linux/tools/perf/builtin-timechart.c
<<
>>
Prefs
   1/*
   2 * builtin-timechart.c - make an svg timechart of system activity
   3 *
   4 * (C) Copyright 2009 Intel Corporation
   5 *
   6 * Authors:
   7 *     Arjan van de Ven <arjan@linux.intel.com>
   8 *
   9 * This program is free software; you can redistribute it and/or
  10 * modify it under the terms of the GNU General Public License
  11 * as published by the Free Software Foundation; version 2
  12 * of the License.
  13 */
  14
  15#include "builtin.h"
  16
  17#include "util/util.h"
  18
  19#include "util/color.h"
  20#include <linux/list.h>
  21#include "util/cache.h"
  22#include "util/evsel.h"
  23#include <linux/rbtree.h>
  24#include "util/symbol.h"
  25#include "util/callchain.h"
  26#include "util/strlist.h"
  27
  28#include "perf.h"
  29#include "util/header.h"
  30#include "util/parse-options.h"
  31#include "util/parse-events.h"
  32#include "util/event.h"
  33#include "util/session.h"
  34#include "util/svghelper.h"
  35#include "util/tool.h"
  36
  37#define SUPPORT_OLD_POWER_EVENTS 1
  38#define PWR_EVENT_EXIT -1
  39
  40
  41static const char       *input_name;
  42static const char       *output_name = "output.svg";
  43
  44static unsigned int     numcpus;
  45static u64              min_freq;       /* Lowest CPU frequency seen */
  46static u64              max_freq;       /* Highest CPU frequency seen */
  47static u64              turbo_frequency;
  48
  49static u64              first_time, last_time;
  50
  51static bool             power_only;
  52
  53
  54struct per_pid;
  55struct per_pidcomm;
  56
  57struct cpu_sample;
  58struct power_event;
  59struct wake_event;
  60
  61struct sample_wrapper;
  62
  63/*
  64 * Datastructure layout:
  65 * We keep an list of "pid"s, matching the kernels notion of a task struct.
  66 * Each "pid" entry, has a list of "comm"s.
  67 *      this is because we want to track different programs different, while
  68 *      exec will reuse the original pid (by design).
  69 * Each comm has a list of samples that will be used to draw
  70 * final graph.
  71 */
  72
  73struct per_pid {
  74        struct per_pid *next;
  75
  76        int             pid;
  77        int             ppid;
  78
  79        u64             start_time;
  80        u64             end_time;
  81        u64             total_time;
  82        int             display;
  83
  84        struct per_pidcomm *all;
  85        struct per_pidcomm *current;
  86};
  87
  88
  89struct per_pidcomm {
  90        struct per_pidcomm *next;
  91
  92        u64             start_time;
  93        u64             end_time;
  94        u64             total_time;
  95
  96        int             Y;
  97        int             display;
  98
  99        long            state;
 100        u64             state_since;
 101
 102        char            *comm;
 103
 104        struct cpu_sample *samples;
 105};
 106
 107struct sample_wrapper {
 108        struct sample_wrapper *next;
 109
 110        u64             timestamp;
 111        unsigned char   data[0];
 112};
 113
 114#define TYPE_NONE       0
 115#define TYPE_RUNNING    1
 116#define TYPE_WAITING    2
 117#define TYPE_BLOCKED    3
 118
 119struct cpu_sample {
 120        struct cpu_sample *next;
 121
 122        u64 start_time;
 123        u64 end_time;
 124        int type;
 125        int cpu;
 126};
 127
 128static struct per_pid *all_data;
 129
 130#define CSTATE 1
 131#define PSTATE 2
 132
 133struct power_event {
 134        struct power_event *next;
 135        int type;
 136        int state;
 137        u64 start_time;
 138        u64 end_time;
 139        int cpu;
 140};
 141
 142struct wake_event {
 143        struct wake_event *next;
 144        int waker;
 145        int wakee;
 146        u64 time;
 147};
 148
 149static struct power_event    *power_events;
 150static struct wake_event     *wake_events;
 151
 152struct process_filter;
 153struct process_filter {
 154        char                    *name;
 155        int                     pid;
 156        struct process_filter   *next;
 157};
 158
 159static struct process_filter *process_filter;
 160
 161
 162static struct per_pid *find_create_pid(int pid)
 163{
 164        struct per_pid *cursor = all_data;
 165
 166        while (cursor) {
 167                if (cursor->pid == pid)
 168                        return cursor;
 169                cursor = cursor->next;
 170        }
 171        cursor = malloc(sizeof(struct per_pid));
 172        assert(cursor != NULL);
 173        memset(cursor, 0, sizeof(struct per_pid));
 174        cursor->pid = pid;
 175        cursor->next = all_data;
 176        all_data = cursor;
 177        return cursor;
 178}
 179
 180static void pid_set_comm(int pid, char *comm)
 181{
 182        struct per_pid *p;
 183        struct per_pidcomm *c;
 184        p = find_create_pid(pid);
 185        c = p->all;
 186        while (c) {
 187                if (c->comm && strcmp(c->comm, comm) == 0) {
 188                        p->current = c;
 189                        return;
 190                }
 191                if (!c->comm) {
 192                        c->comm = strdup(comm);
 193                        p->current = c;
 194                        return;
 195                }
 196                c = c->next;
 197        }
 198        c = malloc(sizeof(struct per_pidcomm));
 199        assert(c != NULL);
 200        memset(c, 0, sizeof(struct per_pidcomm));
 201        c->comm = strdup(comm);
 202        p->current = c;
 203        c->next = p->all;
 204        p->all = c;
 205}
 206
 207static void pid_fork(int pid, int ppid, u64 timestamp)
 208{
 209        struct per_pid *p, *pp;
 210        p = find_create_pid(pid);
 211        pp = find_create_pid(ppid);
 212        p->ppid = ppid;
 213        if (pp->current && pp->current->comm && !p->current)
 214                pid_set_comm(pid, pp->current->comm);
 215
 216        p->start_time = timestamp;
 217        if (p->current) {
 218                p->current->start_time = timestamp;
 219                p->current->state_since = timestamp;
 220        }
 221}
 222
 223static void pid_exit(int pid, u64 timestamp)
 224{
 225        struct per_pid *p;
 226        p = find_create_pid(pid);
 227        p->end_time = timestamp;
 228        if (p->current)
 229                p->current->end_time = timestamp;
 230}
 231
 232static void
 233pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end)
 234{
 235        struct per_pid *p;
 236        struct per_pidcomm *c;
 237        struct cpu_sample *sample;
 238
 239        p = find_create_pid(pid);
 240        c = p->current;
 241        if (!c) {
 242                c = malloc(sizeof(struct per_pidcomm));
 243                assert(c != NULL);
 244                memset(c, 0, sizeof(struct per_pidcomm));
 245                p->current = c;
 246                c->next = p->all;
 247                p->all = c;
 248        }
 249
 250        sample = malloc(sizeof(struct cpu_sample));
 251        assert(sample != NULL);
 252        memset(sample, 0, sizeof(struct cpu_sample));
 253        sample->start_time = start;
 254        sample->end_time = end;
 255        sample->type = type;
 256        sample->next = c->samples;
 257        sample->cpu = cpu;
 258        c->samples = sample;
 259
 260        if (sample->type == TYPE_RUNNING && end > start && start > 0) {
 261                c->total_time += (end-start);
 262                p->total_time += (end-start);
 263        }
 264
 265        if (c->start_time == 0 || c->start_time > start)
 266                c->start_time = start;
 267        if (p->start_time == 0 || p->start_time > start)
 268                p->start_time = start;
 269}
 270
 271#define MAX_CPUS 4096
 272
 273static u64 cpus_cstate_start_times[MAX_CPUS];
 274static int cpus_cstate_state[MAX_CPUS];
 275static u64 cpus_pstate_start_times[MAX_CPUS];
 276static u64 cpus_pstate_state[MAX_CPUS];
 277
 278static int process_comm_event(struct perf_tool *tool __used,
 279                              union perf_event *event,
 280                              struct perf_sample *sample __used,
 281                              struct machine *machine __used)
 282{
 283        pid_set_comm(event->comm.tid, event->comm.comm);
 284        return 0;
 285}
 286
 287static int process_fork_event(struct perf_tool *tool __used,
 288                              union perf_event *event,
 289                              struct perf_sample *sample __used,
 290                              struct machine *machine __used)
 291{
 292        pid_fork(event->fork.pid, event->fork.ppid, event->fork.time);
 293        return 0;
 294}
 295
 296static int process_exit_event(struct perf_tool *tool __used,
 297                              union perf_event *event,
 298                              struct perf_sample *sample __used,
 299                              struct machine *machine __used)
 300{
 301        pid_exit(event->fork.pid, event->fork.time);
 302        return 0;
 303}
 304
 305struct trace_entry {
 306        unsigned short          type;
 307        unsigned char           flags;
 308        unsigned char           preempt_count;
 309        int                     pid;
 310        int                     lock_depth;
 311};
 312
 313#ifdef SUPPORT_OLD_POWER_EVENTS
 314static int use_old_power_events;
 315struct power_entry_old {
 316        struct trace_entry te;
 317        u64     type;
 318        u64     value;
 319        u64     cpu_id;
 320};
 321#endif
 322
 323struct power_processor_entry {
 324        struct trace_entry te;
 325        u32     state;
 326        u32     cpu_id;
 327};
 328
 329#define TASK_COMM_LEN 16
 330struct wakeup_entry {
 331        struct trace_entry te;
 332        char comm[TASK_COMM_LEN];
 333        int   pid;
 334        int   prio;
 335        int   success;
 336};
 337
 338/*
 339 * trace_flag_type is an enumeration that holds different
 340 * states when a trace occurs. These are:
 341 *  IRQS_OFF            - interrupts were disabled
 342 *  IRQS_NOSUPPORT      - arch does not support irqs_disabled_flags
 343 *  NEED_RESCED         - reschedule is requested
 344 *  HARDIRQ             - inside an interrupt handler
 345 *  SOFTIRQ             - inside a softirq handler
 346 */
 347enum trace_flag_type {
 348        TRACE_FLAG_IRQS_OFF             = 0x01,
 349        TRACE_FLAG_IRQS_NOSUPPORT       = 0x02,
 350        TRACE_FLAG_NEED_RESCHED         = 0x04,
 351        TRACE_FLAG_HARDIRQ              = 0x08,
 352        TRACE_FLAG_SOFTIRQ              = 0x10,
 353};
 354
 355
 356
 357struct sched_switch {
 358        struct trace_entry te;
 359        char prev_comm[TASK_COMM_LEN];
 360        int  prev_pid;
 361        int  prev_prio;
 362        long prev_state; /* Arjan weeps. */
 363        char next_comm[TASK_COMM_LEN];
 364        int  next_pid;
 365        int  next_prio;
 366};
 367
 368static void c_state_start(int cpu, u64 timestamp, int state)
 369{
 370        cpus_cstate_start_times[cpu] = timestamp;
 371        cpus_cstate_state[cpu] = state;
 372}
 373
 374static void c_state_end(int cpu, u64 timestamp)
 375{
 376        struct power_event *pwr;
 377        pwr = malloc(sizeof(struct power_event));
 378        if (!pwr)
 379                return;
 380        memset(pwr, 0, sizeof(struct power_event));
 381
 382        pwr->state = cpus_cstate_state[cpu];
 383        pwr->start_time = cpus_cstate_start_times[cpu];
 384        pwr->end_time = timestamp;
 385        pwr->cpu = cpu;
 386        pwr->type = CSTATE;
 387        pwr->next = power_events;
 388
 389        power_events = pwr;
 390}
 391
 392static void p_state_change(int cpu, u64 timestamp, u64 new_freq)
 393{
 394        struct power_event *pwr;
 395        pwr = malloc(sizeof(struct power_event));
 396
 397        if (new_freq > 8000000) /* detect invalid data */
 398                return;
 399
 400        if (!pwr)
 401                return;
 402        memset(pwr, 0, sizeof(struct power_event));
 403
 404        pwr->state = cpus_pstate_state[cpu];
 405        pwr->start_time = cpus_pstate_start_times[cpu];
 406        pwr->end_time = timestamp;
 407        pwr->cpu = cpu;
 408        pwr->type = PSTATE;
 409        pwr->next = power_events;
 410
 411        if (!pwr->start_time)
 412                pwr->start_time = first_time;
 413
 414        power_events = pwr;
 415
 416        cpus_pstate_state[cpu] = new_freq;
 417        cpus_pstate_start_times[cpu] = timestamp;
 418
 419        if ((u64)new_freq > max_freq)
 420                max_freq = new_freq;
 421
 422        if (new_freq < min_freq || min_freq == 0)
 423                min_freq = new_freq;
 424
 425        if (new_freq == max_freq - 1000)
 426                        turbo_frequency = max_freq;
 427}
 428
 429static void
 430sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te)
 431{
 432        struct wake_event *we;
 433        struct per_pid *p;
 434        struct wakeup_entry *wake = (void *)te;
 435
 436        we = malloc(sizeof(struct wake_event));
 437        if (!we)
 438                return;
 439
 440        memset(we, 0, sizeof(struct wake_event));
 441        we->time = timestamp;
 442        we->waker = pid;
 443
 444        if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ))
 445                we->waker = -1;
 446
 447        we->wakee = wake->pid;
 448        we->next = wake_events;
 449        wake_events = we;
 450        p = find_create_pid(we->wakee);
 451
 452        if (p && p->current && p->current->state == TYPE_NONE) {
 453                p->current->state_since = timestamp;
 454                p->current->state = TYPE_WAITING;
 455        }
 456        if (p && p->current && p->current->state == TYPE_BLOCKED) {
 457                pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp);
 458                p->current->state_since = timestamp;
 459                p->current->state = TYPE_WAITING;
 460        }
 461}
 462
 463static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te)
 464{
 465        struct per_pid *p = NULL, *prev_p;
 466        struct sched_switch *sw = (void *)te;
 467
 468
 469        prev_p = find_create_pid(sw->prev_pid);
 470
 471        p = find_create_pid(sw->next_pid);
 472
 473        if (prev_p->current && prev_p->current->state != TYPE_NONE)
 474                pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp);
 475        if (p && p->current) {
 476                if (p->current->state != TYPE_NONE)
 477                        pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp);
 478
 479                p->current->state_since = timestamp;
 480                p->current->state = TYPE_RUNNING;
 481        }
 482
 483        if (prev_p->current) {
 484                prev_p->current->state = TYPE_NONE;
 485                prev_p->current->state_since = timestamp;
 486                if (sw->prev_state & 2)
 487                        prev_p->current->state = TYPE_BLOCKED;
 488                if (sw->prev_state == 0)
 489                        prev_p->current->state = TYPE_WAITING;
 490        }
 491}
 492
 493
 494static int process_sample_event(struct perf_tool *tool __used,
 495                                union perf_event *event __used,
 496                                struct perf_sample *sample,
 497                                struct perf_evsel *evsel,
 498                                struct machine *machine __used)
 499{
 500        struct trace_entry *te;
 501
 502        if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
 503                if (!first_time || first_time > sample->time)
 504                        first_time = sample->time;
 505                if (last_time < sample->time)
 506                        last_time = sample->time;
 507        }
 508
 509        te = (void *)sample->raw_data;
 510        if ((evsel->attr.sample_type & PERF_SAMPLE_RAW) && sample->raw_size > 0) {
 511                char *event_str;
 512#ifdef SUPPORT_OLD_POWER_EVENTS
 513                struct power_entry_old *peo;
 514                peo = (void *)te;
 515#endif
 516                /*
 517                 * FIXME: use evsel, its already mapped from id to perf_evsel,
 518                 * remove perf_header__find_event infrastructure bits.
 519                 * Mapping all these "power:cpu_idle" strings to the tracepoint
 520                 * ID and then just comparing against evsel->attr.config.
 521                 *
 522                 * e.g.:
 523                 *
 524                 * if (evsel->attr.config == power_cpu_idle_id)
 525                 */
 526                event_str = perf_header__find_event(te->type);
 527
 528                if (!event_str)
 529                        return 0;
 530
 531                if (sample->cpu > numcpus)
 532                        numcpus = sample->cpu;
 533
 534                if (strcmp(event_str, "power:cpu_idle") == 0) {
 535                        struct power_processor_entry *ppe = (void *)te;
 536                        if (ppe->state == (u32)PWR_EVENT_EXIT)
 537                                c_state_end(ppe->cpu_id, sample->time);
 538                        else
 539                                c_state_start(ppe->cpu_id, sample->time,
 540                                              ppe->state);
 541                }
 542                else if (strcmp(event_str, "power:cpu_frequency") == 0) {
 543                        struct power_processor_entry *ppe = (void *)te;
 544                        p_state_change(ppe->cpu_id, sample->time, ppe->state);
 545                }
 546
 547                else if (strcmp(event_str, "sched:sched_wakeup") == 0)
 548                        sched_wakeup(sample->cpu, sample->time, sample->pid, te);
 549
 550                else if (strcmp(event_str, "sched:sched_switch") == 0)
 551                        sched_switch(sample->cpu, sample->time, te);
 552
 553#ifdef SUPPORT_OLD_POWER_EVENTS
 554                if (use_old_power_events) {
 555                        if (strcmp(event_str, "power:power_start") == 0)
 556                                c_state_start(peo->cpu_id, sample->time,
 557                                              peo->value);
 558
 559                        else if (strcmp(event_str, "power:power_end") == 0)
 560                                c_state_end(sample->cpu, sample->time);
 561
 562                        else if (strcmp(event_str,
 563                                        "power:power_frequency") == 0)
 564                                p_state_change(peo->cpu_id, sample->time,
 565                                               peo->value);
 566                }
 567#endif
 568        }
 569        return 0;
 570}
 571
 572/*
 573 * After the last sample we need to wrap up the current C/P state
 574 * and close out each CPU for these.
 575 */
 576static void end_sample_processing(void)
 577{
 578        u64 cpu;
 579        struct power_event *pwr;
 580
 581        for (cpu = 0; cpu <= numcpus; cpu++) {
 582                pwr = malloc(sizeof(struct power_event));
 583                if (!pwr)
 584                        return;
 585                memset(pwr, 0, sizeof(struct power_event));
 586
 587                /* C state */
 588#if 0
 589                pwr->state = cpus_cstate_state[cpu];
 590                pwr->start_time = cpus_cstate_start_times[cpu];
 591                pwr->end_time = last_time;
 592                pwr->cpu = cpu;
 593                pwr->type = CSTATE;
 594                pwr->next = power_events;
 595
 596                power_events = pwr;
 597#endif
 598                /* P state */
 599
 600                pwr = malloc(sizeof(struct power_event));
 601                if (!pwr)
 602                        return;
 603                memset(pwr, 0, sizeof(struct power_event));
 604
 605                pwr->state = cpus_pstate_state[cpu];
 606                pwr->start_time = cpus_pstate_start_times[cpu];
 607                pwr->end_time = last_time;
 608                pwr->cpu = cpu;
 609                pwr->type = PSTATE;
 610                pwr->next = power_events;
 611
 612                if (!pwr->start_time)
 613                        pwr->start_time = first_time;
 614                if (!pwr->state)
 615                        pwr->state = min_freq;
 616                power_events = pwr;
 617        }
 618}
 619
 620/*
 621 * Sort the pid datastructure
 622 */
 623static void sort_pids(void)
 624{
 625        struct per_pid *new_list, *p, *cursor, *prev;
 626        /* sort by ppid first, then by pid, lowest to highest */
 627
 628        new_list = NULL;
 629
 630        while (all_data) {
 631                p = all_data;
 632                all_data = p->next;
 633                p->next = NULL;
 634
 635                if (new_list == NULL) {
 636                        new_list = p;
 637                        p->next = NULL;
 638                        continue;
 639                }
 640                prev = NULL;
 641                cursor = new_list;
 642                while (cursor) {
 643                        if (cursor->ppid > p->ppid ||
 644                                (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
 645                                /* must insert before */
 646                                if (prev) {
 647                                        p->next = prev->next;
 648                                        prev->next = p;
 649                                        cursor = NULL;
 650                                        continue;
 651                                } else {
 652                                        p->next = new_list;
 653                                        new_list = p;
 654                                        cursor = NULL;
 655                                        continue;
 656                                }
 657                        }
 658
 659                        prev = cursor;
 660                        cursor = cursor->next;
 661                        if (!cursor)
 662                                prev->next = p;
 663                }
 664        }
 665        all_data = new_list;
 666}
 667
 668
 669static void draw_c_p_states(void)
 670{
 671        struct power_event *pwr;
 672        pwr = power_events;
 673
 674        /*
 675         * two pass drawing so that the P state bars are on top of the C state blocks
 676         */
 677        while (pwr) {
 678                if (pwr->type == CSTATE)
 679                        svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
 680                pwr = pwr->next;
 681        }
 682
 683        pwr = power_events;
 684        while (pwr) {
 685                if (pwr->type == PSTATE) {
 686                        if (!pwr->state)
 687                                pwr->state = min_freq;
 688                        svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
 689                }
 690                pwr = pwr->next;
 691        }
 692}
 693
 694static void draw_wakeups(void)
 695{
 696        struct wake_event *we;
 697        struct per_pid *p;
 698        struct per_pidcomm *c;
 699
 700        we = wake_events;
 701        while (we) {
 702                int from = 0, to = 0;
 703                char *task_from = NULL, *task_to = NULL;
 704
 705                /* locate the column of the waker and wakee */
 706                p = all_data;
 707                while (p) {
 708                        if (p->pid == we->waker || p->pid == we->wakee) {
 709                                c = p->all;
 710                                while (c) {
 711                                        if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
 712                                                if (p->pid == we->waker && !from) {
 713                                                        from = c->Y;
 714                                                        task_from = strdup(c->comm);
 715                                                }
 716                                                if (p->pid == we->wakee && !to) {
 717                                                        to = c->Y;
 718                                                        task_to = strdup(c->comm);
 719                                                }
 720                                        }
 721                                        c = c->next;
 722                                }
 723                                c = p->all;
 724                                while (c) {
 725                                        if (p->pid == we->waker && !from) {
 726                                                from = c->Y;
 727                                                task_from = strdup(c->comm);
 728                                        }
 729                                        if (p->pid == we->wakee && !to) {
 730                                                to = c->Y;
 731                                                task_to = strdup(c->comm);
 732                                        }
 733                                        c = c->next;
 734                                }
 735                        }
 736                        p = p->next;
 737                }
 738
 739                if (!task_from) {
 740                        task_from = malloc(40);
 741                        sprintf(task_from, "[%i]", we->waker);
 742                }
 743                if (!task_to) {
 744                        task_to = malloc(40);
 745                        sprintf(task_to, "[%i]", we->wakee);
 746                }
 747
 748                if (we->waker == -1)
 749                        svg_interrupt(we->time, to);
 750                else if (from && to && abs(from - to) == 1)
 751                        svg_wakeline(we->time, from, to);
 752                else
 753                        svg_partial_wakeline(we->time, from, task_from, to, task_to);
 754                we = we->next;
 755
 756                free(task_from);
 757                free(task_to);
 758        }
 759}
 760
 761static void draw_cpu_usage(void)
 762{
 763        struct per_pid *p;
 764        struct per_pidcomm *c;
 765        struct cpu_sample *sample;
 766        p = all_data;
 767        while (p) {
 768                c = p->all;
 769                while (c) {
 770                        sample = c->samples;
 771                        while (sample) {
 772                                if (sample->type == TYPE_RUNNING)
 773                                        svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm);
 774
 775                                sample = sample->next;
 776                        }
 777                        c = c->next;
 778                }
 779                p = p->next;
 780        }
 781}
 782
 783static void draw_process_bars(void)
 784{
 785        struct per_pid *p;
 786        struct per_pidcomm *c;
 787        struct cpu_sample *sample;
 788        int Y = 0;
 789
 790        Y = 2 * numcpus + 2;
 791
 792        p = all_data;
 793        while (p) {
 794                c = p->all;
 795                while (c) {
 796                        if (!c->display) {
 797                                c->Y = 0;
 798                                c = c->next;
 799                                continue;
 800                        }
 801
 802                        svg_box(Y, c->start_time, c->end_time, "process");
 803                        sample = c->samples;
 804                        while (sample) {
 805                                if (sample->type == TYPE_RUNNING)
 806                                        svg_sample(Y, sample->cpu, sample->start_time, sample->end_time);
 807                                if (sample->type == TYPE_BLOCKED)
 808                                        svg_box(Y, sample->start_time, sample->end_time, "blocked");
 809                                if (sample->type == TYPE_WAITING)
 810                                        svg_waiting(Y, sample->start_time, sample->end_time);
 811                                sample = sample->next;
 812                        }
 813
 814                        if (c->comm) {
 815                                char comm[256];
 816                                if (c->total_time > 5000000000) /* 5 seconds */
 817                                        sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
 818                                else
 819                                        sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
 820
 821                                svg_text(Y, c->start_time, comm);
 822                        }
 823                        c->Y = Y;
 824                        Y++;
 825                        c = c->next;
 826                }
 827                p = p->next;
 828        }
 829}
 830
 831static void add_process_filter(const char *string)
 832{
 833        struct process_filter *filt;
 834        int pid;
 835
 836        pid = strtoull(string, NULL, 10);
 837        filt = malloc(sizeof(struct process_filter));
 838        if (!filt)
 839                return;
 840
 841        filt->name = strdup(string);
 842        filt->pid  = pid;
 843        filt->next = process_filter;
 844
 845        process_filter = filt;
 846}
 847
 848static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
 849{
 850        struct process_filter *filt;
 851        if (!process_filter)
 852                return 1;
 853
 854        filt = process_filter;
 855        while (filt) {
 856                if (filt->pid && p->pid == filt->pid)
 857                        return 1;
 858                if (strcmp(filt->name, c->comm) == 0)
 859                        return 1;
 860                filt = filt->next;
 861        }
 862        return 0;
 863}
 864
 865static int determine_display_tasks_filtered(void)
 866{
 867        struct per_pid *p;
 868        struct per_pidcomm *c;
 869        int count = 0;
 870
 871        p = all_data;
 872        while (p) {
 873                p->display = 0;
 874                if (p->start_time == 1)
 875                        p->start_time = first_time;
 876
 877                /* no exit marker, task kept running to the end */
 878                if (p->end_time == 0)
 879                        p->end_time = last_time;
 880
 881                c = p->all;
 882
 883                while (c) {
 884                        c->display = 0;
 885
 886                        if (c->start_time == 1)
 887                                c->start_time = first_time;
 888
 889                        if (passes_filter(p, c)) {
 890                                c->display = 1;
 891                                p->display = 1;
 892                                count++;
 893                        }
 894
 895                        if (c->end_time == 0)
 896                                c->end_time = last_time;
 897
 898                        c = c->next;
 899                }
 900                p = p->next;
 901        }
 902        return count;
 903}
 904
 905static int determine_display_tasks(u64 threshold)
 906{
 907        struct per_pid *p;
 908        struct per_pidcomm *c;
 909        int count = 0;
 910
 911        if (process_filter)
 912                return determine_display_tasks_filtered();
 913
 914        p = all_data;
 915        while (p) {
 916                p->display = 0;
 917                if (p->start_time == 1)
 918                        p->start_time = first_time;
 919
 920                /* no exit marker, task kept running to the end */
 921                if (p->end_time == 0)
 922                        p->end_time = last_time;
 923                if (p->total_time >= threshold && !power_only)
 924                        p->display = 1;
 925
 926                c = p->all;
 927
 928                while (c) {
 929                        c->display = 0;
 930
 931                        if (c->start_time == 1)
 932                                c->start_time = first_time;
 933
 934                        if (c->total_time >= threshold && !power_only) {
 935                                c->display = 1;
 936                                count++;
 937                        }
 938
 939                        if (c->end_time == 0)
 940                                c->end_time = last_time;
 941
 942                        c = c->next;
 943                }
 944                p = p->next;
 945        }
 946        return count;
 947}
 948
 949
 950
 951#define TIME_THRESH 10000000
 952
 953static void write_svg_file(const char *filename)
 954{
 955        u64 i;
 956        int count;
 957
 958        numcpus++;
 959
 960
 961        count = determine_display_tasks(TIME_THRESH);
 962
 963        /* We'd like to show at least 15 tasks; be less picky if we have fewer */
 964        if (count < 15)
 965                count = determine_display_tasks(TIME_THRESH / 10);
 966
 967        open_svg(filename, numcpus, count, first_time, last_time);
 968
 969        svg_time_grid();
 970        svg_legenda();
 971
 972        for (i = 0; i < numcpus; i++)
 973                svg_cpu_box(i, max_freq, turbo_frequency);
 974
 975        draw_cpu_usage();
 976        draw_process_bars();
 977        draw_c_p_states();
 978        draw_wakeups();
 979
 980        svg_close();
 981}
 982
 983static struct perf_tool perf_timechart = {
 984        .comm                   = process_comm_event,
 985        .fork                   = process_fork_event,
 986        .exit                   = process_exit_event,
 987        .sample                 = process_sample_event,
 988        .ordered_samples        = true,
 989};
 990
 991static int __cmd_timechart(void)
 992{
 993        struct perf_session *session = perf_session__new(input_name, O_RDONLY,
 994                                                         0, false, &perf_timechart);
 995        int ret = -EINVAL;
 996
 997        if (session == NULL)
 998                return -ENOMEM;
 999
1000        if (!perf_session__has_traces(session, "timechart record"))
1001                goto out_delete;
1002
1003        ret = perf_session__process_events(session, &perf_timechart);
1004        if (ret)
1005                goto out_delete;
1006
1007        end_sample_processing();
1008
1009        sort_pids();
1010
1011        write_svg_file(output_name);
1012
1013        pr_info("Written %2.1f seconds of trace to %s.\n",
1014                (last_time - first_time) / 1000000000.0, output_name);
1015out_delete:
1016        perf_session__delete(session);
1017        return ret;
1018}
1019
1020static const char * const timechart_usage[] = {
1021        "perf timechart [<options>] {record}",
1022        NULL
1023};
1024
1025#ifdef SUPPORT_OLD_POWER_EVENTS
1026static const char * const record_old_args[] = {
1027        "record",
1028        "-a",
1029        "-R",
1030        "-f",
1031        "-c", "1",
1032        "-e", "power:power_start",
1033        "-e", "power:power_end",
1034        "-e", "power:power_frequency",
1035        "-e", "sched:sched_wakeup",
1036        "-e", "sched:sched_switch",
1037};
1038#endif
1039
1040static const char * const record_new_args[] = {
1041        "record",
1042        "-a",
1043        "-R",
1044        "-f",
1045        "-c", "1",
1046        "-e", "power:cpu_frequency",
1047        "-e", "power:cpu_idle",
1048        "-e", "sched:sched_wakeup",
1049        "-e", "sched:sched_switch",
1050};
1051
1052static int __cmd_record(int argc, const char **argv)
1053{
1054        unsigned int rec_argc, i, j;
1055        const char **rec_argv;
1056        const char * const *record_args = record_new_args;
1057        unsigned int record_elems = ARRAY_SIZE(record_new_args);
1058
1059#ifdef SUPPORT_OLD_POWER_EVENTS
1060        if (!is_valid_tracepoint("power:cpu_idle") &&
1061            is_valid_tracepoint("power:power_start")) {
1062                use_old_power_events = 1;
1063                record_args = record_old_args;
1064                record_elems = ARRAY_SIZE(record_old_args);
1065        }
1066#endif
1067
1068        rec_argc = record_elems + argc - 1;
1069        rec_argv = calloc(rec_argc + 1, sizeof(char *));
1070
1071        if (rec_argv == NULL)
1072                return -ENOMEM;
1073
1074        for (i = 0; i < record_elems; i++)
1075                rec_argv[i] = strdup(record_args[i]);
1076
1077        for (j = 1; j < (unsigned int)argc; j++, i++)
1078                rec_argv[i] = argv[j];
1079
1080        return cmd_record(i, rec_argv, NULL);
1081}
1082
1083static int
1084parse_process(const struct option *opt __used, const char *arg, int __used unset)
1085{
1086        if (arg)
1087                add_process_filter(arg);
1088        return 0;
1089}
1090
1091static const struct option options[] = {
1092        OPT_STRING('i', "input", &input_name, "file",
1093                    "input file name"),
1094        OPT_STRING('o', "output", &output_name, "file",
1095                    "output file name"),
1096        OPT_INTEGER('w', "width", &svg_page_width,
1097                    "page width"),
1098        OPT_BOOLEAN('P', "power-only", &power_only,
1099                    "output power data only"),
1100        OPT_CALLBACK('p', "process", NULL, "process",
1101                      "process selector. Pass a pid or process name.",
1102                       parse_process),
1103        OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1104                    "Look for files with symbols relative to this directory"),
1105        OPT_END()
1106};
1107
1108
1109int cmd_timechart(int argc, const char **argv, const char *prefix __used)
1110{
1111        argc = parse_options(argc, argv, options, timechart_usage,
1112                        PARSE_OPT_STOP_AT_NON_OPTION);
1113
1114        symbol__init();
1115
1116        if (argc && !strncmp(argv[0], "rec", 3))
1117                return __cmd_record(argc, argv);
1118        else if (argc)
1119                usage_with_options(timechart_usage, options);
1120
1121        setup_pager();
1122
1123        return __cmd_timechart();
1124}
1125