2, &n->partial, lru) {
1548                void *t = acquire_slab(s, n, page, object == NULL);
1549                int available;
1550
1551                if (!t)
1552                        break;
1553
1554                if (!object) {
1555                        c->page = page;
1556                        c->node = page_to_nid(page);
1557                        stat(s, ALLOC_FROM_PARTIAL);
1558                        object = t;
1559                        available =  page->objects - page->inuse;
1560                } else {
1561                        page->freelist = t;
1562                        available = put_cpu_partial(s, page, 0);
1563                }
1564                if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1565                        break;
1566
1567        }
1568        spin_unlock(&n->list_lock);
1569        return object;
1570}
1571
1572/*
1573 * Get a page from somewhere. Search in increasing NUMA distances.
1574 */
1575static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags,
1576                struct kmem_cache_cpu *c)
1577{
1578#ifdef CONFIG_NUMA
1579        struct zonelist *zonelist;
1580        struct zoneref *z;
1581        struct zone *zone;
1582        enum zone_type high_zoneidx = gfp_zone(flags);
1583        void *object;
1584
1585        /*
1586         * The defrag ratio allows a configuration of the tradeoffs between
1587         * inter node defragmentation and node local allocations. A lower
1588         * defrag_ratio increases the tendency to do local allocations
1589         * instead of attempting to obtain partial slabs from other nodes.
1590         *
1591         * If the defrag_ratio is set to 0 then kmalloc() always
1592         * returns node local objects. If the ratio is higher then kmalloc()
1593         * may return off node objects because partial slabs are obtained
1594         * from other nodes and filled up.
1595         *
1596         * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1597         * defrag_ratio = 1000) then every (well almost) allocation will
1598         * first attempt to defrag slab caches on other nodes. This means
1599         * scanning over all nodes to look for partial slabs which may be
1600         * expensive if we do it every time we are trying to find a slab
1601         * with available objects.
1602         */
1603        if (!s->remote_node_defrag_ratio ||
1604                        get_cycles() % 1024 > s->remote_node_defrag_ratio)
1605                return NULL;
1606
1607        get_mems_allowed();
1608        zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1609        for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1610                struct kmem_cache_node *n;
1611
1612                n = get_node(s, zone_to_nid(zone));
1613
1614                if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1615                                n->nr_partial > s->min_partial) {
1616                        object = get_partial_node(s, n, c);
1617                        if (object) {
1618                                put_mems_allowed();
1619                                return object;
1620                        }
1621                }
1622        }
1623        put_mems_allowed();
1624#endif
1625        return NULL;
1626}
1627
1628/*
1629 * Get a partial page, lock it and return it.
1630 */
1631static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1632                struct kmem_cache_cpu *c)
1633{
1634        void *object;
1635        int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1636
1637        object = get_partial_node(s, get_node(s, searchnode), c);
1638        if (object || node != NUMA_NO_NODE)
1639                return object;
1640
1641        return get_any_partial(s, flags, c);
1642}
1643
1644#ifdef CONFIG_PREEMPT
1645/*
1646 * Calculate the next globally unique transaction for disambiguiation
1647 * during cmpxchg. The transactions start with the cpu number and are then
1648 * incremented by CONFIG_NR_CPUS.
1649 */
1650#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1651#else
1652/*
1653 * No preemption supported therefore also no need to check for
1654 * different cpus.
1655 */
1656#define TID_STEP 1
1657#endif
1658
1659static inline unsigned long next_tid(unsigned long tid)
1660{
1661        return tid + TID_STEP;
1662}
1663
1664static inline unsigned int tid_to_cpu(unsigned long tid)
1665{
1666        return tid % TID_STEP;
1667}
1668
1669static inline unsigned long tid_to_event(unsigned long tid)
1670{
1671        return tid / TID_STEP;
1672}
1673
1674static inline unsigned int init_tid(int cpu)
1675{
1676        return cpu;
1677}
1678
1679static inline void note_cmpxchg_failure(const char *n,
1680                const struct kmem_cache *s, unsigned long tid)
1681{
1682#ifdef SLUB_DEBUG_CMPXCHG
1683        unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1684
1685        printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1686
1687#ifdef CONFIG_PREEMPT
1688        if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1689                printk("due to cpu change %d -> %d\n",
1690                        tid_to_cpu(tid), tid_to_cpu(actual_tid));
1691        else
1692#endif
1693        if (tid_to_event(tid) != tid_to_event(actual_tid))
1694                printk("due to cpu running other code. Event %ld->%ld\n",
1695                        tid_to_event(tid), tid_to_event(actual_tid));
1696        else
1697                printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1698                        actual_tid, tid, next_tid(tid));
1699#endif
1700        stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1701}
1702
1703void init_kmem_cache_cpus(struct kmem_cache *s)
1704{
1705        int cpu;
1706
1707        for_each_possible_cpu(cpu)
1708                per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1709}
1710
1711/*
1712 * Remove the cpu slab
1713 */
1714static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1715{
1716        enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1717        struct page *page = c->page;
1718        struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1719        int lock = 0;
1720        enum slab_modes l = M_NONE, m = M_NONE;
1721        void *freelist;
1722        void *nextfree;
1723        int tail = DEACTIVATE_TO_HEAD;
1724        struct page new;
1725        struct page old;
1726
1727        if (page->freelist) {
1728                stat(s, DEACTIVATE_REMOTE_FREES);
1729                tail = DEACTIVATE_TO_TAIL;
1730        }
1731
1732        c->tid = next_tid(c->tid);
1733        c->page = NULL;
1734        freelist = c->freelist;
1735        c->freelist = NULL;
1736
1737        /*
1738         * Stage one: Free all available per cpu objects back
1739         * to the page freelist while it is still frozen. Leave the
1740         * last one.
1741         *
1742         * There is no need to take the list->lock because the page
1743         * is still frozen.
1744         */
1745        while (freelist && (nextfree = get_freepointer(s, freelist))) {
1746                void *prior;
1747                unsigned long counters;
1748
1749                do {
1750                        prior = page->freelist;
1751                        counters = page->counters;
1752                        set_freepointer(s, freelist, prior);
1753                        new.counters = counters;
1754                        new.inuse--;
1755                        VM_BUG_ON(!new.frozen);
1756
1757                } while (!__cmpxchg_double_slab(s, page,
1758                        prior, counters,
1759                        freelist, new.counters,
1760                        "drain percpu freelist"));
1761
1762                freelist = nextfree;
1763        }
1764
1765        /*
1766         * Stage two: Ensure that the page is unfrozen while the
1767         * list presence reflects the actual number of objects
1768         * during unfreeze.
1769         *
1770         * We setup the list membership and then perform a cmpxchg
1771         * with the count. If there is a mismatch then the page
1772         * is not unfrozen but the page is on the wrong list.
1773         *
1774         * Then we restart the process which may have to remove
1775         * the page from the list that we just put it on again
1776         * because the number of objects in the slab may have
1777         * changed.
1778         */
1779redo:
1780
1781        old.freelist = page->freelist;
1782        old.counters = page->counters;
1783        VM_BUG_ON(!old.frozen);
1784
1785        /* Determine target state of the slab */
1786        new.counters = old.counters;
1787        if (freelist) {
1788                new.inuse--;
1789                set_freepointer(s, freelist, old.freelist);
1790                new.freelist = freelist;
1791        } else
1792                new.freelist = old.freelist;
1793
1794        new.frozen = 0;
1795
1796        if (!new.inuse && n->nr_partial > s->min_partial)
1797                m = M_FREE;
1798        else if (new.freelist) {
1799                m = M_PARTIAL;
1800                if (!lock) {
1801                        lock = 1;
1802                        /*
1803                         * Taking the spinlock removes the possiblity
1804                         * that acquire_slab() will see a slab page that
1805                         * is frozen
1806                         */
1807                        spin_lock(&n->list_lock);
1808                }
1809        } else {
1810                m = M_FULL;
1811                if (kmem_cache_debug(s) && !lock) {
1812                        lock = 1;
1813                        /*
1814                         * This also ensures that the scanning of full
1815                         * slabs from diagnostic functions will not see
1816                         * any frozen slabs.
1817                         */
1818                        spin_lock(&n->list_lock);
1819                }
1820        }
1821
1822        if (l != m) {
1823
1824                if (l == M_PARTIAL)
1825
1826                        remove_partial(n, page);
1827
1828                else if (l == M_FULL)
1829
1830                        remove_full(s, page);
1831
1832                if (m == M_PARTIAL) {
1833
1834                        add_partial(n, page, tail);
1835                        stat(s, tail);
1836
1837                } else if (m == M_FULL) {
1838
1839                        stat(s, DEACTIVATE_FULL);
1840                        add_full(s, n, page);
1841
1842                }
1843        }
1844
1845        l = m;
1846        if (!__cmpxchg_double_slab(s, page,
1847                                old.freelist, old.counters,
1848                                new.freelist, new.counters,
1849                                "unfreezing slab"))
1850                goto redo;
1851
1852        if (lock)
1853                spin_unlock(&n->list_lock);
1854
1855        if (m == M_FREE) {
1856                stat(s, DEACTIVATE_EMPTY);
1857                discard_slab(s, page);
1858                stat(s, FREE_SLAB);
1859        }
1860}
1861
1862/* Unfreeze all the cpu partial slabs */
1863static void unfreeze_partials(struct kmem_cache *s)
1864{
1865        struct kmem_cache_node *n = NULL;
1866        struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
1867        struct page *page, *discard_page = NULL;
1868
1869        while ((page = c->partial)) {
1870                enum slab_modes { M_PARTIAL, M_FREE };
1871                enum slab_modes l, m;
1872                struct page new;
1873                struct page old;
1874
1875                c->partial = page->next;
1876                l = M_FREE;
1877
1878                do {
1879
1880                        old.freelist = page->freelist;
1881                        old.counters = page->counters;
1882                        VM_BUG_ON(!old.frozen);
1883
1884                        new.counters = old.counters;
1885                        new.freelist = old.freelist;
1886
1887                        new.frozen = 0;
1888
1889                        if (!new.inuse && (!n || n->nr_partial > s->min_partial))
1890                                m = M_FREE;
1891                        else {
1892                                struct kmem_cache_node *n2 = get_node(s,
1893                                                        page_to_nid(page));
1894
1895                                m = M_PARTIAL;
1896                                if (n != n2) {
1897                                        if (n)
1898                                                spin_unlock(&n->list_lock);
1899
1900                                        n = n2;
1901                                        spin_lock(&n->list_lock);
1902                                }
1903                        }
1904
1905                        if (l != m) {
1906                                if (l == M_PARTIAL) {
1907                                        remove_partial(n, page);
1908                                        stat(s, FREE_REMOVE_PARTIAL);
1909                                } else {
1910                                        add_partial(n, page,
1911                                                DEACTIVATE_TO_TAIL);
1912                                        stat(s, FREE_ADD_PARTIAL);
1913                                }
1914
1915                                l = m;
1916                        }
1917
1918                } while (!cmpxchg_double_slab(s, page,
1919                                old.freelist, old.counters,
1920                                new.freelist, new.counters,
1921                                "unfreezing slab"));
1922
1923                if (m == M_FREE) {
1924                        page->next = discard_page;
1925                        discard_page = page;
1926                }
1927        }
1928
1929        if (n)
1930                spin_unlock(&n->list_lock);
1931
1932        while (discard_page) {
1933                page = discard_page;
1934                discard_page = discard_page->next;
1935
1936                stat(s, DEACTIVATE_EMPTY);
1937                discard_slab(s, page);
1938                stat(s, FREE_SLAB);
1939        }
1940}
1941
1942/*
1943 * Put a page that was just frozen (in __slab_free) into a partial page
1944 * slot if available. This is done without interrupts disabled and without
1945 * preemption disabled. The cmpxchg is racy and may put the partial page
1946 * onto a random cpus partial slot.
1947 *
1948 * If we did not find a slot then simply move all the partials to the
1949 * per node partial list.
1950 */
1951int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1952{
1953        struct page *oldpage;
1954        int pages;
1955        int pobjects;
1956
1957        do {
1958                pages = 0;
1959                pobjects = 0;
1960                oldpage = this_cpu_read(s->cpu_slab->partial);
1961
1962                if (oldpage) {
1963                        pobjects = oldpage->pobjects;
1964                        pages = oldpage->pages;
1965                        if (drain && pobjects > s->cpu_partial) {
1966                                unsigned long flags;
1967                                /*
1968                                 * partial array is full. Move the existing
1969                                 * set to the per node partial list.
1970                                 */
1971                                local_irq_save(flags);
1972                                unfreeze_partials(s);
1973                                local_irq_restore(flags);
1974                                pobjects = 0;
1975                                pages = 0;
1976                        }
1977                }
1978
1979                pages++;
1980                pobjects += page->objects - page->inuse;
1981
1982                page->pages = pages;
1983                page->pobjects = pobjects;
1984                page->next = oldpage;
1985
1986        } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
1987        stat(s, CPU_PARTIAL_FREE);
1988        return pobjects;
1989}
1990
1991static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1992{
1993        stat(s, CPUSLAB_FLUSH);
1994        deactivate_slab(s, c);
1995}
1996
1997/*
1998 * Flush cpu slab.
1999 *
2000 * Called from IPI handler with interrupts disabled.
2001 */
2002static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2003{
2004        struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2005
2006        if (likely(c)) {
2007                if (c->page)
2008                        flush_slab(s, c);
2009
2010                unfreeze_partials(s);
2011        }
2012}
2013
2014static void flush_cpu_slab(void *d)
2015{
2016        struct kmem_cache *s = d;
2017
2018        __flush_cpu_slab(s, smp_processor_id());
2019}
2020
2021static void flush_all(struct kmem_cache *s)
2022{
2023        on_each_cpu(flush_cpu_slab, s, 1);
2024}
2025
2026/*
2027 * Check if the objects in a per cpu structure fit numa
2028 * locality expectations.
2029 */
2030static inline int node_match(struct kmem_cache_cpu *c, int node)
2031{
2032#ifdef CONFIG_NUMA
2033        if (node != NUMA_NO_NODE && c->node != node)
2034                return 0;
2035#endif
2036        return 1;
2037}
2038
2039static int count_free(struct page *page)
2040{
2041        return page->objects - page->inuse;
2042}
2043
2044static unsigned long count_partial(struct kmem_cache_node *n,
2045                                        int (*get_count)(struct page *))
2046{
2047        unsigned long flags;
2048        unsigned long x = 0;
2049        struct page *page;
2050
2051        spin_lock_irqsave(&n->list_lock, flags);
2052        list_for_each_entry(page, &n->partial, lru)
2053                x += get_count(page);
2054        spin_unlock_irqrestore(&n->list_lock, flags);
2055        return x;
2056}
2057
2058static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2059{
2060#ifdef CONFIG_SLUB_DEBUG
2061        return atomic_long_read(&n->total_objects);
2062#else
2063        return 0;
2064#endif
2065}
2066
2067static noinline void
2068slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2069{
2070        int node;
2071
2072        printk(KERN_WARNING
2073                "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2074                nid, gfpflags);
2075        printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, "
2076                "default order: %d, min order: %d\n", s->name, s->objsize,
2077                s->size, oo_order(s->oo), oo_order(s->min));
2078
2079        if (oo_order(s->min) > get_order(s->objsize))
2080                printk(KERN_WARNING "  %s debugging increased min order, use "
2081                       "slub_debug=O to disable.\n", s->name);
2082
2083        for_each_online_node(node) {
2084                struct kmem_cache_node *n = get_node(s, node);
2085                unsigned long nr_slabs;
2086                unsigned long nr_objs;
2087                unsigned long nr_free;
2088
2089                if (!n)
2090                        continue;
2091
2092                nr_free  = count_partial(n, count_free);
2093                nr_slabs = node_nr_slabs(n);
2094                nr_objs  = node_nr_objs(n);
2095
2096                printk(KERN_WARNING
2097                        "  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2098                        node, nr_slabs, nr_objs, nr_free);
2099        }
2100}
2101
2102static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2103                        int node, struct kmem_cache_cpu **pc)
2104{
2105        void *object;
2106        struct kmem_cache_cpu *c;
2107        struct page *page = new_slab(s, flags, node);
2108
2109        if (page) {
2110                c = __this_cpu_ptr(s->cpu_slab);
2111                if (c->page)
2112                        flush_slab(s, c);
2113
2114                /*
2115                 * No other reference to the page yet so we can
2116                 * muck around with it freely without cmpxchg
2117                 */
2118                object = page->freelist;
2119                page->freelist = NULL;
2120
2121                stat(s, ALLOC_SLAB);
2122                c->node = page_to_nid(page);
2123                c->page = page;
2124                *pc = c;
2125        } else
2126                object = NULL;
2127
2128        return object;
2129}
2130
2131/*
2132 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2133 * or deactivate the page.
2134 *
2135 * The page is still frozen if the return value is not NULL.
2136 *
2137 * If this function returns NULL then the page has been unfrozen.
2138 */
2139static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2140{
2141        struct page new;
2142        unsigned long counters;
2143        void *freelist;
2144
2145        do {
2146                freelist = page->freelist;
2147                counters = page->counters;
2148                new.counters = counters;
2149                VM_BUG_ON(!new.frozen);
2150
2151                new.inuse = page->objects;
2152                new.frozen = freelist != NULL;
2153
2154        } while (!cmpxchg_double_slab(s, page,
2155                freelist, counters,
2156                NULL, new.counters,
2157                "get_freelist"));
2158
2159        return freelist;
2160}
2161
2162/*
2163 * Slow path. The lockless freelist is empty or we need to perform
2164 * debugging duties.
2165 *
2166 * Processing is still very fast if new objects have been freed to the
2167 * regular freelist. In that case we simply take over the regular freelist
2168 * as the lockless freelist and zap the regular freelist.
2169 *
2170 * If that is not working then we fall back to the partial lists. We take the
2171 * first element of the freelist as the object to allocate now and move the
2172 * rest of the freelist to the lockless freelist.
2173 *
2174 * And if we were unable to get a new slab from the partial slab lists then
2175 * we need to allocate a new slab. This is the slowest path since it involves
2176 * a call to the page allocator and the setup of a new slab.
2177 */
2178static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2179                          unsigned long addr, struct kmem_cache_cpu *c)
2180{
2181        void **object;
2182        unsigned long flags;
2183
2184        local_irq_save(flags);
2185#ifdef CONFIG_PREEMPT
2186        /*
2187         * We may have been preempted and rescheduled on a different
2188         * cpu before disabling interrupts. Need to reload cpu area
2189         * pointer.
2190         */
2191        c = this_cpu_ptr(s->cpu_slab);
2192#endif
2193
2194        if (!c->page)
2195                goto new_slab;
2196redo:
2197        if (unlikely(!node_match(c, node))) {
2198                stat(s, ALLOC_NODE_MISMATCH);
2199                deactivate_slab(s, c);
2200                goto new_slab;
2201        }
2202
2203        /* must check again c->freelist in case of cpu migration or IRQ */
2204        object = c->freelist;
2205        if (object)
2206                goto load_freelist;
2207
2208        stat(s, ALLOC_SLOWPATH);
2209
2210        object = get_freelist(s, c->page);
2211
2212        if (!object) {
2213                c->page = NULL;
2214                stat(s, DEACTIVATE_BYPASS);
2215                goto new_slab;
2216        }
2217
2218        stat(s, ALLOC_REFILL);
2219
2220load_freelist:
2221        c->freelist = get_freepointer(s, object);
2222        c->tid = next_tid(c->tid);
2223        local_irq_restore(flags);
2224        return object;
2225
2226new_slab:
2227
2228        if (c->partial) {
2229                c->page = c->partial;
2230                c->partial = c->page->next;
2231                c->node = page_to_nid(c->page);
2232                stat(s, CPU_PARTIAL_ALLOC);
2233                c->freelist = NULL;
2234                goto redo;
2235        }
2236
2237        /* Then do expensive stuff like retrieving pages from the partial lists */
2238        object = get_partial(s, gfpflags, node, c);
2239
2240        if (unlikely(!object)) {
2241
2242                object = new_slab_objects(s, gfpflags, node, &c);
2243
2244                if (unlikely(!object)) {
2245                        if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2246                                slab_out_of_memory(s, gfpflags, node);
2247
2248                        local_irq_restore(flags);
2249                        return NULL;
2250                }
2251        }
2252
2253        if (likely(!kmem_cache_debug(s)))
2254                goto load_freelist;
2255
2256        /* Only entered in the debug case */
2257        if (!alloc_debug_processing(s, c->page, object, addr))
2258                goto new_slab;  /* Slab failed checks. Next slab needed */
2259
2260        c->freelist = get_freepointer(s, object);
2261        deactivate_slab(s, c);
2262        c->node = NUMA_NO_NODE;
2263        local_irq_restore(flags);
2264        return object;
2265}
2266
2267/*
2268 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2269 * have the fastpath folded into their functions. So no function call
2270 * overhead for requests that can be satisfied on the fastpath.
2271 *
2272 * The fastpath works by first checking if the lockless freelist can be used.
2273 * If not then __slab_alloc is called for slow processing.
2274 *
2275 * Otherwise we can simply pick the next object from the lockless free list.
2276 */
2277static __always_inline void *slab_alloc(struct kmem_cache *s,
2278                gfp_t gfpflags, int node, unsigned long addr)
2279{
2280        void **object;
2281        struct kmem_cache_cpu *c;
2282        unsigned long tid;
2283
2284        if (slab_pre_alloc_hook(s, gfpflags))
2285                return NULL;
2286
2287redo:
2288
2289        /*
2290         * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2291         * enabled. We may switch back and forth between cpus while
2292         * reading from one cpu area. That does not matter as long
2293         * as we end up on the original cpu again when doing the cmpxchg.
2294         */
2295        c = __this_cpu_ptr(s->cpu_slab);
2296
2297        /*
2298         * The transaction ids are globally unique per cpu and per operation on
2299         * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2300         * occurs on the right processor and that there was no operation on the
2301         * linked list in between.
2302         */
2303        tid = c->tid;
2304        barrier();
2305
2306        object = c->freelist;
2307        if (unlikely(!object || !node_match(c, node)))
2308
2309                object = __slab_alloc(s, gfpflags, node, addr, c);
2310
2311        else {
2312                /*
2313                 * The cmpxchg will only match if there was no additional
2314                 * operation and if we are on the right processor.
2315                 *
2316                 * The cmpxchg does the following atomically (without lock semantics!)
2317                 * 1. Relocate first pointer to the current per cpu area.
2318                 * 2. Verify that tid and freelist have not been changed
2319                 * 3. If they were not changed replace tid and freelist
2320                 *
2321                 * Since this is without lock semantics the protection is only against
2322                 * code executing on this cpu *not* from access by other cpus.
2323                 */
2324                if (unlikely(!this_cpu_cmpxchg_double(
2325                                s->cpu_slab->freelist, s->cpu_slab->tid,
2326                                object, tid,
2327                                get_freepointer_safe(s, object), next_tid(tid)))) {
2328
2329                        note_cmpxchg_failure("slab_alloc", s, tid);
2330                        goto redo;
2331                }
2332                stat(s, ALLOC_FASTPATH);
2333        }
2334
2335        if (unlikely(gfpflags & __GFP_ZERO) && object)
2336                memset(object, 0, s->objsize);
2337
2338        slab_post_alloc_hook(s, gfpflags, object);
2339
2340        return object;
2341}
2342
2343void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2344{
2345        void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2346
2347        trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
2348
2349        return ret;
2350}
2351EXPORT_SYMBOL(kmem_cache_alloc);
2352
2353#ifdef CONFIG_TRACING
2354void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2355{
2356        void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2357        trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2358        return ret;
2359}
2360EXPORT_SYMBOL(kmem_cache_alloc_trace);
2361
2362void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
2363{
2364        void *ret = kmalloc_order(size, flags, order);
2365        trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2366        return ret;
2367}
2368EXPORT_SYMBOL(kmalloc_order_trace);
2369#endif
2370
2371#ifdef CONFIG_NUMA
2372void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2373{
2374        void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2375
2376        trace_kmem_cache_alloc_node(_RET_IP_, ret,
2377                                    s->objsize, s->size, gfpflags, node);
2378
2379        return ret;
2380}
2381EXPORT_SYMBOL(kmem_cache_alloc_node);
2382
2383#ifdef CONFIG_TRACING
2384void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2385                                    gfp_t gfpflags,
2386                                    int node, size_t size)
2387{
2388        void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2389
2390        trace_kmalloc_node(_RET_IP_, ret,
2391                           size, s->size, gfpflags, node);
2392        return ret;
2393}
2394EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2395#endif
2396#endif
2397
2398/*
2399 * Slow patch handling. This may still be called frequently since objects
2400 * have a longer lifetime than the cpu slabs in most processing loads.
2401 *
2402 * So we still attempt to reduce cache line usage. Just take the slab
2403 * lock and free the item. If there is no additional partial page
2404 * handling required then we can return immediately.
2405 */
2406static void __slab_free(struct kmem_cache *s, struct page *page,
2407                        void *x, unsigned long addr)
2408{
2409        void *prior;
2410        void **object = (void *)x;
2411        int was_frozen;
2412        int inuse;
2413        struct page new;
2414        unsigned long counters;
2415        struct kmem_cache_node *n = NULL;
2416        unsigned long uninitialized_var(flags);
2417
2418        stat(s, FREE_SLOWPATH);
2419
2420        if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
2421                return;
2422
2423        do {
2424                prior = page->freelist;
2425                counters = page->counters;
2426                set_freepointer(s, object, prior);
2427                new.counters = counters;
2428                was_frozen = new.frozen;
2429                new.inuse--;
2430                if ((!new.inuse || !prior) && !was_frozen && !n) {
2431
2432                        if (!kmem_cache_debug(s) && !prior)
2433
2434                                /*
2435                                 * Slab was on no list before and will be partially empty
2436                                 * We can defer the list move and instead freeze it.
2437                                 */
2438                                new.frozen = 1;
2439
2440                        else { /* Needs to be taken off a list */
2441
2442                                n = get_node(s, page_to_nid(page));
2443                                /*
2444                                 * Speculatively acquire the list_lock.
2445                                 * If the cmpxchg does not succeed then we may
2446                                 * drop the list_lock without any processing.
2447                                 *
2448                                 * Otherwise the list_lock will synchronize with
2449                                 * other processors updating the list of slabs.
2450                                 */
2451                                spin_lock_irqsave(&n->list_lock, flags);
2452
2453                        }
2454                }
2455                inuse = new.inuse;
2456
2457        } while (!cmpxchg_double_slab(s, page,
2458                prior, counters,
2459                object, new.counters,
2460                "__slab_free"));
2461
2462        if (likely(!n)) {
2463
2464                /*
2465                 * If we just froze the page then put it onto the
2466                 * per cpu partial list.
2467                 */
2468                if (new.frozen && !was_frozen)
2469                        put_cpu_partial(s, page, 1);
2470
2471                /*
2472                 * The list lock was not taken therefore no list
2473                 * activity can be necessary.
2474                 */
2475                if (was_frozen)
2476                        stat(s, FREE_FROZEN);
2477                return;
2478        }
2479
2480        /*
2481         * was_frozen may have been set after we acquired the list_lock in
2482         * an earlier loop. So we need to check it here again.
2483         */
2484        if (was_frozen)
2485                stat(s, FREE_FROZEN);
2486        else {
2487                if (unlikely(!inuse && n->nr_partial > s->min_partial))
2488                        goto slab_empty;
2489
2490                /*
2491                 * Objects left in the slab. If it was not on the partial list before
2492                 * then add it.
2493                 */
2494                if (unlikely(!prior)) {
2495                        remove_full(s, page);
2496                        add_partial(n, page, DEACTIVATE_TO_TAIL);
2497                        stat(s, FREE_ADD_PARTIAL);
2498                }
2499        }
2500        spin_unlock_irqrestore(&n->list_lock, flags);
2501        return;
2502
2503slab_empty:
2504        if (prior) {
2505                /*
2506                 * Slab on the partial list.
2507                 */
2508                remove_partial(n, page);
2509                stat(s, FREE_REMOVE_PARTIAL);
2510        } else
2511                /* Slab must be on the full list */
2512                remove_full(s, page);
2513
2514        spin_unlock_irqrestore(&n->list_lock, flags);
2515        stat(s, FREE_SLAB);
2516        discard_slab(s, page);
2517}
2518
2519/*
2520 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2521 * can perform fastpath freeing without additional function calls.
2522 *
2523 * The fastpath is only possible if we are freeing to the current cpu slab
2524 * of this processor. This typically the case if we have just allocated
2525 * the item before.
2526 *
2527 * If fastpath is not possible then fall back to __slab_free where we deal
2528 * with all sorts of special processing.
2529 */
2530static __always_inline void slab_free(struct kmem_cache *s,
2531                        struct page *page, void *x, unsigned long addr)
2532{
2533        void **object = (void *)x;
2534        struct kmem_cache_cpu *c;
2535        unsigned long tid;
2536
2537        slab_free_hook(s, x);
2538
2539redo:
2540        /*
2541         * Determine the currently cpus per cpu slab.
2542         * The cpu may change afterward. However that does not matter since
2543         * data is retrieved via this pointer. If we are on the same cpu
2544         * during the cmpxchg then the free will succedd.
2545         */
2546        c = __this_cpu_ptr(s->cpu_slab);
2547
2548        tid = c->tid;
2549        barrier();
2550
2551        if (likely(page == c->page)) {
2552                set_freepointer(s, object, c->freelist);
2553
2554                if (unlikely(!this_cpu_cmpxchg_double(
2555                                s->cpu_slab->freelist, s->cpu_slab->tid,
2556                                c->freelist, tid,
2557                                object, next_tid(tid)))) {
2558
2559                        note_cmpxchg_failure("slab_free", s, tid);
2560                        goto redo;
2561                }
2562                stat(s, FREE_FASTPATH);
2563        } else
2564                __slab_free(s, page, x, addr);
2565
2566}
2567
2568void kmem_cache_free(struct kmem_cache *s, void *x)
2569{
2570        struct page *page;
2571
2572        page = virt_to_head_page(x);
2573
2574        slab_free(s, page, x, _RET_IP_);
2575
2576        trace_kmem_cache_free(_RET_IP_, x);
2577}
2578EXPORT_SYMBOL(kmem_cache_free);
2579
2580/*
2581 * Object placement in a slab is made very easy because we always start at
2582 * offset 0. If we tune the size of the object to the alignment then we can
2583 * get the required alignment by putting one properly sized object after
2584 * another.
2585 *
2586 * Notice that the allocation order determines the sizes of the per cpu
2587 * caches. Each processor has always one slab available for allocations.
2588 * Increasing the allocation order reduces the number of times that slabs
2589 * must be moved on and off the partial lists and is therefore a factor in
2590 * locking overhead.
2591 */
2592
2593/*
2594 * Mininum / Maximum order of slab pages. This influences locking overhead
2595 * and slab fragmentation. A higher order reduces the number of partial slabs
2596 * and increases the number of allocations possible without having to
2597 * take the list_lock.
2598 */
2599static int slub_min_order;
2600static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2601static int slub_min_objects;
2602
2603/*
2604 * Merge control. If this is set then no merging of slab caches will occur.
2605 * (Could be removed. This was introduced to pacify the merge skeptics.)
2606 */
2607static int slub_nomerge;
2608
2609/*
2610 * Calculate the order of allocation given an slab object size.
2611 *
2612 * The order of allocation has significant impact on performance and other
2613 * system components. Generally order 0 allocations should be preferred since
2614 * order 0 does not cause fragmentation in the page allocator. Larger objects
2615 * be problematic to put into order 0 slabs because there may be too much
2616 * unused space left. We go to a higher order if more than 1/16th of the slab
2617 * would be wasted.
2618 *
2619 * In order to reach satisfactory performance we must ensure that a minimum
2620 * number of objects is in one slab. Otherwise we may generate too much
2621 * activity on the partial lists which requires taking the list_lock. This is
2622 * less a concern for large slabs though which are rarely used.
2623 *
2624 * slub_max_order specifies the order where we begin to stop considering the
2625 * number of objects in a slab as critical. If we reach slub_max_order then
2626 * we try to keep the page order as low as possible. So we accept more waste
2627 * of space in favor of a small page order.
2628 *
2629 * Higher order allocations also allow the placement of more objects in a
2630 * slab and thereby reduce object handling overhead. If the user has
2631 * requested a higher mininum order then we start with that one instead of
2632 * the smallest order which will fit the object.
2633 */
2634static inline int slab_order(int size, int min_objects,
2635                                int max_order, int fract_leftover, int reserved)
2636{
2637        int order;
2638        int rem;
2639        int min_order = slub_min_order;
2640
2641        if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2642                return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2643
2644        for (order = max(min_order,
2645                                fls(min_objects * size - 1) - PAGE_SHIFT);
2646                        order <= max_order; order++) {
2647
2648                unsigned long slab_size = PAGE_SIZE << order;
2649
2650                if (slab_size < min_objects * size + reserved)
2651                        continue;
2652
2653                rem = (slab_size - reserved) % size;
2654
2655                if (rem <= slab_size / fract_leftover)
2656                        break;
2657
2658        }
2659
2660        return order;
2661}
2662
2663static inline int calculate_order(int size, int reserved)
2664{
2665        int order;
2666        int min_objects;
2667        int fraction;
2668        int max_objects;
2669
2670        /*
2671         * Attempt to find best configuration for a slab. This
2672         * works by first attempting to generate a layout with
2673         * the best configuration and backing off gradually.
2674         *
2675         * First we reduce the acceptable waste in a slab. Then
2676         * we reduce the minimum objects required in a slab.
2677         */
2678        min_objects = slub_min_objects;
2679        if (!min_objects)
2680                min_objects = 4 * (fls(nr_cpu_ids) + 1);
2681        max_objects = order_objects(slub_max_order, size, reserved);
2682        min_objects = min(min_objects, max_objects);
2683
2684        while (min_objects > 1) {
2685                fraction = 16;
2686                while (fraction >= 4) {
2687                        order = slab_order(size, min_objects,
2688                                        slub_max_order, fraction, reserved);
2689                        if (order <= slub_max_order)
2690                                return order;
2691                        fraction /= 2;
2692                }
2693                min_objects--;
2694        }
2695
2696        /*
2697         * We were unable to place multiple objects in a slab. Now
2698         * lets see if we can place a single object there.
2699         */
2700        order = slab_order(size, 1, slub_max_order, 1, reserved);
2701        if (order <= slub_max_order)
2702                return order;
2703
2704        /*
2705         * Doh this slab cannot be placed using slub_max_order.
2706         */
2707        order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2708        if (order < MAX_ORDER)
2709                return order;
2710        return -ENOSYS;
2711}
2712
2713/*
2714 * Figure out what the alignment of the objects will be.
2715 */
2716static unsigned long calculate_alignment(unsigned long flags,
2717                unsigned long align, unsigned long size)
2718{
2719        /*
2720         * If the user wants hardware cache aligned objects then follow that
2721         * suggestion if the object is sufficiently large.
2722         *
2723         * The hardware cache alignment cannot override the specified
2724         * alignment though. If that is greater then use it.
2725         */
2726        if (flags & SLAB_HWCACHE_ALIGN) {
2727                unsigned long ralign = cache_line_size();
2728                while (size <= ralign / 2)
2729                        ralign /= 2;
2730                align = max(align, ralign);
2731        }
2732
2733        if (align < ARCH_SLAB_MINALIGN)
2734                align = ARCH_SLAB_MINALIGN;
2735
2736        return ALIGN(align, sizeof(void *));
2737}
2738
2739static void
2740init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2741{
2742        n->nr_partial = 0;
2743        spin_lock_init(&n->list_lock);
2744        INIT_LIST_HEAD(&n->partial);
2745#ifdef CONFIG_SLUB_DEBUG
2746        atomic_long_set(&n->nr_slabs, 0);
2747        atomic_long_set(&n->total_objects, 0);
2748        INIT_LIST_HEAD(&n->full);
2749#endif
2750}
2751
2752static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2753{
2754        BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2755                        SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2756
2757        /*
2758         * Must align to double word boundary for the double cmpxchg
2759         * instructions to work; see __pcpu_double_call_return_bool().
2760         */
2761        s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2762                                     2 * sizeof(void *));
2763
2764        if (!s->cpu_slab)
2765                return 0;
2766
2767        init_kmem_cache_cpus(s);
2768
2769        return 1;
2770}
2771
2772static struct kmem_cache *kmem_cache_node;
2773
2774/*
2775 * No kmalloc_node yet so do it by hand. We know that this is the first
2776 * slab on the node for this slabcache. There are no concurrent accesses
2777 * possible.
2778 *
2779 * Note that this function only works on the kmalloc_node_cache
2780 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2781 * memory on a fresh node that has no slab structures yet.
2782 */
2783static void early_kmem_cache_node_alloc(int node)
2784{
2785        struct page *page;
2786        struct kmem_cache_node *n;
2787
2788        BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2789
2790        page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2791
2792        BUG_ON(!page);
2793        if (page_to_nid(page) != node) {
2794                printk(KERN_ERR "SLUB: Unable to allocate memory from "
2795                                "node %d\n", node);
2796                printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2797                                "in order to be able to continue\n");
2798        }
2799
2800        n = page->freelist;
2801        BUG_ON(!n);
2802        page->freelist = get_freepointer(kmem_cache_node, n);
2803        page->inuse = 1;
2804        page->frozen = 0;
2805        kmem_cache_node->node[node] = n;
2806#ifdef CONFIG_SLUB_DEBUG
2807        init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2808        init_tracking(kmem_cache_node, n);
2809#endif
2810        init_kmem_cache_node(n, kmem_cache_node);
2811        inc_slabs_node(kmem_cache_node, node, page->objects);
2812
2813        add_partial(n, page, DEACTIVATE_TO_HEAD);
2814}
2815
2816static void free_kmem_cache_nodes(struct kmem_cache *s)
2817{
2818        int node;
2819
2820        for_each_node_state(node, N_NORMAL_MEMORY) {
2821                struct kmem_cache_node *n = s->node[node];
2822
2823                if (n)
2824                        kmem_cache_free(kmem_cache_node, n);
2825
2826                s->node[node] = NULL;
2827        }
2828}
2829
2830static int init_kmem_cache_nodes(struct kmem_cache *s)
2831{
2832        int node;
2833
2834        for_each_node_state(node, N_NORMAL_MEMORY) {
2835                struct kmem_cache_node *n;
2836
2837                if (slab_state == DOWN) {
2838                        early_kmem_cache_node_alloc(node);
2839                        continue;
2840                }
2841                n = kmem_cache_alloc_node(kmem_cache_node,
2842                                                GFP_KERNEL, node);
2843
2844                if (!n) {
2845                        free_kmem_cache_nodes(s);
2846                        return 0;
2847                }
2848
2849                s->node[node] = n;
2850                init_kmem_cache_node(n, s);
2851        }
2852        return 1;
2853}
2854
2855static void set_min_partial(struct kmem_cache *s, unsigned long min)
2856{
2857        if (min < MIN_PARTIAL)
2858                min = MIN_PARTIAL;
2859        else if (min > MAX_PARTIAL)
2860                min = MAX_PARTIAL;
2861        s->min_partial = min;
2862}
2863
2864/*
2865 * calculate_sizes() determines the order and the distribution of data within
2866 * a slab object.
2867 */
2868static int calculate_sizes(struct kmem_cache *s, int forced_order)
2869{
2870        unsigned long flags = s->flags;
2871        unsigned long size = s->objsize;
2872        unsigned long align = s->align;
2873        int order;
2874
2875        /*
2876         * Round up object size to the next word boundary. We can only
2877         * place the free pointer at word boundaries and this determines
2878         * the possible location of the free pointer.
2879         */
2880        size = ALIGN(size, sizeof(void *));
2881
2882#ifdef CONFIG_SLUB_DEBUG
2883        /*
2884         * Determine if we can poison the object itself. If the user of
2885         * the slab may touch the object after free or before allocation
2886         * then we should never poison the object itself.
2887         */
2888        if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2889                        !s->ctor)
2890                s->flags |= __OBJECT_POISON;
2891        else
2892                s->flags &= ~__OBJECT_POISON;
2893
2894
2895        /*
2896         * If we are Redzoning then check if there is some space between the
2897         * end of the object and the free pointer. If not then add an
2898         * additional word to have some bytes to store Redzone information.
2899         */
2900        if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2901                size += sizeof(void *);
2902#endif
2903
2904        /*
2905         * With that we have determined the number of bytes in actual use
2906         * by the object. This is the potential offset to the free pointer.
2907         */
2908        s->inuse = size;
2909
2910        if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2911                s->ctor)) {
2912                /*
2913                 * Relocate free pointer after the object if it is not
2914                 * permitted to overwrite the first word of the object on
2915                 * kmem_cache_free.
2916                 *
2917                 * This is the case if we do RCU, have a constructor or
2918                 * destructor or are poisoning the objects.
2919                 */
2920                s->offset = size;
2921                size += sizeof(void *);
2922        }
2923
2924#ifdef CONFIG_SLUB_DEBUG
2925        if (flags & SLAB_STORE_USER)
2926                /*
2927                 * Need to store information about allocs and frees after
2928                 * the object.
2929                 */
2930                size += 2 * sizeof(struct track);
2931
2932        if (flags & SLAB_RED_ZONE)
2933                /*
2934                 * Add some empty padding so that we can catch
2935                 * overwrites from earlier objects rather than let
2936                 * tracking information or the free pointer be
2937                 * corrupted if a user writes before the start
2938                 * of the object.
2939                 */
2940                size += sizeof(void *);
2941#endif
2942
2943        /*
2944         * Determine the alignment based on various parameters that the
2945         * user specified and the dynamic determination of cache line size
2946         * on bootup.
2947         */
2948        align = calculate_alignment(flags, align, s->objsize);
2949        s->align = align;
2950
2951        /*
2952         * SLUB stores one object immediately after another beginning from
2953         * offset 0. In order to align the objects we have to simply size
2954         * each object to conform to the alignment.
2955         */
2956        size = ALIGN(size, align);
2957        s->size = size;
2958        if (forced_order >= 0)
2959                order = forced_order;
2960        else
2961                order = calculate_order(size, s->reserved);
2962
2963        if (order < 0)
2964                return 0;
2965
2966        s->allocflags = 0;
2967        if (order)
2968                s->allocflags |= __GFP_COMP;
2969
2970        if (s->flags & SLAB_CACHE_DMA)
2971                s->allocflags |= SLUB_DMA;
2972
2973        if (s->flags & SLAB_RECLAIM_ACCOUNT)
2974                s->allocflags |= __GFP_RECLAIMABLE;
2975
2976        /*
2977         * Determine the number of objects per slab
2978         */
2979        s->oo = oo_make(order, size, s->reserved);
2980        s->min = oo_make(get_order(size), size, s->reserved);
2981        if (oo_objects(s->oo) > oo_objects(s->max))
2982                s->max = s->oo;
2983
2984        return !!oo_objects(s->oo);
2985
2986}
2987
2988static int kmem_cache_open(struct kmem_cache *s,
2989                const char *name, size_t size,
2990                size_t align, unsigned long flags,
2991                void (*ctor)(void *))
2992{
2993        memset(s, 0, kmem_size);
2994        s->name = name;
2995        s->ctor = ctor;
2996        s->objsize = size;
2997        s->align = align;
2998        s->flags = kmem_cache_flags(size, flags, name, ctor);
2999        s->reserved = 0;
3000
3001        if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3002                s->reserved = sizeof(struct rcu_head);
3003
3004        if (!calculate_sizes(s, -1))
3005                goto error;
3006        if (disable_higher_order_debug) {
3007                /*
3008                 * Disable debugging flags that store metadata if the min slab
3009                 * order increased.
3010                 */
3011                if (get_order(s->size) > get_order(s->objsize)) {
3012                        s->flags &= ~DEBUG_METADATA_FLAGS;
3013                        s->offset = 0;
3014                        if (!calculate_sizes(s, -1))
3015                                goto error;
3016                }
3017        }
3018
3019#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3020    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3021        if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3022                /* Enable fast mode */
3023                s->flags |= __CMPXCHG_DOUBLE;
3024#endif
3025
3026        /*
3027         * The larger the object size is, the more pages we want on the partial
3028         * list to avoid pounding the page allocator excessively.
3029         */
3030        set_min_partial(s, ilog2(s->size) / 2);
3031
3032        /*
3033         * cpu_partial determined the maximum number of objects kept in the
3034         * per cpu partial lists of a processor.
3035         *
3036         * Per cpu partial lists mainly contain slabs that just have one
3037         * object freed. If they are used for allocation then they can be
3038         * filled up again with minimal effort. The slab will never hit the
3039         * per node partial lists and therefore no locking will be required.
3040         *
3041         * This setting also determines
3042         *
3043         * A) The number of objects from per cpu partial slabs dumped to the
3044         *    per node list when we reach the limit.
3045         * B) The number of objects in cpu partial slabs to extract from the
3046         *    per node list when we run out of per cpu objects. We only fetch 50%
3047         *    to keep some capacity around for frees.
3048         */
3049        if (kmem_cache_debug(s))
3050                s->cpu_partial = 0;
3051        else if (s->size >= PAGE_SIZE)
3052                s->cpu_partial = 2;
3053        else if (s->size >= 1024)
3054                s->cpu_partial = 6;
3055        else if (s->size >= 256)
3056                s->cpu_partial = 13;
3057        else
3058                s->cpu_partial = 30;
3059
3060        s->refcount = 1;
3061#ifdef CONFIG_NUMA
3062        s->remote_node_defrag_ratio = 1000;
3063#endif
3064        if (!init_kmem_cache_nodes(s))
3065                goto error;
3066
3067        if (alloc_kmem_cache_cpus(s))
3068                return 1;
3069
3070        free_kmem_cache_nodes(s);
3071error:
3072        if (flags & SLAB_PANIC)
3073                panic("Cannot create slab %s size=%lu realsize=%u "
3074                        "order=%u offset=%u flags=%lx\n",
3075                        s->name, (unsigned long)size, s->size, oo_order(s->oo),
3076                        s->offset, flags);
3077        return 0;
3078}
3079
3080/*
3081 * Determine the size of a slab object
3082 */
3083unsigned int kmem_cache_size(struct kmem_cache *s)
3084{
3085        return s->objsize;
3086}
3087EXPORT_SYMBOL(kmem_cache_size);
3088
3089static void list_slab_objects(struct kmem_cache *s, struct page *page,
3090                                                        const char *text)
3091{
3092#ifdef CONFIG_SLUB_DEBUG
3093        void *addr = page_address(page);
3094        void *p;
3095        unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3096                                     sizeof(long), GFP_ATOMIC);
3097        if (!map)
3098                return;
3099        slab_err(s, page, "%s", text);
3100        slab_lock(page);
3101
3102        get_map(s, page, map);
3103        for_each_object(p, s, addr, page->objects) {
3104
3105                if (!test_bit(slab_index(p, s, addr), map)) {
3106                        printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3107                                                        p, p - addr);
3108                        print_tracking(s, p);
3109                }
3110        }
3111        slab_unlock(page);
3112        kfree(map);
3113#endif
3114}
3115
3116/*
3117 * Attempt to free all partial slabs on a node.
3118 * This is called from kmem_cache_close(). We must be the last thread
3119 * using the cache and therefore we do not need to lock anymore.
3120 */
3121static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3122{
3123        struct page *page, *h;
3124
3125        list_for_each_entry_safe(page, h, &n->partial, lru) {
3126                if (!page->inuse) {
3127                        remove_partial(n, page);
3128                        discard_slab(s, page);
3129                } else {
3130                        list_slab_objects(s, page,
3131                                "Objects remaining on kmem_cache_close()");
3132                }
3133        }
3134}
3135
3136/*
3137 * Release all resources used by a slab cache.
3138 */
3139static inline int kmem_cache_close(struct kmem_cache *s)
3140{
3141        int node;
3142
3143        flush_all(s);
3144        free_percpu(s->cpu_slab);
3145        /* Attempt to free all objects */
3146        for_each_node_state(node, N_NORMAL_MEMORY) {
3147                struct kmem_cache_node *n = get_node(s, node);
3148
3149                free_partial(s, n);
3150                if (n->nr_partial || slabs_node(s, node))
3151                        return 1;
3152        }
3153        free_kmem_cache_nodes(s);
3154        return 0;
3155}
3156
3157/*
3158 * Close a cache and release the kmem_cache structure
3159 * (must be used for caches created using kmem_cache_create)
3160 */
3161void kmem_cache_destroy(struct kmem_cache *s)
3162{
3163        down_write(&slub_lock);
3164        s->refcount--;
3165        if (!s->refcount) {
3166                list_del(&s->list);
3167                up_write(&slub_lock);
3168                if (kmem_cache_close(s)) {
3169                        printk(KERN_ERR "SLUB %s: %s called for cache that "
3170                                "still has objects.\n", s->name, __func__);
3171                        dump_stack();
3172                }
3173                if (s->flags & SLAB_DESTROY_BY_RCU)
3174                        rcu_barrier();
3175                sysfs_slab_remove(s);
3176        } else
3177                up_write(&slub_lock);
3178}
3179EXPORT_SYMBOL(kmem_cache_destroy);
3180
3181/********************************************************************
3182 *              Kmalloc subsystem
3183 *******************************************************************/
3184
3185struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
3186EXPORT_SYMBOL(kmalloc_caches);
3187
3188static struct kmem_cache *kmem_cache;
3189
3190#ifdef CONFIG_ZONE_DMA
3191static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
3192#endif
3193
3194static int __init setup_slub_min_order(char *str)
3195{
3196        get_option(&str, &slub_min_order);
3197
3198        return 1;
3199}
3200
3201__setup("slub_min_order=", setup_slub_min_order);
3202
3203static int __init setup_slub_max_order(char *str)
3204{
3205        get_option(&str, &slub_max_order);
3206        slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3207
3208        return 1;
3209}
3210
3211__setup("slub_max_order=", setup_slub_max_order);
3212
3213static int __init setup_slub_min_objects(char *str)
3214{
3215        get_option(&str, &slub_min_objects);
3216
3217        return 1;
3218}
3219
3220__setup("slub_min_objects=", setup_slub_min_objects);
3221
3222static int __init setup_slub_nomerge(char *str)
3223{
3224        slub_nomerge = 1;
3225        return 1;
3226}
3227
3228__setup("slub_nomerge", setup_slub_nomerge);
3229
3230static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3231                                                int size, unsigned int flags)
3232{
3233        struct kmem_cache *s;
3234
3235        s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3236
3237        /*
3238         * This function is called with IRQs disabled during early-boot on
3239         * single CPU so there's no need to take slub_lock here.
3240         */
3241        if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
3242                                                                flags, NULL))
3243                goto panic;
3244
3245        list_add(&s->list, &slab_caches);
3246        return s;
3247
3248panic:
3249        panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
3250        return NULL;
3251}
3252
3253/*
3254 * Conversion table for small slabs sizes / 8 to the index in the
3255 * kmalloc array. This is necessary for slabs < 192 since we have non power
3256 * of two cache sizes there. The size of larger slabs can be determined using
3257 * fls.
3258 */
3259static s8 size_index[24] = {
3260        3,      /* 8 */
3261        4,      /* 16 */
3262        5,      /* 24 */
3263        5,      /* 32 */
3264        6,      /* 40 */
3265        6,      /* 48 */
3266        6,      /* 56 */
3267        6,      /* 64 */
3268        1,      /* 72 */
3269        1,      /* 80 */
3270        1,      /* 88 */
3271        1,      /* 96 */
3272        7,      /* 104 */
3273        7,      /* 112 */
3274        7,      /* 120 */
3275        7,      /* 128 */
3276        2,      /* 136 */
3277        2,      /* 144 */
3278        2,      /* 152 */
3279        2,      /* 160 */
3280        2,      /* 168 */
3281        2,      /* 176 */
3282        2,      /* 184 */
3283        2       /* 192 */
3284};
3285
3286static inline int size_index_elem(size_t bytes)
3287{
3288        return (bytes - 1) / 8;
3289}
3290
3291static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3292{
3293        int index;
3294
3295        if (size <= 192) {
3296                if (!size)
3297                        return ZERO_SIZE_PTR;
3298
3299                index = size_index[size_index_elem(size)];
3300        } else
3301                index = fls(size - 1);
3302
3303#ifdef CONFIG_ZONE_DMA
3304        if (unlikely((flags & SLUB_DMA)))
3305                return kmalloc_dma_caches[index];
3306
3307#endif
3308        return kmalloc_caches[index];
3309}
3310
3311void *__kmalloc(size_t size, gfp_t flags)
3312{
3313        struct kmem_cache *s;
3314        void *ret;
3315
3316        if (unlikely(size > SLUB_MAX_SIZE))
3317                return kmalloc_large(size, flags);
3318
3319        s = get_slab(size, flags);
3320
3321        if (unlikely(ZERO_OR_NULL_PTR(s)))
3322                return s;
3323
3324        ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
3325
3326        trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3327
3328        return ret;
3329}
3330EXPORT_SYMBOL(__kmalloc);
3331
3332#ifdef CONFIG_NUMA
3333static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3334{
3335        struct page *page;
3336        void *ptr = NULL;
3337
3338        flags |= __GFP_COMP | __GFP_NOTRACK;
3339        page = alloc_pages_node(node, flags, get_order(size));
3340        if (page)
3341                ptr = page_address(page);
3342
3343        kmemleak_alloc(ptr, size, 1, flags);
3344        return ptr;
3345}
3346
3347void *__kmalloc_node(size_t size, gfp_t flags, int node)
3348{
3349        struct kmem_cache *s;
3350        void *ret;
3351
3352        if (unlikely(size > SLUB_MAX_SIZE)) {
3353                ret = kmalloc_large_node(size, flags, node);
3354
3355                trace_kmalloc_node(_RET_IP_, ret,
3356                                   size, PAGE_SIZE << get_order(size),
3357                                   flags, node);
3358
3359                return ret;
3360        }
3361
3362        s = get_slab(size, flags);
3363
3364        if (unlikely(ZERO_OR_NULL_PTR(s)))
3365                return s;
3366
3367        ret = slab_alloc(s, flags, node, _RET_IP_);
3368
3369        trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3370
3371        return ret;
3372}
3373EXPORT_SYMBOL(__kmalloc_node);
3374#endif
3375
3376size_t ksize(const void *object)
3377{
3378        struct page *page;
3379
3380        if (unlikely(object == ZERO_SIZE_PTR))
3381                return 0;
3382
3383        page = virt_to_head_page(object);
3384
3385        if (unlikely(!PageSlab(page))) {
3386                WARN_ON(!PageCompound(page));
3387                return PAGE_SIZE << compound_order(page);
3388        }
3389
3390        return slab_ksize(page->slab);
3391}
3392EXPORT_SYMBOL(ksize);
3393
3394#ifdef CONFIG_SLUB_DEBUG
3395bool verify_mem_not_deleted(const void *x)
3396{
3397        struct page *page;
3398        void *object = (void *)x;
3399        unsigned long flags;
3400        bool rv;
3401
3402        if (unlikely(ZERO_OR_NULL_PTR(x)))
3403                return false;
3404
3405        local_irq_save(flags);
3406
3407        page = virt_to_head_page(x);
3408        if (unlikely(!PageSlab(page))) {
3409                /* maybe it was from stack? */
3410                rv = true;
3411                goto out_unlock;
3412        }
3413
3414        slab_lock(page);
3415        if (on_freelist(page->slab, page, object)) {
3416                object_err(page->slab, page, object, "Object is on free-list");
3417                rv = false;
3418        } else {
3419                rv = true;
3420        }
3421        slab_unlock(page);
3422
3423out_unlock:
3424        local_irq_restore(flags);
3425        return rv;
3426}
3427EXPORT_SYMBOL(verify_mem_not_deleted);
3428#endif
3429
3430void kfree(const void *x)
3431{
3432        struct page *page;
3433        void *object = (void *)x;
3434
3435        trace_kfree(_RET_IP_, x);
3436
3437        if (unlikely(ZERO_OR_NULL_PTR(x)))
3438                return;
3439
3440        page = virt_to_head_page(x);
3441        if (unlikely(!PageSlab(page))) {
3442                BUG_ON(!PageCompound(page));
3443                kmemleak_free(x);
3444                put_page(page);
3445                return;
3446        }
3447        slab_free(page->slab, page, object, _RET_IP_);
3448}
3449EXPORT_SYMBOL(kfree);
3450
3451/*
3452 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3453 * the remaining slabs by the number of items in use. The slabs with the
3454 * most items in use come first. New allocations will then fill those up
3455 * and thus they can be removed from the partial lists.
3456 *
3457 * The slabs with the least items are placed last. This results in them
3458 * being allocated from last increasing the chance that the last objects
3459 * are freed in them.
3460 */
3461int kmem_cache_shrink(struct kmem_cache *s)
3462{
3463        int node;
3464        int i;
3465        struct kmem_cache_node *n;
3466        struct page *page;
3467        struct page *t;
3468        int objects = oo_objects(s->max);
3469        struct list_head *slabs_by_inuse =
3470                kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3471        unsigned long flags;
3472
3473        if (!slabs_by_inuse)
3474                return -ENOMEM;
3475
3476        flush_all(s);
3477        for_each_node_state(node, N_NORMAL_MEMORY) {
3478                n = get_node(s, node);
3479
3480                if (!n->nr_partial)
3481                        continue;
3482
3483                for (i = 0; i < objects; i++)
3484                        INIT_LIST_HEAD(slabs_by_inuse + i);
3485
3486                spin_lock_irqsave(&n->list_lock, flags);
3487
3488                /*
3489                 * Build lists indexed by the items in use in each slab.
3490                 *
3491                 * Note that concurrent frees may occur while we hold the
3492                 * list_lock. page->inuse here is the upper limit.
3493                 */
3494                list_for_each_entry_safe(page, t, &n->partial, lru) {
3495                        list_move(&page->lru, slabs_by_inuse + page->inuse);
3496                        if (!page->inuse)
3497                                n->nr_partial--;
3498                }
3499
3500                /*
3501                 * Rebuild the partial list with the slabs filled up most
3502                 * first and the least used slabs at the end.
3503                 */
3504                for (i = objects - 1; i > 0; i--)
3505                        list_splice(slabs_by_inuse + i, n->partial.prev);
3506
3507                spin_unlock_irqrestore(&n->list_lock, flags);
3508
3509                /* Release empty slabs */
3510                list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3511                        discard_slab(s, page);
3512        }
3513
3514        kfree(slabs_by_inuse);
3515        return 0;
3516}
3517EXPORT_SYMBOL(kmem_cache_shrink);
3518
3519#if defined(CONFIG_MEMORY_HOTPLUG)
3520static int slab_mem_going_offline_callback(void *arg)
3521{
3522        struct kmem_cache *s;
3523
3524        down_read(&slub_lock);
3525        list_for_each_entry(s, &slab_caches, list)
3526                kmem_cache_shrink(s);
3527        up_read(&slub_lock);
3528
3529        return 0;
3530}
3531
3532static void slab_mem_offline_callback(void *arg)
3533{
3534        struct kmem_cache_node *n;
3535        struct kmem_cache *s;
3536        struct memory_notify *marg = arg;
3537        int offline_node;
3538
3539        offline_node = marg->status_change_nid;
3540
3541        /*
3542         * If the node still has available memory. we need kmem_cache_node
3543         * for it yet.
3544         */
3545        if (offline_node < 0)
3546                return;
3547
3548        down_read(&slub_lock);
3549        list_for_each_entry(s, &slab_caches, list) {
3550                n = get_node(s, offline_node);
3551                if (n) {
3552                        /*
3553                         * if n->nr_slabs > 0, slabs still exist on the node
3554                         * that is going down. We were unable to free them,
3555                         * and offline_pages() function shouldn't call this
3556                         * callback. So, we must fail.
3557                         */
3558                        BUG_ON(slabs_node(s, offline_node));
3559
3560                        s->node[offline_node] = NULL;
3561                        kmem_cache_free(kmem_cache_node, n);
3562                }
3563        }
3564        up_read(&slub_lock);
3565}
3566
3567static int slab_mem_going_online_callback(void *arg)
3568{
3569        struct kmem_cache_node *n;
3570        struct kmem_cache *s;
3571        struct memory_notify *marg = arg;
3572        int nid = marg->status_change_nid;
3573        int ret = 0;
3574
3575        /*
3576         * If the node's memory is already available, then kmem_cache_node is
3577         * already created. Nothing to do.
3578         */
3579        if (nid < 0)
3580                return 0;
3581
3582        /*
3583         * We are bringing a node online. No memory is available yet. We must
3584         * allocate a kmem_cache_node structure in order to bring the node
3585         * online.
3586         */
3587        down_read(&slub_lock);
3588        list_for_each_entry(s, &slab_caches, list) {
3589                /*
3590                 * XXX: kmem_cache_alloc_node will fallback to other nodes
3591                 *      since memory is not yet available from the node that
3592                 *      is brought up.
3593                 */
3594                n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3595                if (!n) {
3596                        ret = -ENOMEM;
3597                        goto out;
3598                }
3599                init_kmem_cache_node(n, s);
3600                s->node[nid] = n;
3601        }
3602out:
3603        up_read(&slub_lock);
3604        return ret;
3605}
3606
3607static int slab_memory_callback(struct notifier_block *self,
3608                                unsigned long action, void *arg)
3609{
3610        int ret = 0;
3611
3612        switch (action) {
3613        case MEM_GOING_ONLINE:
3614                ret = slab_mem_going_online_callback(arg);
3615                break;
3616        case MEM_GOING_OFFLINE:
3617                ret = slab_mem_going_offline_callback(arg);
3618                break;
3619        case MEM_OFFLINE:
3620        case MEM_CANCEL_ONLINE:
3621                slab_mem_offline_callback(arg);
3622                break;
3623        case MEM_ONLINE:
3624        case MEM_CANCEL_OFFLINE:
3625                break;
3626        }
3627        if (ret)
3628                ret = notifier_from_errno(ret);
3629        else
3630                ret = NOTIFY_OK;
3631        return ret;
3632}
3633
3634#endif /* CONFIG_MEMORY_HOTPLUG */
3635
3636/********************************************************************
3637 *                      Basic setup of slabs
3638 *******************************************************************/
3639
3640/*
3641 * Used for early kmem_cache structures that were allocated using
3642 * the page allocator
3643 */
3644
3645static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3646{
3647        int node;
3648
3649        list_add(&s->list, &slab_caches);
3650        s->refcount = -1;
3651
3652        for_each_node_state(node, N_NORMAL_MEMORY) {
3653                struct kmem_cache_node *n = get_node(s, node);
3654                struct page *p;
3655
3656                if (n) {
3657                        list_for_each_entry(p, &n->partial, lru)
3658                                p->slab = s;
3659
3660#ifdef CONFIG_SLUB_DEBUG
3661                        list_for_each_entry(p, &n->full, lru)
3662                                p->slab = s;
3663#endif
3664                }
3665        }
3666}
3667
3668void __init kmem_cache_init(void)
3669{
3670        int i;
3671        int caches = 0;
3672        struct kmem_cache *temp_kmem_cache;
3673        int order;
3674        struct kmem_cache *temp_kmem_cache_node;
3675        unsigned long kmalloc_size;
3676
3677        if (debug_guardpage_minorder())
3678                slub_max_order = 0;
3679
3680        kmem_size = offsetof(struct kmem_cache, node) +
3681                                nr_node_ids * sizeof(struct kmem_cache_node *);
3682
3683        /* Allocate two kmem_caches from the page allocator */
3684        kmalloc_size = ALIGN(kmem_size, cache_line_size());
3685        order = get_order(2 * kmalloc_size);
3686        kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3687
3688        /*
3689         * Must first have the slab cache available for the allocations of the
3690         * struct kmem_cache_node's. There is special bootstrap code in
3691         * kmem_cache_open for slab_state == DOWN.
3692         */
3693        kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3694
3695        kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3696                sizeof(struct kmem_cache_node),
3697                0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3698
3699        hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3700
3701        /* Able to allocate the per node structures */
3702        slab_state = PARTIAL;
3703
3704        temp_kmem_cache = kmem_cache;
3705        kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3706                0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3707        kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3708        memcpy(kmem_cache, temp_kmem_cache, kmem_size);
3709
3710        /*
3711         * Allocate kmem_cache_node properly from the kmem_cache slab.
3712         * kmem_cache_node is separately allocated so no need to
3713         * update any list pointers.
3714         */
3715        temp_kmem_cache_node = kmem_cache_node;
3716
3717        kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3718        memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3719
3720        kmem_cache_bootstrap_fixup(kmem_cache_node);
3721
3722        caches++;
3723        kmem_cache_bootstrap_fixup(kmem_cache);
3724        caches++;
3725        /* Free temporary boot structure */
3726        free_pages((unsigned long)temp_kmem_cache, order);
3727
3728        /* Now we can use the kmem_cache to allocate kmalloc slabs */
3729
3730        /*
3731         * Patch up the size_index table if we have strange large alignment
3732         * requirements for the kmalloc array. This is only the case for
3733         * MIPS it seems. The standard arches will not generate any code here.
3734         *
3735         * Largest permitted alignment is 256 bytes due to the way we
3736         * handle the index determination for the smaller caches.
3737         *
3738         * Make sure that nothing crazy happens if someone starts tinkering
3739         * around with ARCH_KMALLOC_MINALIGN
3740         */
3741        BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3742                (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3743
3744        for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3745                int elem = size_index_elem(i);
3746                if (elem >= ARRAY_SIZE(size_index))
3747                        break;
3748                size_index[elem] = KMALLOC_SHIFT_LOW;
3749        }
3750
3751        if (KMALLOC_MIN_SIZE == 64) {
3752                /*
3753                 * The 96 byte size cache is not used if the alignment
3754                 * is 64 byte.
3755                 */
3756                for (i = 64 + 8; i <= 96; i += 8)
3757                        size_index[size_index_elem(i)] = 7;
3758        } else if (KMALLOC_MIN_SIZE == 128) {
3759                /*
3760                 * The 192 byte sized cache is not used if the alignment
3761                 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3762                 * instead.
3763                 */
3764                for (i = 128 + 8; i <= 192; i += 8)
3765                        size_index[size_index_elem(i)] = 8;
3766        }
3767
3768        /* Caches that are not of the two-to-the-power-of size */
3769        if (KMALLOC_MIN_SIZE <= 32) {
3770                kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3771                caches++;
3772        }
3773
3774        if (KMALLOC_MIN_SIZE <= 64) {
3775                kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3776                caches++;
3777        }
3778
3779        for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3780                kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3781                caches++;
3782        }
3783
3784        slab_state = UP;
3785
3786        /* Provide the correct kmalloc names now that the caches are up */
3787        if (KMALLOC_MIN_SIZE <= 32) {
3788                kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3789                BUG_ON(!kmalloc_caches[1]->name);
3790        }
3791
3792        if (KMALLOC_MIN_SIZE <= 64) {
3793                kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3794                BUG_ON(!kmalloc_caches[2]->name);
3795        }
3796
3797        for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3798                char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3799
3800                BUG_ON(!s);
3801                kmalloc_caches[i]->name = s;
3802        }
3803
3804#ifdef CONFIG_SMP
3805        register_cpu_notifier(&slab_notifier);
3806#endif
3807
3808#ifdef CONFIG_ZONE_DMA
3809        for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3810                struct kmem_cache *s = kmalloc_caches[i];
3811
3812                if (s && s->size) {
3813                        char *name = kasprintf(GFP_NOWAIT,
3814                                 "dma-kmalloc-%d", s->objsize);
3815
3816                        BUG_ON(!name);
3817                        kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3818                                s->objsize, SLAB_CACHE_DMA);
3819                }
3820        }
3821#endif
3822        printk(KERN_INFO
3823                "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3824                " CPUs=%d, Nodes=%d\n",
3825                caches, cache_line_size(),
3826                slub_min_order, slub_max_order, slub_min_objects,
3827                nr_cpu_ids, nr_node_ids);
3828}
3829
3830void __init kmem_cache_init_late(void)
3831{
3832}
3833
3834/*
3835 * Find a mergeable slab cache
3836 */
3837static int slab_unmergeable(struct kmem_cache *s)
3838{
3839        if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3840                return 1;
3841
3842        if (s->ctor)
3843                return 1;
3844
3845        /*
3846         * We may have set a slab to be unmergeable during bootstrap.
3847         */
3848        if (s->refcount < 0)
3849                return 1;
3850
3851        return 0;
3852}
3853
3854static struct kmem_cache *find_mergeable(size_t size,
3855                size_t align, unsigned long flags, const char *name,
3856                void (*ctor)(void *))
3857{
3858        struct kmem_cache *s;
3859
3860        if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3861                return NULL;
3862
3863        if (ctor)
3864                return NULL;
3865
3866        size = ALIGN(size, sizeof(void *));
3867        align = calculate_alignment(flags, align, size);
3868        size = ALIGN(size, align);
3869        flags = kmem_cache_flags(size, flags, name, NULL);
3870
3871        list_for_each_entry(s, &slab_caches, list) {
3872                if (slab_unmergeable(s))
3873                        continue;
3874
3875                if (size > s->size)
3876                        continue;
3877
3878                if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3879                                continue;
3880                /*
3881                 * Check if alignment is compatible.
3882                 * Courtesy of Adrian Drzewiecki
3883                 */
3884                if ((s->size & ~(align - 1)) != s->size)
3885                        continue;
3886
3887                if (s->size - size >= sizeof(void *))
3888                        continue;
3889
3890                return s;
3891        }
3892        return NULL;
3893}
3894
3895struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3896                size_t align, unsigned long flags, void (*ctor)(void *))
3897{
3898        struct kmem_cache *s;
3899        char *n;
3900
3901        if (WARN_ON(!name))
3902                return NULL;
3903
3904        down_write(&slub_lock);
3905        s = find_mergeable(size, align, flags, name, ctor);
3906        if (s) {
3907                s->refcount++;
3908                /*
3909                 * Adjust the object sizes so that we clear
3910                 * the complete object on kzalloc.
3911                 */
3912                s->objsize = max(s->objsize, (int)size);
3913                s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3914
3915                if (sysfs_slab_alias(s, name)) {
3916                        s->refcount--;
3917                        goto err;
3918                }
3919                up_write(&slub_lock);
3920                return s;
3921        }
3922
3923        n = kstrdup(name, GFP_KERNEL);
3924        if (!n)
3925                goto err;
3926
3927        s = kmalloc(kmem_size, GFP_KERNEL);
3928        if (s) {
3929                if (kmem_cache_open(s, n,
3930                                size, align, flags, ctor)) {
3931                        list_add(&s->list, &slab_caches);
3932                        if (sysfs_slab_add(s)) {
3933                                list_del(&s->list);
3934                                kfree(n);
3935                                kfree(s);
3936                                goto err;
3937                        }
3938                        up_write(&slub_lock);
3939                        return s;
3940                }
3941                kfree(n);
3942                kfree(s);
3943        }
3944err:
3945        up_write(&slub_lock);
3946
3947        if (flags & SLAB_PANIC)
3948                panic("Cannot create slabcache %s\n", name);
3949        else
3950                s = NULL;
3951        return s;
3952}
3953EXPORT_SYMBOL(kmem_cache_create);
3954
3955#ifdef CONFIG_SMP
3956/*
3957 * Use the cpu notifier to insure that the cpu slabs are flushed when
3958 * necessary.
3959 */
3960static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3961                unsigned long action, void *hcpu)
3962{
3963        long cpu = (long)hcpu;
3964        struct kmem_cache *s;
3965        unsigned long flags;
3966
3967        switch (action) {
3968        case CPU_UP_CANCELED:
3969        case CPU_UP_CANCELED_FROZEN:
3970        case CPU_DEAD:
3971        case CPU_DEAD_FROZEN:
3972                down_read(&slub_lock);
3973                list_for_each_entry(s, &slab_caches, list) {
3974                        local_irq_save(flags);
3975                        __flush_cpu_slab(s, cpu);
3976                        local_irq_restore(flags);
3977                }
3978                up_read(&slub_lock);
3979                break;
3980        default:
3981                break;
3982        }
3983        return NOTIFY_OK;
3984}
3985
3986static struct notifier_block __cpuinitdata slab_notifier = {
3987        .notifier_call = slab_cpuup_callback
3988};
3989
3990#endif
3991
3992void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3993{
3994        struct kmem_cache *s;
3995        void *ret;
3996
3997        if (unlikely(size > SLUB_MAX_SIZE))
3998                return kmalloc_large(size, gfpflags);
3999
4000        s = get_slab(size, gfpflags);
4001
4002        if (unlikely(ZERO_OR_NULL_PTR(s)))
4003                return s;
4004
4005        ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
4006
4007        /* Honor the call site pointer we received. */
4008        trace_kmalloc(caller, ret, size, s->size, gfpflags);
4009
4010        return ret;
4011}
4012
4013#ifdef CONFIG_NUMA
4014void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4015                                        int node, unsigned long caller)
4016{
4017        struct kmem_cache *s;
4018        void *ret;
4019
4020        if (unlikely(size > SLUB_MAX_SIZE)) {
4021                ret = kmalloc_large_node(size, gfpflags, node);
4022
4023                trace_kmalloc_node(caller, ret,
4024                                   size, PAGE_SIZE << get_order(size),
4025                                   gfpflags, node);
4026
4027                return ret;
4028        }
4029
4030        s = get_slab(size, gfpflags);
4031
4032        if (unlikely(ZERO_OR_NULL_PTR(s)))
4033                return s;
4034
4035        ret = slab_alloc(s, gfpflags, node, caller);
4036
4037        /* Honor the call site pointer we received. */
4038        trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4039
4040        return ret;
4041}
4042#endif
4043
4044#ifdef CONFIG_SYSFS
4045static int count_inuse(struct page *page)
4046{
4047        return page->inuse;
4048}
4049
4050static int count_total(struct page *page)
4051{
4052        return page->objects;
4053}
4054#endif
4055
4056#ifdef CONFIG_SLUB_DEBUG
4057static int validate_slab(struct kmem_cache *s, struct page *page,
4058                                                unsigned long *map)
4059{
4060        void *p;
4061        void *addr = page_address(page);
4062
4063        if (!check_slab(s, page) ||
4064                        !on_freelist(s, page, NULL))
4065                return 0;
4066
4067        /* Now we know that a valid freelist exists */
4068        bitmap_zero(map, page->objects);
4069
4070        get_map(s, page, map);
4071        for_each_object(p, s, addr, page->objects) {
4072                if (test_bit(slab_index(p, s, addr), map))
4073                        if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4074                                return 0;
4075        }
4076
4077        for_each_object(p, s, addr, page->objects)
4078                if (!test_bit(slab_index(p, s, addr), map))
4079                        if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4080                                return 0;
4081        return 1;
4082}
4083
4084static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4085                                                unsigned long *map)
4086{
4087        slab_lock(page);
4088        validate_slab(s, page, map);
4089        slab_unlock(page);
4090}
4091
4092static int validate_slab_node(struct kmem_cache *s,
4093                struct kmem_cache_node *n, unsigned long *map)
4094{
4095        unsigned long count = 0;
4096        struct page *page;
4097        unsigned long flags;
4098
4099        spin_lock_irqsave(&n->list_lock, flags);
4100
4101        list_for_each_entry(page, &n->partial, lru) {
4102                validate_slab_slab(s, page, map);
4103                count++;
4104        }
4105        if (count != n->nr_partial)
4106                printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4107                        "counter=%ld\n", s->name, count, n->nr_partial);
4108
4109        if (!(s->flags & SLAB_STORE_USER))
4110                goto out;
4111
4112        list_for_each_entry(page, &n->full, lru) {
4113                validate_slab_slab(s, page, map);
4114                count++;
4115        }
4116        if (count != atomic_long_read(&n->nr_slabs))
4117                printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4118                        "counter=%ld\n", s->name, count,
4119                        atomic_long_read(&n->nr_slabs));
4120
4121out:
4122        spin_unlock_irqrestore(&n->list_lock, flags);
4123        return count;
4124}
4125
4126static long validate_slab_cache(struct kmem_cache *s)
4127{
4128        int node;
4129        unsigned long count = 0;
4130        unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4131                                sizeof(unsigned long), GFP_KERNEL);
4132
4133        if (!map)
4134                return -ENOMEM;
4135
4136        flush_all(s);
4137        for_each_node_state(node, N_NORMAL_MEMORY) {
4138                struct kmem_cache_node *n = get_node(s, node);
4139
4140                count += validate_slab_node(s, n, map);
4141        }
4142        kfree(map);
4143        return count;
4144}
4145/*
4146 * Generate lists of code addresses where slabcache objects are allocated
4147 * and freed.
4148 */
4149
4150struct location {
4151        unsigned long count;
4152        unsigned long addr;
4153        long long sum_time;
4154        long min_time;
4155        long max_time;
4156        long min_pid;
4157        long max_pid;
4158        DECLARE_BITMAP(cpus, NR_CPUS);
4159        nodemask_t nodes;
4160};
4161
4162struct loc_track {
4163        unsigned long max;
4164        unsigned long count;
4165        struct location *loc;
4166};
4167
4168static void free_loc_track(struct loc_track *t)
4169{
4170        if (t->max)
4171                free_pages((unsigned long)t->loc,
4172                        get_order(sizeof(struct location) * t->max));
4173}
4174
4175static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4176{
4177        struct location *l;
4178        int order;
4179
4180        order = get_order(sizeof(struct location) * max);
4181
4182        l = (void *)__get_free_pages(flags, order);
4183        if (!l)
4184                return 0;
4185
4186        if (t->count) {
4187                memcpy(l, t->loc, sizeof(struct location) * t->count);
4188                free_loc_track(t);
4189        }
4190        t->max = max;
4191        t->loc = l;
4192        return 1;
4193}
4194
4195static int add_location(struct loc_track *t, struct kmem_cache *s,
4196                                const struct track *track)
4197{
4198        long start, end, pos;
4199        struct location *l;
4200        unsigned long caddr;
4201        unsigned long age = jiffies - track->when;
4202
4203        start = -1;
4204        end = t->count;
4205
4206        for ( ; ; ) {
4207                pos = start + (end - start + 1) / 2;
4208
4209                /*
4210                 * There is nothing at "end". If we end up there
4211                 * we need to add something to before end.
4212                 */
4213                if (pos == end)
4214                        break;
4215
4216                caddr = t->loc[pos].addr;
4217                if (track->addr == caddr) {
4218
4219                        l = &t->loc[pos];
4220                        l->count++;
4221                        if (track->when) {
4222                                l->sum_time += age;
4223                                if (age < l->min_time)
4224                                        l->min_time = age;
4225                                if (age > l->max_time)
4226                                        l->max_time = age;
4227
4228                                if (track->pid < l->min_pid)
4229                                        l->min_pid = track->pid;
4230                                if (track->pid > l->max_pid)
4231                                        l->max_pid = track->pid;
4232
4233                                cpumask_set_cpu(track->cpu,
4234                                                to_cpumask(l->cpus));
4235                        }
4236                        node_set(page_to_nid(virt_to_page(track)), l->nodes);
4237                        return 1;
4238                }
4239
4240                if (track->addr < caddr)
4241                        end = pos;
4242                else
4243                        start = pos;
4244        }
4245
4246        /*
4247         * Not found. Insert new tracking element.
4248         */
4249        if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4250                return 0;
4251
4252        l = t->loc + pos;
4253        if (pos < t->count)
4254                memmove(l + 1, l,
4255                        (t->count - pos) * sizeof(struct location));
4256        t->count++;
4257        l->count = 1;
4258        l->addr = track->addr;
4259        l->sum_time = age;
4260        l->min_time = age;
4261        l->max_time = age;
4262        l->min_pid = track->pid;
4263        l->max_pid = track->pid;
4264        cpumask_clear(to_cpumask(l->cpus));
4265        cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4266        nodes_clear(l->nodes);
4267        node_set(page_to_nid(virt_to_page(track)), l->nodes);
4268        return 1;
4269}
4270
4271static void process_slab(struct loc_track *t, struct kmem_cache *s,
4272                struct page *page, enum track_item alloc,
4273                unsigned long *map)
4274{
4275        void *addr = page_address(page);
4276        void *p;
4277
4278        bitmap_zero(map, page->objects);
4279        get_map(s, page, map);
4280
4281        for_each_object(p, s, addr, page->objects)
4282                if (!test_bit(slab_index(p, s, addr), map))
4283                        add_location(t, s, get_track(s, p, alloc));
4284}
4285
4286static int list_locations(struct kmem_cache *s, char *buf,
4287                                        enum track_item alloc)
4288{
4289        int len = 0;
4290        unsigned long i;
4291        struct loc_track t = { 0, 0, NULL };
4292        int node;
4293        unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4294                                     sizeof(unsigned long), GFP_KERNEL);
4295
4296        if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4297                                     GFP_TEMPORARY)) {
4298                kfree(map);
4299                return sprintf(buf, "Out of memory\n");
4300        }
4301        /* Push back cpu slabs */
4302        flush_all(s);
4303
4304        for_each_node_state(node, N_NORMAL_MEMORY) {
4305                struct kmem_cache_node *n = get_node(s, node);
4306                unsigned long flags;
4307                struct page *page;
4308
4309                if (!atomic_long_read(&n->nr_slabs))
4310                        continue;
4311
4312                spin_lock_irqsave(&n->list_lock, flags);
4313                list_for_each_entry(page, &n->partial, lru)
4314                        process_slab(&t, s, page, alloc, map);
4315                list_for_each_entry(page, &n->full, lru)
4316                        process_slab(&t, s, page, alloc, map);
4317                spin_unlock_irqrestore(&n->list_lock, flags);
4318        }
4319
4320        for (i = 0; i < t.count; i++) {
4321                struct location *l = &t.loc[i];
4322
4323                if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4324                        break;
4325                len += sprintf(buf + len, "%7ld ", l->count);
4326
4327                if (l->addr)
4328                        len += sprintf(buf + len, "%pS", (void *)l->addr);
4329                else
4330                        len += sprintf(buf + len, "<not-available>");
4331
4332                if (l->sum_time != l->min_time) {
4333                        len += sprintf(buf + len, " age=%ld/%ld/%ld",
4334                                l->min_time,
4335                                (long)div_u64(l->sum_time, l->count),
4336                                l->max_time);
4337                } else
4338                        len += sprintf(buf + len, " age=%ld",
4339                                l->min_time);
4340
4341                if (l->min_pid != l->max_pid)
4342                        len += sprintf(buf + len, " pid=%ld-%ld",
4343                                l->min_pid, l->max_pid);
4344                else
4345                        len += sprintf(buf + len, " pid=%ld",
4346                                l->min_pid);
4347
4348                if (num_online_cpus() > 1 &&
4349                                !cpumask_empty(to_cpumask(l->cpus)) &&
4350                                len < PAGE_SIZE - 60) {
4351                        len += sprintf(buf + len, " cpus=");
4352                        len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4353                                                 to_cpumask(l->cpus));
4354                }
4355
4356                if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4357                                len < PAGE_SIZE - 60) {
4358                        len += sprintf(buf + len, " nodes=");
4359                        len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4360                                        l->nodes);
4361                }
4362
4363                len += sprintf(buf + len, "\n");
4364        }
4365
4366        free_loc_track(&t);
4367        kfree(map);
4368        if (!t.count)
4369                len += sprintf(buf, "No data\n");
4370        return len;
4371}
4372#endif
4373
4374#ifdef SLUB_RESILIENCY_TEST
4375static void resiliency_test(void)
4376{
4377        u8 *p;
4378
4379        BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4380
4381        printk(KERN_ERR "SLUB resiliency testing\n");
4382        printk(KERN_ERR "-----------------------\n");
4383        printk(KERN_ERR "A. Corruption after allocation\n");
4384
4385        p = kzalloc(16, GFP_KERNEL);
4386        p[16] = 0x12;
4387        printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4388                        " 0x12->0x%p\n\n", p + 16);
4389
4390        validate_slab_cache(kmalloc_caches[4]);
4391
4392        /* Hmmm... The next two are dangerous */
4393        p = kzalloc(32, GFP_KERNEL);
4394        p[32 + sizeof(void *)] = 0x34;
4395        printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4396                        " 0x34 -> -0x%p\n", p);
4397        printk(KERN_ERR
4398                "If allocated object is overwritten then not detectable\n\n");
4399
4400        validate_slab_cache(kmalloc_caches[5]);
4401        p = kzalloc(64, GFP_KERNEL);
4402        p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4403        *p = 0x56;
4404        printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4405                                                                        p);
4406        printk(KERN_ERR
4407                "If allocated object is overwritten then not detectable\n\n");
4408        validate_slab_cache(kmalloc_caches[6]);
4409
4410        printk(KERN_ERR "\nB. Corruption after free\n");
4411        p = kzalloc(128, GFP_KERNEL);
4412        kfree(p);
4413        *p = 0x78;
4414        printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4415        validate_slab_cache(kmalloc_caches[7]);
4416
4417        p = kzalloc(256, GFP_KERNEL);
4418        kfree(p);
4419        p[50] = 0x9a;
4420        printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4421                        p);
4422        validate_slab_cache(kmalloc_caches[8]);
4423
4424        p = kzalloc(512, GFP_KERNEL);
4425        kfree(p);
4426        p[512] = 0xab;
4427        printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4428        validate_slab_cache(kmalloc_caches[9]);
4429}
4430#else
4431#ifdef CONFIG_SYSFS
4432static void resiliency_test(void) {};
4433#endif
4434#endif
4435
4436#ifdef CONFIG_SYSFS
4437enum slab_stat_type {
4438        SL_ALL,                 /* All slabs */
4439        SL_PARTIAL,             /* Only partially allocated slabs */
4440        SL_CPU,                 /* Only slabs used for cpu caches */
4441        SL_OBJECTS,             /* Determine allocated objects not slabs */
4442        SL_TOTAL                /* Determine object capacity not slabs */
4443};
4444
4445#define SO_ALL          (1 << SL_ALL)
4446#define SO_PARTIAL      (1 << SL_PARTIAL)
4447#define SO_CPU          (1 << SL_CPU)
4448#define SO_OBJECTS      (1 << SL_OBJECTS)
4449#define SO_TOTAL        (1 << SL_TOTAL)
4450
4451static ssize_t show_slab_objects(struct kmem_cache *s,
4452                            char *buf, unsigned long flags)
4453{
4454        unsigned long total = 0;
4455        int node;
4456        int x;
4457        unsigned long *nodes;
4458        unsigned long *per_cpu;
4459
4460        nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4461        if (!nodes)
4462                return -ENOMEM;
4463        per_cpu = nodes + nr_node_ids;
4464
4465        if (flags & SO_CPU) {
4466                int cpu;
4467
4468                for_each_possible_cpu(cpu) {
4469                        struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4470                        int node = ACCESS_ONCE(c->node);
4471                        struct page *page;
4472
4473                        if (node < 0)
4474                                continue;
4475                        page = ACCESS_ONCE(c->page);
4476                        if (page) {
4477                                if (flags & SO_TOTAL)
4478                                        x = page->objects;
4479                                else if (flags & SO_OBJECTS)
4480                                        x = page->inuse;
4481                                else
4482                                        x = 1;
4483
4484                                total += x;
4485                                nodes[node] += x;
4486                        }
4487                        page = c->partial;
4488
4489                        if (page) {
4490                                x = page->pobjects;
4491                                total += x;
4492                                nodes[node] += x;
4493                        }
4494                        per_cpu[node]++;
4495                }
4496        }
4497
4498        lock_memory_hotplug();
4499#ifdef CONFIG_SLUB_DEBUG
4500        if (flags & SO_ALL) {
4501                for_each_node_state(node, N_NORMAL_MEMORY) {
4502                        struct kmem_cache_node *n = get_node(s, node);
4503
4504                if (flags & SO_TOTAL)
4505                        x = atomic_long_read(&n->total_objects);
4506                else if (flags & SO_OBJECTS)
4507                        x = atomic_long_read(&n->total_objects) -
4508                                count_partial(n, count_free);
4509
4510                        else
4511                                x = atomic_long_read(&n->nr_slabs);
4512                        total += x;
4513                        nodes[node] += x;
4514                }
4515
4516        } else
4517#endif
4518        if (flags & SO_PARTIAL) {
4519                for_each_node_state(node, N_NORMAL_MEMORY) {
4520                        struct kmem_cache_node *n = get_node(s, node);
4521
4522                        if (flags & SO_TOTAL)
4523                                x = count_partial(n, count_total);
4524                        else if (flags & SO_OBJECTS)
4525                                x = count_partial(n, count_inuse);
4526                        else
4527                                x = n->nr_partial;
4528                        total += x;
4529                        nodes[node] += x;
4530                }
4531        }
4532        x = sprintf(buf, "%lu", total);
4533#ifdef CONFIG_NUMA
4534        for_each_node_state(node, N_NORMAL_MEMORY)
4535                if (nodes[node])
4536                        x += sprintf(buf + x, " N%d=%lu",
4537                                        node, nodes[node]);
4538#endif
4539        unlock_memory_hotplug();
4540        kfree(nodes);
4541        return x + sprintf(buf + x, "\n");
4542}
4543
4544#ifdef CONFIG_SLUB_DEBUG
4545static int any_slab_objects(struct kmem_cache *s)
4546{
4547        int node;
4548
4549        for_each_online_node(node) {
4550                struct kmem_cache_node *n = get_node(s, node);
4551
4552                if (!n)
4553                        continue;
4554
4555                if (atomic_long_read(&n->total_objects))
4556                        return 1;
4557        }
4558        return 0;
4559}
4560#endif
4561
4562#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4563#define to_slab(n) container_of(n, struct kmem_cache, kobj)
4564
4565struct slab_attribute {
4566        struct attribute attr;
4567        ssize_t (*show)(struct kmem_cache *s, char *buf);
4568        ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4569};
4570
4571#define SLAB_ATTR_RO(_name) \
4572        static struct slab_attribute _name##_attr = \
4573        __ATTR(_name, 0400, _name##_show, NULL)
4574
4575#define SLAB_ATTR(_name) \
4576        static struct slab_attribute _name##_attr =  \
4577        __ATTR(_name, 0600, _name##_show, _name##_store)
4578
4579static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4580{
4581        return sprintf(buf, "%d\n", s->size);
4582}
4583SLAB_ATTR_RO(slab_size);
4584
4585static ssize_t align_show(struct kmem_cache *s, char *buf)
4586{
4587        return sprintf(buf, "%d\n", s->align);
4588}
4589SLAB_ATTR_RO(align);
4590
4591static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4592{
4593        return sprintf(buf, "%d\n", s->objsize);
4594}
4595SLAB_ATTR_RO(object_size);
4596
4597static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4598{
4599        return sprintf(buf, "%d\n", oo_objects(s->oo));
4600}
4601SLAB_ATTR_RO(objs_per_slab);
4602
4603static ssize_t order_store(struct kmem_cache *s,
4604                                const char *buf, size_t length)
4605{
4606        unsigned long order;
4607        int err;
4608
4609        err = strict_strtoul(buf, 10, &order);
4610        if (err)
4611                return err;
4612
4613        if (order > slub_max_order || order < slub_min_order)
4614                return -EINVAL;
4615
4616        calculate_sizes(s, order);
4617        return length;
4618}
4619
4620static ssize_t order_show(struct kmem_cache *s, char *buf)
4621{
4622        return sprintf(buf, "%d\n", oo_order(s->oo));
4623}
4624SLAB_ATTR(order);
4625
4626static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4627{
4628        return sprintf(buf, "%lu\n", s->min_partial);
4629}
4630
4631static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4632                                 size_t length)
4633{
4634        unsigned long min;
4635        int err;
4636
4637        err = strict_strtoul(buf, 10, &min);
4638        if (err)
4639                return err;
4640
4641        set_min_partial(s, min);
4642        return length;
4643}
4644SLAB_ATTR(min_partial);
4645
4646static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4647{
4648        return sprintf(buf, "%u\n", s->cpu_partial);
4649}
4650
4651static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4652                                 size_t length)
4653{
4654        unsigned long objects;
4655        int err;
4656
4657        err = strict_strtoul(buf, 10, &objects);
4658        if (err)
4659                return err;
4660        if (objects && kmem_cache_debug(s))
4661                return -EINVAL;
4662
4663        s->cpu_partial = objects;
4664        flush_all(s);
4665        return length;
4666}
4667SLAB_ATTR(cpu_partial);
4668
4669static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4670{
4671        if (!s->ctor)
4672                return 0;
4673        return sprintf(buf, "%pS\n", s->ctor);
4674}
4675SLAB_ATTR_RO(ctor);
4676
4677static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4678{
4679        return sprintf(buf, "%d\n", s->refcount - 1);
4680}
4681SLAB_ATTR_RO(aliases);
4682
4683static ssize_t partial_show(struct kmem_cache *s, char *buf)
4684{
4685        return show_slab_objects(s, buf, SO_PARTIAL);
4686}
4687SLAB_ATTR_RO(partial);
4688
4689static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4690{
4691        return show_slab_objects(s, buf, SO_CPU);
4692}
4693SLAB_ATTR_RO(cpu_slabs);
4694
4695static ssize_t objects_show(struct kmem_cache *s, char *buf)
4696{
4697        return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4698}
4699SLAB_ATTR_RO(objects);
4700
4701static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4702{
4703        return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4704}
4705SLAB_ATTR_RO(objects_partial);
4706
4707static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4708{
4709        int objects = 0;
4710        int pages = 0;
4711        int cpu;
4712        int len;
4713
4714        for_each_online_cpu(cpu) {
4715                struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4716
4717                if (page) {
4718                        pages += page->pages;
4719                        objects += page->pobjects;
4720                }
4721        }
4722
4723        len = sprintf(buf, "%d(%d)", objects, pages);
4724
4725#ifdef CONFIG_SMP
4726        for_each_online_cpu(cpu) {
4727                struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4728
4729                if (page && len < PAGE_SIZE - 20)
4730                        len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4731                                page->pobjects, page->pages);
4732        }
4733#endif
4734        return len + sprintf(buf + len, "\n");
4735}
4736SLAB_ATTR_RO(slabs_cpu_partial);
4737
4738static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4739{
4740        return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4741}
4742
4743static ssize_t reclaim_account_store(struct kmem_cache *s,
4744                                const char *buf, size_t length)
4745{
4746        s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4747        if (buf[0] == '1')
4748                s->flags |= SLAB_RECLAIM_ACCOUNT;
4749        return length;
4750}
4751SLAB_ATTR(reclaim_account);
4752
4753static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4754{
4755        return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4756}
4757SLAB_ATTR_RO(hwcache_align);
4758
4759#ifdef CONFIG_ZONE_DMA
4760static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4761{
4762        return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4763}
4764SLAB_ATTR_RO(cache_dma);
4765#endif
4766
4767static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4768{
4769        return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4770}
4771SLAB_ATTR_RO(destroy_by_rcu);
4772
4773static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4774{
4775        return sprintf(buf, "%d\n", s->reserved);
4776}
4777SLAB_ATTR_RO(reserved);
4778
4779#ifdef CONFIG_SLUB_DEBUG
4780static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4781{
4782        return show_slab_objects(s, buf, SO_ALL);
4783}
4784SLAB_ATTR_RO(slabs);
4785
4786static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4787{
4788        return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4789}
4790SLAB_ATTR_RO(total_objects);
4791
4792static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4793{
4794        return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4795}
4796
4797static ssize_t sanity_checks_store(struct kmem_cache *s,
4798                                const char *buf, size_t length)
4799{
4800        s->flags &= ~SLAB_DEBUG_FREE;
4801        if (buf[0] == '1') {
4802                s->flags &= ~__CMPXCHG_DOUBLE;
4803                s->flags |= SLAB_DEBUG_FREE;
4804        }
4805        return length;
4806}
4807SLAB_ATTR(sanity_checks);
4808
4809static ssize_t trace_show(struct kmem_cache *s, char *buf)
4810{
4811        return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4812}
4813
4814static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4815                                                        size_t length)
4816{
4817        s->flags &= ~SLAB_TRACE;
4818        if (buf[0] == '1') {
4819                s->flags &= ~__CMPXCHG_DOUBLE;
4820                s->flags |= SLAB_TRACE;
4821        }
4822        return length;
4823}
4824SLAB_ATTR(trace);
4825
4826static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4827{
4828        return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4829}
4830
4831static ssize_t red_zone_store(struct kmem_cache *s,
4832                                const char *buf, size_t length)
4833{
4834        if (any_slab_objects(s))
4835                return -EBUSY;
4836
4837        s->flags &= ~SLAB_RED_ZONE;
4838        if (buf[0] == '1') {
4839                s->flags &= ~__CMPXCHG_DOUBLE;
4840                s->flags |= SLAB_RED_ZONE;
4841        }
4842        calculate_sizes(s, -1);
4843        return length;
4844}
4845SLAB_ATTR(red_zone);
4846
4847static ssize_t poison_show(struct kmem_cache *s, char *buf)
4848{
4849        return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4850}
4851
4852static ssize_t poison_store(struct kmem_cache *s,
4853                                const char *buf, size_t length)
4854{
4855        if (any_slab_objects(s))
4856                return -EBUSY;
4857
4858        s->flags &= ~SLAB_POISON;
4859        if (buf[0] == '1') {
4860                s->flags &= ~__CMPXCHG_DOUBLE;
4861                s->flags |= SLAB_POISON;
4862        }
4863        calculate_sizes(s, -1);
4864        return length;
4865}
4866SLAB_ATTR(poison);
4867
4868static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4869{
4870        return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4871}
4872
4873static ssize_t store_user_store(struct kmem_cache *s,
4874                                const char *buf, size_t length)
4875{
4876        if (any_slab_objects(s))
4877                return -EBUSY;
4878
4879        s->flags &= ~SLAB_STORE_USER;
4880        if (buf[0] == '1') {
4881                s->flags &= ~__CMPXCHG_DOUBLE;
4882                s->flags |= SLAB_STORE_USER;
4883        }
4884        calculate_sizes(s, -1);
4885        return length;
4886}
4887SLAB_ATTR(store_user);
4888
4889static ssize_t validate_show(struct kmem_cache *s, char *buf)
4890{
4891        return 0;
4892}
4893
4894static ssize_t validate_store(struct kmem_cache *s,
4895                        const char *buf, size_t length)
4896{
4897        int ret = -EINVAL;
4898
4899        if (buf[0] == '1') {
4900                ret = validate_slab_cache(s);
4901                if (ret >= 0)
4902                        ret = length;
4903        }
4904        return ret;
4905}
4906SLAB_ATTR(validate);
4907
4908static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4909{
4910        if (!(s->flags & SLAB_STORE_USER))
4911                return -ENOSYS;
4912        return list_locations(s, buf, TRACK_ALLOC);
4913}
4914SLAB_ATTR_RO(alloc_calls);
4915
4916static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4917{
4918        if (!(s->flags & SLAB_STORE_USER))
4919                return -ENOSYS;
4920        return list_locations(s, buf, TRACK_FREE);
4921}
4922SLAB_ATTR_RO(free_calls);
4923#endif /* CONFIG_SLUB_DEBUG */
4924
4925#ifdef CONFIG_FAILSLAB
4926static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4927{
4928        return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4929}
4930
4931static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4932                                                        size_t length)
4933{
4934        s->flags &= ~SLAB_FAILSLAB;
4935        if (buf[0] == '1')
4936                s->flags |= SLAB_FAILSLAB;
4937        return length;
4938}
4939SLAB_ATTR(failslab);
4940#endif
4941
4942static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4943{
4944        return 0;
4945}
4946
4947static ssize_t shrink_store(struct kmem_cache *s,
4948                        const char *buf, size_t length)
4949{
4950        if (buf[0] == '1') {
4951                int rc = kmem_cache_shrink(s);
4952
4953                if (rc)
4954                        return rc;
4955        } else
4956                return -EINVAL;
4957        return length;
4958}
4959SLAB_ATTR(shrink);
4960
4961#ifdef CONFIG_NUMA
4962static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4963{
4964        return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4965}
4966
4967static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4968                                const char *buf, size_t length)
4969{
4970        unsigned long ratio;
4971        int err;
4972
4973        err = strict_strtoul(buf, 10, &ratio);
4974        if (err)
4975                return err;
4976
4977        if (ratio <= 100)
4978                s->remote_node_defrag_ratio = ratio * 10;
4979
4980        return length;
4981}
4982SLAB_ATTR(remote_node_defrag_ratio);
4983#endif
4984
4985#ifdef CONFIG_SLUB_STATS
4986static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4987{
4988        unsigned long sum  = 0;
4989        int cpu;
4990        int len;
4991        int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4992
4993        if (!data)
4994                return -ENOMEM;
4995
4996        for_each_online_cpu(cpu) {
4997                unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4998
4999                data[cpu] = x;
5000                sum += x;
5001        }
5002
5003        len = sprintf(buf, "%lu", sum);
5004
5005#ifdef CONFIG_SMP
5006        for_each_online_cpu(cpu) {
5007                if (data[cpu] && len < PAGE_SIZE - 20)
5008                        len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5009        }
5010#endif
5011        kfree(data);
5012        return len + sprintf(buf + len, "\n");
5013}
5014
5015static void clear_stat(struct kmem_cache *s, enum stat_item si)
5016{
5017        int cpu;
5018
5019        for_each_online_cpu(cpu)
5020                per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5021}
5022
5023#define STAT_ATTR(si, text)                                     \
5024static ssize_t text##_show(struct kmem_cache *s, char *buf)     \
5025{                                                               \
5026        return show_stat(s, buf, si);                           \
5027}                                                               \
5028static ssize_t text##_store(struct kmem_cache *s,               \
5029                                const char *buf, size_t length) \
5030{                                                               \
5031        if (buf[0] != '0')                                      \
5032                return -EINVAL;                                 \
5033        clear_stat(s, si);                                      \
5034        return length;                                          \
5035}                                                               \
5036SLAB_ATTR(text);                                                \
5037
5038STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5039STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5040STAT_ATTR(FREE_FASTPATH, free_fastpath);
5041STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5042STAT_ATTR(FREE_FROZEN, free_frozen);
5043STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5044STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5045STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5046STAT_ATTR(ALLOC_SLAB, alloc_slab);
5047STAT_ATTR(ALLOC_REFILL, alloc_refill);
5048STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5049STAT_ATTR(FREE_SLAB, free_slab);
5050STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5051STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5052STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5053STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5054STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5055STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5056STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5057STAT_ATTR(ORDER_FALLBACK, order_fallback);
5058STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5059STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5060STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5061STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5062#endif
5063
5064static struct attribute *slab_attrs[] = {
5065        &slab_size_attr.attr,
5066        &object_size_attr.attr,
5067        &objs_per_slab_attr.attr,
5068        &order_attr.attr,
5069        &min_partial_attr.attr,
5070        &cpu_partial_attr.attr,
5071        &objects_attr.attr,
5072        &objects_partial_attr.attr,
5073        &partial_attr.attr,
5074        &cpu_slabs_attr.attr,
5075        &ctor_attr.attr,
5076        &aliases_attr.attr,
5077        &align_attr.attr,
5078        &hwcache_align_attr.attr,
5079        &reclaim_account_attr.attr,
5080        &destroy_by_rcu_attr.attr,
5081        &shrink_attr.attr,
5082        &reserved_attr.attr,
5083        &slabs_cpu_partial_attr.attr,
5084#ifdef CONFIG_SLUB_DEBUG
5085        &total_objects_attr.attr,
5086        &slabs_attr.attr,
5087        &sanity_checks_attr.attr,
5088        &trace_attr.attr,
5089        &red_zone_attr.attr,
5090        &poison_attr.attr,
5091        &store_user_attr.attr,
5092        &validate_attr.attr,
5093        &alloc_calls_attr.attr,
5094        &free_calls_attr.attr,
5095#endif
5096#ifdef CONFIG_ZONE_DMA
5097        &cache_dma_attr.attr,
5098#endif
5099#ifdef CONFIG_NUMA
5100        &remote_node_defrag_ratio_attr.attr,
5101#endif
5102#ifdef CONFIG_SLUB_STATS
5103        &alloc_fastpath_attr.attr,
5104        &alloc_slowpath_attr.attr,
5105        &free_fastpath_attr.attr,
5106        &free_slowpath_attr.attr,
5107        &free_frozen_attr.attr,
5108        &free_add_partial_attr.attr,
5109        &free_remove_partial_attr.attr,
5110        &alloc_from_partial_attr.attr,
5111        &alloc_slab_attr.attr,
5112        &alloc_refill_attr.attr,
5113        &alloc_node_mismatch_attr.attr,
5114        &free_slab_attr.attr,
5115        &cpuslab_flush_attr.attr,
5116        &deactivate_full_attr.attr,
5117        &deactivate_empty_attr.attr,
5118        &deactivate_to_head_attr.attr,
5119        &deactivate_to_tail_attr.attr,
5120        &deactivate_remote_frees_attr.attr,
5121        &deactivate_bypass_attr.attr,
5122        &order_fallback_attr.attr,
5123        &cmpxchg_double_fail_attr.attr,
5124        &cmpxchg_double_cpu_fail_attr.attr,
5125        &cpu_partial_alloc_attr.attr,
5126        &cpu_partial_free_attr.attr,
5127#endif
5128#ifdef CONFIG_FAILSLAB
5129        &failslab_attr.attr,
5130#endif
5131
5132        NULL
5133};
5134
5135static struct attribute_group slab_attr_group = {
5136        .attrs = slab_attrs,
5137};
5138
5139static ssize_t slab_attr_show(struct kobject *kobj,
5140                                struct attribute *attr,
5141                                char *buf)
5142{
5143        struct slab_attribute *attribute;
5144        struct kmem_cache *s;
5145        int err;
5146
5147        attribute = to_slab_attr(attr);
5148        s = to_slab(kobj);
5149
5150        if (!attribute->show)
5151                return -EIO;
5152
5153        err = attribute->show(s, buf);
5154
5155        return err;
5156}
5157
5158static ssize_t slab_attr_store(struct kobject *kobj,
5159                                struct attribute *attr,
5160                                const char *buf, size_t len)
5161{
5162        struct slab_attribute *attribute;
5163        struct kmem_cache *s;
5164        int err;
5165
5166        attribute = to_slab_attr(attr);
5167        s = to_slab(kobj);
5168
5169        if (!attribute->store)
5170                return -EIO;
5171
5172        err = attribute->store(s, buf, len);
5173
5174        return err;
5175}
5176
5177static void kmem_cache_release(struct kobject *kobj)
5178{
5179        struct kmem_cache *s = to_slab(kobj);
5180
5181        kfree(s->name);
5182        kfree(s);
5183}
5184
5185static const struct sysfs_ops slab_sysfs_ops = {
5186        .show = slab_attr_show,
5187        .store = slab_attr_store,
5188};
5189
5190static struct kobj_type slab_ktype = {
5191        .sysfs_ops = &slab_sysfs_ops,
5192        .release = kmem_cache_release
5193};
5194
5195static int uevent_filter(struct kset *kset, struct kobject *kobj)
5196{
5197        struct kobj_type *ktype = get_ktype(kobj);
5198
5199        if (ktype == &slab_ktype)
5200                return 1;
5201        return 0;
5202}
5203
5204static const struct kset_uevent_ops slab_uevent_ops = {
5205        .filter = uevent_filter,
5206};
5207
5208static struct kset *slab_kset;
5209
5210#define ID_STR_LENGTH 64
5211
5212/* Create a unique string id for a slab cache:
5213 *
5214 * Format       :[flags-]size
5215 */
5216static char *create_unique_id(struct kmem_cache *s)
5217{
5218        char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5219        char *p = name;
5220
5221        BUG_ON(!name);
5222
5223        *p++ = ':';
5224        /*
5225         * First flags affecting slabcache operations. We will only
5226         * get here for aliasable slabs so we do not need to support
5227         * too many flags. The flags here must cover all flags that
5228         * are matched during merging to guarantee that the id is
5229         * unique.
5230         */
5231        if (s->flags & SLAB_CACHE_DMA)
5232                *p++ = 'd';
5233        if (s->flags & SLAB_RECLAIM_ACCOUNT)
5234                *p++ = 'a';
5235        if (s->flags & SLAB_DEBUG_FREE)
5236                *p++ = 'F';
5237        if (!(s->flags & SLAB_NOTRACK))
5238                *p++ = 't';
5239        if (p != name + 1)
5240                *p++ = '-';
5241        p += sprintf(p, "%07d", s->size);
5242        BUG_ON(p > name + ID_STR_LENGTH - 1);
5243        return name;
5244}
5245
5246static int sysfs_slab_add(struct kmem_cache *s)
5247{
5248        int err;
5249        const char *name;
5250        int unmergeable;
5251
5252        if (slab_state < SYSFS)
5253                /* Defer until later */
5254                return 0;
5255
5256        unmergeable = slab_unmergeable(s);
5257        if (unmergeable) {
5258                /*
5259                 * Slabcache can never be merged so we can use the name proper.
5260                 * This is typically the case for debug situations. In that
5261                 * case we can catch duplicate names easily.
5262                 */
5263                sysfs_remove_link(&slab_kset->kobj, s->name);
5264                name = s->name;
5265        } else {
5266                /*
5267                 * Create a unique name for the slab as a target
5268                 * for the symlinks.
5269                 */
5270                name = create_unique_id(s);
5271        }
5272
5273        s->kobj.kset = slab_kset;
5274        err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5275        if (err) {
5276                kobject_put(&s->kobj);
5277                return err;
5278        }
5279
5280        err = sysfs_create_group(&s->kobj, &slab_attr_group);
5281        if (err) {
5282                kobject_del(&s->kobj);
5283                kobject_put(&s->kobj);
5284                return err;
5285        }
5286        kobject_uevent(&s->kobj, KOBJ_ADD);
5287        if (!unmergeable) {
5288                /* Setup first alias */
5289                sysfs_slab_alias(s, s->name);
5290                kfree(name);
5291        }
5292        return 0;
5293}
5294
5295static void sysfs_slab_remove(struct kmem_cache *s)
5296{
5297        if (slab_state < SYSFS)
5298                /*
5299                 * Sysfs has not been setup yet so no need to remove the
5300                 * cache from sysfs.
5301                 */
5302                return;
5303
5304        kobject_uevent(&s->kobj, KOBJ_REMOVE);
5305        kobject_del(&s->kobj);
5306        kobject_put(&s->kobj);
5307}
5308
5309/*
5310 * Need to buffer aliases during bootup until sysfs becomes
5311 * available lest we lose that information.
5312 */
5313struct saved_alias {
5314        struct kmem_cache *s;
5315        const char *name;
5316        struct saved_alias *next;
5317};
5318
5319static struct saved_alias *alias_list;
5320
5321static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5322{
5323        struct saved_alias *al;
5324
5325        if (slab_state == SYSFS) {
5326                /*
5327                 * If we have a leftover link then remove it.
5328                 */
5329                sysfs_remove_link(&slab_kset->kobj, name);
5330                return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5331        }
5332
5333        al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5334        if (!al)
5335                return -ENOMEM;
5336
5337        al->s = s;
5338        al->name = name;
5339        al->next = alias_list;
5340        alias_list = al;
5341        return 0;
5342}
5343
5344static int __init slab_sysfs_init(void)
5345{
5346        struct kmem_cache *s;
5347        int err;
5348
5349        down_write(&slub_lock);
5350
5351        slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5352        if (!slab_kset) {
5353                up_write(&slub_lock);
5354                printk(KERN_ERR "Cannot register slab subsystem.\n");
5355                return -ENOSYS;
5356        }
5357
5358        slab_state = SYSFS;
5359
5360        list_for_each_entry(s, &slab_caches, list) {
5361                err = sysfs_slab_add(s);
5362                if (err)
5363                        printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5364                                                " to sysfs\n", s->name);
5365        }
5366
5367        while (alias_list) {
5368                struct saved_alias *al = alias_list;
5369
5370                alias_list = alias_list->next;
5371                err = sysfs_slab_alias(al->s, al->name);
5372                if (err)
5373                        printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5374                                        " %s to sysfs\n", s->name);
5375                kfree(al);
5376        }
5377
5378        up_write(&slub_lock);
5379        resiliency_test();
5380        return 0;
5381}
5382
5383__initcall(slab_sysfs_init);
5384#endif /* CONFIG_SYSFS */
5385
5386/*
5387 * The /proc/slabinfo ABI
5388 */
5389#ifdef CONFIG_SLABINFO
5390static void print_slabinfo_header(struct seq_file *m)
5391{
5392        seq_puts(m, "slabinfo - version: 2.1\n");
5393        seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
5394                 "<objperslab> <pagesperslab>");
5395        seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5396        seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5397        seq_putc(m, '\n');
5398}
5399
5400static void *s_start(struct seq_file *m, loff_t *pos)
5401{
5402        loff_t n = *pos;
5403
5404        down_read(&slub_lock);
5405        if (!n)
5406                print_slabinfo_header(m);
5407
5408        return seq_list_start(&slab_caches, *pos);
5409}
5410
5411static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5412{
5413        return seq_list_next(p, &slab_caches, pos);
5414}
5415
5416static void s_stop(struct seq_file *m, void *p)
5417{
5418        up_read(&slub_lock);
5419}
5420
5421static int s_show(struct seq_file *m, void *p)
5422{
5423        unsigned long nr_partials = 0;
5424        unsigned long nr_slabs = 0;
5425        unsigned long nr_inuse = 0;
5426        unsigned long nr_objs = 0;
5427        unsigned long nr_free = 0;
5428        struct kmem_cache *s;
5429        int node;
5430
5431        s = list_entry(p, struct kmem_cache, list);
5432
5433        for_each_online_node(node) {
5434                struct kmem_cache_node *n = get_node(s, node);
5435
5436                if (!n)
5437                        continue;
5438
5439                nr_partials += n->nr_partial;
5440                nr_slabs += atomic_long_read(&n->nr_slabs);
5441                nr_objs += atomic_long_read(&n->total_objects);
5442                nr_free += count_partial(n, count_free);
5443        }
5444
5445        nr_inuse = nr_objs - nr_free;
5446
5447        seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
5448                   nr_objs, s->size, oo_objects(s->oo),
5449                   (1 << oo_order(s->oo)));
5450        seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5451        seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5452                   0UL);
5453        seq_putc(m, '\n');
5454        return 0;
5455}
5456
5457static const struct seq_operations slabinfo_op = {
5458        .start = s_start,
5459        .next = s_next,
5460        .stop = s_stop,
5461        .show = s_show,
5462};
5463
5464static int slabinfo_open(struct inode *inode, struct file *file)
5465{
5466        return seq_open(file, &slabinfo_op);
5467}
5468
5469static const struct file_operations proc_slabinfo_operations = {
5470        .open           = slabinfo_open,
5471        .read           = seq_read,
5472        .llseek         = seq_lseek,
5473        .release        = seq_release,
5474};
5475
5476static int __init slab_proc_init(void)
5477{
5478        proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
5479        return 0;
5480}
5481module_init(slab_proc_init);
5482#endif /* CONFIG_SLABINFO */
5483