linux/virt/kvm/kvm_main.c
<<
>>
Prefs
   1/*
   2 * Kernel-based Virtual Machine driver for Linux
   3 *
   4 * This module enables machines with Intel VT-x extensions to run virtual
   5 * machines without emulation or binary translation.
   6 *
   7 * Copyright (C) 2006 Qumranet, Inc.
   8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
   9 *
  10 * Authors:
  11 *   Avi Kivity   <avi@qumranet.com>
  12 *   Yaniv Kamay  <yaniv@qumranet.com>
  13 *
  14 * This work is licensed under the terms of the GNU GPL, version 2.  See
  15 * the COPYING file in the top-level directory.
  16 *
  17 */
  18
  19#include "iodev.h"
  20
  21#include <linux/kvm_host.h>
  22#include <linux/kvm.h>
  23#include <linux/module.h>
  24#include <linux/errno.h>
  25#include <linux/percpu.h>
  26#include <linux/mm.h>
  27#include <linux/miscdevice.h>
  28#include <linux/vmalloc.h>
  29#include <linux/reboot.h>
  30#include <linux/debugfs.h>
  31#include <linux/highmem.h>
  32#include <linux/file.h>
  33#include <linux/syscore_ops.h>
  34#include <linux/cpu.h>
  35#include <linux/sched.h>
  36#include <linux/cpumask.h>
  37#include <linux/smp.h>
  38#include <linux/anon_inodes.h>
  39#include <linux/profile.h>
  40#include <linux/kvm_para.h>
  41#include <linux/pagemap.h>
  42#include <linux/mman.h>
  43#include <linux/swap.h>
  44#include <linux/bitops.h>
  45#include <linux/spinlock.h>
  46#include <linux/compat.h>
  47#include <linux/srcu.h>
  48#include <linux/hugetlb.h>
  49#include <linux/slab.h>
  50#include <linux/sort.h>
  51#include <linux/bsearch.h>
  52
  53#include <asm/processor.h>
  54#include <asm/io.h>
  55#include <asm/uaccess.h>
  56#include <asm/pgtable.h>
  57
  58#include "coalesced_mmio.h"
  59#include "async_pf.h"
  60
  61#define CREATE_TRACE_POINTS
  62#include <trace/events/kvm.h>
  63
  64MODULE_AUTHOR("Qumranet");
  65MODULE_LICENSE("GPL");
  66
  67/*
  68 * Ordering of locks:
  69 *
  70 *              kvm->lock --> kvm->slots_lock --> kvm->irq_lock
  71 */
  72
  73DEFINE_RAW_SPINLOCK(kvm_lock);
  74LIST_HEAD(vm_list);
  75
  76static cpumask_var_t cpus_hardware_enabled;
  77static int kvm_usage_count = 0;
  78static atomic_t hardware_enable_failed;
  79
  80struct kmem_cache *kvm_vcpu_cache;
  81EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  82
  83static __read_mostly struct preempt_ops kvm_preempt_ops;
  84
  85struct dentry *kvm_debugfs_dir;
  86
  87static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  88                           unsigned long arg);
  89#ifdef CONFIG_COMPAT
  90static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
  91                                  unsigned long arg);
  92#endif
  93static int hardware_enable_all(void);
  94static void hardware_disable_all(void);
  95
  96static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
  97
  98bool kvm_rebooting;
  99EXPORT_SYMBOL_GPL(kvm_rebooting);
 100
 101static bool largepages_enabled = true;
 102
 103static struct page *hwpoison_page;
 104static pfn_t hwpoison_pfn;
 105
 106struct page *fault_page;
 107pfn_t fault_pfn;
 108
 109inline int kvm_is_mmio_pfn(pfn_t pfn)
 110{
 111        if (pfn_valid(pfn)) {
 112                int reserved;
 113                struct page *tail = pfn_to_page(pfn);
 114                struct page *head = compound_trans_head(tail);
 115                reserved = PageReserved(head);
 116                if (head != tail) {
 117                        /*
 118                         * "head" is not a dangling pointer
 119                         * (compound_trans_head takes care of that)
 120                         * but the hugepage may have been splitted
 121                         * from under us (and we may not hold a
 122                         * reference count on the head page so it can
 123                         * be reused before we run PageReferenced), so
 124                         * we've to check PageTail before returning
 125                         * what we just read.
 126                         */
 127                        smp_rmb();
 128                        if (PageTail(tail))
 129                                return reserved;
 130                }
 131                return PageReserved(tail);
 132        }
 133
 134        return true;
 135}
 136
 137/*
 138 * Switches to specified vcpu, until a matching vcpu_put()
 139 */
 140void vcpu_load(struct kvm_vcpu *vcpu)
 141{
 142        int cpu;
 143
 144        mutex_lock(&vcpu->mutex);
 145        if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
 146                /* The thread running this VCPU changed. */
 147                struct pid *oldpid = vcpu->pid;
 148                struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
 149                rcu_assign_pointer(vcpu->pid, newpid);
 150                synchronize_rcu();
 151                put_pid(oldpid);
 152        }
 153        cpu = get_cpu();
 154        preempt_notifier_register(&vcpu->preempt_notifier);
 155        kvm_arch_vcpu_load(vcpu, cpu);
 156        put_cpu();
 157}
 158
 159void vcpu_put(struct kvm_vcpu *vcpu)
 160{
 161        preempt_disable();
 162        kvm_arch_vcpu_put(vcpu);
 163        preempt_notifier_unregister(&vcpu->preempt_notifier);
 164        preempt_enable();
 165        mutex_unlock(&vcpu->mutex);
 166}
 167
 168static void ack_flush(void *_completed)
 169{
 170}
 171
 172static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
 173{
 174        int i, cpu, me;
 175        cpumask_var_t cpus;
 176        bool called = true;
 177        struct kvm_vcpu *vcpu;
 178
 179        zalloc_cpumask_var(&cpus, GFP_ATOMIC);
 180
 181        me = get_cpu();
 182        kvm_for_each_vcpu(i, vcpu, kvm) {
 183                kvm_make_request(req, vcpu);
 184                cpu = vcpu->cpu;
 185
 186                /* Set ->requests bit before we read ->mode */
 187                smp_mb();
 188
 189                if (cpus != NULL && cpu != -1 && cpu != me &&
 190                      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
 191                        cpumask_set_cpu(cpu, cpus);
 192        }
 193        if (unlikely(cpus == NULL))
 194                smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
 195        else if (!cpumask_empty(cpus))
 196                smp_call_function_many(cpus, ack_flush, NULL, 1);
 197        else
 198                called = false;
 199        put_cpu();
 200        free_cpumask_var(cpus);
 201        return called;
 202}
 203
 204void kvm_flush_remote_tlbs(struct kvm *kvm)
 205{
 206        int dirty_count = kvm->tlbs_dirty;
 207
 208        smp_mb();
 209        if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
 210                ++kvm->stat.remote_tlb_flush;
 211        cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
 212}
 213
 214void kvm_reload_remote_mmus(struct kvm *kvm)
 215{
 216        make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
 217}
 218
 219int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
 220{
 221        struct page *page;
 222        int r;
 223
 224        mutex_init(&vcpu->mutex);
 225        vcpu->cpu = -1;
 226        vcpu->kvm = kvm;
 227        vcpu->vcpu_id = id;
 228        vcpu->pid = NULL;
 229        init_waitqueue_head(&vcpu->wq);
 230        kvm_async_pf_vcpu_init(vcpu);
 231
 232        page = alloc_page(GFP_KERNEL | __GFP_ZERO);
 233        if (!page) {
 234                r = -ENOMEM;
 235                goto fail;
 236        }
 237        vcpu->run = page_address(page);
 238
 239        r = kvm_arch_vcpu_init(vcpu);
 240        if (r < 0)
 241                goto fail_free_run;
 242        return 0;
 243
 244fail_free_run:
 245        free_page((unsigned long)vcpu->run);
 246fail:
 247        return r;
 248}
 249EXPORT_SYMBOL_GPL(kvm_vcpu_init);
 250
 251void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
 252{
 253        put_pid(vcpu->pid);
 254        kvm_arch_vcpu_uninit(vcpu);
 255        free_page((unsigned long)vcpu->run);
 256}
 257EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
 258
 259#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 260static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
 261{
 262        return container_of(mn, struct kvm, mmu_notifier);
 263}
 264
 265static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
 266                                             struct mm_struct *mm,
 267                                             unsigned long address)
 268{
 269        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 270        int need_tlb_flush, idx;
 271
 272        /*
 273         * When ->invalidate_page runs, the linux pte has been zapped
 274         * already but the page is still allocated until
 275         * ->invalidate_page returns. So if we increase the sequence
 276         * here the kvm page fault will notice if the spte can't be
 277         * established because the page is going to be freed. If
 278         * instead the kvm page fault establishes the spte before
 279         * ->invalidate_page runs, kvm_unmap_hva will release it
 280         * before returning.
 281         *
 282         * The sequence increase only need to be seen at spin_unlock
 283         * time, and not at spin_lock time.
 284         *
 285         * Increasing the sequence after the spin_unlock would be
 286         * unsafe because the kvm page fault could then establish the
 287         * pte after kvm_unmap_hva returned, without noticing the page
 288         * is going to be freed.
 289         */
 290        idx = srcu_read_lock(&kvm->srcu);
 291        spin_lock(&kvm->mmu_lock);
 292        kvm->mmu_notifier_seq++;
 293        need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
 294        spin_unlock(&kvm->mmu_lock);
 295        srcu_read_unlock(&kvm->srcu, idx);
 296
 297        /* we've to flush the tlb before the pages can be freed */
 298        if (need_tlb_flush)
 299                kvm_flush_remote_tlbs(kvm);
 300
 301}
 302
 303static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
 304                                        struct mm_struct *mm,
 305                                        unsigned long address,
 306                                        pte_t pte)
 307{
 308        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 309        int idx;
 310
 311        idx = srcu_read_lock(&kvm->srcu);
 312        spin_lock(&kvm->mmu_lock);
 313        kvm->mmu_notifier_seq++;
 314        kvm_set_spte_hva(kvm, address, pte);
 315        spin_unlock(&kvm->mmu_lock);
 316        srcu_read_unlock(&kvm->srcu, idx);
 317}
 318
 319static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
 320                                                    struct mm_struct *mm,
 321                                                    unsigned long start,
 322                                                    unsigned long end)
 323{
 324        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 325        int need_tlb_flush = 0, idx;
 326
 327        idx = srcu_read_lock(&kvm->srcu);
 328        spin_lock(&kvm->mmu_lock);
 329        /*
 330         * The count increase must become visible at unlock time as no
 331         * spte can be established without taking the mmu_lock and
 332         * count is also read inside the mmu_lock critical section.
 333         */
 334        kvm->mmu_notifier_count++;
 335        for (; start < end; start += PAGE_SIZE)
 336                need_tlb_flush |= kvm_unmap_hva(kvm, start);
 337        need_tlb_flush |= kvm->tlbs_dirty;
 338        spin_unlock(&kvm->mmu_lock);
 339        srcu_read_unlock(&kvm->srcu, idx);
 340
 341        /* we've to flush the tlb before the pages can be freed */
 342        if (need_tlb_flush)
 343                kvm_flush_remote_tlbs(kvm);
 344}
 345
 346static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
 347                                                  struct mm_struct *mm,
 348                                                  unsigned long start,
 349                                                  unsigned long end)
 350{
 351        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 352
 353        spin_lock(&kvm->mmu_lock);
 354        /*
 355         * This sequence increase will notify the kvm page fault that
 356         * the page that is going to be mapped in the spte could have
 357         * been freed.
 358         */
 359        kvm->mmu_notifier_seq++;
 360        /*
 361         * The above sequence increase must be visible before the
 362         * below count decrease but both values are read by the kvm
 363         * page fault under mmu_lock spinlock so we don't need to add
 364         * a smb_wmb() here in between the two.
 365         */
 366        kvm->mmu_notifier_count--;
 367        spin_unlock(&kvm->mmu_lock);
 368
 369        BUG_ON(kvm->mmu_notifier_count < 0);
 370}
 371
 372static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
 373                                              struct mm_struct *mm,
 374                                              unsigned long address)
 375{
 376        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 377        int young, idx;
 378
 379        idx = srcu_read_lock(&kvm->srcu);
 380        spin_lock(&kvm->mmu_lock);
 381        young = kvm_age_hva(kvm, address);
 382        spin_unlock(&kvm->mmu_lock);
 383        srcu_read_unlock(&kvm->srcu, idx);
 384
 385        if (young)
 386                kvm_flush_remote_tlbs(kvm);
 387
 388        return young;
 389}
 390
 391static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
 392                                       struct mm_struct *mm,
 393                                       unsigned long address)
 394{
 395        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 396        int young, idx;
 397
 398        idx = srcu_read_lock(&kvm->srcu);
 399        spin_lock(&kvm->mmu_lock);
 400        young = kvm_test_age_hva(kvm, address);
 401        spin_unlock(&kvm->mmu_lock);
 402        srcu_read_unlock(&kvm->srcu, idx);
 403
 404        return young;
 405}
 406
 407static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
 408                                     struct mm_struct *mm)
 409{
 410        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 411        int idx;
 412
 413        idx = srcu_read_lock(&kvm->srcu);
 414        kvm_arch_flush_shadow(kvm);
 415        srcu_read_unlock(&kvm->srcu, idx);
 416}
 417
 418static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
 419        .invalidate_page        = kvm_mmu_notifier_invalidate_page,
 420        .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
 421        .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
 422        .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
 423        .test_young             = kvm_mmu_notifier_test_young,
 424        .change_pte             = kvm_mmu_notifier_change_pte,
 425        .release                = kvm_mmu_notifier_release,
 426};
 427
 428static int kvm_init_mmu_notifier(struct kvm *kvm)
 429{
 430        kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
 431        return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
 432}
 433
 434#else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
 435
 436static int kvm_init_mmu_notifier(struct kvm *kvm)
 437{
 438        return 0;
 439}
 440
 441#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
 442
 443static void kvm_init_memslots_id(struct kvm *kvm)
 444{
 445        int i;
 446        struct kvm_memslots *slots = kvm->memslots;
 447
 448        for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
 449                slots->id_to_index[i] = slots->memslots[i].id = i;
 450}
 451
 452static struct kvm *kvm_create_vm(void)
 453{
 454        int r, i;
 455        struct kvm *kvm = kvm_arch_alloc_vm();
 456
 457        if (!kvm)
 458                return ERR_PTR(-ENOMEM);
 459
 460        r = kvm_arch_init_vm(kvm);
 461        if (r)
 462                goto out_err_nodisable;
 463
 464        r = hardware_enable_all();
 465        if (r)
 466                goto out_err_nodisable;
 467
 468#ifdef CONFIG_HAVE_KVM_IRQCHIP
 469        INIT_HLIST_HEAD(&kvm->mask_notifier_list);
 470        INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
 471#endif
 472
 473        r = -ENOMEM;
 474        kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
 475        if (!kvm->memslots)
 476                goto out_err_nosrcu;
 477        kvm_init_memslots_id(kvm);
 478        if (init_srcu_struct(&kvm->srcu))
 479                goto out_err_nosrcu;
 480        for (i = 0; i < KVM_NR_BUSES; i++) {
 481                kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
 482                                        GFP_KERNEL);
 483                if (!kvm->buses[i])
 484                        goto out_err;
 485        }
 486
 487        spin_lock_init(&kvm->mmu_lock);
 488        kvm->mm = current->mm;
 489        atomic_inc(&kvm->mm->mm_count);
 490        kvm_eventfd_init(kvm);
 491        mutex_init(&kvm->lock);
 492        mutex_init(&kvm->irq_lock);
 493        mutex_init(&kvm->slots_lock);
 494        atomic_set(&kvm->users_count, 1);
 495
 496        r = kvm_init_mmu_notifier(kvm);
 497        if (r)
 498                goto out_err;
 499
 500        raw_spin_lock(&kvm_lock);
 501        list_add(&kvm->vm_list, &vm_list);
 502        raw_spin_unlock(&kvm_lock);
 503
 504        return kvm;
 505
 506out_err:
 507        cleanup_srcu_struct(&kvm->srcu);
 508out_err_nosrcu:
 509        hardware_disable_all();
 510out_err_nodisable:
 511        for (i = 0; i < KVM_NR_BUSES; i++)
 512                kfree(kvm->buses[i]);
 513        kfree(kvm->memslots);
 514        kvm_arch_free_vm(kvm);
 515        return ERR_PTR(r);
 516}
 517
 518static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
 519{
 520        if (!memslot->dirty_bitmap)
 521                return;
 522
 523        if (2 * kvm_dirty_bitmap_bytes(memslot) > PAGE_SIZE)
 524                vfree(memslot->dirty_bitmap_head);
 525        else
 526                kfree(memslot->dirty_bitmap_head);
 527
 528        memslot->dirty_bitmap = NULL;
 529        memslot->dirty_bitmap_head = NULL;
 530}
 531
 532/*
 533 * Free any memory in @free but not in @dont.
 534 */
 535static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
 536                                  struct kvm_memory_slot *dont)
 537{
 538        int i;
 539
 540        if (!dont || free->rmap != dont->rmap)
 541                vfree(free->rmap);
 542
 543        if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
 544                kvm_destroy_dirty_bitmap(free);
 545
 546
 547        for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
 548                if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
 549                        vfree(free->lpage_info[i]);
 550                        free->lpage_info[i] = NULL;
 551                }
 552        }
 553
 554        free->npages = 0;
 555        free->rmap = NULL;
 556}
 557
 558void kvm_free_physmem(struct kvm *kvm)
 559{
 560        struct kvm_memslots *slots = kvm->memslots;
 561        struct kvm_memory_slot *memslot;
 562
 563        kvm_for_each_memslot(memslot, slots)
 564                kvm_free_physmem_slot(memslot, NULL);
 565
 566        kfree(kvm->memslots);
 567}
 568
 569static void kvm_destroy_vm(struct kvm *kvm)
 570{
 571        int i;
 572        struct mm_struct *mm = kvm->mm;
 573
 574        kvm_arch_sync_events(kvm);
 575        raw_spin_lock(&kvm_lock);
 576        list_del(&kvm->vm_list);
 577        raw_spin_unlock(&kvm_lock);
 578        kvm_free_irq_routing(kvm);
 579        for (i = 0; i < KVM_NR_BUSES; i++)
 580                kvm_io_bus_destroy(kvm->buses[i]);
 581        kvm_coalesced_mmio_free(kvm);
 582#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 583        mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
 584#else
 585        kvm_arch_flush_shadow(kvm);
 586#endif
 587        kvm_arch_destroy_vm(kvm);
 588        kvm_free_physmem(kvm);
 589        cleanup_srcu_struct(&kvm->srcu);
 590        kvm_arch_free_vm(kvm);
 591        hardware_disable_all();
 592        mmdrop(mm);
 593}
 594
 595void kvm_get_kvm(struct kvm *kvm)
 596{
 597        atomic_inc(&kvm->users_count);
 598}
 599EXPORT_SYMBOL_GPL(kvm_get_kvm);
 600
 601void kvm_put_kvm(struct kvm *kvm)
 602{
 603        if (atomic_dec_and_test(&kvm->users_count))
 604                kvm_destroy_vm(kvm);
 605}
 606EXPORT_SYMBOL_GPL(kvm_put_kvm);
 607
 608
 609static int kvm_vm_release(struct inode *inode, struct file *filp)
 610{
 611        struct kvm *kvm = filp->private_data;
 612
 613        kvm_irqfd_release(kvm);
 614
 615        kvm_put_kvm(kvm);
 616        return 0;
 617}
 618
 619#ifndef CONFIG_S390
 620/*
 621 * Allocation size is twice as large as the actual dirty bitmap size.
 622 * This makes it possible to do double buffering: see x86's
 623 * kvm_vm_ioctl_get_dirty_log().
 624 */
 625static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
 626{
 627        unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
 628
 629        if (dirty_bytes > PAGE_SIZE)
 630                memslot->dirty_bitmap = vzalloc(dirty_bytes);
 631        else
 632                memslot->dirty_bitmap = kzalloc(dirty_bytes, GFP_KERNEL);
 633
 634        if (!memslot->dirty_bitmap)
 635                return -ENOMEM;
 636
 637        memslot->dirty_bitmap_head = memslot->dirty_bitmap;
 638        memslot->nr_dirty_pages = 0;
 639        return 0;
 640}
 641#endif /* !CONFIG_S390 */
 642
 643static struct kvm_memory_slot *
 644search_memslots(struct kvm_memslots *slots, gfn_t gfn)
 645{
 646        struct kvm_memory_slot *memslot;
 647
 648        kvm_for_each_memslot(memslot, slots)
 649                if (gfn >= memslot->base_gfn &&
 650                      gfn < memslot->base_gfn + memslot->npages)
 651                        return memslot;
 652
 653        return NULL;
 654}
 655
 656static int cmp_memslot(const void *slot1, const void *slot2)
 657{
 658        struct kvm_memory_slot *s1, *s2;
 659
 660        s1 = (struct kvm_memory_slot *)slot1;
 661        s2 = (struct kvm_memory_slot *)slot2;
 662
 663        if (s1->npages < s2->npages)
 664                return 1;
 665        if (s1->npages > s2->npages)
 666                return -1;
 667
 668        return 0;
 669}
 670
 671/*
 672 * Sort the memslots base on its size, so the larger slots
 673 * will get better fit.
 674 */
 675static void sort_memslots(struct kvm_memslots *slots)
 676{
 677        int i;
 678
 679        sort(slots->memslots, KVM_MEM_SLOTS_NUM,
 680              sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
 681
 682        for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
 683                slots->id_to_index[slots->memslots[i].id] = i;
 684}
 685
 686void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new)
 687{
 688        if (new) {
 689                int id = new->id;
 690                struct kvm_memory_slot *old = id_to_memslot(slots, id);
 691                unsigned long npages = old->npages;
 692
 693                *old = *new;
 694                if (new->npages != npages)
 695                        sort_memslots(slots);
 696        }
 697
 698        slots->generation++;
 699}
 700
 701/*
 702 * Allocate some memory and give it an address in the guest physical address
 703 * space.
 704 *
 705 * Discontiguous memory is allowed, mostly for framebuffers.
 706 *
 707 * Must be called holding mmap_sem for write.
 708 */
 709int __kvm_set_memory_region(struct kvm *kvm,
 710                            struct kvm_userspace_memory_region *mem,
 711                            int user_alloc)
 712{
 713        int r;
 714        gfn_t base_gfn;
 715        unsigned long npages;
 716        unsigned long i;
 717        struct kvm_memory_slot *memslot;
 718        struct kvm_memory_slot old, new;
 719        struct kvm_memslots *slots, *old_memslots;
 720
 721        r = -EINVAL;
 722        /* General sanity checks */
 723        if (mem->memory_size & (PAGE_SIZE - 1))
 724                goto out;
 725        if (mem->guest_phys_addr & (PAGE_SIZE - 1))
 726                goto out;
 727        /* We can read the guest memory with __xxx_user() later on. */
 728        if (user_alloc &&
 729            ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
 730             !access_ok(VERIFY_WRITE,
 731                        (void __user *)(unsigned long)mem->userspace_addr,
 732                        mem->memory_size)))
 733                goto out;
 734        if (mem->slot >= KVM_MEM_SLOTS_NUM)
 735                goto out;
 736        if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
 737                goto out;
 738
 739        memslot = id_to_memslot(kvm->memslots, mem->slot);
 740        base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
 741        npages = mem->memory_size >> PAGE_SHIFT;
 742
 743        r = -EINVAL;
 744        if (npages > KVM_MEM_MAX_NR_PAGES)
 745                goto out;
 746
 747        if (!npages)
 748                mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
 749
 750        new = old = *memslot;
 751
 752        new.id = mem->slot;
 753        new.base_gfn = base_gfn;
 754        new.npages = npages;
 755        new.flags = mem->flags;
 756
 757        /* Disallow changing a memory slot's size. */
 758        r = -EINVAL;
 759        if (npages && old.npages && npages != old.npages)
 760                goto out_free;
 761
 762        /* Check for overlaps */
 763        r = -EEXIST;
 764        for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
 765                struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
 766
 767                if (s == memslot || !s->npages)
 768                        continue;
 769                if (!((base_gfn + npages <= s->base_gfn) ||
 770                      (base_gfn >= s->base_gfn + s->npages)))
 771                        goto out_free;
 772        }
 773
 774        /* Free page dirty bitmap if unneeded */
 775        if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
 776                new.dirty_bitmap = NULL;
 777
 778        r = -ENOMEM;
 779
 780        /* Allocate if a slot is being created */
 781#ifndef CONFIG_S390
 782        if (npages && !new.rmap) {
 783                new.rmap = vzalloc(npages * sizeof(*new.rmap));
 784
 785                if (!new.rmap)
 786                        goto out_free;
 787
 788                new.user_alloc = user_alloc;
 789                new.userspace_addr = mem->userspace_addr;
 790        }
 791        if (!npages)
 792                goto skip_lpage;
 793
 794        for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
 795                unsigned long ugfn;
 796                unsigned long j;
 797                int lpages;
 798                int level = i + 2;
 799
 800                /* Avoid unused variable warning if no large pages */
 801                (void)level;
 802
 803                if (new.lpage_info[i])
 804                        continue;
 805
 806                lpages = 1 + ((base_gfn + npages - 1)
 807                             >> KVM_HPAGE_GFN_SHIFT(level));
 808                lpages -= base_gfn >> KVM_HPAGE_GFN_SHIFT(level);
 809
 810                new.lpage_info[i] = vzalloc(lpages * sizeof(*new.lpage_info[i]));
 811
 812                if (!new.lpage_info[i])
 813                        goto out_free;
 814
 815                if (base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
 816                        new.lpage_info[i][0].write_count = 1;
 817                if ((base_gfn+npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
 818                        new.lpage_info[i][lpages - 1].write_count = 1;
 819                ugfn = new.userspace_addr >> PAGE_SHIFT;
 820                /*
 821                 * If the gfn and userspace address are not aligned wrt each
 822                 * other, or if explicitly asked to, disable large page
 823                 * support for this slot
 824                 */
 825                if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
 826                    !largepages_enabled)
 827                        for (j = 0; j < lpages; ++j)
 828                                new.lpage_info[i][j].write_count = 1;
 829        }
 830
 831skip_lpage:
 832
 833        /* Allocate page dirty bitmap if needed */
 834        if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
 835                if (kvm_create_dirty_bitmap(&new) < 0)
 836                        goto out_free;
 837                /* destroy any largepage mappings for dirty tracking */
 838        }
 839#else  /* not defined CONFIG_S390 */
 840        new.user_alloc = user_alloc;
 841        if (user_alloc)
 842                new.userspace_addr = mem->userspace_addr;
 843#endif /* not defined CONFIG_S390 */
 844
 845        if (!npages) {
 846                struct kvm_memory_slot *slot;
 847
 848                r = -ENOMEM;
 849                slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
 850                                GFP_KERNEL);
 851                if (!slots)
 852                        goto out_free;
 853                slot = id_to_memslot(slots, mem->slot);
 854                slot->flags |= KVM_MEMSLOT_INVALID;
 855
 856                update_memslots(slots, NULL);
 857
 858                old_memslots = kvm->memslots;
 859                rcu_assign_pointer(kvm->memslots, slots);
 860                synchronize_srcu_expedited(&kvm->srcu);
 861                /* From this point no new shadow pages pointing to a deleted
 862                 * memslot will be created.
 863                 *
 864                 * validation of sp->gfn happens in:
 865                 *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
 866                 *      - kvm_is_visible_gfn (mmu_check_roots)
 867                 */
 868                kvm_arch_flush_shadow(kvm);
 869                kfree(old_memslots);
 870        }
 871
 872        r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
 873        if (r)
 874                goto out_free;
 875
 876        /* map the pages in iommu page table */
 877        if (npages) {
 878                r = kvm_iommu_map_pages(kvm, &new);
 879                if (r)
 880                        goto out_free;
 881        }
 882
 883        r = -ENOMEM;
 884        slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
 885                        GFP_KERNEL);
 886        if (!slots)
 887                goto out_free;
 888
 889        /* actual memory is freed via old in kvm_free_physmem_slot below */
 890        if (!npages) {
 891                new.rmap = NULL;
 892                new.dirty_bitmap = NULL;
 893                for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
 894                        new.lpage_info[i] = NULL;
 895        }
 896
 897        update_memslots(slots, &new);
 898        old_memslots = kvm->memslots;
 899        rcu_assign_pointer(kvm->memslots, slots);
 900        synchronize_srcu_expedited(&kvm->srcu);
 901
 902        kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
 903
 904        /*
 905         * If the new memory slot is created, we need to clear all
 906         * mmio sptes.
 907         */
 908        if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT)
 909                kvm_arch_flush_shadow(kvm);
 910
 911        kvm_free_physmem_slot(&old, &new);
 912        kfree(old_memslots);
 913
 914        return 0;
 915
 916out_free:
 917        kvm_free_physmem_slot(&new, &old);
 918out:
 919        return r;
 920
 921}
 922EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
 923
 924int kvm_set_memory_region(struct kvm *kvm,
 925                          struct kvm_userspace_memory_region *mem,
 926                          int user_alloc)
 927{
 928        int r;
 929
 930        mutex_lock(&kvm->slots_lock);
 931        r = __kvm_set_memory_region(kvm, mem, user_alloc);
 932        mutex_unlock(&kvm->slots_lock);
 933        return r;
 934}
 935EXPORT_SYMBOL_GPL(kvm_set_memory_region);
 936
 937int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
 938                                   struct
 939                                   kvm_userspace_memory_region *mem,
 940                                   int user_alloc)
 941{
 942        if (mem->slot >= KVM_MEMORY_SLOTS)
 943                return -EINVAL;
 944        return kvm_set_memory_region(kvm, mem, user_alloc);
 945}
 946
 947int kvm_get_dirty_log(struct kvm *kvm,
 948                        struct kvm_dirty_log *log, int *is_dirty)
 949{
 950        struct kvm_memory_slot *memslot;
 951        int r, i;
 952        unsigned long n;
 953        unsigned long any = 0;
 954
 955        r = -EINVAL;
 956        if (log->slot >= KVM_MEMORY_SLOTS)
 957                goto out;
 958
 959        memslot = id_to_memslot(kvm->memslots, log->slot);
 960        r = -ENOENT;
 961        if (!memslot->dirty_bitmap)
 962                goto out;
 963
 964        n = kvm_dirty_bitmap_bytes(memslot);
 965
 966        for (i = 0; !any && i < n/sizeof(long); ++i)
 967                any = memslot->dirty_bitmap[i];
 968
 969        r = -EFAULT;
 970        if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
 971                goto out;
 972
 973        if (any)
 974                *is_dirty = 1;
 975
 976        r = 0;
 977out:
 978        return r;
 979}
 980
 981void kvm_disable_largepages(void)
 982{
 983        largepages_enabled = false;
 984}
 985EXPORT_SYMBOL_GPL(kvm_disable_largepages);
 986
 987int is_error_page(struct page *page)
 988{
 989        return page == bad_page || page == hwpoison_page || page == fault_page;
 990}
 991EXPORT_SYMBOL_GPL(is_error_page);
 992
 993int is_error_pfn(pfn_t pfn)
 994{
 995        return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
 996}
 997EXPORT_SYMBOL_GPL(is_error_pfn);
 998
 999int is_hwpoison_pfn(pfn_t pfn)
1000{
1001        return pfn == hwpoison_pfn;
1002}
1003EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
1004
1005int is_fault_pfn(pfn_t pfn)
1006{
1007        return pfn == fault_pfn;
1008}
1009EXPORT_SYMBOL_GPL(is_fault_pfn);
1010
1011int is_noslot_pfn(pfn_t pfn)
1012{
1013        return pfn == bad_pfn;
1014}
1015EXPORT_SYMBOL_GPL(is_noslot_pfn);
1016
1017int is_invalid_pfn(pfn_t pfn)
1018{
1019        return pfn == hwpoison_pfn || pfn == fault_pfn;
1020}
1021EXPORT_SYMBOL_GPL(is_invalid_pfn);
1022
1023static inline unsigned long bad_hva(void)
1024{
1025        return PAGE_OFFSET;
1026}
1027
1028int kvm_is_error_hva(unsigned long addr)
1029{
1030        return addr == bad_hva();
1031}
1032EXPORT_SYMBOL_GPL(kvm_is_error_hva);
1033
1034static struct kvm_memory_slot *__gfn_to_memslot(struct kvm_memslots *slots,
1035                                                gfn_t gfn)
1036{
1037        return search_memslots(slots, gfn);
1038}
1039
1040struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1041{
1042        return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1043}
1044EXPORT_SYMBOL_GPL(gfn_to_memslot);
1045
1046int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1047{
1048        struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1049
1050        if (!memslot || memslot->id >= KVM_MEMORY_SLOTS ||
1051              memslot->flags & KVM_MEMSLOT_INVALID)
1052                return 0;
1053
1054        return 1;
1055}
1056EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1057
1058unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1059{
1060        struct vm_area_struct *vma;
1061        unsigned long addr, size;
1062
1063        size = PAGE_SIZE;
1064
1065        addr = gfn_to_hva(kvm, gfn);
1066        if (kvm_is_error_hva(addr))
1067                return PAGE_SIZE;
1068
1069        down_read(&current->mm->mmap_sem);
1070        vma = find_vma(current->mm, addr);
1071        if (!vma)
1072                goto out;
1073
1074        size = vma_kernel_pagesize(vma);
1075
1076out:
1077        up_read(&current->mm->mmap_sem);
1078
1079        return size;
1080}
1081
1082static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1083                                     gfn_t *nr_pages)
1084{
1085        if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1086                return bad_hva();
1087
1088        if (nr_pages)
1089                *nr_pages = slot->npages - (gfn - slot->base_gfn);
1090
1091        return gfn_to_hva_memslot(slot, gfn);
1092}
1093
1094unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1095{
1096        return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1097}
1098EXPORT_SYMBOL_GPL(gfn_to_hva);
1099
1100static pfn_t get_fault_pfn(void)
1101{
1102        get_page(fault_page);
1103        return fault_pfn;
1104}
1105
1106int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1107        unsigned long start, int write, struct page **page)
1108{
1109        int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1110
1111        if (write)
1112                flags |= FOLL_WRITE;
1113
1114        return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1115}
1116
1117static inline int check_user_page_hwpoison(unsigned long addr)
1118{
1119        int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1120
1121        rc = __get_user_pages(current, current->mm, addr, 1,
1122                              flags, NULL, NULL, NULL);
1123        return rc == -EHWPOISON;
1124}
1125
1126static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic,
1127                        bool *async, bool write_fault, bool *writable)
1128{
1129        struct page *page[1];
1130        int npages = 0;
1131        pfn_t pfn;
1132
1133        /* we can do it either atomically or asynchronously, not both */
1134        BUG_ON(atomic && async);
1135
1136        BUG_ON(!write_fault && !writable);
1137
1138        if (writable)
1139                *writable = true;
1140
1141        if (atomic || async)
1142                npages = __get_user_pages_fast(addr, 1, 1, page);
1143
1144        if (unlikely(npages != 1) && !atomic) {
1145                might_sleep();
1146
1147                if (writable)
1148                        *writable = write_fault;
1149
1150                if (async) {
1151                        down_read(&current->mm->mmap_sem);
1152                        npages = get_user_page_nowait(current, current->mm,
1153                                                     addr, write_fault, page);
1154                        up_read(&current->mm->mmap_sem);
1155                } else
1156                        npages = get_user_pages_fast(addr, 1, write_fault,
1157                                                     page);
1158
1159                /* map read fault as writable if possible */
1160                if (unlikely(!write_fault) && npages == 1) {
1161                        struct page *wpage[1];
1162
1163                        npages = __get_user_pages_fast(addr, 1, 1, wpage);
1164                        if (npages == 1) {
1165                                *writable = true;
1166                                put_page(page[0]);
1167                                page[0] = wpage[0];
1168                        }
1169                        npages = 1;
1170                }
1171        }
1172
1173        if (unlikely(npages != 1)) {
1174                struct vm_area_struct *vma;
1175
1176                if (atomic)
1177                        return get_fault_pfn();
1178
1179                down_read(&current->mm->mmap_sem);
1180                if (npages == -EHWPOISON ||
1181                        (!async && check_user_page_hwpoison(addr))) {
1182                        up_read(&current->mm->mmap_sem);
1183                        get_page(hwpoison_page);
1184                        return page_to_pfn(hwpoison_page);
1185                }
1186
1187                vma = find_vma_intersection(current->mm, addr, addr+1);
1188
1189                if (vma == NULL)
1190                        pfn = get_fault_pfn();
1191                else if ((vma->vm_flags & VM_PFNMAP)) {
1192                        pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1193                                vma->vm_pgoff;
1194                        BUG_ON(!kvm_is_mmio_pfn(pfn));
1195                } else {
1196                        if (async && (vma->vm_flags & VM_WRITE))
1197                                *async = true;
1198                        pfn = get_fault_pfn();
1199                }
1200                up_read(&current->mm->mmap_sem);
1201        } else
1202                pfn = page_to_pfn(page[0]);
1203
1204        return pfn;
1205}
1206
1207pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
1208{
1209        return hva_to_pfn(kvm, addr, true, NULL, true, NULL);
1210}
1211EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
1212
1213static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1214                          bool write_fault, bool *writable)
1215{
1216        unsigned long addr;
1217
1218        if (async)
1219                *async = false;
1220
1221        addr = gfn_to_hva(kvm, gfn);
1222        if (kvm_is_error_hva(addr)) {
1223                get_page(bad_page);
1224                return page_to_pfn(bad_page);
1225        }
1226
1227        return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable);
1228}
1229
1230pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1231{
1232        return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1233}
1234EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1235
1236pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1237                       bool write_fault, bool *writable)
1238{
1239        return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1240}
1241EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1242
1243pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1244{
1245        return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1246}
1247EXPORT_SYMBOL_GPL(gfn_to_pfn);
1248
1249pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1250                      bool *writable)
1251{
1252        return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1253}
1254EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1255
1256pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
1257                         struct kvm_memory_slot *slot, gfn_t gfn)
1258{
1259        unsigned long addr = gfn_to_hva_memslot(slot, gfn);
1260        return hva_to_pfn(kvm, addr, false, NULL, true, NULL);
1261}
1262
1263int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1264                                                                  int nr_pages)
1265{
1266        unsigned long addr;
1267        gfn_t entry;
1268
1269        addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1270        if (kvm_is_error_hva(addr))
1271                return -1;
1272
1273        if (entry < nr_pages)
1274                return 0;
1275
1276        return __get_user_pages_fast(addr, nr_pages, 1, pages);
1277}
1278EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1279
1280struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1281{
1282        pfn_t pfn;
1283
1284        pfn = gfn_to_pfn(kvm, gfn);
1285        if (!kvm_is_mmio_pfn(pfn))
1286                return pfn_to_page(pfn);
1287
1288        WARN_ON(kvm_is_mmio_pfn(pfn));
1289
1290        get_page(bad_page);
1291        return bad_page;
1292}
1293
1294EXPORT_SYMBOL_GPL(gfn_to_page);
1295
1296void kvm_release_page_clean(struct page *page)
1297{
1298        kvm_release_pfn_clean(page_to_pfn(page));
1299}
1300EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1301
1302void kvm_release_pfn_clean(pfn_t pfn)
1303{
1304        if (!kvm_is_mmio_pfn(pfn))
1305                put_page(pfn_to_page(pfn));
1306}
1307EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1308
1309void kvm_release_page_dirty(struct page *page)
1310{
1311        kvm_release_pfn_dirty(page_to_pfn(page));
1312}
1313EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1314
1315void kvm_release_pfn_dirty(pfn_t pfn)
1316{
1317        kvm_set_pfn_dirty(pfn);
1318        kvm_release_pfn_clean(pfn);
1319}
1320EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1321
1322void kvm_set_page_dirty(struct page *page)
1323{
1324        kvm_set_pfn_dirty(page_to_pfn(page));
1325}
1326EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1327
1328void kvm_set_pfn_dirty(pfn_t pfn)
1329{
1330        if (!kvm_is_mmio_pfn(pfn)) {
1331                struct page *page = pfn_to_page(pfn);
1332                if (!PageReserved(page))
1333                        SetPageDirty(page);
1334        }
1335}
1336EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1337
1338void kvm_set_pfn_accessed(pfn_t pfn)
1339{
1340        if (!kvm_is_mmio_pfn(pfn))
1341                mark_page_accessed(pfn_to_page(pfn));
1342}
1343EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1344
1345void kvm_get_pfn(pfn_t pfn)
1346{
1347        if (!kvm_is_mmio_pfn(pfn))
1348                get_page(pfn_to_page(pfn));
1349}
1350EXPORT_SYMBOL_GPL(kvm_get_pfn);
1351
1352static int next_segment(unsigned long len, int offset)
1353{
1354        if (len > PAGE_SIZE - offset)
1355                return PAGE_SIZE - offset;
1356        else
1357                return len;
1358}
1359
1360int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1361                        int len)
1362{
1363        int r;
1364        unsigned long addr;
1365
1366        addr = gfn_to_hva(kvm, gfn);
1367        if (kvm_is_error_hva(addr))
1368                return -EFAULT;
1369        r = __copy_from_user(data, (void __user *)addr + offset, len);
1370        if (r)
1371                return -EFAULT;
1372        return 0;
1373}
1374EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1375
1376int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1377{
1378        gfn_t gfn = gpa >> PAGE_SHIFT;
1379        int seg;
1380        int offset = offset_in_page(gpa);
1381        int ret;
1382
1383        while ((seg = next_segment(len, offset)) != 0) {
1384                ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1385                if (ret < 0)
1386                        return ret;
1387                offset = 0;
1388                len -= seg;
1389                data += seg;
1390                ++gfn;
1391        }
1392        return 0;
1393}
1394EXPORT_SYMBOL_GPL(kvm_read_guest);
1395
1396int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1397                          unsigned long len)
1398{
1399        int r;
1400        unsigned long addr;
1401        gfn_t gfn = gpa >> PAGE_SHIFT;
1402        int offset = offset_in_page(gpa);
1403
1404        addr = gfn_to_hva(kvm, gfn);
1405        if (kvm_is_error_hva(addr))
1406                return -EFAULT;
1407        pagefault_disable();
1408        r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1409        pagefault_enable();
1410        if (r)
1411                return -EFAULT;
1412        return 0;
1413}
1414EXPORT_SYMBOL(kvm_read_guest_atomic);
1415
1416int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1417                         int offset, int len)
1418{
1419        int r;
1420        unsigned long addr;
1421
1422        addr = gfn_to_hva(kvm, gfn);
1423        if (kvm_is_error_hva(addr))
1424                return -EFAULT;
1425        r = __copy_to_user((void __user *)addr + offset, data, len);
1426        if (r)
1427                return -EFAULT;
1428        mark_page_dirty(kvm, gfn);
1429        return 0;
1430}
1431EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1432
1433int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1434                    unsigned long len)
1435{
1436        gfn_t gfn = gpa >> PAGE_SHIFT;
1437        int seg;
1438        int offset = offset_in_page(gpa);
1439        int ret;
1440
1441        while ((seg = next_segment(len, offset)) != 0) {
1442                ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1443                if (ret < 0)
1444                        return ret;
1445                offset = 0;
1446                len -= seg;
1447                data += seg;
1448                ++gfn;
1449        }
1450        return 0;
1451}
1452
1453int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1454                              gpa_t gpa)
1455{
1456        struct kvm_memslots *slots = kvm_memslots(kvm);
1457        int offset = offset_in_page(gpa);
1458        gfn_t gfn = gpa >> PAGE_SHIFT;
1459
1460        ghc->gpa = gpa;
1461        ghc->generation = slots->generation;
1462        ghc->memslot = __gfn_to_memslot(slots, gfn);
1463        ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
1464        if (!kvm_is_error_hva(ghc->hva))
1465                ghc->hva += offset;
1466        else
1467                return -EFAULT;
1468
1469        return 0;
1470}
1471EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1472
1473int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1474                           void *data, unsigned long len)
1475{
1476        struct kvm_memslots *slots = kvm_memslots(kvm);
1477        int r;
1478
1479        if (slots->generation != ghc->generation)
1480                kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1481
1482        if (kvm_is_error_hva(ghc->hva))
1483                return -EFAULT;
1484
1485        r = __copy_to_user((void __user *)ghc->hva, data, len);
1486        if (r)
1487                return -EFAULT;
1488        mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1489
1490        return 0;
1491}
1492EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1493
1494int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1495                           void *data, unsigned long len)
1496{
1497        struct kvm_memslots *slots = kvm_memslots(kvm);
1498        int r;
1499
1500        if (slots->generation != ghc->generation)
1501                kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1502
1503        if (kvm_is_error_hva(ghc->hva))
1504                return -EFAULT;
1505
1506        r = __copy_from_user(data, (void __user *)ghc->hva, len);
1507        if (r)
1508                return -EFAULT;
1509
1510        return 0;
1511}
1512EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1513
1514int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1515{
1516        return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1517                                    offset, len);
1518}
1519EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1520
1521int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1522{
1523        gfn_t gfn = gpa >> PAGE_SHIFT;
1524        int seg;
1525        int offset = offset_in_page(gpa);
1526        int ret;
1527
1528        while ((seg = next_segment(len, offset)) != 0) {
1529                ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1530                if (ret < 0)
1531                        return ret;
1532                offset = 0;
1533                len -= seg;
1534                ++gfn;
1535        }
1536        return 0;
1537}
1538EXPORT_SYMBOL_GPL(kvm_clear_guest);
1539
1540void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1541                             gfn_t gfn)
1542{
1543        if (memslot && memslot->dirty_bitmap) {
1544                unsigned long rel_gfn = gfn - memslot->base_gfn;
1545
1546                if (!test_and_set_bit_le(rel_gfn, memslot->dirty_bitmap))
1547                        memslot->nr_dirty_pages++;
1548        }
1549}
1550
1551void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1552{
1553        struct kvm_memory_slot *memslot;
1554
1555        memslot = gfn_to_memslot(kvm, gfn);
1556        mark_page_dirty_in_slot(kvm, memslot, gfn);
1557}
1558
1559/*
1560 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1561 */
1562void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1563{
1564        DEFINE_WAIT(wait);
1565
1566        for (;;) {
1567                prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1568
1569                if (kvm_arch_vcpu_runnable(vcpu)) {
1570                        kvm_make_request(KVM_REQ_UNHALT, vcpu);
1571                        break;
1572                }
1573                if (kvm_cpu_has_pending_timer(vcpu))
1574                        break;
1575                if (signal_pending(current))
1576                        break;
1577
1578                schedule();
1579        }
1580
1581        finish_wait(&vcpu->wq, &wait);
1582}
1583
1584void kvm_resched(struct kvm_vcpu *vcpu)
1585{
1586        if (!need_resched())
1587                return;
1588        cond_resched();
1589}
1590EXPORT_SYMBOL_GPL(kvm_resched);
1591
1592void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1593{
1594        struct kvm *kvm = me->kvm;
1595        struct kvm_vcpu *vcpu;
1596        int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1597        int yielded = 0;
1598        int pass;
1599        int i;
1600
1601        /*
1602         * We boost the priority of a VCPU that is runnable but not
1603         * currently running, because it got preempted by something
1604         * else and called schedule in __vcpu_run.  Hopefully that
1605         * VCPU is holding the lock that we need and will release it.
1606         * We approximate round-robin by starting at the last boosted VCPU.
1607         */
1608        for (pass = 0; pass < 2 && !yielded; pass++) {
1609                kvm_for_each_vcpu(i, vcpu, kvm) {
1610                        struct task_struct *task = NULL;
1611                        struct pid *pid;
1612                        if (!pass && i < last_boosted_vcpu) {
1613                                i = last_boosted_vcpu;
1614                                continue;
1615                        } else if (pass && i > last_boosted_vcpu)
1616                                break;
1617                        if (vcpu == me)
1618                                continue;
1619                        if (waitqueue_active(&vcpu->wq))
1620                                continue;
1621                        rcu_read_lock();
1622                        pid = rcu_dereference(vcpu->pid);
1623                        if (pid)
1624                                task = get_pid_task(vcpu->pid, PIDTYPE_PID);
1625                        rcu_read_unlock();
1626                        if (!task)
1627                                continue;
1628                        if (task->flags & PF_VCPU) {
1629                                put_task_struct(task);
1630                                continue;
1631                        }
1632                        if (yield_to(task, 1)) {
1633                                put_task_struct(task);
1634                                kvm->last_boosted_vcpu = i;
1635                                yielded = 1;
1636                                break;
1637                        }
1638                        put_task_struct(task);
1639                }
1640        }
1641}
1642EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1643
1644static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1645{
1646        struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1647        struct page *page;
1648
1649        if (vmf->pgoff == 0)
1650                page = virt_to_page(vcpu->run);
1651#ifdef CONFIG_X86
1652        else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1653                page = virt_to_page(vcpu->arch.pio_data);
1654#endif
1655#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1656        else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1657                page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1658#endif
1659        else
1660                return VM_FAULT_SIGBUS;
1661        get_page(page);
1662        vmf->page = page;
1663        return 0;
1664}
1665
1666static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1667        .fault = kvm_vcpu_fault,
1668};
1669
1670static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1671{
1672        vma->vm_ops = &kvm_vcpu_vm_ops;
1673        return 0;
1674}
1675
1676static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1677{
1678        struct kvm_vcpu *vcpu = filp->private_data;
1679
1680        kvm_put_kvm(vcpu->kvm);
1681        return 0;
1682}
1683
1684static struct file_operations kvm_vcpu_fops = {
1685        .release        = kvm_vcpu_release,
1686        .unlocked_ioctl = kvm_vcpu_ioctl,
1687#ifdef CONFIG_COMPAT
1688        .compat_ioctl   = kvm_vcpu_compat_ioctl,
1689#endif
1690        .mmap           = kvm_vcpu_mmap,
1691        .llseek         = noop_llseek,
1692};
1693
1694/*
1695 * Allocates an inode for the vcpu.
1696 */
1697static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1698{
1699        return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1700}
1701
1702/*
1703 * Creates some virtual cpus.  Good luck creating more than one.
1704 */
1705static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1706{
1707        int r;
1708        struct kvm_vcpu *vcpu, *v;
1709
1710        vcpu = kvm_arch_vcpu_create(kvm, id);
1711        if (IS_ERR(vcpu))
1712                return PTR_ERR(vcpu);
1713
1714        preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1715
1716        r = kvm_arch_vcpu_setup(vcpu);
1717        if (r)
1718                goto vcpu_destroy;
1719
1720        mutex_lock(&kvm->lock);
1721        if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1722                r = -EINVAL;
1723                goto unlock_vcpu_destroy;
1724        }
1725
1726        kvm_for_each_vcpu(r, v, kvm)
1727                if (v->vcpu_id == id) {
1728                        r = -EEXIST;
1729                        goto unlock_vcpu_destroy;
1730                }
1731
1732        BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1733
1734        /* Now it's all set up, let userspace reach it */
1735        kvm_get_kvm(kvm);
1736        r = create_vcpu_fd(vcpu);
1737        if (r < 0) {
1738                kvm_put_kvm(kvm);
1739                goto unlock_vcpu_destroy;
1740        }
1741
1742        kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1743        smp_wmb();
1744        atomic_inc(&kvm->online_vcpus);
1745
1746        mutex_unlock(&kvm->lock);
1747        return r;
1748
1749unlock_vcpu_destroy:
1750        mutex_unlock(&kvm->lock);
1751vcpu_destroy:
1752        kvm_arch_vcpu_destroy(vcpu);
1753        return r;
1754}
1755
1756static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1757{
1758        if (sigset) {
1759                sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1760                vcpu->sigset_active = 1;
1761                vcpu->sigset = *sigset;
1762        } else
1763                vcpu->sigset_active = 0;
1764        return 0;
1765}
1766
1767static long kvm_vcpu_ioctl(struct file *filp,
1768                           unsigned int ioctl, unsigned long arg)
1769{
1770        struct kvm_vcpu *vcpu = filp->private_data;
1771        void __user *argp = (void __user *)arg;
1772        int r;
1773        struct kvm_fpu *fpu = NULL;
1774        struct kvm_sregs *kvm_sregs = NULL;
1775
1776        if (vcpu->kvm->mm != current->mm)
1777                return -EIO;
1778
1779#if defined(CONFIG_S390) || defined(CONFIG_PPC)
1780        /*
1781         * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1782         * so vcpu_load() would break it.
1783         */
1784        if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1785                return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1786#endif
1787
1788
1789        vcpu_load(vcpu);
1790        switch (ioctl) {
1791        case KVM_RUN:
1792                r = -EINVAL;
1793                if (arg)
1794                        goto out;
1795                r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1796                trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1797                break;
1798        case KVM_GET_REGS: {
1799                struct kvm_regs *kvm_regs;
1800
1801                r = -ENOMEM;
1802                kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1803                if (!kvm_regs)
1804                        goto out;
1805                r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1806                if (r)
1807                        goto out_free1;
1808                r = -EFAULT;
1809                if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1810                        goto out_free1;
1811                r = 0;
1812out_free1:
1813                kfree(kvm_regs);
1814                break;
1815        }
1816        case KVM_SET_REGS: {
1817                struct kvm_regs *kvm_regs;
1818
1819                r = -ENOMEM;
1820                kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
1821                if (IS_ERR(kvm_regs)) {
1822                        r = PTR_ERR(kvm_regs);
1823                        goto out;
1824                }
1825                r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1826                if (r)
1827                        goto out_free2;
1828                r = 0;
1829out_free2:
1830                kfree(kvm_regs);
1831                break;
1832        }
1833        case KVM_GET_SREGS: {
1834                kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1835                r = -ENOMEM;
1836                if (!kvm_sregs)
1837                        goto out;
1838                r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1839                if (r)
1840                        goto out;
1841                r = -EFAULT;
1842                if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1843                        goto out;
1844                r = 0;
1845                break;
1846        }
1847        case KVM_SET_SREGS: {
1848                kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
1849                if (IS_ERR(kvm_sregs)) {
1850                        r = PTR_ERR(kvm_sregs);
1851                        goto out;
1852                }
1853                r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1854                if (r)
1855                        goto out;
1856                r = 0;
1857                break;
1858        }
1859        case KVM_GET_MP_STATE: {
1860                struct kvm_mp_state mp_state;
1861
1862                r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1863                if (r)
1864                        goto out;
1865                r = -EFAULT;
1866                if (copy_to_user(argp, &mp_state, sizeof mp_state))
1867                        goto out;
1868                r = 0;
1869                break;
1870        }
1871        case KVM_SET_MP_STATE: {
1872                struct kvm_mp_state mp_state;
1873
1874                r = -EFAULT;
1875                if (copy_from_user(&mp_state, argp, sizeof mp_state))
1876                        goto out;
1877                r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1878                if (r)
1879                        goto out;
1880                r = 0;
1881                break;
1882        }
1883        case KVM_TRANSLATE: {
1884                struct kvm_translation tr;
1885
1886                r = -EFAULT;
1887                if (copy_from_user(&tr, argp, sizeof tr))
1888                        goto out;
1889                r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1890                if (r)
1891                        goto out;
1892                r = -EFAULT;
1893                if (copy_to_user(argp, &tr, sizeof tr))
1894                        goto out;
1895                r = 0;
1896                break;
1897        }
1898        case KVM_SET_GUEST_DEBUG: {
1899                struct kvm_guest_debug dbg;
1900
1901                r = -EFAULT;
1902                if (copy_from_user(&dbg, argp, sizeof dbg))
1903                        goto out;
1904                r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1905                if (r)
1906                        goto out;
1907                r = 0;
1908                break;
1909        }
1910        case KVM_SET_SIGNAL_MASK: {
1911                struct kvm_signal_mask __user *sigmask_arg = argp;
1912                struct kvm_signal_mask kvm_sigmask;
1913                sigset_t sigset, *p;
1914
1915                p = NULL;
1916                if (argp) {
1917                        r = -EFAULT;
1918                        if (copy_from_user(&kvm_sigmask, argp,
1919                                           sizeof kvm_sigmask))
1920                                goto out;
1921                        r = -EINVAL;
1922                        if (kvm_sigmask.len != sizeof sigset)
1923                                goto out;
1924                        r = -EFAULT;
1925                        if (copy_from_user(&sigset, sigmask_arg->sigset,
1926                                           sizeof sigset))
1927                                goto out;
1928                        p = &sigset;
1929                }
1930                r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1931                break;
1932        }
1933        case KVM_GET_FPU: {
1934                fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1935                r = -ENOMEM;
1936                if (!fpu)
1937                        goto out;
1938                r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1939                if (r)
1940                        goto out;
1941                r = -EFAULT;
1942                if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1943                        goto out;
1944                r = 0;
1945                break;
1946        }
1947        case KVM_SET_FPU: {
1948                fpu = memdup_user(argp, sizeof(*fpu));
1949                if (IS_ERR(fpu)) {
1950                        r = PTR_ERR(fpu);
1951                        goto out;
1952                }
1953                r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1954                if (r)
1955                        goto out;
1956                r = 0;
1957                break;
1958        }
1959        default:
1960                r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1961        }
1962out:
1963        vcpu_put(vcpu);
1964        kfree(fpu);
1965        kfree(kvm_sregs);
1966        return r;
1967}
1968
1969#ifdef CONFIG_COMPAT
1970static long kvm_vcpu_compat_ioctl(struct file *filp,
1971                                  unsigned int ioctl, unsigned long arg)
1972{
1973        struct kvm_vcpu *vcpu = filp->private_data;
1974        void __user *argp = compat_ptr(arg);
1975        int r;
1976
1977        if (vcpu->kvm->mm != current->mm)
1978                return -EIO;
1979
1980        switch (ioctl) {
1981        case KVM_SET_SIGNAL_MASK: {
1982                struct kvm_signal_mask __user *sigmask_arg = argp;
1983                struct kvm_signal_mask kvm_sigmask;
1984                compat_sigset_t csigset;
1985                sigset_t sigset;
1986
1987                if (argp) {
1988                        r = -EFAULT;
1989                        if (copy_from_user(&kvm_sigmask, argp,
1990                                           sizeof kvm_sigmask))
1991                                goto out;
1992                        r = -EINVAL;
1993                        if (kvm_sigmask.len != sizeof csigset)
1994                                goto out;
1995                        r = -EFAULT;
1996                        if (copy_from_user(&csigset, sigmask_arg->sigset,
1997                                           sizeof csigset))
1998                                goto out;
1999                }
2000                sigset_from_compat(&sigset, &csigset);
2001                r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2002                break;
2003        }
2004        default:
2005                r = kvm_vcpu_ioctl(filp, ioctl, arg);
2006        }
2007
2008out:
2009        return r;
2010}
2011#endif
2012
2013static long kvm_vm_ioctl(struct file *filp,
2014                           unsigned int ioctl, unsigned long arg)
2015{
2016        struct kvm *kvm = filp->private_data;
2017        void __user *argp = (void __user *)arg;
2018        int r;
2019
2020        if (kvm->mm != current->mm)
2021                return -EIO;
2022        switch (ioctl) {
2023        case KVM_CREATE_VCPU:
2024                r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2025                if (r < 0)
2026                        goto out;
2027                break;
2028        case KVM_SET_USER_MEMORY_REGION: {
2029                struct kvm_userspace_memory_region kvm_userspace_mem;
2030
2031                r = -EFAULT;
2032                if (copy_from_user(&kvm_userspace_mem, argp,
2033                                                sizeof kvm_userspace_mem))
2034                        goto out;
2035
2036                r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
2037                if (r)
2038                        goto out;
2039                break;
2040        }
2041        case KVM_GET_DIRTY_LOG: {
2042                struct kvm_dirty_log log;
2043
2044                r = -EFAULT;
2045                if (copy_from_user(&log, argp, sizeof log))
2046                        goto out;
2047                r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2048                if (r)
2049                        goto out;
2050                break;
2051        }
2052#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2053        case KVM_REGISTER_COALESCED_MMIO: {
2054                struct kvm_coalesced_mmio_zone zone;
2055                r = -EFAULT;
2056                if (copy_from_user(&zone, argp, sizeof zone))
2057                        goto out;
2058                r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2059                if (r)
2060                        goto out;
2061                r = 0;
2062                break;
2063        }
2064        case KVM_UNREGISTER_COALESCED_MMIO: {
2065                struct kvm_coalesced_mmio_zone zone;
2066                r = -EFAULT;
2067                if (copy_from_user(&zone, argp, sizeof zone))
2068                        goto out;
2069                r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2070                if (r)
2071                        goto out;
2072                r = 0;
2073                break;
2074        }
2075#endif
2076        case KVM_IRQFD: {
2077                struct kvm_irqfd data;
2078
2079                r = -EFAULT;
2080                if (copy_from_user(&data, argp, sizeof data))
2081                        goto out;
2082                r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
2083                break;
2084        }
2085        case KVM_IOEVENTFD: {
2086                struct kvm_ioeventfd data;
2087
2088                r = -EFAULT;
2089                if (copy_from_user(&data, argp, sizeof data))
2090                        goto out;
2091                r = kvm_ioeventfd(kvm, &data);
2092                break;
2093        }
2094#ifdef CONFIG_KVM_APIC_ARCHITECTURE
2095        case KVM_SET_BOOT_CPU_ID:
2096                r = 0;
2097                mutex_lock(&kvm->lock);
2098                if (atomic_read(&kvm->online_vcpus) != 0)
2099                        r = -EBUSY;
2100                else
2101                        kvm->bsp_vcpu_id = arg;
2102                mutex_unlock(&kvm->lock);
2103                break;
2104#endif
2105        default:
2106                r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2107                if (r == -ENOTTY)
2108                        r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2109        }
2110out:
2111        return r;
2112}
2113
2114#ifdef CONFIG_COMPAT
2115struct compat_kvm_dirty_log {
2116        __u32 slot;
2117        __u32 padding1;
2118        union {
2119                compat_uptr_t dirty_bitmap; /* one bit per page */
2120                __u64 padding2;
2121        };
2122};
2123
2124static long kvm_vm_compat_ioctl(struct file *filp,
2125                           unsigned int ioctl, unsigned long arg)
2126{
2127        struct kvm *kvm = filp->private_data;
2128        int r;
2129
2130        if (kvm->mm != current->mm)
2131                return -EIO;
2132        switch (ioctl) {
2133        case KVM_GET_DIRTY_LOG: {
2134                struct compat_kvm_dirty_log compat_log;
2135                struct kvm_dirty_log log;
2136
2137                r = -EFAULT;
2138                if (copy_from_user(&compat_log, (void __user *)arg,
2139                                   sizeof(compat_log)))
2140                        goto out;
2141                log.slot         = compat_log.slot;
2142                log.padding1     = compat_log.padding1;
2143                log.padding2     = compat_log.padding2;
2144                log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2145
2146                r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2147                if (r)
2148                        goto out;
2149                break;
2150        }
2151        default:
2152                r = kvm_vm_ioctl(filp, ioctl, arg);
2153        }
2154
2155out:
2156        return r;
2157}
2158#endif
2159
2160static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2161{
2162        struct page *page[1];
2163        unsigned long addr;
2164        int npages;
2165        gfn_t gfn = vmf->pgoff;
2166        struct kvm *kvm = vma->vm_file->private_data;
2167
2168        addr = gfn_to_hva(kvm, gfn);
2169        if (kvm_is_error_hva(addr))
2170                return VM_FAULT_SIGBUS;
2171
2172        npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2173                                NULL);
2174        if (unlikely(npages != 1))
2175                return VM_FAULT_SIGBUS;
2176
2177        vmf->page = page[0];
2178        return 0;
2179}
2180
2181static const struct vm_operations_struct kvm_vm_vm_ops = {
2182        .fault = kvm_vm_fault,
2183};
2184
2185static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2186{
2187        vma->vm_ops = &kvm_vm_vm_ops;
2188        return 0;
2189}
2190
2191static struct file_operations kvm_vm_fops = {
2192        .release        = kvm_vm_release,
2193        .unlocked_ioctl = kvm_vm_ioctl,
2194#ifdef CONFIG_COMPAT
2195        .compat_ioctl   = kvm_vm_compat_ioctl,
2196#endif
2197        .mmap           = kvm_vm_mmap,
2198        .llseek         = noop_llseek,
2199};
2200
2201static int kvm_dev_ioctl_create_vm(void)
2202{
2203        int r;
2204        struct kvm *kvm;
2205
2206        kvm = kvm_create_vm();
2207        if (IS_ERR(kvm))
2208                return PTR_ERR(kvm);
2209#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2210        r = kvm_coalesced_mmio_init(kvm);
2211        if (r < 0) {
2212                kvm_put_kvm(kvm);
2213                return r;
2214        }
2215#endif
2216        r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2217        if (r < 0)
2218                kvm_put_kvm(kvm);
2219
2220        return r;
2221}
2222
2223static long kvm_dev_ioctl_check_extension_generic(long arg)
2224{
2225        switch (arg) {
2226        case KVM_CAP_USER_MEMORY:
2227        case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2228        case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2229#ifdef CONFIG_KVM_APIC_ARCHITECTURE
2230        case KVM_CAP_SET_BOOT_CPU_ID:
2231#endif
2232        case KVM_CAP_INTERNAL_ERROR_DATA:
2233                return 1;
2234#ifdef CONFIG_HAVE_KVM_IRQCHIP
2235        case KVM_CAP_IRQ_ROUTING:
2236                return KVM_MAX_IRQ_ROUTES;
2237#endif
2238        default:
2239                break;
2240        }
2241        return kvm_dev_ioctl_check_extension(arg);
2242}
2243
2244static long kvm_dev_ioctl(struct file *filp,
2245                          unsigned int ioctl, unsigned long arg)
2246{
2247        long r = -EINVAL;
2248
2249        switch (ioctl) {
2250        case KVM_GET_API_VERSION:
2251                r = -EINVAL;
2252                if (arg)
2253                        goto out;
2254                r = KVM_API_VERSION;
2255                break;
2256        case KVM_CREATE_VM:
2257                r = -EINVAL;
2258                if (arg)
2259                        goto out;
2260                r = kvm_dev_ioctl_create_vm();
2261                break;
2262        case KVM_CHECK_EXTENSION:
2263                r = kvm_dev_ioctl_check_extension_generic(arg);
2264                break;
2265        case KVM_GET_VCPU_MMAP_SIZE:
2266                r = -EINVAL;
2267                if (arg)
2268                        goto out;
2269                r = PAGE_SIZE;     /* struct kvm_run */
2270#ifdef CONFIG_X86
2271                r += PAGE_SIZE;    /* pio data page */
2272#endif
2273#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2274                r += PAGE_SIZE;    /* coalesced mmio ring page */
2275#endif
2276                break;
2277        case KVM_TRACE_ENABLE:
2278        case KVM_TRACE_PAUSE:
2279        case KVM_TRACE_DISABLE:
2280                r = -EOPNOTSUPP;
2281                break;
2282        default:
2283                return kvm_arch_dev_ioctl(filp, ioctl, arg);
2284        }
2285out:
2286        return r;
2287}
2288
2289static struct file_operations kvm_chardev_ops = {
2290        .unlocked_ioctl = kvm_dev_ioctl,
2291        .compat_ioctl   = kvm_dev_ioctl,
2292        .llseek         = noop_llseek,
2293};
2294
2295static struct miscdevice kvm_dev = {
2296        KVM_MINOR,
2297        "kvm",
2298        &kvm_chardev_ops,
2299};
2300
2301static void hardware_enable_nolock(void *junk)
2302{
2303        int cpu = raw_smp_processor_id();
2304        int r;
2305
2306        if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2307                return;
2308
2309        cpumask_set_cpu(cpu, cpus_hardware_enabled);
2310
2311        r = kvm_arch_hardware_enable(NULL);
2312
2313        if (r) {
2314                cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2315                atomic_inc(&hardware_enable_failed);
2316                printk(KERN_INFO "kvm: enabling virtualization on "
2317                                 "CPU%d failed\n", cpu);
2318        }
2319}
2320
2321static void hardware_enable(void *junk)
2322{
2323        raw_spin_lock(&kvm_lock);
2324        hardware_enable_nolock(junk);
2325        raw_spin_unlock(&kvm_lock);
2326}
2327
2328static void hardware_disable_nolock(void *junk)
2329{
2330        int cpu = raw_smp_processor_id();
2331
2332        if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2333                return;
2334        cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2335        kvm_arch_hardware_disable(NULL);
2336}
2337
2338static void hardware_disable(void *junk)
2339{
2340        raw_spin_lock(&kvm_lock);
2341        hardware_disable_nolock(junk);
2342        raw_spin_unlock(&kvm_lock);
2343}
2344
2345static void hardware_disable_all_nolock(void)
2346{
2347        BUG_ON(!kvm_usage_count);
2348
2349        kvm_usage_count--;
2350        if (!kvm_usage_count)
2351                on_each_cpu(hardware_disable_nolock, NULL, 1);
2352}
2353
2354static void hardware_disable_all(void)
2355{
2356        raw_spin_lock(&kvm_lock);
2357        hardware_disable_all_nolock();
2358        raw_spin_unlock(&kvm_lock);
2359}
2360
2361static int hardware_enable_all(void)
2362{
2363        int r = 0;
2364
2365        raw_spin_lock(&kvm_lock);
2366
2367        kvm_usage_count++;
2368        if (kvm_usage_count == 1) {
2369                atomic_set(&hardware_enable_failed, 0);
2370                on_each_cpu(hardware_enable_nolock, NULL, 1);
2371
2372                if (atomic_read(&hardware_enable_failed)) {
2373                        hardware_disable_all_nolock();
2374                        r = -EBUSY;
2375                }
2376        }
2377
2378        raw_spin_unlock(&kvm_lock);
2379
2380        return r;
2381}
2382
2383static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2384                           void *v)
2385{
2386        int cpu = (long)v;
2387
2388        if (!kvm_usage_count)
2389                return NOTIFY_OK;
2390
2391        val &= ~CPU_TASKS_FROZEN;
2392        switch (val) {
2393        case CPU_DYING:
2394                printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2395                       cpu);
2396                hardware_disable(NULL);
2397                break;
2398        case CPU_STARTING:
2399                printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2400                       cpu);
2401                hardware_enable(NULL);
2402                break;
2403        }
2404        return NOTIFY_OK;
2405}
2406
2407
2408asmlinkage void kvm_spurious_fault(void)
2409{
2410        /* Fault while not rebooting.  We want the trace. */
2411        BUG();
2412}
2413EXPORT_SYMBOL_GPL(kvm_spurious_fault);
2414
2415static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2416                      void *v)
2417{
2418        /*
2419         * Some (well, at least mine) BIOSes hang on reboot if
2420         * in vmx root mode.
2421         *
2422         * And Intel TXT required VMX off for all cpu when system shutdown.
2423         */
2424        printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2425        kvm_rebooting = true;
2426        on_each_cpu(hardware_disable_nolock, NULL, 1);
2427        return NOTIFY_OK;
2428}
2429
2430static struct notifier_block kvm_reboot_notifier = {
2431        .notifier_call = kvm_reboot,
2432        .priority = 0,
2433};
2434
2435static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2436{
2437        int i;
2438
2439        for (i = 0; i < bus->dev_count; i++) {
2440                struct kvm_io_device *pos = bus->range[i].dev;
2441
2442                kvm_iodevice_destructor(pos);
2443        }
2444        kfree(bus);
2445}
2446
2447int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2448{
2449        const struct kvm_io_range *r1 = p1;
2450        const struct kvm_io_range *r2 = p2;
2451
2452        if (r1->addr < r2->addr)
2453                return -1;
2454        if (r1->addr + r1->len > r2->addr + r2->len)
2455                return 1;
2456        return 0;
2457}
2458
2459int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2460                          gpa_t addr, int len)
2461{
2462        if (bus->dev_count == NR_IOBUS_DEVS)
2463                return -ENOSPC;
2464
2465        bus->range[bus->dev_count++] = (struct kvm_io_range) {
2466                .addr = addr,
2467                .len = len,
2468                .dev = dev,
2469        };
2470
2471        sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2472                kvm_io_bus_sort_cmp, NULL);
2473
2474        return 0;
2475}
2476
2477int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2478                             gpa_t addr, int len)
2479{
2480        struct kvm_io_range *range, key;
2481        int off;
2482
2483        key = (struct kvm_io_range) {
2484                .addr = addr,
2485                .len = len,
2486        };
2487
2488        range = bsearch(&key, bus->range, bus->dev_count,
2489                        sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2490        if (range == NULL)
2491                return -ENOENT;
2492
2493        off = range - bus->range;
2494
2495        while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
2496                off--;
2497
2498        return off;
2499}
2500
2501/* kvm_io_bus_write - called under kvm->slots_lock */
2502int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2503                     int len, const void *val)
2504{
2505        int idx;
2506        struct kvm_io_bus *bus;
2507        struct kvm_io_range range;
2508
2509        range = (struct kvm_io_range) {
2510                .addr = addr,
2511                .len = len,
2512        };
2513
2514        bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2515        idx = kvm_io_bus_get_first_dev(bus, addr, len);
2516        if (idx < 0)
2517                return -EOPNOTSUPP;
2518
2519        while (idx < bus->dev_count &&
2520                kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2521                if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
2522                        return 0;
2523                idx++;
2524        }
2525
2526        return -EOPNOTSUPP;
2527}
2528
2529/* kvm_io_bus_read - called under kvm->slots_lock */
2530int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2531                    int len, void *val)
2532{
2533        int idx;
2534        struct kvm_io_bus *bus;
2535        struct kvm_io_range range;
2536
2537        range = (struct kvm_io_range) {
2538                .addr = addr,
2539                .len = len,
2540        };
2541
2542        bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2543        idx = kvm_io_bus_get_first_dev(bus, addr, len);
2544        if (idx < 0)
2545                return -EOPNOTSUPP;
2546
2547        while (idx < bus->dev_count &&
2548                kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2549                if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
2550                        return 0;
2551                idx++;
2552        }
2553
2554        return -EOPNOTSUPP;
2555}
2556
2557/* Caller must hold slots_lock. */
2558int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2559                            int len, struct kvm_io_device *dev)
2560{
2561        struct kvm_io_bus *new_bus, *bus;
2562
2563        bus = kvm->buses[bus_idx];
2564        if (bus->dev_count > NR_IOBUS_DEVS-1)
2565                return -ENOSPC;
2566
2567        new_bus = kmemdup(bus, sizeof(struct kvm_io_bus), GFP_KERNEL);
2568        if (!new_bus)
2569                return -ENOMEM;
2570        kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2571        rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2572        synchronize_srcu_expedited(&kvm->srcu);
2573        kfree(bus);
2574
2575        return 0;
2576}
2577
2578/* Caller must hold slots_lock. */
2579int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2580                              struct kvm_io_device *dev)
2581{
2582        int i, r;
2583        struct kvm_io_bus *new_bus, *bus;
2584
2585        bus = kvm->buses[bus_idx];
2586
2587        new_bus = kmemdup(bus, sizeof(*bus), GFP_KERNEL);
2588        if (!new_bus)
2589                return -ENOMEM;
2590
2591        r = -ENOENT;
2592        for (i = 0; i < new_bus->dev_count; i++)
2593                if (new_bus->range[i].dev == dev) {
2594                        r = 0;
2595                        new_bus->dev_count--;
2596                        new_bus->range[i] = new_bus->range[new_bus->dev_count];
2597                        sort(new_bus->range, new_bus->dev_count,
2598                             sizeof(struct kvm_io_range),
2599                             kvm_io_bus_sort_cmp, NULL);
2600                        break;
2601                }
2602
2603        if (r) {
2604                kfree(new_bus);
2605                return r;
2606        }
2607
2608        rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2609        synchronize_srcu_expedited(&kvm->srcu);
2610        kfree(bus);
2611        return r;
2612}
2613
2614static struct notifier_block kvm_cpu_notifier = {
2615        .notifier_call = kvm_cpu_hotplug,
2616};
2617
2618static int vm_stat_get(void *_offset, u64 *val)
2619{
2620        unsigned offset = (long)_offset;
2621        struct kvm *kvm;
2622
2623        *val = 0;
2624        raw_spin_lock(&kvm_lock);
2625        list_for_each_entry(kvm, &vm_list, vm_list)
2626                *val += *(u32 *)((void *)kvm + offset);
2627        raw_spin_unlock(&kvm_lock);
2628        return 0;
2629}
2630
2631DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2632
2633static int vcpu_stat_get(void *_offset, u64 *val)
2634{
2635        unsigned offset = (long)_offset;
2636        struct kvm *kvm;
2637        struct kvm_vcpu *vcpu;
2638        int i;
2639
2640        *val = 0;
2641        raw_spin_lock(&kvm_lock);
2642        list_for_each_entry(kvm, &vm_list, vm_list)
2643                kvm_for_each_vcpu(i, vcpu, kvm)
2644                        *val += *(u32 *)((void *)vcpu + offset);
2645
2646        raw_spin_unlock(&kvm_lock);
2647        return 0;
2648}
2649
2650DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2651
2652static const struct file_operations *stat_fops[] = {
2653        [KVM_STAT_VCPU] = &vcpu_stat_fops,
2654        [KVM_STAT_VM]   = &vm_stat_fops,
2655};
2656
2657static int kvm_init_debug(void)
2658{
2659        int r = -EFAULT;
2660        struct kvm_stats_debugfs_item *p;
2661
2662        kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2663        if (kvm_debugfs_dir == NULL)
2664                goto out;
2665
2666        for (p = debugfs_entries; p->name; ++p) {
2667                p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2668                                                (void *)(long)p->offset,
2669                                                stat_fops[p->kind]);
2670                if (p->dentry == NULL)
2671                        goto out_dir;
2672        }
2673
2674        return 0;
2675
2676out_dir:
2677        debugfs_remove_recursive(kvm_debugfs_dir);
2678out:
2679        return r;
2680}
2681
2682static void kvm_exit_debug(void)
2683{
2684        struct kvm_stats_debugfs_item *p;
2685
2686        for (p = debugfs_entries; p->name; ++p)
2687                debugfs_remove(p->dentry);
2688        debugfs_remove(kvm_debugfs_dir);
2689}
2690
2691static int kvm_suspend(void)
2692{
2693        if (kvm_usage_count)
2694                hardware_disable_nolock(NULL);
2695        return 0;
2696}
2697
2698static void kvm_resume(void)
2699{
2700        if (kvm_usage_count) {
2701                WARN_ON(raw_spin_is_locked(&kvm_lock));
2702                hardware_enable_nolock(NULL);
2703        }
2704}
2705
2706static struct syscore_ops kvm_syscore_ops = {
2707        .suspend = kvm_suspend,
2708        .resume = kvm_resume,
2709};
2710
2711struct page *bad_page;
2712pfn_t bad_pfn;
2713
2714static inline
2715struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2716{
2717        return container_of(pn, struct kvm_vcpu, preempt_notifier);
2718}
2719
2720static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2721{
2722        struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2723
2724        kvm_arch_vcpu_load(vcpu, cpu);
2725}
2726
2727static void kvm_sched_out(struct preempt_notifier *pn,
2728                          struct task_struct *next)
2729{
2730        struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2731
2732        kvm_arch_vcpu_put(vcpu);
2733}
2734
2735int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2736                  struct module *module)
2737{
2738        int r;
2739        int cpu;
2740
2741        r = kvm_arch_init(opaque);
2742        if (r)
2743                goto out_fail;
2744
2745        bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2746
2747        if (bad_page == NULL) {
2748                r = -ENOMEM;
2749                goto out;
2750        }
2751
2752        bad_pfn = page_to_pfn(bad_page);
2753
2754        hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2755
2756        if (hwpoison_page == NULL) {
2757                r = -ENOMEM;
2758                goto out_free_0;
2759        }
2760
2761        hwpoison_pfn = page_to_pfn(hwpoison_page);
2762
2763        fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2764
2765        if (fault_page == NULL) {
2766                r = -ENOMEM;
2767                goto out_free_0;
2768        }
2769
2770        fault_pfn = page_to_pfn(fault_page);
2771
2772        if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2773                r = -ENOMEM;
2774                goto out_free_0;
2775        }
2776
2777        r = kvm_arch_hardware_setup();
2778        if (r < 0)
2779                goto out_free_0a;
2780
2781        for_each_online_cpu(cpu) {
2782                smp_call_function_single(cpu,
2783                                kvm_arch_check_processor_compat,
2784                                &r, 1);
2785                if (r < 0)
2786                        goto out_free_1;
2787        }
2788
2789        r = register_cpu_notifier(&kvm_cpu_notifier);
2790        if (r)
2791                goto out_free_2;
2792        register_reboot_notifier(&kvm_reboot_notifier);
2793
2794        /* A kmem cache lets us meet the alignment requirements of fx_save. */
2795        if (!vcpu_align)
2796                vcpu_align = __alignof__(struct kvm_vcpu);
2797        kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2798                                           0, NULL);
2799        if (!kvm_vcpu_cache) {
2800                r = -ENOMEM;
2801                goto out_free_3;
2802        }
2803
2804        r = kvm_async_pf_init();
2805        if (r)
2806                goto out_free;
2807
2808        kvm_chardev_ops.owner = module;
2809        kvm_vm_fops.owner = module;
2810        kvm_vcpu_fops.owner = module;
2811
2812        r = misc_register(&kvm_dev);
2813        if (r) {
2814                printk(KERN_ERR "kvm: misc device register failed\n");
2815                goto out_unreg;
2816        }
2817
2818        register_syscore_ops(&kvm_syscore_ops);
2819
2820        kvm_preempt_ops.sched_in = kvm_sched_in;
2821        kvm_preempt_ops.sched_out = kvm_sched_out;
2822
2823        r = kvm_init_debug();
2824        if (r) {
2825                printk(KERN_ERR "kvm: create debugfs files failed\n");
2826                goto out_undebugfs;
2827        }
2828
2829        return 0;
2830
2831out_undebugfs:
2832        unregister_syscore_ops(&kvm_syscore_ops);
2833out_unreg:
2834        kvm_async_pf_deinit();
2835out_free:
2836        kmem_cache_destroy(kvm_vcpu_cache);
2837out_free_3:
2838        unregister_reboot_notifier(&kvm_reboot_notifier);
2839        unregister_cpu_notifier(&kvm_cpu_notifier);
2840out_free_2:
2841out_free_1:
2842        kvm_arch_hardware_unsetup();
2843out_free_0a:
2844        free_cpumask_var(cpus_hardware_enabled);
2845out_free_0:
2846        if (fault_page)
2847                __free_page(fault_page);
2848        if (hwpoison_page)
2849                __free_page(hwpoison_page);
2850        __free_page(bad_page);
2851out:
2852        kvm_arch_exit();
2853out_fail:
2854        return r;
2855}
2856EXPORT_SYMBOL_GPL(kvm_init);
2857
2858void kvm_exit(void)
2859{
2860        kvm_exit_debug();
2861        misc_deregister(&kvm_dev);
2862        kmem_cache_destroy(kvm_vcpu_cache);
2863        kvm_async_pf_deinit();
2864        unregister_syscore_ops(&kvm_syscore_ops);
2865        unregister_reboot_notifier(&kvm_reboot_notifier);
2866        unregister_cpu_notifier(&kvm_cpu_notifier);
2867        on_each_cpu(hardware_disable_nolock, NULL, 1);
2868        kvm_arch_hardware_unsetup();
2869        kvm_arch_exit();
2870        free_cpumask_var(cpus_hardware_enabled);
2871        __free_page(hwpoison_page);
2872        __free_page(bad_page);
2873}
2874EXPORT_SYMBOL_GPL(kvm_exit);
2875