linux/arch/parisc/mm/init.c
<<
>>
Prefs
   1/*
   2 *  linux/arch/parisc/mm/init.c
   3 *
   4 *  Copyright (C) 1995  Linus Torvalds
   5 *  Copyright 1999 SuSE GmbH
   6 *    changed by Philipp Rumpf
   7 *  Copyright 1999 Philipp Rumpf (prumpf@tux.org)
   8 *  Copyright 2004 Randolph Chung (tausq@debian.org)
   9 *  Copyright 2006-2007 Helge Deller (deller@gmx.de)
  10 *
  11 */
  12
  13
  14#include <linux/module.h>
  15#include <linux/mm.h>
  16#include <linux/bootmem.h>
  17#include <linux/gfp.h>
  18#include <linux/delay.h>
  19#include <linux/init.h>
  20#include <linux/pci.h>          /* for hppa_dma_ops and pcxl_dma_ops */
  21#include <linux/initrd.h>
  22#include <linux/swap.h>
  23#include <linux/unistd.h>
  24#include <linux/nodemask.h>     /* for node_online_map */
  25#include <linux/pagemap.h>      /* for release_pages and page_cache_release */
  26
  27#include <asm/pgalloc.h>
  28#include <asm/pgtable.h>
  29#include <asm/tlb.h>
  30#include <asm/pdc_chassis.h>
  31#include <asm/mmzone.h>
  32#include <asm/sections.h>
  33
  34extern int  data_start;
  35
  36#ifdef CONFIG_DISCONTIGMEM
  37struct node_map_data node_data[MAX_NUMNODES] __read_mostly;
  38unsigned char pfnnid_map[PFNNID_MAP_MAX] __read_mostly;
  39#endif
  40
  41static struct resource data_resource = {
  42        .name   = "Kernel data",
  43        .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
  44};
  45
  46static struct resource code_resource = {
  47        .name   = "Kernel code",
  48        .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
  49};
  50
  51static struct resource pdcdata_resource = {
  52        .name   = "PDC data (Page Zero)",
  53        .start  = 0,
  54        .end    = 0x9ff,
  55        .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
  56};
  57
  58static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly;
  59
  60/* The following array is initialized from the firmware specific
  61 * information retrieved in kernel/inventory.c.
  62 */
  63
  64physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly;
  65int npmem_ranges __read_mostly;
  66
  67#ifdef CONFIG_64BIT
  68#define MAX_MEM         (~0UL)
  69#else /* !CONFIG_64BIT */
  70#define MAX_MEM         (3584U*1024U*1024U)
  71#endif /* !CONFIG_64BIT */
  72
  73static unsigned long mem_limit __read_mostly = MAX_MEM;
  74
  75static void __init mem_limit_func(void)
  76{
  77        char *cp, *end;
  78        unsigned long limit;
  79
  80        /* We need this before __setup() functions are called */
  81
  82        limit = MAX_MEM;
  83        for (cp = boot_command_line; *cp; ) {
  84                if (memcmp(cp, "mem=", 4) == 0) {
  85                        cp += 4;
  86                        limit = memparse(cp, &end);
  87                        if (end != cp)
  88                                break;
  89                        cp = end;
  90                } else {
  91                        while (*cp != ' ' && *cp)
  92                                ++cp;
  93                        while (*cp == ' ')
  94                                ++cp;
  95                }
  96        }
  97
  98        if (limit < mem_limit)
  99                mem_limit = limit;
 100}
 101
 102#define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
 103
 104static void __init setup_bootmem(void)
 105{
 106        unsigned long bootmap_size;
 107        unsigned long mem_max;
 108        unsigned long bootmap_pages;
 109        unsigned long bootmap_start_pfn;
 110        unsigned long bootmap_pfn;
 111#ifndef CONFIG_DISCONTIGMEM
 112        physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
 113        int npmem_holes;
 114#endif
 115        int i, sysram_resource_count;
 116
 117        disable_sr_hashing(); /* Turn off space register hashing */
 118
 119        /*
 120         * Sort the ranges. Since the number of ranges is typically
 121         * small, and performance is not an issue here, just do
 122         * a simple insertion sort.
 123         */
 124
 125        for (i = 1; i < npmem_ranges; i++) {
 126                int j;
 127
 128                for (j = i; j > 0; j--) {
 129                        unsigned long tmp;
 130
 131                        if (pmem_ranges[j-1].start_pfn <
 132                            pmem_ranges[j].start_pfn) {
 133
 134                                break;
 135                        }
 136                        tmp = pmem_ranges[j-1].start_pfn;
 137                        pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
 138                        pmem_ranges[j].start_pfn = tmp;
 139                        tmp = pmem_ranges[j-1].pages;
 140                        pmem_ranges[j-1].pages = pmem_ranges[j].pages;
 141                        pmem_ranges[j].pages = tmp;
 142                }
 143        }
 144
 145#ifndef CONFIG_DISCONTIGMEM
 146        /*
 147         * Throw out ranges that are too far apart (controlled by
 148         * MAX_GAP).
 149         */
 150
 151        for (i = 1; i < npmem_ranges; i++) {
 152                if (pmem_ranges[i].start_pfn -
 153                        (pmem_ranges[i-1].start_pfn +
 154                         pmem_ranges[i-1].pages) > MAX_GAP) {
 155                        npmem_ranges = i;
 156                        printk("Large gap in memory detected (%ld pages). "
 157                               "Consider turning on CONFIG_DISCONTIGMEM\n",
 158                               pmem_ranges[i].start_pfn -
 159                               (pmem_ranges[i-1].start_pfn +
 160                                pmem_ranges[i-1].pages));
 161                        break;
 162                }
 163        }
 164#endif
 165
 166        if (npmem_ranges > 1) {
 167
 168                /* Print the memory ranges */
 169
 170                printk(KERN_INFO "Memory Ranges:\n");
 171
 172                for (i = 0; i < npmem_ranges; i++) {
 173                        unsigned long start;
 174                        unsigned long size;
 175
 176                        size = (pmem_ranges[i].pages << PAGE_SHIFT);
 177                        start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
 178                        printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
 179                                i,start, start + (size - 1), size >> 20);
 180                }
 181        }
 182
 183        sysram_resource_count = npmem_ranges;
 184        for (i = 0; i < sysram_resource_count; i++) {
 185                struct resource *res = &sysram_resources[i];
 186                res->name = "System RAM";
 187                res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT;
 188                res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1;
 189                res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 190                request_resource(&iomem_resource, res);
 191        }
 192
 193        /*
 194         * For 32 bit kernels we limit the amount of memory we can
 195         * support, in order to preserve enough kernel address space
 196         * for other purposes. For 64 bit kernels we don't normally
 197         * limit the memory, but this mechanism can be used to
 198         * artificially limit the amount of memory (and it is written
 199         * to work with multiple memory ranges).
 200         */
 201
 202        mem_limit_func();       /* check for "mem=" argument */
 203
 204        mem_max = 0;
 205        num_physpages = 0;
 206        for (i = 0; i < npmem_ranges; i++) {
 207                unsigned long rsize;
 208
 209                rsize = pmem_ranges[i].pages << PAGE_SHIFT;
 210                if ((mem_max + rsize) > mem_limit) {
 211                        printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
 212                        if (mem_max == mem_limit)
 213                                npmem_ranges = i;
 214                        else {
 215                                pmem_ranges[i].pages =   (mem_limit >> PAGE_SHIFT)
 216                                                       - (mem_max >> PAGE_SHIFT);
 217                                npmem_ranges = i + 1;
 218                                mem_max = mem_limit;
 219                        }
 220                num_physpages += pmem_ranges[i].pages;
 221                        break;
 222                }
 223            num_physpages += pmem_ranges[i].pages;
 224                mem_max += rsize;
 225        }
 226
 227        printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
 228
 229#ifndef CONFIG_DISCONTIGMEM
 230        /* Merge the ranges, keeping track of the holes */
 231
 232        {
 233                unsigned long end_pfn;
 234                unsigned long hole_pages;
 235
 236                npmem_holes = 0;
 237                end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
 238                for (i = 1; i < npmem_ranges; i++) {
 239
 240                        hole_pages = pmem_ranges[i].start_pfn - end_pfn;
 241                        if (hole_pages) {
 242                                pmem_holes[npmem_holes].start_pfn = end_pfn;
 243                                pmem_holes[npmem_holes++].pages = hole_pages;
 244                                end_pfn += hole_pages;
 245                        }
 246                        end_pfn += pmem_ranges[i].pages;
 247                }
 248
 249                pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
 250                npmem_ranges = 1;
 251        }
 252#endif
 253
 254        bootmap_pages = 0;
 255        for (i = 0; i < npmem_ranges; i++)
 256                bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages);
 257
 258        bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT;
 259
 260#ifdef CONFIG_DISCONTIGMEM
 261        for (i = 0; i < MAX_PHYSMEM_RANGES; i++) {
 262                memset(NODE_DATA(i), 0, sizeof(pg_data_t));
 263                NODE_DATA(i)->bdata = &bootmem_node_data[i];
 264        }
 265        memset(pfnnid_map, 0xff, sizeof(pfnnid_map));
 266
 267        for (i = 0; i < npmem_ranges; i++) {
 268                node_set_state(i, N_NORMAL_MEMORY);
 269                node_set_online(i);
 270        }
 271#endif
 272
 273        /*
 274         * Initialize and free the full range of memory in each range.
 275         * Note that the only writing these routines do are to the bootmap,
 276         * and we've made sure to locate the bootmap properly so that they
 277         * won't be writing over anything important.
 278         */
 279
 280        bootmap_pfn = bootmap_start_pfn;
 281        max_pfn = 0;
 282        for (i = 0; i < npmem_ranges; i++) {
 283                unsigned long start_pfn;
 284                unsigned long npages;
 285
 286                start_pfn = pmem_ranges[i].start_pfn;
 287                npages = pmem_ranges[i].pages;
 288
 289                bootmap_size = init_bootmem_node(NODE_DATA(i),
 290                                                bootmap_pfn,
 291                                                start_pfn,
 292                                                (start_pfn + npages) );
 293                free_bootmem_node(NODE_DATA(i),
 294                                  (start_pfn << PAGE_SHIFT),
 295                                  (npages << PAGE_SHIFT) );
 296                bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
 297                if ((start_pfn + npages) > max_pfn)
 298                        max_pfn = start_pfn + npages;
 299        }
 300
 301        /* IOMMU is always used to access "high mem" on those boxes
 302         * that can support enough mem that a PCI device couldn't
 303         * directly DMA to any physical addresses.
 304         * ISA DMA support will need to revisit this.
 305         */
 306        max_low_pfn = max_pfn;
 307
 308        /* bootmap sizing messed up? */
 309        BUG_ON((bootmap_pfn - bootmap_start_pfn) != bootmap_pages);
 310
 311        /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
 312
 313#define PDC_CONSOLE_IO_IODC_SIZE 32768
 314
 315        reserve_bootmem_node(NODE_DATA(0), 0UL,
 316                        (unsigned long)(PAGE0->mem_free +
 317                                PDC_CONSOLE_IO_IODC_SIZE), BOOTMEM_DEFAULT);
 318        reserve_bootmem_node(NODE_DATA(0), __pa((unsigned long)_text),
 319                        (unsigned long)(_end - _text), BOOTMEM_DEFAULT);
 320        reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT),
 321                        ((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT),
 322                        BOOTMEM_DEFAULT);
 323
 324#ifndef CONFIG_DISCONTIGMEM
 325
 326        /* reserve the holes */
 327
 328        for (i = 0; i < npmem_holes; i++) {
 329                reserve_bootmem_node(NODE_DATA(0),
 330                                (pmem_holes[i].start_pfn << PAGE_SHIFT),
 331                                (pmem_holes[i].pages << PAGE_SHIFT),
 332                                BOOTMEM_DEFAULT);
 333        }
 334#endif
 335
 336#ifdef CONFIG_BLK_DEV_INITRD
 337        if (initrd_start) {
 338                printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
 339                if (__pa(initrd_start) < mem_max) {
 340                        unsigned long initrd_reserve;
 341
 342                        if (__pa(initrd_end) > mem_max) {
 343                                initrd_reserve = mem_max - __pa(initrd_start);
 344                        } else {
 345                                initrd_reserve = initrd_end - initrd_start;
 346                        }
 347                        initrd_below_start_ok = 1;
 348                        printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
 349
 350                        reserve_bootmem_node(NODE_DATA(0), __pa(initrd_start),
 351                                        initrd_reserve, BOOTMEM_DEFAULT);
 352                }
 353        }
 354#endif
 355
 356        data_resource.start =  virt_to_phys(&data_start);
 357        data_resource.end = virt_to_phys(_end) - 1;
 358        code_resource.start = virt_to_phys(_text);
 359        code_resource.end = virt_to_phys(&data_start)-1;
 360
 361        /* We don't know which region the kernel will be in, so try
 362         * all of them.
 363         */
 364        for (i = 0; i < sysram_resource_count; i++) {
 365                struct resource *res = &sysram_resources[i];
 366                request_resource(res, &code_resource);
 367                request_resource(res, &data_resource);
 368        }
 369        request_resource(&sysram_resources[0], &pdcdata_resource);
 370}
 371
 372static void __init map_pages(unsigned long start_vaddr,
 373                             unsigned long start_paddr, unsigned long size,
 374                             pgprot_t pgprot, int force)
 375{
 376        pgd_t *pg_dir;
 377        pmd_t *pmd;
 378        pte_t *pg_table;
 379        unsigned long end_paddr;
 380        unsigned long start_pmd;
 381        unsigned long start_pte;
 382        unsigned long tmp1;
 383        unsigned long tmp2;
 384        unsigned long address;
 385        unsigned long vaddr;
 386        unsigned long ro_start;
 387        unsigned long ro_end;
 388        unsigned long fv_addr;
 389        unsigned long gw_addr;
 390        extern const unsigned long fault_vector_20;
 391        extern void * const linux_gateway_page;
 392
 393        ro_start = __pa((unsigned long)_text);
 394        ro_end   = __pa((unsigned long)&data_start);
 395        fv_addr  = __pa((unsigned long)&fault_vector_20) & PAGE_MASK;
 396        gw_addr  = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK;
 397
 398        end_paddr = start_paddr + size;
 399
 400        pg_dir = pgd_offset_k(start_vaddr);
 401
 402#if PTRS_PER_PMD == 1
 403        start_pmd = 0;
 404#else
 405        start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
 406#endif
 407        start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
 408
 409        address = start_paddr;
 410        vaddr = start_vaddr;
 411        while (address < end_paddr) {
 412#if PTRS_PER_PMD == 1
 413                pmd = (pmd_t *)__pa(pg_dir);
 414#else
 415                pmd = (pmd_t *)pgd_address(*pg_dir);
 416
 417                /*
 418                 * pmd is physical at this point
 419                 */
 420
 421                if (!pmd) {
 422                        pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE << PMD_ORDER);
 423                        pmd = (pmd_t *) __pa(pmd);
 424                }
 425
 426                pgd_populate(NULL, pg_dir, __va(pmd));
 427#endif
 428                pg_dir++;
 429
 430                /* now change pmd to kernel virtual addresses */
 431
 432                pmd = (pmd_t *)__va(pmd) + start_pmd;
 433                for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) {
 434
 435                        /*
 436                         * pg_table is physical at this point
 437                         */
 438
 439                        pg_table = (pte_t *)pmd_address(*pmd);
 440                        if (!pg_table) {
 441                                pg_table = (pte_t *)
 442                                        alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE);
 443                                pg_table = (pte_t *) __pa(pg_table);
 444                        }
 445
 446                        pmd_populate_kernel(NULL, pmd, __va(pg_table));
 447
 448                        /* now change pg_table to kernel virtual addresses */
 449
 450                        pg_table = (pte_t *) __va(pg_table) + start_pte;
 451                        for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) {
 452                                pte_t pte;
 453
 454                                /*
 455                                 * Map the fault vector writable so we can
 456                                 * write the HPMC checksum.
 457                                 */
 458                                if (force)
 459                                        pte =  __mk_pte(address, pgprot);
 460                                else if (core_kernel_text(vaddr) &&
 461                                         address != fv_addr)
 462                                        pte = __mk_pte(address, PAGE_KERNEL_EXEC);
 463                                else
 464#if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
 465                                if (address >= ro_start && address < ro_end
 466                                                        && address != fv_addr
 467                                                        && address != gw_addr)
 468                                        pte = __mk_pte(address, PAGE_KERNEL_RO);
 469                                else
 470#endif
 471                                        pte = __mk_pte(address, pgprot);
 472
 473                                if (address >= end_paddr) {
 474                                        if (force)
 475                                                break;
 476                                        else
 477                                                pte_val(pte) = 0;
 478                                }
 479
 480                                set_pte(pg_table, pte);
 481
 482                                address += PAGE_SIZE;
 483                                vaddr += PAGE_SIZE;
 484                        }
 485                        start_pte = 0;
 486
 487                        if (address >= end_paddr)
 488                            break;
 489                }
 490                start_pmd = 0;
 491        }
 492}
 493
 494void free_initmem(void)
 495{
 496        unsigned long addr;
 497        unsigned long init_begin = (unsigned long)__init_begin;
 498        unsigned long init_end = (unsigned long)__init_end;
 499
 500        /* The init text pages are marked R-X.  We have to
 501         * flush the icache and mark them RW-
 502         *
 503         * This is tricky, because map_pages is in the init section.
 504         * Do a dummy remap of the data section first (the data
 505         * section is already PAGE_KERNEL) to pull in the TLB entries
 506         * for map_kernel */
 507        map_pages(init_begin, __pa(init_begin), init_end - init_begin,
 508                  PAGE_KERNEL_RWX, 1);
 509        /* now remap at PAGE_KERNEL since the TLB is pre-primed to execute
 510         * map_pages */
 511        map_pages(init_begin, __pa(init_begin), init_end - init_begin,
 512                  PAGE_KERNEL, 1);
 513
 514        /* force the kernel to see the new TLB entries */
 515        __flush_tlb_range(0, init_begin, init_end);
 516        /* Attempt to catch anyone trying to execute code here
 517         * by filling the page with BRK insns.
 518         */
 519        memset((void *)init_begin, 0x00, init_end - init_begin);
 520        /* finally dump all the instructions which were cached, since the
 521         * pages are no-longer executable */
 522        flush_icache_range(init_begin, init_end);
 523        
 524        for (addr = init_begin; addr < init_end; addr += PAGE_SIZE) {
 525                ClearPageReserved(virt_to_page(addr));
 526                init_page_count(virt_to_page(addr));
 527                free_page(addr);
 528                num_physpages++;
 529                totalram_pages++;
 530        }
 531
 532        /* set up a new led state on systems shipped LED State panel */
 533        pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
 534        
 535        printk(KERN_INFO "Freeing unused kernel memory: %luk freed\n",
 536                (init_end - init_begin) >> 10);
 537}
 538
 539
 540#ifdef CONFIG_DEBUG_RODATA
 541void mark_rodata_ro(void)
 542{
 543        /* rodata memory was already mapped with KERNEL_RO access rights by
 544           pagetable_init() and map_pages(). No need to do additional stuff here */
 545        printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n",
 546                (unsigned long)(__end_rodata - __start_rodata) >> 10);
 547}
 548#endif
 549
 550
 551/*
 552 * Just an arbitrary offset to serve as a "hole" between mapping areas
 553 * (between top of physical memory and a potential pcxl dma mapping
 554 * area, and below the vmalloc mapping area).
 555 *
 556 * The current 32K value just means that there will be a 32K "hole"
 557 * between mapping areas. That means that  any out-of-bounds memory
 558 * accesses will hopefully be caught. The vmalloc() routines leaves
 559 * a hole of 4kB between each vmalloced area for the same reason.
 560 */
 561
 562 /* Leave room for gateway page expansion */
 563#if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
 564#error KERNEL_MAP_START is in gateway reserved region
 565#endif
 566#define MAP_START (KERNEL_MAP_START)
 567
 568#define VM_MAP_OFFSET  (32*1024)
 569#define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
 570                                     & ~(VM_MAP_OFFSET-1)))
 571
 572void *parisc_vmalloc_start __read_mostly;
 573EXPORT_SYMBOL(parisc_vmalloc_start);
 574
 575#ifdef CONFIG_PA11
 576unsigned long pcxl_dma_start __read_mostly;
 577#endif
 578
 579void __init mem_init(void)
 580{
 581        int codesize, reservedpages, datasize, initsize;
 582
 583        /* Do sanity checks on page table constants */
 584        BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t));
 585        BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t));
 586        BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t));
 587        BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD
 588                        > BITS_PER_LONG);
 589
 590        high_memory = __va((max_pfn << PAGE_SHIFT));
 591
 592#ifndef CONFIG_DISCONTIGMEM
 593        max_mapnr = page_to_pfn(virt_to_page(high_memory - 1)) + 1;
 594        totalram_pages += free_all_bootmem();
 595#else
 596        {
 597                int i;
 598
 599                for (i = 0; i < npmem_ranges; i++)
 600                        totalram_pages += free_all_bootmem_node(NODE_DATA(i));
 601        }
 602#endif
 603
 604        codesize = (unsigned long)_etext - (unsigned long)_text;
 605        datasize = (unsigned long)_edata - (unsigned long)_etext;
 606        initsize = (unsigned long)__init_end - (unsigned long)__init_begin;
 607
 608        reservedpages = 0;
 609{
 610        unsigned long pfn;
 611#ifdef CONFIG_DISCONTIGMEM
 612        int i;
 613
 614        for (i = 0; i < npmem_ranges; i++) {
 615                for (pfn = node_start_pfn(i); pfn < node_end_pfn(i); pfn++) {
 616                        if (PageReserved(pfn_to_page(pfn)))
 617                                reservedpages++;
 618                }
 619        }
 620#else /* !CONFIG_DISCONTIGMEM */
 621        for (pfn = 0; pfn < max_pfn; pfn++) {
 622                /*
 623                 * Only count reserved RAM pages
 624                 */
 625                if (PageReserved(pfn_to_page(pfn)))
 626                        reservedpages++;
 627        }
 628#endif
 629}
 630
 631#ifdef CONFIG_PA11
 632        if (hppa_dma_ops == &pcxl_dma_ops) {
 633                pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
 634                parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start
 635                                                + PCXL_DMA_MAP_SIZE);
 636        } else {
 637                pcxl_dma_start = 0;
 638                parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
 639        }
 640#else
 641        parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
 642#endif
 643
 644        printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code, %dk reserved, %dk data, %dk init)\n",
 645                nr_free_pages() << (PAGE_SHIFT-10),
 646                num_physpages << (PAGE_SHIFT-10),
 647                codesize >> 10,
 648                reservedpages << (PAGE_SHIFT-10),
 649                datasize >> 10,
 650                initsize >> 10
 651        );
 652
 653#ifdef CONFIG_DEBUG_KERNEL /* double-sanity-check paranoia */
 654        printk("virtual kernel memory layout:\n"
 655               "    vmalloc : 0x%p - 0x%p   (%4ld MB)\n"
 656               "    memory  : 0x%p - 0x%p   (%4ld MB)\n"
 657               "      .init : 0x%p - 0x%p   (%4ld kB)\n"
 658               "      .data : 0x%p - 0x%p   (%4ld kB)\n"
 659               "      .text : 0x%p - 0x%p   (%4ld kB)\n",
 660
 661               (void*)VMALLOC_START, (void*)VMALLOC_END,
 662               (VMALLOC_END - VMALLOC_START) >> 20,
 663
 664               __va(0), high_memory,
 665               ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
 666
 667               __init_begin, __init_end,
 668               ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
 669
 670               _etext, _edata,
 671               ((unsigned long)_edata - (unsigned long)_etext) >> 10,
 672
 673               _text, _etext,
 674               ((unsigned long)_etext - (unsigned long)_text) >> 10);
 675#endif
 676}
 677
 678unsigned long *empty_zero_page __read_mostly;
 679EXPORT_SYMBOL(empty_zero_page);
 680
 681void show_mem(unsigned int filter)
 682{
 683        int i,free = 0,total = 0,reserved = 0;
 684        int shared = 0, cached = 0;
 685
 686        printk(KERN_INFO "Mem-info:\n");
 687        show_free_areas(filter);
 688#ifndef CONFIG_DISCONTIGMEM
 689        i = max_mapnr;
 690        while (i-- > 0) {
 691                total++;
 692                if (PageReserved(mem_map+i))
 693                        reserved++;
 694                else if (PageSwapCache(mem_map+i))
 695                        cached++;
 696                else if (!page_count(&mem_map[i]))
 697                        free++;
 698                else
 699                        shared += page_count(&mem_map[i]) - 1;
 700        }
 701#else
 702        for (i = 0; i < npmem_ranges; i++) {
 703                int j;
 704
 705                for (j = node_start_pfn(i); j < node_end_pfn(i); j++) {
 706                        struct page *p;
 707                        unsigned long flags;
 708
 709                        pgdat_resize_lock(NODE_DATA(i), &flags);
 710                        p = nid_page_nr(i, j) - node_start_pfn(i);
 711
 712                        total++;
 713                        if (PageReserved(p))
 714                                reserved++;
 715                        else if (PageSwapCache(p))
 716                                cached++;
 717                        else if (!page_count(p))
 718                                free++;
 719                        else
 720                                shared += page_count(p) - 1;
 721                        pgdat_resize_unlock(NODE_DATA(i), &flags);
 722                }
 723        }
 724#endif
 725        printk(KERN_INFO "%d pages of RAM\n", total);
 726        printk(KERN_INFO "%d reserved pages\n", reserved);
 727        printk(KERN_INFO "%d pages shared\n", shared);
 728        printk(KERN_INFO "%d pages swap cached\n", cached);
 729
 730
 731#ifdef CONFIG_DISCONTIGMEM
 732        {
 733                struct zonelist *zl;
 734                int i, j;
 735
 736                for (i = 0; i < npmem_ranges; i++) {
 737                        zl = node_zonelist(i, 0);
 738                        for (j = 0; j < MAX_NR_ZONES; j++) {
 739                                struct zoneref *z;
 740                                struct zone *zone;
 741
 742                                printk("Zone list for zone %d on node %d: ", j, i);
 743                                for_each_zone_zonelist(zone, z, zl, j)
 744                                        printk("[%d/%s] ", zone_to_nid(zone),
 745                                                                zone->name);
 746                                printk("\n");
 747                        }
 748                }
 749        }
 750#endif
 751}
 752
 753/*
 754 * pagetable_init() sets up the page tables
 755 *
 756 * Note that gateway_init() places the Linux gateway page at page 0.
 757 * Since gateway pages cannot be dereferenced this has the desirable
 758 * side effect of trapping those pesky NULL-reference errors in the
 759 * kernel.
 760 */
 761static void __init pagetable_init(void)
 762{
 763        int range;
 764
 765        /* Map each physical memory range to its kernel vaddr */
 766
 767        for (range = 0; range < npmem_ranges; range++) {
 768                unsigned long start_paddr;
 769                unsigned long end_paddr;
 770                unsigned long size;
 771
 772                start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
 773                end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT);
 774                size = pmem_ranges[range].pages << PAGE_SHIFT;
 775
 776                map_pages((unsigned long)__va(start_paddr), start_paddr,
 777                          size, PAGE_KERNEL, 0);
 778        }
 779
 780#ifdef CONFIG_BLK_DEV_INITRD
 781        if (initrd_end && initrd_end > mem_limit) {
 782                printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
 783                map_pages(initrd_start, __pa(initrd_start),
 784                          initrd_end - initrd_start, PAGE_KERNEL, 0);
 785        }
 786#endif
 787
 788        empty_zero_page = alloc_bootmem_pages(PAGE_SIZE);
 789        memset(empty_zero_page, 0, PAGE_SIZE);
 790}
 791
 792static void __init gateway_init(void)
 793{
 794        unsigned long linux_gateway_page_addr;
 795        /* FIXME: This is 'const' in order to trick the compiler
 796           into not treating it as DP-relative data. */
 797        extern void * const linux_gateway_page;
 798
 799        linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
 800
 801        /*
 802         * Setup Linux Gateway page.
 803         *
 804         * The Linux gateway page will reside in kernel space (on virtual
 805         * page 0), so it doesn't need to be aliased into user space.
 806         */
 807
 808        map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
 809                  PAGE_SIZE, PAGE_GATEWAY, 1);
 810}
 811
 812#ifdef CONFIG_HPUX
 813void
 814map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm)
 815{
 816        pgd_t *pg_dir;
 817        pmd_t *pmd;
 818        pte_t *pg_table;
 819        unsigned long start_pmd;
 820        unsigned long start_pte;
 821        unsigned long address;
 822        unsigned long hpux_gw_page_addr;
 823        /* FIXME: This is 'const' in order to trick the compiler
 824           into not treating it as DP-relative data. */
 825        extern void * const hpux_gateway_page;
 826
 827        hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK;
 828
 829        /*
 830         * Setup HP-UX Gateway page.
 831         *
 832         * The HP-UX gateway page resides in the user address space,
 833         * so it needs to be aliased into each process.
 834         */
 835
 836        pg_dir = pgd_offset(mm,hpux_gw_page_addr);
 837
 838#if PTRS_PER_PMD == 1
 839        start_pmd = 0;
 840#else
 841        start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
 842#endif
 843        start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
 844
 845        address = __pa(&hpux_gateway_page);
 846#if PTRS_PER_PMD == 1
 847        pmd = (pmd_t *)__pa(pg_dir);
 848#else
 849        pmd = (pmd_t *) pgd_address(*pg_dir);
 850
 851        /*
 852         * pmd is physical at this point
 853         */
 854
 855        if (!pmd) {
 856                pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL);
 857                pmd = (pmd_t *) __pa(pmd);
 858        }
 859
 860        __pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd);
 861#endif
 862        /* now change pmd to kernel virtual addresses */
 863
 864        pmd = (pmd_t *)__va(pmd) + start_pmd;
 865
 866        /*
 867         * pg_table is physical at this point
 868         */
 869
 870        pg_table = (pte_t *) pmd_address(*pmd);
 871        if (!pg_table)
 872                pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL));
 873
 874        __pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table);
 875
 876        /* now change pg_table to kernel virtual addresses */
 877
 878        pg_table = (pte_t *) __va(pg_table) + start_pte;
 879        set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY));
 880}
 881EXPORT_SYMBOL(map_hpux_gateway_page);
 882#endif
 883
 884void __init paging_init(void)
 885{
 886        int i;
 887
 888        setup_bootmem();
 889        pagetable_init();
 890        gateway_init();
 891        flush_cache_all_local(); /* start with known state */
 892        flush_tlb_all_local(NULL);
 893
 894        for (i = 0; i < npmem_ranges; i++) {
 895                unsigned long zones_size[MAX_NR_ZONES] = { 0, };
 896
 897                zones_size[ZONE_NORMAL] = pmem_ranges[i].pages;
 898
 899#ifdef CONFIG_DISCONTIGMEM
 900                /* Need to initialize the pfnnid_map before we can initialize
 901                   the zone */
 902                {
 903                    int j;
 904                    for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT);
 905                         j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT);
 906                         j++) {
 907                        pfnnid_map[j] = i;
 908                    }
 909                }
 910#endif
 911
 912                free_area_init_node(i, zones_size,
 913                                pmem_ranges[i].start_pfn, NULL);
 914        }
 915}
 916
 917#ifdef CONFIG_PA20
 918
 919/*
 920 * Currently, all PA20 chips have 18 bit protection IDs, which is the
 921 * limiting factor (space ids are 32 bits).
 922 */
 923
 924#define NR_SPACE_IDS 262144
 925
 926#else
 927
 928/*
 929 * Currently we have a one-to-one relationship between space IDs and
 930 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
 931 * support 15 bit protection IDs, so that is the limiting factor.
 932 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
 933 * probably not worth the effort for a special case here.
 934 */
 935
 936#define NR_SPACE_IDS 32768
 937
 938#endif  /* !CONFIG_PA20 */
 939
 940#define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
 941#define SID_ARRAY_SIZE  (NR_SPACE_IDS / (8 * sizeof(long)))
 942
 943static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
 944static unsigned long dirty_space_id[SID_ARRAY_SIZE];
 945static unsigned long space_id_index;
 946static unsigned long free_space_ids = NR_SPACE_IDS - 1;
 947static unsigned long dirty_space_ids = 0;
 948
 949static DEFINE_SPINLOCK(sid_lock);
 950
 951unsigned long alloc_sid(void)
 952{
 953        unsigned long index;
 954
 955        spin_lock(&sid_lock);
 956
 957        if (free_space_ids == 0) {
 958                if (dirty_space_ids != 0) {
 959                        spin_unlock(&sid_lock);
 960                        flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
 961                        spin_lock(&sid_lock);
 962                }
 963                BUG_ON(free_space_ids == 0);
 964        }
 965
 966        free_space_ids--;
 967
 968        index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
 969        space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
 970        space_id_index = index;
 971
 972        spin_unlock(&sid_lock);
 973
 974        return index << SPACEID_SHIFT;
 975}
 976
 977void free_sid(unsigned long spaceid)
 978{
 979        unsigned long index = spaceid >> SPACEID_SHIFT;
 980        unsigned long *dirty_space_offset;
 981
 982        dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
 983        index &= (BITS_PER_LONG - 1);
 984
 985        spin_lock(&sid_lock);
 986
 987        BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */
 988
 989        *dirty_space_offset |= (1L << index);
 990        dirty_space_ids++;
 991
 992        spin_unlock(&sid_lock);
 993}
 994
 995
 996#ifdef CONFIG_SMP
 997static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
 998{
 999        int i;
1000
1001        /* NOTE: sid_lock must be held upon entry */
1002
1003        *ndirtyptr = dirty_space_ids;
1004        if (dirty_space_ids != 0) {
1005            for (i = 0; i < SID_ARRAY_SIZE; i++) {
1006                dirty_array[i] = dirty_space_id[i];
1007                dirty_space_id[i] = 0;
1008            }
1009            dirty_space_ids = 0;
1010        }
1011
1012        return;
1013}
1014
1015static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
1016{
1017        int i;
1018
1019        /* NOTE: sid_lock must be held upon entry */
1020
1021        if (ndirty != 0) {
1022                for (i = 0; i < SID_ARRAY_SIZE; i++) {
1023                        space_id[i] ^= dirty_array[i];
1024                }
1025
1026                free_space_ids += ndirty;
1027                space_id_index = 0;
1028        }
1029}
1030
1031#else /* CONFIG_SMP */
1032
1033static void recycle_sids(void)
1034{
1035        int i;
1036
1037        /* NOTE: sid_lock must be held upon entry */
1038
1039        if (dirty_space_ids != 0) {
1040                for (i = 0; i < SID_ARRAY_SIZE; i++) {
1041                        space_id[i] ^= dirty_space_id[i];
1042                        dirty_space_id[i] = 0;
1043                }
1044
1045                free_space_ids += dirty_space_ids;
1046                dirty_space_ids = 0;
1047                space_id_index = 0;
1048        }
1049}
1050#endif
1051
1052/*
1053 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
1054 * purged, we can safely reuse the space ids that were released but
1055 * not flushed from the tlb.
1056 */
1057
1058#ifdef CONFIG_SMP
1059
1060static unsigned long recycle_ndirty;
1061static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
1062static unsigned int recycle_inuse;
1063
1064void flush_tlb_all(void)
1065{
1066        int do_recycle;
1067
1068        do_recycle = 0;
1069        spin_lock(&sid_lock);
1070        if (dirty_space_ids > RECYCLE_THRESHOLD) {
1071            BUG_ON(recycle_inuse);  /* FIXME: Use a semaphore/wait queue here */
1072            get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
1073            recycle_inuse++;
1074            do_recycle++;
1075        }
1076        spin_unlock(&sid_lock);
1077        on_each_cpu(flush_tlb_all_local, NULL, 1);
1078        if (do_recycle) {
1079            spin_lock(&sid_lock);
1080            recycle_sids(recycle_ndirty,recycle_dirty_array);
1081            recycle_inuse = 0;
1082            spin_unlock(&sid_lock);
1083        }
1084}
1085#else
1086void flush_tlb_all(void)
1087{
1088        spin_lock(&sid_lock);
1089        flush_tlb_all_local(NULL);
1090        recycle_sids();
1091        spin_unlock(&sid_lock);
1092}
1093#endif
1094
1095#ifdef CONFIG_BLK_DEV_INITRD
1096void free_initrd_mem(unsigned long start, unsigned long end)
1097{
1098        if (start >= end)
1099                return;
1100        printk(KERN_INFO "Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1101        for (; start < end; start += PAGE_SIZE) {
1102                ClearPageReserved(virt_to_page(start));
1103                init_page_count(virt_to_page(start));
1104                free_page(start);
1105                num_physpages++;
1106                totalram_pages++;
1107        }
1108}
1109#endif
1110