linux/arch/tile/kernel/setup.c
<<
>>
Prefs
   1/*
   2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
   3 *
   4 *   This program is free software; you can redistribute it and/or
   5 *   modify it under the terms of the GNU General Public License
   6 *   as published by the Free Software Foundation, version 2.
   7 *
   8 *   This program is distributed in the hope that it will be useful, but
   9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
  10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  11 *   NON INFRINGEMENT.  See the GNU General Public License for
  12 *   more details.
  13 */
  14
  15#include <linux/sched.h>
  16#include <linux/kernel.h>
  17#include <linux/mmzone.h>
  18#include <linux/bootmem.h>
  19#include <linux/module.h>
  20#include <linux/node.h>
  21#include <linux/cpu.h>
  22#include <linux/ioport.h>
  23#include <linux/irq.h>
  24#include <linux/kexec.h>
  25#include <linux/pci.h>
  26#include <linux/initrd.h>
  27#include <linux/io.h>
  28#include <linux/highmem.h>
  29#include <linux/smp.h>
  30#include <linux/timex.h>
  31#include <asm/setup.h>
  32#include <asm/sections.h>
  33#include <asm/cacheflush.h>
  34#include <asm/pgalloc.h>
  35#include <asm/mmu_context.h>
  36#include <hv/hypervisor.h>
  37#include <arch/interrupts.h>
  38
  39/* <linux/smp.h> doesn't provide this definition. */
  40#ifndef CONFIG_SMP
  41#define setup_max_cpus 1
  42#endif
  43
  44static inline int ABS(int x) { return x >= 0 ? x : -x; }
  45
  46/* Chip information */
  47char chip_model[64] __write_once;
  48
  49struct pglist_data node_data[MAX_NUMNODES] __read_mostly;
  50EXPORT_SYMBOL(node_data);
  51
  52/* We only create bootmem data on node 0. */
  53static bootmem_data_t __initdata node0_bdata;
  54
  55/* Information on the NUMA nodes that we compute early */
  56unsigned long __cpuinitdata node_start_pfn[MAX_NUMNODES];
  57unsigned long __cpuinitdata node_end_pfn[MAX_NUMNODES];
  58unsigned long __initdata node_memmap_pfn[MAX_NUMNODES];
  59unsigned long __initdata node_percpu_pfn[MAX_NUMNODES];
  60unsigned long __initdata node_free_pfn[MAX_NUMNODES];
  61
  62static unsigned long __initdata node_percpu[MAX_NUMNODES];
  63
  64#ifdef CONFIG_HIGHMEM
  65/* Page frame index of end of lowmem on each controller. */
  66unsigned long __cpuinitdata node_lowmem_end_pfn[MAX_NUMNODES];
  67
  68/* Number of pages that can be mapped into lowmem. */
  69static unsigned long __initdata mappable_physpages;
  70#endif
  71
  72/* Data on which physical memory controller corresponds to which NUMA node */
  73int node_controller[MAX_NUMNODES] = { [0 ... MAX_NUMNODES-1] = -1 };
  74
  75#ifdef CONFIG_HIGHMEM
  76/* Map information from VAs to PAs */
  77unsigned long pbase_map[1 << (32 - HPAGE_SHIFT)]
  78  __write_once __attribute__((aligned(L2_CACHE_BYTES)));
  79EXPORT_SYMBOL(pbase_map);
  80
  81/* Map information from PAs to VAs */
  82void *vbase_map[NR_PA_HIGHBIT_VALUES]
  83  __write_once __attribute__((aligned(L2_CACHE_BYTES)));
  84EXPORT_SYMBOL(vbase_map);
  85#endif
  86
  87/* Node number as a function of the high PA bits */
  88int highbits_to_node[NR_PA_HIGHBIT_VALUES] __write_once;
  89EXPORT_SYMBOL(highbits_to_node);
  90
  91static unsigned int __initdata maxmem_pfn = -1U;
  92static unsigned int __initdata maxnodemem_pfn[MAX_NUMNODES] = {
  93        [0 ... MAX_NUMNODES-1] = -1U
  94};
  95static nodemask_t __initdata isolnodes;
  96
  97#ifdef CONFIG_PCI
  98enum { DEFAULT_PCI_RESERVE_MB = 64 };
  99static unsigned int __initdata pci_reserve_mb = DEFAULT_PCI_RESERVE_MB;
 100unsigned long __initdata pci_reserve_start_pfn = -1U;
 101unsigned long __initdata pci_reserve_end_pfn = -1U;
 102#endif
 103
 104static int __init setup_maxmem(char *str)
 105{
 106        unsigned long long maxmem;
 107        if (str == NULL || (maxmem = memparse(str, NULL)) == 0)
 108                return -EINVAL;
 109
 110        maxmem_pfn = (maxmem >> HPAGE_SHIFT) << (HPAGE_SHIFT - PAGE_SHIFT);
 111        pr_info("Forcing RAM used to no more than %dMB\n",
 112               maxmem_pfn >> (20 - PAGE_SHIFT));
 113        return 0;
 114}
 115early_param("maxmem", setup_maxmem);
 116
 117static int __init setup_maxnodemem(char *str)
 118{
 119        char *endp;
 120        unsigned long long maxnodemem;
 121        long node;
 122
 123        node = str ? simple_strtoul(str, &endp, 0) : INT_MAX;
 124        if (node >= MAX_NUMNODES || *endp != ':')
 125                return -EINVAL;
 126
 127        maxnodemem = memparse(endp+1, NULL);
 128        maxnodemem_pfn[node] = (maxnodemem >> HPAGE_SHIFT) <<
 129                (HPAGE_SHIFT - PAGE_SHIFT);
 130        pr_info("Forcing RAM used on node %ld to no more than %dMB\n",
 131               node, maxnodemem_pfn[node] >> (20 - PAGE_SHIFT));
 132        return 0;
 133}
 134early_param("maxnodemem", setup_maxnodemem);
 135
 136static int __init setup_isolnodes(char *str)
 137{
 138        char buf[MAX_NUMNODES * 5];
 139        if (str == NULL || nodelist_parse(str, isolnodes) != 0)
 140                return -EINVAL;
 141
 142        nodelist_scnprintf(buf, sizeof(buf), isolnodes);
 143        pr_info("Set isolnodes value to '%s'\n", buf);
 144        return 0;
 145}
 146early_param("isolnodes", setup_isolnodes);
 147
 148#ifdef CONFIG_PCI
 149static int __init setup_pci_reserve(char* str)
 150{
 151        unsigned long mb;
 152
 153        if (str == NULL || strict_strtoul(str, 0, &mb) != 0 ||
 154            mb > 3 * 1024)
 155                return -EINVAL;
 156
 157        pci_reserve_mb = mb;
 158        pr_info("Reserving %dMB for PCIE root complex mappings\n",
 159               pci_reserve_mb);
 160        return 0;
 161}
 162early_param("pci_reserve", setup_pci_reserve);
 163#endif
 164
 165#ifndef __tilegx__
 166/*
 167 * vmalloc=size forces the vmalloc area to be exactly 'size' bytes.
 168 * This can be used to increase (or decrease) the vmalloc area.
 169 */
 170static int __init parse_vmalloc(char *arg)
 171{
 172        if (!arg)
 173                return -EINVAL;
 174
 175        VMALLOC_RESERVE = (memparse(arg, &arg) + PGDIR_SIZE - 1) & PGDIR_MASK;
 176
 177        /* See validate_va() for more on this test. */
 178        if ((long)_VMALLOC_START >= 0)
 179                early_panic("\"vmalloc=%#lx\" value too large: maximum %#lx\n",
 180                            VMALLOC_RESERVE, _VMALLOC_END - 0x80000000UL);
 181
 182        return 0;
 183}
 184early_param("vmalloc", parse_vmalloc);
 185#endif
 186
 187#ifdef CONFIG_HIGHMEM
 188/*
 189 * Determine for each controller where its lowmem is mapped and how much of
 190 * it is mapped there.  On controller zero, the first few megabytes are
 191 * already mapped in as code at MEM_SV_INTRPT, so in principle we could
 192 * start our data mappings higher up, but for now we don't bother, to avoid
 193 * additional confusion.
 194 *
 195 * One question is whether, on systems with more than 768 Mb and
 196 * controllers of different sizes, to map in a proportionate amount of
 197 * each one, or to try to map the same amount from each controller.
 198 * (E.g. if we have three controllers with 256MB, 1GB, and 256MB
 199 * respectively, do we map 256MB from each, or do we map 128 MB, 512
 200 * MB, and 128 MB respectively?)  For now we use a proportionate
 201 * solution like the latter.
 202 *
 203 * The VA/PA mapping demands that we align our decisions at 16 MB
 204 * boundaries so that we can rapidly convert VA to PA.
 205 */
 206static void *__init setup_pa_va_mapping(void)
 207{
 208        unsigned long curr_pages = 0;
 209        unsigned long vaddr = PAGE_OFFSET;
 210        nodemask_t highonlynodes = isolnodes;
 211        int i, j;
 212
 213        memset(pbase_map, -1, sizeof(pbase_map));
 214        memset(vbase_map, -1, sizeof(vbase_map));
 215
 216        /* Node zero cannot be isolated for LOWMEM purposes. */
 217        node_clear(0, highonlynodes);
 218
 219        /* Count up the number of pages on non-highonlynodes controllers. */
 220        mappable_physpages = 0;
 221        for_each_online_node(i) {
 222                if (!node_isset(i, highonlynodes))
 223                        mappable_physpages +=
 224                                node_end_pfn[i] - node_start_pfn[i];
 225        }
 226
 227        for_each_online_node(i) {
 228                unsigned long start = node_start_pfn[i];
 229                unsigned long end = node_end_pfn[i];
 230                unsigned long size = end - start;
 231                unsigned long vaddr_end;
 232
 233                if (node_isset(i, highonlynodes)) {
 234                        /* Mark this controller as having no lowmem. */
 235                        node_lowmem_end_pfn[i] = start;
 236                        continue;
 237                }
 238
 239                curr_pages += size;
 240                if (mappable_physpages > MAXMEM_PFN) {
 241                        vaddr_end = PAGE_OFFSET +
 242                                (((u64)curr_pages * MAXMEM_PFN /
 243                                  mappable_physpages)
 244                                 << PAGE_SHIFT);
 245                } else {
 246                        vaddr_end = PAGE_OFFSET + (curr_pages << PAGE_SHIFT);
 247                }
 248                for (j = 0; vaddr < vaddr_end; vaddr += HPAGE_SIZE, ++j) {
 249                        unsigned long this_pfn =
 250                                start + (j << HUGETLB_PAGE_ORDER);
 251                        pbase_map[vaddr >> HPAGE_SHIFT] = this_pfn;
 252                        if (vbase_map[__pfn_to_highbits(this_pfn)] ==
 253                            (void *)-1)
 254                                vbase_map[__pfn_to_highbits(this_pfn)] =
 255                                        (void *)(vaddr & HPAGE_MASK);
 256                }
 257                node_lowmem_end_pfn[i] = start + (j << HUGETLB_PAGE_ORDER);
 258                BUG_ON(node_lowmem_end_pfn[i] > end);
 259        }
 260
 261        /* Return highest address of any mapped memory. */
 262        return (void *)vaddr;
 263}
 264#endif /* CONFIG_HIGHMEM */
 265
 266/*
 267 * Register our most important memory mappings with the debug stub.
 268 *
 269 * This is up to 4 mappings for lowmem, one mapping per memory
 270 * controller, plus one for our text segment.
 271 */
 272static void __cpuinit store_permanent_mappings(void)
 273{
 274        int i;
 275
 276        for_each_online_node(i) {
 277                HV_PhysAddr pa = ((HV_PhysAddr)node_start_pfn[i]) << PAGE_SHIFT;
 278#ifdef CONFIG_HIGHMEM
 279                HV_PhysAddr high_mapped_pa = node_lowmem_end_pfn[i];
 280#else
 281                HV_PhysAddr high_mapped_pa = node_end_pfn[i];
 282#endif
 283
 284                unsigned long pages = high_mapped_pa - node_start_pfn[i];
 285                HV_VirtAddr addr = (HV_VirtAddr) __va(pa);
 286                hv_store_mapping(addr, pages << PAGE_SHIFT, pa);
 287        }
 288
 289        hv_store_mapping((HV_VirtAddr)_stext,
 290                         (uint32_t)(_einittext - _stext), 0);
 291}
 292
 293/*
 294 * Use hv_inquire_physical() to populate node_{start,end}_pfn[]
 295 * and node_online_map, doing suitable sanity-checking.
 296 * Also set min_low_pfn, max_low_pfn, and max_pfn.
 297 */
 298static void __init setup_memory(void)
 299{
 300        int i, j;
 301        int highbits_seen[NR_PA_HIGHBIT_VALUES] = { 0 };
 302#ifdef CONFIG_HIGHMEM
 303        long highmem_pages;
 304#endif
 305#ifndef __tilegx__
 306        int cap;
 307#endif
 308#if defined(CONFIG_HIGHMEM) || defined(__tilegx__)
 309        long lowmem_pages;
 310#endif
 311
 312        /* We are using a char to hold the cpu_2_node[] mapping */
 313        BUILD_BUG_ON(MAX_NUMNODES > 127);
 314
 315        /* Discover the ranges of memory available to us */
 316        for (i = 0; ; ++i) {
 317                unsigned long start, size, end, highbits;
 318                HV_PhysAddrRange range = hv_inquire_physical(i);
 319                if (range.size == 0)
 320                        break;
 321#ifdef CONFIG_FLATMEM
 322                if (i > 0) {
 323                        pr_err("Can't use discontiguous PAs: %#llx..%#llx\n",
 324                               range.size, range.start + range.size);
 325                        continue;
 326                }
 327#endif
 328#ifndef __tilegx__
 329                if ((unsigned long)range.start) {
 330                        pr_err("Range not at 4GB multiple: %#llx..%#llx\n",
 331                               range.start, range.start + range.size);
 332                        continue;
 333                }
 334#endif
 335                if ((range.start & (HPAGE_SIZE-1)) != 0 ||
 336                    (range.size & (HPAGE_SIZE-1)) != 0) {
 337                        unsigned long long start_pa = range.start;
 338                        unsigned long long orig_size = range.size;
 339                        range.start = (start_pa + HPAGE_SIZE - 1) & HPAGE_MASK;
 340                        range.size -= (range.start - start_pa);
 341                        range.size &= HPAGE_MASK;
 342                        pr_err("Range not hugepage-aligned: %#llx..%#llx:"
 343                               " now %#llx-%#llx\n",
 344                               start_pa, start_pa + orig_size,
 345                               range.start, range.start + range.size);
 346                }
 347                highbits = __pa_to_highbits(range.start);
 348                if (highbits >= NR_PA_HIGHBIT_VALUES) {
 349                        pr_err("PA high bits too high: %#llx..%#llx\n",
 350                               range.start, range.start + range.size);
 351                        continue;
 352                }
 353                if (highbits_seen[highbits]) {
 354                        pr_err("Range overlaps in high bits: %#llx..%#llx\n",
 355                               range.start, range.start + range.size);
 356                        continue;
 357                }
 358                highbits_seen[highbits] = 1;
 359                if (PFN_DOWN(range.size) > maxnodemem_pfn[i]) {
 360                        int max_size = maxnodemem_pfn[i];
 361                        if (max_size > 0) {
 362                                pr_err("Maxnodemem reduced node %d to"
 363                                       " %d pages\n", i, max_size);
 364                                range.size = PFN_PHYS(max_size);
 365                        } else {
 366                                pr_err("Maxnodemem disabled node %d\n", i);
 367                                continue;
 368                        }
 369                }
 370                if (num_physpages + PFN_DOWN(range.size) > maxmem_pfn) {
 371                        int max_size = maxmem_pfn - num_physpages;
 372                        if (max_size > 0) {
 373                                pr_err("Maxmem reduced node %d to %d pages\n",
 374                                       i, max_size);
 375                                range.size = PFN_PHYS(max_size);
 376                        } else {
 377                                pr_err("Maxmem disabled node %d\n", i);
 378                                continue;
 379                        }
 380                }
 381                if (i >= MAX_NUMNODES) {
 382                        pr_err("Too many PA nodes (#%d): %#llx...%#llx\n",
 383                               i, range.size, range.size + range.start);
 384                        continue;
 385                }
 386
 387                start = range.start >> PAGE_SHIFT;
 388                size = range.size >> PAGE_SHIFT;
 389                end = start + size;
 390
 391#ifndef __tilegx__
 392                if (((HV_PhysAddr)end << PAGE_SHIFT) !=
 393                    (range.start + range.size)) {
 394                        pr_err("PAs too high to represent: %#llx..%#llx\n",
 395                               range.start, range.start + range.size);
 396                        continue;
 397                }
 398#endif
 399#ifdef CONFIG_PCI
 400                /*
 401                 * Blocks that overlap the pci reserved region must
 402                 * have enough space to hold the maximum percpu data
 403                 * region at the top of the range.  If there isn't
 404                 * enough space above the reserved region, just
 405                 * truncate the node.
 406                 */
 407                if (start <= pci_reserve_start_pfn &&
 408                    end > pci_reserve_start_pfn) {
 409                        unsigned int per_cpu_size =
 410                                __per_cpu_end - __per_cpu_start;
 411                        unsigned int percpu_pages =
 412                                NR_CPUS * (PFN_UP(per_cpu_size) >> PAGE_SHIFT);
 413                        if (end < pci_reserve_end_pfn + percpu_pages) {
 414                                end = pci_reserve_start_pfn;
 415                                pr_err("PCI mapping region reduced node %d to"
 416                                       " %ld pages\n", i, end - start);
 417                        }
 418                }
 419#endif
 420
 421                for (j = __pfn_to_highbits(start);
 422                     j <= __pfn_to_highbits(end - 1); j++)
 423                        highbits_to_node[j] = i;
 424
 425                node_start_pfn[i] = start;
 426                node_end_pfn[i] = end;
 427                node_controller[i] = range.controller;
 428                num_physpages += size;
 429                max_pfn = end;
 430
 431                /* Mark node as online */
 432                node_set(i, node_online_map);
 433                node_set(i, node_possible_map);
 434        }
 435
 436#ifndef __tilegx__
 437        /*
 438         * For 4KB pages, mem_map "struct page" data is 1% of the size
 439         * of the physical memory, so can be quite big (640 MB for
 440         * four 16G zones).  These structures must be mapped in
 441         * lowmem, and since we currently cap out at about 768 MB,
 442         * it's impractical to try to use this much address space.
 443         * For now, arbitrarily cap the amount of physical memory
 444         * we're willing to use at 8 million pages (32GB of 4KB pages).
 445         */
 446        cap = 8 * 1024 * 1024;  /* 8 million pages */
 447        if (num_physpages > cap) {
 448                int num_nodes = num_online_nodes();
 449                int cap_each = cap / num_nodes;
 450                unsigned long dropped_pages = 0;
 451                for (i = 0; i < num_nodes; ++i) {
 452                        int size = node_end_pfn[i] - node_start_pfn[i];
 453                        if (size > cap_each) {
 454                                dropped_pages += (size - cap_each);
 455                                node_end_pfn[i] = node_start_pfn[i] + cap_each;
 456                        }
 457                }
 458                num_physpages -= dropped_pages;
 459                pr_warning("Only using %ldMB memory;"
 460                       " ignoring %ldMB.\n",
 461                       num_physpages >> (20 - PAGE_SHIFT),
 462                       dropped_pages >> (20 - PAGE_SHIFT));
 463                pr_warning("Consider using a larger page size.\n");
 464        }
 465#endif
 466
 467        /* Heap starts just above the last loaded address. */
 468        min_low_pfn = PFN_UP((unsigned long)_end - PAGE_OFFSET);
 469
 470#ifdef CONFIG_HIGHMEM
 471        /* Find where we map lowmem from each controller. */
 472        high_memory = setup_pa_va_mapping();
 473
 474        /* Set max_low_pfn based on what node 0 can directly address. */
 475        max_low_pfn = node_lowmem_end_pfn[0];
 476
 477        lowmem_pages = (mappable_physpages > MAXMEM_PFN) ?
 478                MAXMEM_PFN : mappable_physpages;
 479        highmem_pages = (long) (num_physpages - lowmem_pages);
 480
 481        pr_notice("%ldMB HIGHMEM available.\n",
 482               pages_to_mb(highmem_pages > 0 ? highmem_pages : 0));
 483        pr_notice("%ldMB LOWMEM available.\n",
 484                        pages_to_mb(lowmem_pages));
 485#else
 486        /* Set max_low_pfn based on what node 0 can directly address. */
 487        max_low_pfn = node_end_pfn[0];
 488
 489#ifndef __tilegx__
 490        if (node_end_pfn[0] > MAXMEM_PFN) {
 491                pr_warning("Only using %ldMB LOWMEM.\n",
 492                       MAXMEM>>20);
 493                pr_warning("Use a HIGHMEM enabled kernel.\n");
 494                max_low_pfn = MAXMEM_PFN;
 495                max_pfn = MAXMEM_PFN;
 496                num_physpages = MAXMEM_PFN;
 497                node_end_pfn[0] = MAXMEM_PFN;
 498        } else {
 499                pr_notice("%ldMB memory available.\n",
 500                       pages_to_mb(node_end_pfn[0]));
 501        }
 502        for (i = 1; i < MAX_NUMNODES; ++i) {
 503                node_start_pfn[i] = 0;
 504                node_end_pfn[i] = 0;
 505        }
 506        high_memory = __va(node_end_pfn[0]);
 507#else
 508        lowmem_pages = 0;
 509        for (i = 0; i < MAX_NUMNODES; ++i) {
 510                int pages = node_end_pfn[i] - node_start_pfn[i];
 511                lowmem_pages += pages;
 512                if (pages)
 513                        high_memory = pfn_to_kaddr(node_end_pfn[i]);
 514        }
 515        pr_notice("%ldMB memory available.\n",
 516               pages_to_mb(lowmem_pages));
 517#endif
 518#endif
 519}
 520
 521static void __init setup_bootmem_allocator(void)
 522{
 523        unsigned long bootmap_size, first_alloc_pfn, last_alloc_pfn;
 524
 525        /* Provide a node 0 bdata. */
 526        NODE_DATA(0)->bdata = &node0_bdata;
 527
 528#ifdef CONFIG_PCI
 529        /* Don't let boot memory alias the PCI region. */
 530        last_alloc_pfn = min(max_low_pfn, pci_reserve_start_pfn);
 531#else
 532        last_alloc_pfn = max_low_pfn;
 533#endif
 534
 535        /*
 536         * Initialize the boot-time allocator (with low memory only):
 537         * The first argument says where to put the bitmap, and the
 538         * second says where the end of allocatable memory is.
 539         */
 540        bootmap_size = init_bootmem(min_low_pfn, last_alloc_pfn);
 541
 542        /*
 543         * Let the bootmem allocator use all the space we've given it
 544         * except for its own bitmap.
 545         */
 546        first_alloc_pfn = min_low_pfn + PFN_UP(bootmap_size);
 547        if (first_alloc_pfn >= last_alloc_pfn)
 548                early_panic("Not enough memory on controller 0 for bootmem\n");
 549
 550        free_bootmem(PFN_PHYS(first_alloc_pfn),
 551                     PFN_PHYS(last_alloc_pfn - first_alloc_pfn));
 552
 553#ifdef CONFIG_KEXEC
 554        if (crashk_res.start != crashk_res.end)
 555                reserve_bootmem(crashk_res.start, resource_size(&crashk_res), 0);
 556#endif
 557}
 558
 559void *__init alloc_remap(int nid, unsigned long size)
 560{
 561        int pages = node_end_pfn[nid] - node_start_pfn[nid];
 562        void *map = pfn_to_kaddr(node_memmap_pfn[nid]);
 563        BUG_ON(size != pages * sizeof(struct page));
 564        memset(map, 0, size);
 565        return map;
 566}
 567
 568static int __init percpu_size(void)
 569{
 570        int size = __per_cpu_end - __per_cpu_start;
 571        size += PERCPU_MODULE_RESERVE;
 572        size += PERCPU_DYNAMIC_EARLY_SIZE;
 573        if (size < PCPU_MIN_UNIT_SIZE)
 574                size = PCPU_MIN_UNIT_SIZE;
 575        size = roundup(size, PAGE_SIZE);
 576
 577        /* In several places we assume the per-cpu data fits on a huge page. */
 578        BUG_ON(kdata_huge && size > HPAGE_SIZE);
 579        return size;
 580}
 581
 582static inline unsigned long alloc_bootmem_pfn(int size, unsigned long goal)
 583{
 584        void *kva = __alloc_bootmem(size, PAGE_SIZE, goal);
 585        unsigned long pfn = kaddr_to_pfn(kva);
 586        BUG_ON(goal && PFN_PHYS(pfn) != goal);
 587        return pfn;
 588}
 589
 590static void __init zone_sizes_init(void)
 591{
 592        unsigned long zones_size[MAX_NR_ZONES] = { 0 };
 593        int size = percpu_size();
 594        int num_cpus = smp_height * smp_width;
 595        int i;
 596
 597        for (i = 0; i < num_cpus; ++i)
 598                node_percpu[cpu_to_node(i)] += size;
 599
 600        for_each_online_node(i) {
 601                unsigned long start = node_start_pfn[i];
 602                unsigned long end = node_end_pfn[i];
 603#ifdef CONFIG_HIGHMEM
 604                unsigned long lowmem_end = node_lowmem_end_pfn[i];
 605#else
 606                unsigned long lowmem_end = end;
 607#endif
 608                int memmap_size = (end - start) * sizeof(struct page);
 609                node_free_pfn[i] = start;
 610
 611                /*
 612                 * Set aside pages for per-cpu data and the mem_map array.
 613                 *
 614                 * Since the per-cpu data requires special homecaching,
 615                 * if we are in kdata_huge mode, we put it at the end of
 616                 * the lowmem region.  If we're not in kdata_huge mode,
 617                 * we take the per-cpu pages from the bottom of the
 618                 * controller, since that avoids fragmenting a huge page
 619                 * that users might want.  We always take the memmap
 620                 * from the bottom of the controller, since with
 621                 * kdata_huge that lets it be under a huge TLB entry.
 622                 *
 623                 * If the user has requested isolnodes for a controller,
 624                 * though, there'll be no lowmem, so we just alloc_bootmem
 625                 * the memmap.  There will be no percpu memory either.
 626                 */
 627                if (__pfn_to_highbits(start) == 0) {
 628                        /* In low PAs, allocate via bootmem. */
 629                        unsigned long goal = 0;
 630                        node_memmap_pfn[i] =
 631                                alloc_bootmem_pfn(memmap_size, goal);
 632                        if (kdata_huge)
 633                                goal = PFN_PHYS(lowmem_end) - node_percpu[i];
 634                        if (node_percpu[i])
 635                                node_percpu_pfn[i] =
 636                                    alloc_bootmem_pfn(node_percpu[i], goal);
 637                } else if (cpu_isset(i, isolnodes)) {
 638                        node_memmap_pfn[i] = alloc_bootmem_pfn(memmap_size, 0);
 639                        BUG_ON(node_percpu[i] != 0);
 640                } else {
 641                        /* In high PAs, just reserve some pages. */
 642                        node_memmap_pfn[i] = node_free_pfn[i];
 643                        node_free_pfn[i] += PFN_UP(memmap_size);
 644                        if (!kdata_huge) {
 645                                node_percpu_pfn[i] = node_free_pfn[i];
 646                                node_free_pfn[i] += PFN_UP(node_percpu[i]);
 647                        } else {
 648                                node_percpu_pfn[i] =
 649                                        lowmem_end - PFN_UP(node_percpu[i]);
 650                        }
 651                }
 652
 653#ifdef CONFIG_HIGHMEM
 654                if (start > lowmem_end) {
 655                        zones_size[ZONE_NORMAL] = 0;
 656                        zones_size[ZONE_HIGHMEM] = end - start;
 657                } else {
 658                        zones_size[ZONE_NORMAL] = lowmem_end - start;
 659                        zones_size[ZONE_HIGHMEM] = end - lowmem_end;
 660                }
 661#else
 662                zones_size[ZONE_NORMAL] = end - start;
 663#endif
 664
 665                /*
 666                 * Everyone shares node 0's bootmem allocator, but
 667                 * we use alloc_remap(), above, to put the actual
 668                 * struct page array on the individual controllers,
 669                 * which is most of the data that we actually care about.
 670                 * We can't place bootmem allocators on the other
 671                 * controllers since the bootmem allocator can only
 672                 * operate on 32-bit physical addresses.
 673                 */
 674                NODE_DATA(i)->bdata = NODE_DATA(0)->bdata;
 675
 676                free_area_init_node(i, zones_size, start, NULL);
 677                printk(KERN_DEBUG "  Normal zone: %ld per-cpu pages\n",
 678                       PFN_UP(node_percpu[i]));
 679
 680                /* Track the type of memory on each node */
 681                if (zones_size[ZONE_NORMAL])
 682                        node_set_state(i, N_NORMAL_MEMORY);
 683#ifdef CONFIG_HIGHMEM
 684                if (end != start)
 685                        node_set_state(i, N_HIGH_MEMORY);
 686#endif
 687
 688                node_set_online(i);
 689        }
 690}
 691
 692#ifdef CONFIG_NUMA
 693
 694/* which logical CPUs are on which nodes */
 695struct cpumask node_2_cpu_mask[MAX_NUMNODES] __write_once;
 696EXPORT_SYMBOL(node_2_cpu_mask);
 697
 698/* which node each logical CPU is on */
 699char cpu_2_node[NR_CPUS] __write_once __attribute__((aligned(L2_CACHE_BYTES)));
 700EXPORT_SYMBOL(cpu_2_node);
 701
 702/* Return cpu_to_node() except for cpus not yet assigned, which return -1 */
 703static int __init cpu_to_bound_node(int cpu, struct cpumask* unbound_cpus)
 704{
 705        if (!cpu_possible(cpu) || cpumask_test_cpu(cpu, unbound_cpus))
 706                return -1;
 707        else
 708                return cpu_to_node(cpu);
 709}
 710
 711/* Return number of immediately-adjacent tiles sharing the same NUMA node. */
 712static int __init node_neighbors(int node, int cpu,
 713                                 struct cpumask *unbound_cpus)
 714{
 715        int neighbors = 0;
 716        int w = smp_width;
 717        int h = smp_height;
 718        int x = cpu % w;
 719        int y = cpu / w;
 720        if (x > 0 && cpu_to_bound_node(cpu-1, unbound_cpus) == node)
 721                ++neighbors;
 722        if (x < w-1 && cpu_to_bound_node(cpu+1, unbound_cpus) == node)
 723                ++neighbors;
 724        if (y > 0 && cpu_to_bound_node(cpu-w, unbound_cpus) == node)
 725                ++neighbors;
 726        if (y < h-1 && cpu_to_bound_node(cpu+w, unbound_cpus) == node)
 727                ++neighbors;
 728        return neighbors;
 729}
 730
 731static void __init setup_numa_mapping(void)
 732{
 733        int distance[MAX_NUMNODES][NR_CPUS];
 734        HV_Coord coord;
 735        int cpu, node, cpus, i, x, y;
 736        int num_nodes = num_online_nodes();
 737        struct cpumask unbound_cpus;
 738        nodemask_t default_nodes;
 739
 740        cpumask_clear(&unbound_cpus);
 741
 742        /* Get set of nodes we will use for defaults */
 743        nodes_andnot(default_nodes, node_online_map, isolnodes);
 744        if (nodes_empty(default_nodes)) {
 745                BUG_ON(!node_isset(0, node_online_map));
 746                pr_err("Forcing NUMA node zero available as a default node\n");
 747                node_set(0, default_nodes);
 748        }
 749
 750        /* Populate the distance[] array */
 751        memset(distance, -1, sizeof(distance));
 752        cpu = 0;
 753        for (coord.y = 0; coord.y < smp_height; ++coord.y) {
 754                for (coord.x = 0; coord.x < smp_width;
 755                     ++coord.x, ++cpu) {
 756                        BUG_ON(cpu >= nr_cpu_ids);
 757                        if (!cpu_possible(cpu)) {
 758                                cpu_2_node[cpu] = -1;
 759                                continue;
 760                        }
 761                        for_each_node_mask(node, default_nodes) {
 762                                HV_MemoryControllerInfo info =
 763                                        hv_inquire_memory_controller(
 764                                                coord, node_controller[node]);
 765                                distance[node][cpu] =
 766                                        ABS(info.coord.x) + ABS(info.coord.y);
 767                        }
 768                        cpumask_set_cpu(cpu, &unbound_cpus);
 769                }
 770        }
 771        cpus = cpu;
 772
 773        /*
 774         * Round-robin through the NUMA nodes until all the cpus are
 775         * assigned.  We could be more clever here (e.g. create four
 776         * sorted linked lists on the same set of cpu nodes, and pull
 777         * off them in round-robin sequence, removing from all four
 778         * lists each time) but given the relatively small numbers
 779         * involved, O(n^2) seem OK for a one-time cost.
 780         */
 781        node = first_node(default_nodes);
 782        while (!cpumask_empty(&unbound_cpus)) {
 783                int best_cpu = -1;
 784                int best_distance = INT_MAX;
 785                for (cpu = 0; cpu < cpus; ++cpu) {
 786                        if (cpumask_test_cpu(cpu, &unbound_cpus)) {
 787                                /*
 788                                 * Compute metric, which is how much
 789                                 * closer the cpu is to this memory
 790                                 * controller than the others, shifted
 791                                 * up, and then the number of
 792                                 * neighbors already in the node as an
 793                                 * epsilon adjustment to try to keep
 794                                 * the nodes compact.
 795                                 */
 796                                int d = distance[node][cpu] * num_nodes;
 797                                for_each_node_mask(i, default_nodes) {
 798                                        if (i != node)
 799                                                d -= distance[i][cpu];
 800                                }
 801                                d *= 8;  /* allow space for epsilon */
 802                                d -= node_neighbors(node, cpu, &unbound_cpus);
 803                                if (d < best_distance) {
 804                                        best_cpu = cpu;
 805                                        best_distance = d;
 806                                }
 807                        }
 808                }
 809                BUG_ON(best_cpu < 0);
 810                cpumask_set_cpu(best_cpu, &node_2_cpu_mask[node]);
 811                cpu_2_node[best_cpu] = node;
 812                cpumask_clear_cpu(best_cpu, &unbound_cpus);
 813                node = next_node(node, default_nodes);
 814                if (node == MAX_NUMNODES)
 815                        node = first_node(default_nodes);
 816        }
 817
 818        /* Print out node assignments and set defaults for disabled cpus */
 819        cpu = 0;
 820        for (y = 0; y < smp_height; ++y) {
 821                printk(KERN_DEBUG "NUMA cpu-to-node row %d:", y);
 822                for (x = 0; x < smp_width; ++x, ++cpu) {
 823                        if (cpu_to_node(cpu) < 0) {
 824                                pr_cont(" -");
 825                                cpu_2_node[cpu] = first_node(default_nodes);
 826                        } else {
 827                                pr_cont(" %d", cpu_to_node(cpu));
 828                        }
 829                }
 830                pr_cont("\n");
 831        }
 832}
 833
 834static struct cpu cpu_devices[NR_CPUS];
 835
 836static int __init topology_init(void)
 837{
 838        int i;
 839
 840        for_each_online_node(i)
 841                register_one_node(i);
 842
 843        for (i = 0; i < smp_height * smp_width; ++i)
 844                register_cpu(&cpu_devices[i], i);
 845
 846        return 0;
 847}
 848
 849subsys_initcall(topology_init);
 850
 851#else /* !CONFIG_NUMA */
 852
 853#define setup_numa_mapping() do { } while (0)
 854
 855#endif /* CONFIG_NUMA */
 856
 857/**
 858 * setup_cpu() - Do all necessary per-cpu, tile-specific initialization.
 859 * @boot: Is this the boot cpu?
 860 *
 861 * Called from setup_arch() on the boot cpu, or online_secondary().
 862 */
 863void __cpuinit setup_cpu(int boot)
 864{
 865        /* The boot cpu sets up its permanent mappings much earlier. */
 866        if (!boot)
 867                store_permanent_mappings();
 868
 869        /* Allow asynchronous TLB interrupts. */
 870#if CHIP_HAS_TILE_DMA()
 871        arch_local_irq_unmask(INT_DMATLB_MISS);
 872        arch_local_irq_unmask(INT_DMATLB_ACCESS);
 873#endif
 874#if CHIP_HAS_SN_PROC()
 875        arch_local_irq_unmask(INT_SNITLB_MISS);
 876#endif
 877#ifdef __tilegx__
 878        arch_local_irq_unmask(INT_SINGLE_STEP_K);
 879#endif
 880
 881        /*
 882         * Allow user access to many generic SPRs, like the cycle
 883         * counter, PASS/FAIL/DONE, INTERRUPT_CRITICAL_SECTION, etc.
 884         */
 885        __insn_mtspr(SPR_MPL_WORLD_ACCESS_SET_0, 1);
 886
 887#if CHIP_HAS_SN()
 888        /* Static network is not restricted. */
 889        __insn_mtspr(SPR_MPL_SN_ACCESS_SET_0, 1);
 890#endif
 891#if CHIP_HAS_SN_PROC()
 892        __insn_mtspr(SPR_MPL_SN_NOTIFY_SET_0, 1);
 893        __insn_mtspr(SPR_MPL_SN_CPL_SET_0, 1);
 894#endif
 895
 896        /*
 897         * Set the MPL for interrupt control 0 & 1 to the corresponding
 898         * values.  This includes access to the SYSTEM_SAVE and EX_CONTEXT
 899         * SPRs, as well as the interrupt mask.
 900         */
 901        __insn_mtspr(SPR_MPL_INTCTRL_0_SET_0, 1);
 902        __insn_mtspr(SPR_MPL_INTCTRL_1_SET_1, 1);
 903
 904        /* Initialize IRQ support for this cpu. */
 905        setup_irq_regs();
 906
 907#ifdef CONFIG_HARDWALL
 908        /* Reset the network state on this cpu. */
 909        reset_network_state();
 910#endif
 911}
 912
 913#ifdef CONFIG_BLK_DEV_INITRD
 914
 915/*
 916 * Note that the kernel can potentially support other compression
 917 * techniques than gz, though we don't do so by default.  If we ever
 918 * decide to do so we can either look for other filename extensions,
 919 * or just allow a file with this name to be compressed with an
 920 * arbitrary compressor (somewhat counterintuitively).
 921 */
 922static int __initdata set_initramfs_file;
 923static char __initdata initramfs_file[128] = "initramfs.cpio.gz";
 924
 925static int __init setup_initramfs_file(char *str)
 926{
 927        if (str == NULL)
 928                return -EINVAL;
 929        strncpy(initramfs_file, str, sizeof(initramfs_file) - 1);
 930        set_initramfs_file = 1;
 931
 932        return 0;
 933}
 934early_param("initramfs_file", setup_initramfs_file);
 935
 936/*
 937 * We look for an "initramfs.cpio.gz" file in the hvfs.
 938 * If there is one, we allocate some memory for it and it will be
 939 * unpacked to the initramfs.
 940 */
 941static void __init load_hv_initrd(void)
 942{
 943        HV_FS_StatInfo stat;
 944        int fd, rc;
 945        void *initrd;
 946
 947        fd = hv_fs_findfile((HV_VirtAddr) initramfs_file);
 948        if (fd == HV_ENOENT) {
 949                if (set_initramfs_file)
 950                        pr_warning("No such hvfs initramfs file '%s'\n",
 951                                   initramfs_file);
 952                return;
 953        }
 954        BUG_ON(fd < 0);
 955        stat = hv_fs_fstat(fd);
 956        BUG_ON(stat.size < 0);
 957        if (stat.flags & HV_FS_ISDIR) {
 958                pr_warning("Ignoring hvfs file '%s': it's a directory.\n",
 959                           initramfs_file);
 960                return;
 961        }
 962        initrd = alloc_bootmem_pages(stat.size);
 963        rc = hv_fs_pread(fd, (HV_VirtAddr) initrd, stat.size, 0);
 964        if (rc != stat.size) {
 965                pr_err("Error reading %d bytes from hvfs file '%s': %d\n",
 966                       stat.size, initramfs_file, rc);
 967                free_initrd_mem((unsigned long) initrd, stat.size);
 968                return;
 969        }
 970        initrd_start = (unsigned long) initrd;
 971        initrd_end = initrd_start + stat.size;
 972}
 973
 974void __init free_initrd_mem(unsigned long begin, unsigned long end)
 975{
 976        free_bootmem(__pa(begin), end - begin);
 977}
 978
 979#else
 980static inline void load_hv_initrd(void) {}
 981#endif /* CONFIG_BLK_DEV_INITRD */
 982
 983static void __init validate_hv(void)
 984{
 985        /*
 986         * It may already be too late, but let's check our built-in
 987         * configuration against what the hypervisor is providing.
 988         */
 989        unsigned long glue_size = hv_sysconf(HV_SYSCONF_GLUE_SIZE);
 990        int hv_page_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_SMALL);
 991        int hv_hpage_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_LARGE);
 992        HV_ASIDRange asid_range;
 993
 994#ifndef CONFIG_SMP
 995        HV_Topology topology = hv_inquire_topology();
 996        BUG_ON(topology.coord.x != 0 || topology.coord.y != 0);
 997        if (topology.width != 1 || topology.height != 1) {
 998                pr_warning("Warning: booting UP kernel on %dx%d grid;"
 999                           " will ignore all but first tile.\n",
1000                           topology.width, topology.height);
1001        }
1002#endif
1003
1004        if (PAGE_OFFSET + HV_GLUE_START_CPA + glue_size > (unsigned long)_text)
1005                early_panic("Hypervisor glue size %ld is too big!\n",
1006                            glue_size);
1007        if (hv_page_size != PAGE_SIZE)
1008                early_panic("Hypervisor page size %#x != our %#lx\n",
1009                            hv_page_size, PAGE_SIZE);
1010        if (hv_hpage_size != HPAGE_SIZE)
1011                early_panic("Hypervisor huge page size %#x != our %#lx\n",
1012                            hv_hpage_size, HPAGE_SIZE);
1013
1014#ifdef CONFIG_SMP
1015        /*
1016         * Some hypervisor APIs take a pointer to a bitmap array
1017         * whose size is at least the number of cpus on the chip.
1018         * We use a struct cpumask for this, so it must be big enough.
1019         */
1020        if ((smp_height * smp_width) > nr_cpu_ids)
1021                early_panic("Hypervisor %d x %d grid too big for Linux"
1022                            " NR_CPUS %d\n", smp_height, smp_width,
1023                            nr_cpu_ids);
1024#endif
1025
1026        /*
1027         * Check that we're using allowed ASIDs, and initialize the
1028         * various asid variables to their appropriate initial states.
1029         */
1030        asid_range = hv_inquire_asid(0);
1031        __get_cpu_var(current_asid) = min_asid = asid_range.start;
1032        max_asid = asid_range.start + asid_range.size - 1;
1033
1034        if (hv_confstr(HV_CONFSTR_CHIP_MODEL, (HV_VirtAddr)chip_model,
1035                       sizeof(chip_model)) < 0) {
1036                pr_err("Warning: HV_CONFSTR_CHIP_MODEL not available\n");
1037                strlcpy(chip_model, "unknown", sizeof(chip_model));
1038        }
1039}
1040
1041static void __init validate_va(void)
1042{
1043#ifndef __tilegx__   /* FIXME: GX: probably some validation relevant here */
1044        /*
1045         * Similarly, make sure we're only using allowed VAs.
1046         * We assume we can contiguously use MEM_USER_INTRPT .. MEM_HV_INTRPT,
1047         * and 0 .. KERNEL_HIGH_VADDR.
1048         * In addition, make sure we CAN'T use the end of memory, since
1049         * we use the last chunk of each pgd for the pgd_list.
1050         */
1051        int i, user_kernel_ok = 0;
1052        unsigned long max_va = 0;
1053        unsigned long list_va =
1054                ((PGD_LIST_OFFSET / sizeof(pgd_t)) << PGDIR_SHIFT);
1055
1056        for (i = 0; ; ++i) {
1057                HV_VirtAddrRange range = hv_inquire_virtual(i);
1058                if (range.size == 0)
1059                        break;
1060                if (range.start <= MEM_USER_INTRPT &&
1061                    range.start + range.size >= MEM_HV_INTRPT)
1062                        user_kernel_ok = 1;
1063                if (range.start == 0)
1064                        max_va = range.size;
1065                BUG_ON(range.start + range.size > list_va);
1066        }
1067        if (!user_kernel_ok)
1068                early_panic("Hypervisor not configured for user/kernel VAs\n");
1069        if (max_va == 0)
1070                early_panic("Hypervisor not configured for low VAs\n");
1071        if (max_va < KERNEL_HIGH_VADDR)
1072                early_panic("Hypervisor max VA %#lx smaller than %#lx\n",
1073                            max_va, KERNEL_HIGH_VADDR);
1074
1075        /* Kernel PCs must have their high bit set; see intvec.S. */
1076        if ((long)VMALLOC_START >= 0)
1077                early_panic(
1078                        "Linux VMALLOC region below the 2GB line (%#lx)!\n"
1079                        "Reconfigure the kernel with fewer NR_HUGE_VMAPS\n"
1080                        "or smaller VMALLOC_RESERVE.\n",
1081                        VMALLOC_START);
1082#endif
1083}
1084
1085/*
1086 * cpu_lotar_map lists all the cpus that are valid for the supervisor
1087 * to cache data on at a page level, i.e. what cpus can be placed in
1088 * the LOTAR field of a PTE.  It is equivalent to the set of possible
1089 * cpus plus any other cpus that are willing to share their cache.
1090 * It is set by hv_inquire_tiles(HV_INQ_TILES_LOTAR).
1091 */
1092struct cpumask __write_once cpu_lotar_map;
1093EXPORT_SYMBOL(cpu_lotar_map);
1094
1095#if CHIP_HAS_CBOX_HOME_MAP()
1096/*
1097 * hash_for_home_map lists all the tiles that hash-for-home data
1098 * will be cached on.  Note that this may includes tiles that are not
1099 * valid for this supervisor to use otherwise (e.g. if a hypervisor
1100 * device is being shared between multiple supervisors).
1101 * It is set by hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE).
1102 */
1103struct cpumask hash_for_home_map;
1104EXPORT_SYMBOL(hash_for_home_map);
1105#endif
1106
1107/*
1108 * cpu_cacheable_map lists all the cpus whose caches the hypervisor can
1109 * flush on our behalf.  It is set to cpu_possible_mask OR'ed with
1110 * hash_for_home_map, and it is what should be passed to
1111 * hv_flush_remote() to flush all caches.  Note that if there are
1112 * dedicated hypervisor driver tiles that have authorized use of their
1113 * cache, those tiles will only appear in cpu_lotar_map, NOT in
1114 * cpu_cacheable_map, as they are a special case.
1115 */
1116struct cpumask __write_once cpu_cacheable_map;
1117EXPORT_SYMBOL(cpu_cacheable_map);
1118
1119static __initdata struct cpumask disabled_map;
1120
1121static int __init disabled_cpus(char *str)
1122{
1123        int boot_cpu = smp_processor_id();
1124
1125        if (str == NULL || cpulist_parse_crop(str, &disabled_map) != 0)
1126                return -EINVAL;
1127        if (cpumask_test_cpu(boot_cpu, &disabled_map)) {
1128                pr_err("disabled_cpus: can't disable boot cpu %d\n", boot_cpu);
1129                cpumask_clear_cpu(boot_cpu, &disabled_map);
1130        }
1131        return 0;
1132}
1133
1134early_param("disabled_cpus", disabled_cpus);
1135
1136void __init print_disabled_cpus(void)
1137{
1138        if (!cpumask_empty(&disabled_map)) {
1139                char buf[100];
1140                cpulist_scnprintf(buf, sizeof(buf), &disabled_map);
1141                pr_info("CPUs not available for Linux: %s\n", buf);
1142        }
1143}
1144
1145static void __init setup_cpu_maps(void)
1146{
1147        struct cpumask hv_disabled_map, cpu_possible_init;
1148        int boot_cpu = smp_processor_id();
1149        int cpus, i, rc;
1150
1151        /* Learn which cpus are allowed by the hypervisor. */
1152        rc = hv_inquire_tiles(HV_INQ_TILES_AVAIL,
1153                              (HV_VirtAddr) cpumask_bits(&cpu_possible_init),
1154                              sizeof(cpu_cacheable_map));
1155        if (rc < 0)
1156                early_panic("hv_inquire_tiles(AVAIL) failed: rc %d\n", rc);
1157        if (!cpumask_test_cpu(boot_cpu, &cpu_possible_init))
1158                early_panic("Boot CPU %d disabled by hypervisor!\n", boot_cpu);
1159
1160        /* Compute the cpus disabled by the hvconfig file. */
1161        cpumask_complement(&hv_disabled_map, &cpu_possible_init);
1162
1163        /* Include them with the cpus disabled by "disabled_cpus". */
1164        cpumask_or(&disabled_map, &disabled_map, &hv_disabled_map);
1165
1166        /*
1167         * Disable every cpu after "setup_max_cpus".  But don't mark
1168         * as disabled the cpus that are outside of our initial rectangle,
1169         * since that turns out to be confusing.
1170         */
1171        cpus = 1;                          /* this cpu */
1172        cpumask_set_cpu(boot_cpu, &disabled_map);   /* ignore this cpu */
1173        for (i = 0; cpus < setup_max_cpus; ++i)
1174                if (!cpumask_test_cpu(i, &disabled_map))
1175                        ++cpus;
1176        for (; i < smp_height * smp_width; ++i)
1177                cpumask_set_cpu(i, &disabled_map);
1178        cpumask_clear_cpu(boot_cpu, &disabled_map); /* reset this cpu */
1179        for (i = smp_height * smp_width; i < NR_CPUS; ++i)
1180                cpumask_clear_cpu(i, &disabled_map);
1181
1182        /*
1183         * Setup cpu_possible map as every cpu allocated to us, minus
1184         * the results of any "disabled_cpus" settings.
1185         */
1186        cpumask_andnot(&cpu_possible_init, &cpu_possible_init, &disabled_map);
1187        init_cpu_possible(&cpu_possible_init);
1188
1189        /* Learn which cpus are valid for LOTAR caching. */
1190        rc = hv_inquire_tiles(HV_INQ_TILES_LOTAR,
1191                              (HV_VirtAddr) cpumask_bits(&cpu_lotar_map),
1192                              sizeof(cpu_lotar_map));
1193        if (rc < 0) {
1194                pr_err("warning: no HV_INQ_TILES_LOTAR; using AVAIL\n");
1195                cpu_lotar_map = *cpu_possible_mask;
1196        }
1197
1198#if CHIP_HAS_CBOX_HOME_MAP()
1199        /* Retrieve set of CPUs used for hash-for-home caching */
1200        rc = hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE,
1201                              (HV_VirtAddr) hash_for_home_map.bits,
1202                              sizeof(hash_for_home_map));
1203        if (rc < 0)
1204                early_panic("hv_inquire_tiles(HFH_CACHE) failed: rc %d\n", rc);
1205        cpumask_or(&cpu_cacheable_map, cpu_possible_mask, &hash_for_home_map);
1206#else
1207        cpu_cacheable_map = *cpu_possible_mask;
1208#endif
1209}
1210
1211
1212static int __init dataplane(char *str)
1213{
1214        pr_warning("WARNING: dataplane support disabled in this kernel\n");
1215        return 0;
1216}
1217
1218early_param("dataplane", dataplane);
1219
1220#ifdef CONFIG_CMDLINE_BOOL
1221static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
1222#endif
1223
1224void __init setup_arch(char **cmdline_p)
1225{
1226        int len;
1227
1228#if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE)
1229        len = hv_get_command_line((HV_VirtAddr) boot_command_line,
1230                                  COMMAND_LINE_SIZE);
1231        if (boot_command_line[0])
1232                pr_warning("WARNING: ignoring dynamic command line \"%s\"\n",
1233                           boot_command_line);
1234        strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
1235#else
1236        char *hv_cmdline;
1237#if defined(CONFIG_CMDLINE_BOOL)
1238        if (builtin_cmdline[0]) {
1239                int builtin_len = strlcpy(boot_command_line, builtin_cmdline,
1240                                          COMMAND_LINE_SIZE);
1241                if (builtin_len < COMMAND_LINE_SIZE-1)
1242                        boot_command_line[builtin_len++] = ' ';
1243                hv_cmdline = &boot_command_line[builtin_len];
1244                len = COMMAND_LINE_SIZE - builtin_len;
1245        } else
1246#endif
1247        {
1248                hv_cmdline = boot_command_line;
1249                len = COMMAND_LINE_SIZE;
1250        }
1251        len = hv_get_command_line((HV_VirtAddr) hv_cmdline, len);
1252        if (len < 0 || len > COMMAND_LINE_SIZE)
1253                early_panic("hv_get_command_line failed: %d\n", len);
1254#endif
1255
1256        *cmdline_p = boot_command_line;
1257
1258        /* Set disabled_map and setup_max_cpus very early */
1259        parse_early_param();
1260
1261        /* Make sure the kernel is compatible with the hypervisor. */
1262        validate_hv();
1263        validate_va();
1264
1265        setup_cpu_maps();
1266
1267
1268#ifdef CONFIG_PCI
1269        /*
1270         * Initialize the PCI structures.  This is done before memory
1271         * setup so that we know whether or not a pci_reserve region
1272         * is necessary.
1273         */
1274        if (tile_pci_init() == 0)
1275                pci_reserve_mb = 0;
1276
1277        /* PCI systems reserve a region just below 4GB for mapping iomem. */
1278        pci_reserve_end_pfn  = (1 << (32 - PAGE_SHIFT));
1279        pci_reserve_start_pfn = pci_reserve_end_pfn -
1280                (pci_reserve_mb << (20 - PAGE_SHIFT));
1281#endif
1282
1283        init_mm.start_code = (unsigned long) _text;
1284        init_mm.end_code = (unsigned long) _etext;
1285        init_mm.end_data = (unsigned long) _edata;
1286        init_mm.brk = (unsigned long) _end;
1287
1288        setup_memory();
1289        store_permanent_mappings();
1290        setup_bootmem_allocator();
1291
1292        /*
1293         * NOTE: before this point _nobody_ is allowed to allocate
1294         * any memory using the bootmem allocator.
1295         */
1296
1297        paging_init();
1298        setup_numa_mapping();
1299        zone_sizes_init();
1300        set_page_homes();
1301        setup_cpu(1);
1302        setup_clock();
1303        load_hv_initrd();
1304}
1305
1306
1307/*
1308 * Set up per-cpu memory.
1309 */
1310
1311unsigned long __per_cpu_offset[NR_CPUS] __write_once;
1312EXPORT_SYMBOL(__per_cpu_offset);
1313
1314static size_t __initdata pfn_offset[MAX_NUMNODES] = { 0 };
1315static unsigned long __initdata percpu_pfn[NR_CPUS] = { 0 };
1316
1317/*
1318 * As the percpu code allocates pages, we return the pages from the
1319 * end of the node for the specified cpu.
1320 */
1321static void *__init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
1322{
1323        int nid = cpu_to_node(cpu);
1324        unsigned long pfn = node_percpu_pfn[nid] + pfn_offset[nid];
1325
1326        BUG_ON(size % PAGE_SIZE != 0);
1327        pfn_offset[nid] += size / PAGE_SIZE;
1328        BUG_ON(node_percpu[nid] < size);
1329        node_percpu[nid] -= size;
1330        if (percpu_pfn[cpu] == 0)
1331                percpu_pfn[cpu] = pfn;
1332        return pfn_to_kaddr(pfn);
1333}
1334
1335/*
1336 * Pages reserved for percpu memory are not freeable, and in any case we are
1337 * on a short path to panic() in setup_per_cpu_area() at this point anyway.
1338 */
1339static void __init pcpu_fc_free(void *ptr, size_t size)
1340{
1341}
1342
1343/*
1344 * Set up vmalloc page tables using bootmem for the percpu code.
1345 */
1346static void __init pcpu_fc_populate_pte(unsigned long addr)
1347{
1348        pgd_t *pgd;
1349        pud_t *pud;
1350        pmd_t *pmd;
1351        pte_t *pte;
1352
1353        BUG_ON(pgd_addr_invalid(addr));
1354        if (addr < VMALLOC_START || addr >= VMALLOC_END)
1355                panic("PCPU addr %#lx outside vmalloc range %#lx..%#lx;"
1356                      " try increasing CONFIG_VMALLOC_RESERVE\n",
1357                      addr, VMALLOC_START, VMALLOC_END);
1358
1359        pgd = swapper_pg_dir + pgd_index(addr);
1360        pud = pud_offset(pgd, addr);
1361        BUG_ON(!pud_present(*pud));
1362        pmd = pmd_offset(pud, addr);
1363        if (pmd_present(*pmd)) {
1364                BUG_ON(pmd_huge_page(*pmd));
1365        } else {
1366                pte = __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE,
1367                                      HV_PAGE_TABLE_ALIGN, 0);
1368                pmd_populate_kernel(&init_mm, pmd, pte);
1369        }
1370}
1371
1372void __init setup_per_cpu_areas(void)
1373{
1374        struct page *pg;
1375        unsigned long delta, pfn, lowmem_va;
1376        unsigned long size = percpu_size();
1377        char *ptr;
1378        int rc, cpu, i;
1379
1380        rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE, pcpu_fc_alloc,
1381                                   pcpu_fc_free, pcpu_fc_populate_pte);
1382        if (rc < 0)
1383                panic("Cannot initialize percpu area (err=%d)", rc);
1384
1385        delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1386        for_each_possible_cpu(cpu) {
1387                __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
1388
1389                /* finv the copy out of cache so we can change homecache */
1390                ptr = pcpu_base_addr + pcpu_unit_offsets[cpu];
1391                __finv_buffer(ptr, size);
1392                pfn = percpu_pfn[cpu];
1393
1394                /* Rewrite the page tables to cache on that cpu */
1395                pg = pfn_to_page(pfn);
1396                for (i = 0; i < size; i += PAGE_SIZE, ++pfn, ++pg) {
1397
1398                        /* Update the vmalloc mapping and page home. */
1399                        pte_t *ptep =
1400                                virt_to_pte(NULL, (unsigned long)ptr + i);
1401                        pte_t pte = *ptep;
1402                        BUG_ON(pfn != pte_pfn(pte));
1403                        pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_TILE_L3);
1404                        pte = set_remote_cache_cpu(pte, cpu);
1405                        set_pte(ptep, pte);
1406
1407                        /* Update the lowmem mapping for consistency. */
1408                        lowmem_va = (unsigned long)pfn_to_kaddr(pfn);
1409                        ptep = virt_to_pte(NULL, lowmem_va);
1410                        if (pte_huge(*ptep)) {
1411                                printk(KERN_DEBUG "early shatter of huge page"
1412                                       " at %#lx\n", lowmem_va);
1413                                shatter_pmd((pmd_t *)ptep);
1414                                ptep = virt_to_pte(NULL, lowmem_va);
1415                                BUG_ON(pte_huge(*ptep));
1416                        }
1417                        BUG_ON(pfn != pte_pfn(*ptep));
1418                        set_pte(ptep, pte);
1419                }
1420        }
1421
1422        /* Set our thread pointer appropriately. */
1423        set_my_cpu_offset(__per_cpu_offset[smp_processor_id()]);
1424
1425        /* Make sure the finv's have completed. */
1426        mb_incoherent();
1427
1428        /* Flush the TLB so we reference it properly from here on out. */
1429        local_flush_tlb_all();
1430}
1431
1432static struct resource data_resource = {
1433        .name   = "Kernel data",
1434        .start  = 0,
1435        .end    = 0,
1436        .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
1437};
1438
1439static struct resource code_resource = {
1440        .name   = "Kernel code",
1441        .start  = 0,
1442        .end    = 0,
1443        .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
1444};
1445
1446/*
1447 * We reserve all resources above 4GB so that PCI won't try to put
1448 * mappings above 4GB; the standard allows that for some devices but
1449 * the probing code trunates values to 32 bits.
1450 */
1451#ifdef CONFIG_PCI
1452static struct resource* __init
1453insert_non_bus_resource(void)
1454{
1455        struct resource *res =
1456                kzalloc(sizeof(struct resource), GFP_ATOMIC);
1457        res->name = "Non-Bus Physical Address Space";
1458        res->start = (1ULL << 32);
1459        res->end = -1LL;
1460        res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1461        if (insert_resource(&iomem_resource, res)) {
1462                kfree(res);
1463                return NULL;
1464        }
1465        return res;
1466}
1467#endif
1468
1469static struct resource* __init
1470insert_ram_resource(u64 start_pfn, u64 end_pfn)
1471{
1472        struct resource *res =
1473                kzalloc(sizeof(struct resource), GFP_ATOMIC);
1474        res->name = "System RAM";
1475        res->start = start_pfn << PAGE_SHIFT;
1476        res->end = (end_pfn << PAGE_SHIFT) - 1;
1477        res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1478        if (insert_resource(&iomem_resource, res)) {
1479                kfree(res);
1480                return NULL;
1481        }
1482        return res;
1483}
1484
1485/*
1486 * Request address space for all standard resources
1487 *
1488 * If the system includes PCI root complex drivers, we need to create
1489 * a window just below 4GB where PCI BARs can be mapped.
1490 */
1491static int __init request_standard_resources(void)
1492{
1493        int i;
1494        enum { CODE_DELTA = MEM_SV_INTRPT - PAGE_OFFSET };
1495
1496        iomem_resource.end = -1LL;
1497#ifdef CONFIG_PCI
1498        insert_non_bus_resource();
1499#endif
1500
1501        for_each_online_node(i) {
1502                u64 start_pfn = node_start_pfn[i];
1503                u64 end_pfn = node_end_pfn[i];
1504
1505#ifdef CONFIG_PCI
1506                if (start_pfn <= pci_reserve_start_pfn &&
1507                    end_pfn > pci_reserve_start_pfn) {
1508                        if (end_pfn > pci_reserve_end_pfn)
1509                                insert_ram_resource(pci_reserve_end_pfn,
1510                                                     end_pfn);
1511                        end_pfn = pci_reserve_start_pfn;
1512                }
1513#endif
1514                insert_ram_resource(start_pfn, end_pfn);
1515        }
1516
1517        code_resource.start = __pa(_text - CODE_DELTA);
1518        code_resource.end = __pa(_etext - CODE_DELTA)-1;
1519        data_resource.start = __pa(_sdata);
1520        data_resource.end = __pa(_end)-1;
1521
1522        insert_resource(&iomem_resource, &code_resource);
1523        insert_resource(&iomem_resource, &data_resource);
1524
1525#ifdef CONFIG_KEXEC
1526        insert_resource(&iomem_resource, &crashk_res);
1527#endif
1528
1529        return 0;
1530}
1531
1532subsys_initcall(request_standard_resources);
1533