linux/arch/openrisc/kernel/process.c
<<
>>
Prefs
   1/*
   2 * OpenRISC process.c
   3 *
   4 * Linux architectural port borrowing liberally from similar works of
   5 * others.  All original copyrights apply as per the original source
   6 * declaration.
   7 *
   8 * Modifications for the OpenRISC architecture:
   9 * Copyright (C) 2003 Matjaz Breskvar <phoenix@bsemi.com>
  10 * Copyright (C) 2010-2011 Jonas Bonn <jonas@southpole.se>
  11 *
  12 *      This program is free software; you can redistribute it and/or
  13 *      modify it under the terms of the GNU General Public License
  14 *      as published by the Free Software Foundation; either version
  15 *      2 of the License, or (at your option) any later version.
  16 *
  17 * This file handles the architecture-dependent parts of process handling...
  18 */
  19
  20#define __KERNEL_SYSCALLS__
  21#include <stdarg.h>
  22
  23#include <linux/errno.h>
  24#include <linux/sched.h>
  25#include <linux/kernel.h>
  26#include <linux/module.h>
  27#include <linux/mm.h>
  28#include <linux/stddef.h>
  29#include <linux/unistd.h>
  30#include <linux/ptrace.h>
  31#include <linux/slab.h>
  32#include <linux/elfcore.h>
  33#include <linux/interrupt.h>
  34#include <linux/delay.h>
  35#include <linux/init_task.h>
  36#include <linux/mqueue.h>
  37#include <linux/fs.h>
  38
  39#include <asm/uaccess.h>
  40#include <asm/pgtable.h>
  41#include <asm/io.h>
  42#include <asm/processor.h>
  43#include <asm/spr_defs.h>
  44
  45#include <linux/smp.h>
  46
  47/*
  48 * Pointer to Current thread info structure.
  49 *
  50 * Used at user space -> kernel transitions.
  51 */
  52struct thread_info *current_thread_info_set[NR_CPUS] = { &init_thread_info, };
  53
  54void machine_restart(void)
  55{
  56        printk(KERN_INFO "*** MACHINE RESTART ***\n");
  57        __asm__("l.nop 1");
  58}
  59
  60/*
  61 * Similar to machine_power_off, but don't shut off power.  Add code
  62 * here to freeze the system for e.g. post-mortem debug purpose when
  63 * possible.  This halt has nothing to do with the idle halt.
  64 */
  65void machine_halt(void)
  66{
  67        printk(KERN_INFO "*** MACHINE HALT ***\n");
  68        __asm__("l.nop 1");
  69}
  70
  71/* If or when software power-off is implemented, add code here.  */
  72void machine_power_off(void)
  73{
  74        printk(KERN_INFO "*** MACHINE POWER OFF ***\n");
  75        __asm__("l.nop 1");
  76}
  77
  78void (*pm_power_off) (void) = machine_power_off;
  79
  80/*
  81 * When a process does an "exec", machine state like FPU and debug
  82 * registers need to be reset.  This is a hook function for that.
  83 * Currently we don't have any such state to reset, so this is empty.
  84 */
  85void flush_thread(void)
  86{
  87}
  88
  89void show_regs(struct pt_regs *regs)
  90{
  91        extern void show_registers(struct pt_regs *regs);
  92
  93        /* __PHX__ cleanup this mess */
  94        show_registers(regs);
  95}
  96
  97unsigned long thread_saved_pc(struct task_struct *t)
  98{
  99        return (unsigned long)user_regs(t->stack)->pc;
 100}
 101
 102void release_thread(struct task_struct *dead_task)
 103{
 104}
 105
 106/*
 107 * Copy the thread-specific (arch specific) info from the current
 108 * process to the new one p
 109 */
 110extern asmlinkage void ret_from_fork(void);
 111
 112int
 113copy_thread(unsigned long clone_flags, unsigned long usp,
 114            unsigned long unused, struct task_struct *p, struct pt_regs *regs)
 115{
 116        struct pt_regs *childregs;
 117        struct pt_regs *kregs;
 118        unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
 119        struct thread_info *ti;
 120        unsigned long top_of_kernel_stack;
 121
 122        top_of_kernel_stack = sp;
 123
 124        p->set_child_tid = p->clear_child_tid = NULL;
 125
 126        /* Copy registers */
 127        /* redzone */
 128        sp -= STACK_FRAME_OVERHEAD;
 129        sp -= sizeof(struct pt_regs);
 130        childregs = (struct pt_regs *)sp;
 131
 132        /* Copy parent registers */
 133        *childregs = *regs;
 134
 135        if ((childregs->sr & SPR_SR_SM) == 1) {
 136                /* for kernel thread, set `current_thread_info'
 137                 * and stackptr in new task
 138                 */
 139                childregs->sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
 140                childregs->gpr[10] = (unsigned long)task_thread_info(p);
 141        } else {
 142                childregs->sp = usp;
 143        }
 144
 145        childregs->gpr[11] = 0; /* Result from fork() */
 146
 147        /*
 148         * The way this works is that at some point in the future
 149         * some task will call _switch to switch to the new task.
 150         * That will pop off the stack frame created below and start
 151         * the new task running at ret_from_fork.  The new task will
 152         * do some house keeping and then return from the fork or clone
 153         * system call, using the stack frame created above.
 154         */
 155        /* redzone */
 156        sp -= STACK_FRAME_OVERHEAD;
 157        sp -= sizeof(struct pt_regs);
 158        kregs = (struct pt_regs *)sp;
 159
 160        ti = task_thread_info(p);
 161        ti->ksp = sp;
 162
 163        /* kregs->sp must store the location of the 'pre-switch' kernel stack
 164         * pointer... for a newly forked process, this is simply the top of
 165         * the kernel stack.
 166         */
 167        kregs->sp = top_of_kernel_stack;
 168        kregs->gpr[3] = (unsigned long)current; /* arg to schedule_tail */
 169        kregs->gpr[10] = (unsigned long)task_thread_info(p);
 170        kregs->gpr[9] = (unsigned long)ret_from_fork;
 171
 172        return 0;
 173}
 174
 175/*
 176 * Set up a thread for executing a new program
 177 */
 178void start_thread(struct pt_regs *regs, unsigned long pc, unsigned long sp)
 179{
 180        unsigned long sr = regs->sr & ~SPR_SR_SM;
 181
 182        set_fs(USER_DS);
 183        memset(regs->gpr, 0, sizeof(regs->gpr));
 184
 185        regs->pc = pc;
 186        regs->sr = sr;
 187        regs->sp = sp;
 188
 189/*      printk("start thread, ksp = %lx\n", current_thread_info()->ksp);*/
 190}
 191
 192/* Fill in the fpu structure for a core dump.  */
 193int dump_fpu(struct pt_regs *regs, elf_fpregset_t * fpu)
 194{
 195        /* TODO */
 196        return 0;
 197}
 198
 199extern struct thread_info *_switch(struct thread_info *old_ti,
 200                                   struct thread_info *new_ti);
 201
 202struct task_struct *__switch_to(struct task_struct *old,
 203                                struct task_struct *new)
 204{
 205        struct task_struct *last;
 206        struct thread_info *new_ti, *old_ti;
 207        unsigned long flags;
 208
 209        local_irq_save(flags);
 210
 211        /* current_set is an array of saved current pointers
 212         * (one for each cpu). we need them at user->kernel transition,
 213         * while we save them at kernel->user transition
 214         */
 215        new_ti = new->stack;
 216        old_ti = old->stack;
 217
 218        current_thread_info_set[smp_processor_id()] = new_ti;
 219        last = (_switch(old_ti, new_ti))->task;
 220
 221        local_irq_restore(flags);
 222
 223        return last;
 224}
 225
 226/*
 227 * Write out registers in core dump format, as defined by the
 228 * struct user_regs_struct
 229 */
 230void dump_elf_thread(elf_greg_t *dest, struct pt_regs* regs)
 231{
 232        dest[0] = 0; /* r0 */
 233        memcpy(dest+1, regs->gpr+1, 31*sizeof(unsigned long));
 234        dest[32] = regs->pc;
 235        dest[33] = regs->sr;
 236        dest[34] = 0;
 237        dest[35] = 0;
 238}
 239
 240extern void _kernel_thread_helper(void);
 241
 242void __noreturn kernel_thread_helper(int (*fn) (void *), void *arg)
 243{
 244        do_exit(fn(arg));
 245}
 246
 247/*
 248 * Create a kernel thread.
 249 */
 250int kernel_thread(int (*fn) (void *), void *arg, unsigned long flags)
 251{
 252        struct pt_regs regs;
 253
 254        memset(&regs, 0, sizeof(regs));
 255
 256        regs.gpr[20] = (unsigned long)fn;
 257        regs.gpr[22] = (unsigned long)arg;
 258        regs.sr = mfspr(SPR_SR);
 259        regs.pc = (unsigned long)_kernel_thread_helper;
 260
 261        return do_fork(flags | CLONE_VM | CLONE_UNTRACED,
 262                       0, &regs, 0, NULL, NULL);
 263}
 264
 265/*
 266 * sys_execve() executes a new program.
 267 */
 268asmlinkage long _sys_execve(const char __user *name,
 269                            const char __user * const __user *argv,
 270                            const char __user * const __user *envp,
 271                            struct pt_regs *regs)
 272{
 273        int error;
 274        char *filename;
 275
 276        filename = getname(name);
 277        error = PTR_ERR(filename);
 278
 279        if (IS_ERR(filename))
 280                goto out;
 281
 282        error = do_execve(filename, argv, envp, regs);
 283        putname(filename);
 284
 285out:
 286        return error;
 287}
 288
 289unsigned long get_wchan(struct task_struct *p)
 290{
 291        /* TODO */
 292
 293        return 0;
 294}
 295
 296int kernel_execve(const char *filename, char *const argv[], char *const envp[])
 297{
 298        register long __res asm("r11") = __NR_execve;
 299        register long __a asm("r3") = (long)(filename);
 300        register long __b asm("r4") = (long)(argv);
 301        register long __c asm("r5") = (long)(envp);
 302        __asm__ volatile ("l.sys 1"
 303                          : "=r" (__res), "=r"(__a), "=r"(__b), "=r"(__c)
 304                          : "0"(__res), "1"(__a), "2"(__b), "3"(__c)
 305                          : "r6", "r7", "r8", "r12", "r13", "r15",
 306                            "r17", "r19", "r21", "r23", "r25", "r27",
 307                            "r29", "r31");
 308        __asm__ volatile ("l.nop");
 309        return __res;
 310}
 311