linux/arch/ia64/mm/contig.c
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 1998-2003 Hewlett-Packard Co
   7 *      David Mosberger-Tang <davidm@hpl.hp.com>
   8 *      Stephane Eranian <eranian@hpl.hp.com>
   9 * Copyright (C) 2000, Rohit Seth <rohit.seth@intel.com>
  10 * Copyright (C) 1999 VA Linux Systems
  11 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  12 * Copyright (C) 2003 Silicon Graphics, Inc. All rights reserved.
  13 *
  14 * Routines used by ia64 machines with contiguous (or virtually contiguous)
  15 * memory.
  16 */
  17#include <linux/bootmem.h>
  18#include <linux/efi.h>
  19#include <linux/memblock.h>
  20#include <linux/mm.h>
  21#include <linux/nmi.h>
  22#include <linux/swap.h>
  23
  24#include <asm/meminit.h>
  25#include <asm/pgalloc.h>
  26#include <asm/pgtable.h>
  27#include <asm/sections.h>
  28#include <asm/mca.h>
  29
  30#ifdef CONFIG_VIRTUAL_MEM_MAP
  31static unsigned long max_gap;
  32#endif
  33
  34/**
  35 * show_mem - give short summary of memory stats
  36 *
  37 * Shows a simple page count of reserved and used pages in the system.
  38 * For discontig machines, it does this on a per-pgdat basis.
  39 */
  40void show_mem(unsigned int filter)
  41{
  42        int i, total_reserved = 0;
  43        int total_shared = 0, total_cached = 0;
  44        unsigned long total_present = 0;
  45        pg_data_t *pgdat;
  46
  47        printk(KERN_INFO "Mem-info:\n");
  48        show_free_areas(filter);
  49        printk(KERN_INFO "Node memory in pages:\n");
  50        for_each_online_pgdat(pgdat) {
  51                unsigned long present;
  52                unsigned long flags;
  53                int shared = 0, cached = 0, reserved = 0;
  54                int nid = pgdat->node_id;
  55
  56                if (skip_free_areas_node(filter, nid))
  57                        continue;
  58                pgdat_resize_lock(pgdat, &flags);
  59                present = pgdat->node_present_pages;
  60                for(i = 0; i < pgdat->node_spanned_pages; i++) {
  61                        struct page *page;
  62                        if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
  63                                touch_nmi_watchdog();
  64                        if (pfn_valid(pgdat->node_start_pfn + i))
  65                                page = pfn_to_page(pgdat->node_start_pfn + i);
  66                        else {
  67#ifdef CONFIG_VIRTUAL_MEM_MAP
  68                                if (max_gap < LARGE_GAP)
  69                                        continue;
  70#endif
  71                                i = vmemmap_find_next_valid_pfn(nid, i) - 1;
  72                                continue;
  73                        }
  74                        if (PageReserved(page))
  75                                reserved++;
  76                        else if (PageSwapCache(page))
  77                                cached++;
  78                        else if (page_count(page))
  79                                shared += page_count(page)-1;
  80                }
  81                pgdat_resize_unlock(pgdat, &flags);
  82                total_present += present;
  83                total_reserved += reserved;
  84                total_cached += cached;
  85                total_shared += shared;
  86                printk(KERN_INFO "Node %4d:  RAM: %11ld, rsvd: %8d, "
  87                       "shrd: %10d, swpd: %10d\n", nid,
  88                       present, reserved, shared, cached);
  89        }
  90        printk(KERN_INFO "%ld pages of RAM\n", total_present);
  91        printk(KERN_INFO "%d reserved pages\n", total_reserved);
  92        printk(KERN_INFO "%d pages shared\n", total_shared);
  93        printk(KERN_INFO "%d pages swap cached\n", total_cached);
  94        printk(KERN_INFO "Total of %ld pages in page table cache\n",
  95               quicklist_total_size());
  96        printk(KERN_INFO "%d free buffer pages\n", nr_free_buffer_pages());
  97}
  98
  99
 100/* physical address where the bootmem map is located */
 101unsigned long bootmap_start;
 102
 103/**
 104 * find_bootmap_location - callback to find a memory area for the bootmap
 105 * @start: start of region
 106 * @end: end of region
 107 * @arg: unused callback data
 108 *
 109 * Find a place to put the bootmap and return its starting address in
 110 * bootmap_start.  This address must be page-aligned.
 111 */
 112static int __init
 113find_bootmap_location (u64 start, u64 end, void *arg)
 114{
 115        u64 needed = *(unsigned long *)arg;
 116        u64 range_start, range_end, free_start;
 117        int i;
 118
 119#if IGNORE_PFN0
 120        if (start == PAGE_OFFSET) {
 121                start += PAGE_SIZE;
 122                if (start >= end)
 123                        return 0;
 124        }
 125#endif
 126
 127        free_start = PAGE_OFFSET;
 128
 129        for (i = 0; i < num_rsvd_regions; i++) {
 130                range_start = max(start, free_start);
 131                range_end   = min(end, rsvd_region[i].start & PAGE_MASK);
 132
 133                free_start = PAGE_ALIGN(rsvd_region[i].end);
 134
 135                if (range_end <= range_start)
 136                        continue; /* skip over empty range */
 137
 138                if (range_end - range_start >= needed) {
 139                        bootmap_start = __pa(range_start);
 140                        return -1;      /* done */
 141                }
 142
 143                /* nothing more available in this segment */
 144                if (range_end == end)
 145                        return 0;
 146        }
 147        return 0;
 148}
 149
 150#ifdef CONFIG_SMP
 151static void *cpu_data;
 152/**
 153 * per_cpu_init - setup per-cpu variables
 154 *
 155 * Allocate and setup per-cpu data areas.
 156 */
 157void * __cpuinit
 158per_cpu_init (void)
 159{
 160        static bool first_time = true;
 161        void *cpu0_data = __cpu0_per_cpu;
 162        unsigned int cpu;
 163
 164        if (!first_time)
 165                goto skip;
 166        first_time = false;
 167
 168        /*
 169         * get_free_pages() cannot be used before cpu_init() done.
 170         * BSP allocates PERCPU_PAGE_SIZE bytes for all possible CPUs
 171         * to avoid that AP calls get_zeroed_page().
 172         */
 173        for_each_possible_cpu(cpu) {
 174                void *src = cpu == 0 ? cpu0_data : __phys_per_cpu_start;
 175
 176                memcpy(cpu_data, src, __per_cpu_end - __per_cpu_start);
 177                __per_cpu_offset[cpu] = (char *)cpu_data - __per_cpu_start;
 178                per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
 179
 180                /*
 181                 * percpu area for cpu0 is moved from the __init area
 182                 * which is setup by head.S and used till this point.
 183                 * Update ar.k3.  This move is ensures that percpu
 184                 * area for cpu0 is on the correct node and its
 185                 * virtual address isn't insanely far from other
 186                 * percpu areas which is important for congruent
 187                 * percpu allocator.
 188                 */
 189                if (cpu == 0)
 190                        ia64_set_kr(IA64_KR_PER_CPU_DATA, __pa(cpu_data) -
 191                                    (unsigned long)__per_cpu_start);
 192
 193                cpu_data += PERCPU_PAGE_SIZE;
 194        }
 195skip:
 196        return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
 197}
 198
 199static inline void
 200alloc_per_cpu_data(void)
 201{
 202        cpu_data = __alloc_bootmem(PERCPU_PAGE_SIZE * num_possible_cpus(),
 203                                   PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
 204}
 205
 206/**
 207 * setup_per_cpu_areas - setup percpu areas
 208 *
 209 * Arch code has already allocated and initialized percpu areas.  All
 210 * this function has to do is to teach the determined layout to the
 211 * dynamic percpu allocator, which happens to be more complex than
 212 * creating whole new ones using helpers.
 213 */
 214void __init
 215setup_per_cpu_areas(void)
 216{
 217        struct pcpu_alloc_info *ai;
 218        struct pcpu_group_info *gi;
 219        unsigned int cpu;
 220        ssize_t static_size, reserved_size, dyn_size;
 221        int rc;
 222
 223        ai = pcpu_alloc_alloc_info(1, num_possible_cpus());
 224        if (!ai)
 225                panic("failed to allocate pcpu_alloc_info");
 226        gi = &ai->groups[0];
 227
 228        /* units are assigned consecutively to possible cpus */
 229        for_each_possible_cpu(cpu)
 230                gi->cpu_map[gi->nr_units++] = cpu;
 231
 232        /* set parameters */
 233        static_size = __per_cpu_end - __per_cpu_start;
 234        reserved_size = PERCPU_MODULE_RESERVE;
 235        dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size;
 236        if (dyn_size < 0)
 237                panic("percpu area overflow static=%zd reserved=%zd\n",
 238                      static_size, reserved_size);
 239
 240        ai->static_size         = static_size;
 241        ai->reserved_size       = reserved_size;
 242        ai->dyn_size            = dyn_size;
 243        ai->unit_size           = PERCPU_PAGE_SIZE;
 244        ai->atom_size           = PAGE_SIZE;
 245        ai->alloc_size          = PERCPU_PAGE_SIZE;
 246
 247        rc = pcpu_setup_first_chunk(ai, __per_cpu_start + __per_cpu_offset[0]);
 248        if (rc)
 249                panic("failed to setup percpu area (err=%d)", rc);
 250
 251        pcpu_free_alloc_info(ai);
 252}
 253#else
 254#define alloc_per_cpu_data() do { } while (0)
 255#endif /* CONFIG_SMP */
 256
 257/**
 258 * find_memory - setup memory map
 259 *
 260 * Walk the EFI memory map and find usable memory for the system, taking
 261 * into account reserved areas.
 262 */
 263void __init
 264find_memory (void)
 265{
 266        unsigned long bootmap_size;
 267
 268        reserve_memory();
 269
 270        /* first find highest page frame number */
 271        min_low_pfn = ~0UL;
 272        max_low_pfn = 0;
 273        efi_memmap_walk(find_max_min_low_pfn, NULL);
 274        max_pfn = max_low_pfn;
 275        /* how many bytes to cover all the pages */
 276        bootmap_size = bootmem_bootmap_pages(max_pfn) << PAGE_SHIFT;
 277
 278        /* look for a location to hold the bootmap */
 279        bootmap_start = ~0UL;
 280        efi_memmap_walk(find_bootmap_location, &bootmap_size);
 281        if (bootmap_start == ~0UL)
 282                panic("Cannot find %ld bytes for bootmap\n", bootmap_size);
 283
 284        bootmap_size = init_bootmem_node(NODE_DATA(0),
 285                        (bootmap_start >> PAGE_SHIFT), 0, max_pfn);
 286
 287        /* Free all available memory, then mark bootmem-map as being in use. */
 288        efi_memmap_walk(filter_rsvd_memory, free_bootmem);
 289        reserve_bootmem(bootmap_start, bootmap_size, BOOTMEM_DEFAULT);
 290
 291        find_initrd();
 292
 293        alloc_per_cpu_data();
 294}
 295
 296static int count_pages(u64 start, u64 end, void *arg)
 297{
 298        unsigned long *count = arg;
 299
 300        *count += (end - start) >> PAGE_SHIFT;
 301        return 0;
 302}
 303
 304/*
 305 * Set up the page tables.
 306 */
 307
 308void __init
 309paging_init (void)
 310{
 311        unsigned long max_dma;
 312        unsigned long max_zone_pfns[MAX_NR_ZONES];
 313
 314        num_physpages = 0;
 315        efi_memmap_walk(count_pages, &num_physpages);
 316
 317        memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
 318#ifdef CONFIG_ZONE_DMA
 319        max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
 320        max_zone_pfns[ZONE_DMA] = max_dma;
 321#endif
 322        max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
 323
 324#ifdef CONFIG_VIRTUAL_MEM_MAP
 325        efi_memmap_walk(filter_memory, register_active_ranges);
 326        efi_memmap_walk(find_largest_hole, (u64 *)&max_gap);
 327        if (max_gap < LARGE_GAP) {
 328                vmem_map = (struct page *) 0;
 329                free_area_init_nodes(max_zone_pfns);
 330        } else {
 331                unsigned long map_size;
 332
 333                /* allocate virtual_mem_map */
 334
 335                map_size = PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
 336                        sizeof(struct page));
 337                VMALLOC_END -= map_size;
 338                vmem_map = (struct page *) VMALLOC_END;
 339                efi_memmap_walk(create_mem_map_page_table, NULL);
 340
 341                /*
 342                 * alloc_node_mem_map makes an adjustment for mem_map
 343                 * which isn't compatible with vmem_map.
 344                 */
 345                NODE_DATA(0)->node_mem_map = vmem_map +
 346                        find_min_pfn_with_active_regions();
 347                free_area_init_nodes(max_zone_pfns);
 348
 349                printk("Virtual mem_map starts at 0x%p\n", mem_map);
 350        }
 351#else /* !CONFIG_VIRTUAL_MEM_MAP */
 352        memblock_add_node(0, PFN_PHYS(max_low_pfn), 0);
 353        free_area_init_nodes(max_zone_pfns);
 354#endif /* !CONFIG_VIRTUAL_MEM_MAP */
 355        zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
 356}
 357