linux/drivers/firewire/core-iso.c
<<
>>
Prefs
   1/*
   2 * Isochronous I/O functionality:
   3 *   - Isochronous DMA context management
   4 *   - Isochronous bus resource management (channels, bandwidth), client side
   5 *
   6 * Copyright (C) 2006 Kristian Hoegsberg <krh@bitplanet.net>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2 of the License, or
  11 * (at your option) any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software Foundation,
  20 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  21 */
  22
  23#include <linux/dma-mapping.h>
  24#include <linux/errno.h>
  25#include <linux/firewire.h>
  26#include <linux/firewire-constants.h>
  27#include <linux/kernel.h>
  28#include <linux/mm.h>
  29#include <linux/slab.h>
  30#include <linux/spinlock.h>
  31#include <linux/vmalloc.h>
  32#include <linux/export.h>
  33
  34#include <asm/byteorder.h>
  35
  36#include "core.h"
  37
  38/*
  39 * Isochronous DMA context management
  40 */
  41
  42int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card,
  43                       int page_count, enum dma_data_direction direction)
  44{
  45        int i, j;
  46        dma_addr_t address;
  47
  48        buffer->page_count = page_count;
  49        buffer->direction = direction;
  50
  51        buffer->pages = kmalloc(page_count * sizeof(buffer->pages[0]),
  52                                GFP_KERNEL);
  53        if (buffer->pages == NULL)
  54                goto out;
  55
  56        for (i = 0; i < buffer->page_count; i++) {
  57                buffer->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
  58                if (buffer->pages[i] == NULL)
  59                        goto out_pages;
  60
  61                address = dma_map_page(card->device, buffer->pages[i],
  62                                       0, PAGE_SIZE, direction);
  63                if (dma_mapping_error(card->device, address)) {
  64                        __free_page(buffer->pages[i]);
  65                        goto out_pages;
  66                }
  67                set_page_private(buffer->pages[i], address);
  68        }
  69
  70        return 0;
  71
  72 out_pages:
  73        for (j = 0; j < i; j++) {
  74                address = page_private(buffer->pages[j]);
  75                dma_unmap_page(card->device, address,
  76                               PAGE_SIZE, direction);
  77                __free_page(buffer->pages[j]);
  78        }
  79        kfree(buffer->pages);
  80 out:
  81        buffer->pages = NULL;
  82
  83        return -ENOMEM;
  84}
  85EXPORT_SYMBOL(fw_iso_buffer_init);
  86
  87int fw_iso_buffer_map(struct fw_iso_buffer *buffer, struct vm_area_struct *vma)
  88{
  89        unsigned long uaddr;
  90        int i, err;
  91
  92        uaddr = vma->vm_start;
  93        for (i = 0; i < buffer->page_count; i++) {
  94                err = vm_insert_page(vma, uaddr, buffer->pages[i]);
  95                if (err)
  96                        return err;
  97
  98                uaddr += PAGE_SIZE;
  99        }
 100
 101        return 0;
 102}
 103
 104void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer,
 105                           struct fw_card *card)
 106{
 107        int i;
 108        dma_addr_t address;
 109
 110        for (i = 0; i < buffer->page_count; i++) {
 111                address = page_private(buffer->pages[i]);
 112                dma_unmap_page(card->device, address,
 113                               PAGE_SIZE, buffer->direction);
 114                __free_page(buffer->pages[i]);
 115        }
 116
 117        kfree(buffer->pages);
 118        buffer->pages = NULL;
 119}
 120EXPORT_SYMBOL(fw_iso_buffer_destroy);
 121
 122/* Convert DMA address to offset into virtually contiguous buffer. */
 123size_t fw_iso_buffer_lookup(struct fw_iso_buffer *buffer, dma_addr_t completed)
 124{
 125        int i;
 126        dma_addr_t address;
 127        ssize_t offset;
 128
 129        for (i = 0; i < buffer->page_count; i++) {
 130                address = page_private(buffer->pages[i]);
 131                offset = (ssize_t)completed - (ssize_t)address;
 132                if (offset > 0 && offset <= PAGE_SIZE)
 133                        return (i << PAGE_SHIFT) + offset;
 134        }
 135
 136        return 0;
 137}
 138
 139struct fw_iso_context *fw_iso_context_create(struct fw_card *card,
 140                int type, int channel, int speed, size_t header_size,
 141                fw_iso_callback_t callback, void *callback_data)
 142{
 143        struct fw_iso_context *ctx;
 144
 145        ctx = card->driver->allocate_iso_context(card,
 146                                                 type, channel, header_size);
 147        if (IS_ERR(ctx))
 148                return ctx;
 149
 150        ctx->card = card;
 151        ctx->type = type;
 152        ctx->channel = channel;
 153        ctx->speed = speed;
 154        ctx->header_size = header_size;
 155        ctx->callback.sc = callback;
 156        ctx->callback_data = callback_data;
 157
 158        return ctx;
 159}
 160EXPORT_SYMBOL(fw_iso_context_create);
 161
 162void fw_iso_context_destroy(struct fw_iso_context *ctx)
 163{
 164        ctx->card->driver->free_iso_context(ctx);
 165}
 166EXPORT_SYMBOL(fw_iso_context_destroy);
 167
 168int fw_iso_context_start(struct fw_iso_context *ctx,
 169                         int cycle, int sync, int tags)
 170{
 171        return ctx->card->driver->start_iso(ctx, cycle, sync, tags);
 172}
 173EXPORT_SYMBOL(fw_iso_context_start);
 174
 175int fw_iso_context_set_channels(struct fw_iso_context *ctx, u64 *channels)
 176{
 177        return ctx->card->driver->set_iso_channels(ctx, channels);
 178}
 179
 180int fw_iso_context_queue(struct fw_iso_context *ctx,
 181                         struct fw_iso_packet *packet,
 182                         struct fw_iso_buffer *buffer,
 183                         unsigned long payload)
 184{
 185        return ctx->card->driver->queue_iso(ctx, packet, buffer, payload);
 186}
 187EXPORT_SYMBOL(fw_iso_context_queue);
 188
 189void fw_iso_context_queue_flush(struct fw_iso_context *ctx)
 190{
 191        ctx->card->driver->flush_queue_iso(ctx);
 192}
 193EXPORT_SYMBOL(fw_iso_context_queue_flush);
 194
 195int fw_iso_context_flush_completions(struct fw_iso_context *ctx)
 196{
 197        return ctx->card->driver->flush_iso_completions(ctx);
 198}
 199EXPORT_SYMBOL(fw_iso_context_flush_completions);
 200
 201int fw_iso_context_stop(struct fw_iso_context *ctx)
 202{
 203        return ctx->card->driver->stop_iso(ctx);
 204}
 205EXPORT_SYMBOL(fw_iso_context_stop);
 206
 207/*
 208 * Isochronous bus resource management (channels, bandwidth), client side
 209 */
 210
 211static int manage_bandwidth(struct fw_card *card, int irm_id, int generation,
 212                            int bandwidth, bool allocate)
 213{
 214        int try, new, old = allocate ? BANDWIDTH_AVAILABLE_INITIAL : 0;
 215        __be32 data[2];
 216
 217        /*
 218         * On a 1394a IRM with low contention, try < 1 is enough.
 219         * On a 1394-1995 IRM, we need at least try < 2.
 220         * Let's just do try < 5.
 221         */
 222        for (try = 0; try < 5; try++) {
 223                new = allocate ? old - bandwidth : old + bandwidth;
 224                if (new < 0 || new > BANDWIDTH_AVAILABLE_INITIAL)
 225                        return -EBUSY;
 226
 227                data[0] = cpu_to_be32(old);
 228                data[1] = cpu_to_be32(new);
 229                switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
 230                                irm_id, generation, SCODE_100,
 231                                CSR_REGISTER_BASE + CSR_BANDWIDTH_AVAILABLE,
 232                                data, 8)) {
 233                case RCODE_GENERATION:
 234                        /* A generation change frees all bandwidth. */
 235                        return allocate ? -EAGAIN : bandwidth;
 236
 237                case RCODE_COMPLETE:
 238                        if (be32_to_cpup(data) == old)
 239                                return bandwidth;
 240
 241                        old = be32_to_cpup(data);
 242                        /* Fall through. */
 243                }
 244        }
 245
 246        return -EIO;
 247}
 248
 249static int manage_channel(struct fw_card *card, int irm_id, int generation,
 250                u32 channels_mask, u64 offset, bool allocate)
 251{
 252        __be32 bit, all, old;
 253        __be32 data[2];
 254        int channel, ret = -EIO, retry = 5;
 255
 256        old = all = allocate ? cpu_to_be32(~0) : 0;
 257
 258        for (channel = 0; channel < 32; channel++) {
 259                if (!(channels_mask & 1 << channel))
 260                        continue;
 261
 262                ret = -EBUSY;
 263
 264                bit = cpu_to_be32(1 << (31 - channel));
 265                if ((old & bit) != (all & bit))
 266                        continue;
 267
 268                data[0] = old;
 269                data[1] = old ^ bit;
 270                switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
 271                                           irm_id, generation, SCODE_100,
 272                                           offset, data, 8)) {
 273                case RCODE_GENERATION:
 274                        /* A generation change frees all channels. */
 275                        return allocate ? -EAGAIN : channel;
 276
 277                case RCODE_COMPLETE:
 278                        if (data[0] == old)
 279                                return channel;
 280
 281                        old = data[0];
 282
 283                        /* Is the IRM 1394a-2000 compliant? */
 284                        if ((data[0] & bit) == (data[1] & bit))
 285                                continue;
 286
 287                        /* 1394-1995 IRM, fall through to retry. */
 288                default:
 289                        if (retry) {
 290                                retry--;
 291                                channel--;
 292                        } else {
 293                                ret = -EIO;
 294                        }
 295                }
 296        }
 297
 298        return ret;
 299}
 300
 301static void deallocate_channel(struct fw_card *card, int irm_id,
 302                               int generation, int channel)
 303{
 304        u32 mask;
 305        u64 offset;
 306
 307        mask = channel < 32 ? 1 << channel : 1 << (channel - 32);
 308        offset = channel < 32 ? CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI :
 309                                CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO;
 310
 311        manage_channel(card, irm_id, generation, mask, offset, false);
 312}
 313
 314/**
 315 * fw_iso_resource_manage() - Allocate or deallocate a channel and/or bandwidth
 316 *
 317 * In parameters: card, generation, channels_mask, bandwidth, allocate
 318 * Out parameters: channel, bandwidth
 319 * This function blocks (sleeps) during communication with the IRM.
 320 *
 321 * Allocates or deallocates at most one channel out of channels_mask.
 322 * channels_mask is a bitfield with MSB for channel 63 and LSB for channel 0.
 323 * (Note, the IRM's CHANNELS_AVAILABLE is a big-endian bitfield with MSB for
 324 * channel 0 and LSB for channel 63.)
 325 * Allocates or deallocates as many bandwidth allocation units as specified.
 326 *
 327 * Returns channel < 0 if no channel was allocated or deallocated.
 328 * Returns bandwidth = 0 if no bandwidth was allocated or deallocated.
 329 *
 330 * If generation is stale, deallocations succeed but allocations fail with
 331 * channel = -EAGAIN.
 332 *
 333 * If channel allocation fails, no bandwidth will be allocated either.
 334 * If bandwidth allocation fails, no channel will be allocated either.
 335 * But deallocations of channel and bandwidth are tried independently
 336 * of each other's success.
 337 */
 338void fw_iso_resource_manage(struct fw_card *card, int generation,
 339                            u64 channels_mask, int *channel, int *bandwidth,
 340                            bool allocate)
 341{
 342        u32 channels_hi = channels_mask;        /* channels 31...0 */
 343        u32 channels_lo = channels_mask >> 32;  /* channels 63...32 */
 344        int irm_id, ret, c = -EINVAL;
 345
 346        spin_lock_irq(&card->lock);
 347        irm_id = card->irm_node->node_id;
 348        spin_unlock_irq(&card->lock);
 349
 350        if (channels_hi)
 351                c = manage_channel(card, irm_id, generation, channels_hi,
 352                                CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI,
 353                                allocate);
 354        if (channels_lo && c < 0) {
 355                c = manage_channel(card, irm_id, generation, channels_lo,
 356                                CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO,
 357                                allocate);
 358                if (c >= 0)
 359                        c += 32;
 360        }
 361        *channel = c;
 362
 363        if (allocate && channels_mask != 0 && c < 0)
 364                *bandwidth = 0;
 365
 366        if (*bandwidth == 0)
 367                return;
 368
 369        ret = manage_bandwidth(card, irm_id, generation, *bandwidth, allocate);
 370        if (ret < 0)
 371                *bandwidth = 0;
 372
 373        if (allocate && ret < 0) {
 374                if (c >= 0)
 375                        deallocate_channel(card, irm_id, generation, c);
 376                *channel = ret;
 377        }
 378}
 379EXPORT_SYMBOL(fw_iso_resource_manage);
 380