linux/drivers/firewire/sbp2.c
<<
>>
Prefs
   1/*
   2 * SBP2 driver (SCSI over IEEE1394)
   3 *
   4 * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software Foundation,
  18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19 */
  20
  21/*
  22 * The basic structure of this driver is based on the old storage driver,
  23 * drivers/ieee1394/sbp2.c, originally written by
  24 *     James Goodwin <jamesg@filanet.com>
  25 * with later contributions and ongoing maintenance from
  26 *     Ben Collins <bcollins@debian.org>,
  27 *     Stefan Richter <stefanr@s5r6.in-berlin.de>
  28 * and many others.
  29 */
  30
  31#include <linux/blkdev.h>
  32#include <linux/bug.h>
  33#include <linux/completion.h>
  34#include <linux/delay.h>
  35#include <linux/device.h>
  36#include <linux/dma-mapping.h>
  37#include <linux/firewire.h>
  38#include <linux/firewire-constants.h>
  39#include <linux/init.h>
  40#include <linux/jiffies.h>
  41#include <linux/kernel.h>
  42#include <linux/kref.h>
  43#include <linux/list.h>
  44#include <linux/mod_devicetable.h>
  45#include <linux/module.h>
  46#include <linux/moduleparam.h>
  47#include <linux/scatterlist.h>
  48#include <linux/slab.h>
  49#include <linux/spinlock.h>
  50#include <linux/string.h>
  51#include <linux/stringify.h>
  52#include <linux/workqueue.h>
  53
  54#include <asm/byteorder.h>
  55
  56#include <scsi/scsi.h>
  57#include <scsi/scsi_cmnd.h>
  58#include <scsi/scsi_device.h>
  59#include <scsi/scsi_host.h>
  60
  61/*
  62 * So far only bridges from Oxford Semiconductor are known to support
  63 * concurrent logins. Depending on firmware, four or two concurrent logins
  64 * are possible on OXFW911 and newer Oxsemi bridges.
  65 *
  66 * Concurrent logins are useful together with cluster filesystems.
  67 */
  68static bool sbp2_param_exclusive_login = 1;
  69module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
  70MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
  71                 "(default = Y, use N for concurrent initiators)");
  72
  73/*
  74 * Flags for firmware oddities
  75 *
  76 * - 128kB max transfer
  77 *   Limit transfer size. Necessary for some old bridges.
  78 *
  79 * - 36 byte inquiry
  80 *   When scsi_mod probes the device, let the inquiry command look like that
  81 *   from MS Windows.
  82 *
  83 * - skip mode page 8
  84 *   Suppress sending of mode_sense for mode page 8 if the device pretends to
  85 *   support the SCSI Primary Block commands instead of Reduced Block Commands.
  86 *
  87 * - fix capacity
  88 *   Tell sd_mod to correct the last sector number reported by read_capacity.
  89 *   Avoids access beyond actual disk limits on devices with an off-by-one bug.
  90 *   Don't use this with devices which don't have this bug.
  91 *
  92 * - delay inquiry
  93 *   Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
  94 *
  95 * - power condition
  96 *   Set the power condition field in the START STOP UNIT commands sent by
  97 *   sd_mod on suspend, resume, and shutdown (if manage_start_stop is on).
  98 *   Some disks need this to spin down or to resume properly.
  99 *
 100 * - override internal blacklist
 101 *   Instead of adding to the built-in blacklist, use only the workarounds
 102 *   specified in the module load parameter.
 103 *   Useful if a blacklist entry interfered with a non-broken device.
 104 */
 105#define SBP2_WORKAROUND_128K_MAX_TRANS  0x1
 106#define SBP2_WORKAROUND_INQUIRY_36      0x2
 107#define SBP2_WORKAROUND_MODE_SENSE_8    0x4
 108#define SBP2_WORKAROUND_FIX_CAPACITY    0x8
 109#define SBP2_WORKAROUND_DELAY_INQUIRY   0x10
 110#define SBP2_INQUIRY_DELAY              12
 111#define SBP2_WORKAROUND_POWER_CONDITION 0x20
 112#define SBP2_WORKAROUND_OVERRIDE        0x100
 113
 114static int sbp2_param_workarounds;
 115module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
 116MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
 117        ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
 118        ", 36 byte inquiry = "    __stringify(SBP2_WORKAROUND_INQUIRY_36)
 119        ", skip mode page 8 = "   __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
 120        ", fix capacity = "       __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
 121        ", delay inquiry = "      __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
 122        ", set power condition in start stop unit = "
 123                                  __stringify(SBP2_WORKAROUND_POWER_CONDITION)
 124        ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
 125        ", or a combination)");
 126
 127/*
 128 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
 129 * and one struct scsi_device per sbp2_logical_unit.
 130 */
 131struct sbp2_logical_unit {
 132        struct sbp2_target *tgt;
 133        struct list_head link;
 134        struct fw_address_handler address_handler;
 135        struct list_head orb_list;
 136
 137        u64 command_block_agent_address;
 138        u16 lun;
 139        int login_id;
 140
 141        /*
 142         * The generation is updated once we've logged in or reconnected
 143         * to the logical unit.  Thus, I/O to the device will automatically
 144         * fail and get retried if it happens in a window where the device
 145         * is not ready, e.g. after a bus reset but before we reconnect.
 146         */
 147        int generation;
 148        int retries;
 149        struct delayed_work work;
 150        bool has_sdev;
 151        bool blocked;
 152};
 153
 154static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
 155{
 156        queue_delayed_work(fw_workqueue, &lu->work, delay);
 157}
 158
 159/*
 160 * We create one struct sbp2_target per IEEE 1212 Unit Directory
 161 * and one struct Scsi_Host per sbp2_target.
 162 */
 163struct sbp2_target {
 164        struct fw_unit *unit;
 165        struct list_head lu_list;
 166
 167        u64 management_agent_address;
 168        u64 guid;
 169        int directory_id;
 170        int node_id;
 171        int address_high;
 172        unsigned int workarounds;
 173        unsigned int mgt_orb_timeout;
 174        unsigned int max_payload;
 175
 176        int dont_block; /* counter for each logical unit */
 177        int blocked;    /* ditto */
 178};
 179
 180static struct fw_device *target_parent_device(struct sbp2_target *tgt)
 181{
 182        return fw_parent_device(tgt->unit);
 183}
 184
 185static const struct device *tgt_dev(const struct sbp2_target *tgt)
 186{
 187        return &tgt->unit->device;
 188}
 189
 190static const struct device *lu_dev(const struct sbp2_logical_unit *lu)
 191{
 192        return &lu->tgt->unit->device;
 193}
 194
 195/* Impossible login_id, to detect logout attempt before successful login */
 196#define INVALID_LOGIN_ID 0x10000
 197
 198#define SBP2_ORB_TIMEOUT                2000U           /* Timeout in ms */
 199#define SBP2_ORB_NULL                   0x80000000
 200#define SBP2_RETRY_LIMIT                0xf             /* 15 retries */
 201#define SBP2_CYCLE_LIMIT                (0xc8 << 12)    /* 200 125us cycles */
 202
 203/*
 204 * There is no transport protocol limit to the CDB length,  but we implement
 205 * a fixed length only.  16 bytes is enough for disks larger than 2 TB.
 206 */
 207#define SBP2_MAX_CDB_SIZE               16
 208
 209/*
 210 * The default maximum s/g segment size of a FireWire controller is
 211 * usually 0x10000, but SBP-2 only allows 0xffff. Since buffers have to
 212 * be quadlet-aligned, we set the length limit to 0xffff & ~3.
 213 */
 214#define SBP2_MAX_SEG_SIZE               0xfffc
 215
 216/* Unit directory keys */
 217#define SBP2_CSR_UNIT_CHARACTERISTICS   0x3a
 218#define SBP2_CSR_FIRMWARE_REVISION      0x3c
 219#define SBP2_CSR_LOGICAL_UNIT_NUMBER    0x14
 220#define SBP2_CSR_UNIT_UNIQUE_ID         0x8d
 221#define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
 222
 223/* Management orb opcodes */
 224#define SBP2_LOGIN_REQUEST              0x0
 225#define SBP2_QUERY_LOGINS_REQUEST       0x1
 226#define SBP2_RECONNECT_REQUEST          0x3
 227#define SBP2_SET_PASSWORD_REQUEST       0x4
 228#define SBP2_LOGOUT_REQUEST             0x7
 229#define SBP2_ABORT_TASK_REQUEST         0xb
 230#define SBP2_ABORT_TASK_SET             0xc
 231#define SBP2_LOGICAL_UNIT_RESET         0xe
 232#define SBP2_TARGET_RESET_REQUEST       0xf
 233
 234/* Offsets for command block agent registers */
 235#define SBP2_AGENT_STATE                0x00
 236#define SBP2_AGENT_RESET                0x04
 237#define SBP2_ORB_POINTER                0x08
 238#define SBP2_DOORBELL                   0x10
 239#define SBP2_UNSOLICITED_STATUS_ENABLE  0x14
 240
 241/* Status write response codes */
 242#define SBP2_STATUS_REQUEST_COMPLETE    0x0
 243#define SBP2_STATUS_TRANSPORT_FAILURE   0x1
 244#define SBP2_STATUS_ILLEGAL_REQUEST     0x2
 245#define SBP2_STATUS_VENDOR_DEPENDENT    0x3
 246
 247#define STATUS_GET_ORB_HIGH(v)          ((v).status & 0xffff)
 248#define STATUS_GET_SBP_STATUS(v)        (((v).status >> 16) & 0xff)
 249#define STATUS_GET_LEN(v)               (((v).status >> 24) & 0x07)
 250#define STATUS_GET_DEAD(v)              (((v).status >> 27) & 0x01)
 251#define STATUS_GET_RESPONSE(v)          (((v).status >> 28) & 0x03)
 252#define STATUS_GET_SOURCE(v)            (((v).status >> 30) & 0x03)
 253#define STATUS_GET_ORB_LOW(v)           ((v).orb_low)
 254#define STATUS_GET_DATA(v)              ((v).data)
 255
 256struct sbp2_status {
 257        u32 status;
 258        u32 orb_low;
 259        u8 data[24];
 260};
 261
 262struct sbp2_pointer {
 263        __be32 high;
 264        __be32 low;
 265};
 266
 267struct sbp2_orb {
 268        struct fw_transaction t;
 269        struct kref kref;
 270        dma_addr_t request_bus;
 271        int rcode;
 272        void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
 273        struct list_head link;
 274};
 275
 276#define MANAGEMENT_ORB_LUN(v)                   ((v))
 277#define MANAGEMENT_ORB_FUNCTION(v)              ((v) << 16)
 278#define MANAGEMENT_ORB_RECONNECT(v)             ((v) << 20)
 279#define MANAGEMENT_ORB_EXCLUSIVE(v)             ((v) ? 1 << 28 : 0)
 280#define MANAGEMENT_ORB_REQUEST_FORMAT(v)        ((v) << 29)
 281#define MANAGEMENT_ORB_NOTIFY                   ((1) << 31)
 282
 283#define MANAGEMENT_ORB_RESPONSE_LENGTH(v)       ((v))
 284#define MANAGEMENT_ORB_PASSWORD_LENGTH(v)       ((v) << 16)
 285
 286struct sbp2_management_orb {
 287        struct sbp2_orb base;
 288        struct {
 289                struct sbp2_pointer password;
 290                struct sbp2_pointer response;
 291                __be32 misc;
 292                __be32 length;
 293                struct sbp2_pointer status_fifo;
 294        } request;
 295        __be32 response[4];
 296        dma_addr_t response_bus;
 297        struct completion done;
 298        struct sbp2_status status;
 299};
 300
 301struct sbp2_login_response {
 302        __be32 misc;
 303        struct sbp2_pointer command_block_agent;
 304        __be32 reconnect_hold;
 305};
 306#define COMMAND_ORB_DATA_SIZE(v)        ((v))
 307#define COMMAND_ORB_PAGE_SIZE(v)        ((v) << 16)
 308#define COMMAND_ORB_PAGE_TABLE_PRESENT  ((1) << 19)
 309#define COMMAND_ORB_MAX_PAYLOAD(v)      ((v) << 20)
 310#define COMMAND_ORB_SPEED(v)            ((v) << 24)
 311#define COMMAND_ORB_DIRECTION           ((1) << 27)
 312#define COMMAND_ORB_REQUEST_FORMAT(v)   ((v) << 29)
 313#define COMMAND_ORB_NOTIFY              ((1) << 31)
 314
 315struct sbp2_command_orb {
 316        struct sbp2_orb base;
 317        struct {
 318                struct sbp2_pointer next;
 319                struct sbp2_pointer data_descriptor;
 320                __be32 misc;
 321                u8 command_block[SBP2_MAX_CDB_SIZE];
 322        } request;
 323        struct scsi_cmnd *cmd;
 324        struct sbp2_logical_unit *lu;
 325
 326        struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
 327        dma_addr_t page_table_bus;
 328};
 329
 330#define SBP2_ROM_VALUE_WILDCARD ~0         /* match all */
 331#define SBP2_ROM_VALUE_MISSING  0xff000000 /* not present in the unit dir. */
 332
 333/*
 334 * List of devices with known bugs.
 335 *
 336 * The firmware_revision field, masked with 0xffff00, is the best
 337 * indicator for the type of bridge chip of a device.  It yields a few
 338 * false positives but this did not break correctly behaving devices
 339 * so far.
 340 */
 341static const struct {
 342        u32 firmware_revision;
 343        u32 model;
 344        unsigned int workarounds;
 345} sbp2_workarounds_table[] = {
 346        /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
 347                .firmware_revision      = 0x002800,
 348                .model                  = 0x001010,
 349                .workarounds            = SBP2_WORKAROUND_INQUIRY_36 |
 350                                          SBP2_WORKAROUND_MODE_SENSE_8 |
 351                                          SBP2_WORKAROUND_POWER_CONDITION,
 352        },
 353        /* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
 354                .firmware_revision      = 0x002800,
 355                .model                  = 0x000000,
 356                .workarounds            = SBP2_WORKAROUND_POWER_CONDITION,
 357        },
 358        /* Initio bridges, actually only needed for some older ones */ {
 359                .firmware_revision      = 0x000200,
 360                .model                  = SBP2_ROM_VALUE_WILDCARD,
 361                .workarounds            = SBP2_WORKAROUND_INQUIRY_36,
 362        },
 363        /* PL-3507 bridge with Prolific firmware */ {
 364                .firmware_revision      = 0x012800,
 365                .model                  = SBP2_ROM_VALUE_WILDCARD,
 366                .workarounds            = SBP2_WORKAROUND_POWER_CONDITION,
 367        },
 368        /* Symbios bridge */ {
 369                .firmware_revision      = 0xa0b800,
 370                .model                  = SBP2_ROM_VALUE_WILDCARD,
 371                .workarounds            = SBP2_WORKAROUND_128K_MAX_TRANS,
 372        },
 373        /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
 374                .firmware_revision      = 0x002600,
 375                .model                  = SBP2_ROM_VALUE_WILDCARD,
 376                .workarounds            = SBP2_WORKAROUND_128K_MAX_TRANS,
 377        },
 378        /*
 379         * iPod 2nd generation: needs 128k max transfer size workaround
 380         * iPod 3rd generation: needs fix capacity workaround
 381         */
 382        {
 383                .firmware_revision      = 0x0a2700,
 384                .model                  = 0x000000,
 385                .workarounds            = SBP2_WORKAROUND_128K_MAX_TRANS |
 386                                          SBP2_WORKAROUND_FIX_CAPACITY,
 387        },
 388        /* iPod 4th generation */ {
 389                .firmware_revision      = 0x0a2700,
 390                .model                  = 0x000021,
 391                .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
 392        },
 393        /* iPod mini */ {
 394                .firmware_revision      = 0x0a2700,
 395                .model                  = 0x000022,
 396                .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
 397        },
 398        /* iPod mini */ {
 399                .firmware_revision      = 0x0a2700,
 400                .model                  = 0x000023,
 401                .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
 402        },
 403        /* iPod Photo */ {
 404                .firmware_revision      = 0x0a2700,
 405                .model                  = 0x00007e,
 406                .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
 407        }
 408};
 409
 410static void free_orb(struct kref *kref)
 411{
 412        struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
 413
 414        kfree(orb);
 415}
 416
 417static void sbp2_status_write(struct fw_card *card, struct fw_request *request,
 418                              int tcode, int destination, int source,
 419                              int generation, unsigned long long offset,
 420                              void *payload, size_t length, void *callback_data)
 421{
 422        struct sbp2_logical_unit *lu = callback_data;
 423        struct sbp2_orb *orb;
 424        struct sbp2_status status;
 425        unsigned long flags;
 426
 427        if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
 428            length < 8 || length > sizeof(status)) {
 429                fw_send_response(card, request, RCODE_TYPE_ERROR);
 430                return;
 431        }
 432
 433        status.status  = be32_to_cpup(payload);
 434        status.orb_low = be32_to_cpup(payload + 4);
 435        memset(status.data, 0, sizeof(status.data));
 436        if (length > 8)
 437                memcpy(status.data, payload + 8, length - 8);
 438
 439        if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
 440                dev_notice(lu_dev(lu),
 441                           "non-ORB related status write, not handled\n");
 442                fw_send_response(card, request, RCODE_COMPLETE);
 443                return;
 444        }
 445
 446        /* Lookup the orb corresponding to this status write. */
 447        spin_lock_irqsave(&card->lock, flags);
 448        list_for_each_entry(orb, &lu->orb_list, link) {
 449                if (STATUS_GET_ORB_HIGH(status) == 0 &&
 450                    STATUS_GET_ORB_LOW(status) == orb->request_bus) {
 451                        orb->rcode = RCODE_COMPLETE;
 452                        list_del(&orb->link);
 453                        break;
 454                }
 455        }
 456        spin_unlock_irqrestore(&card->lock, flags);
 457
 458        if (&orb->link != &lu->orb_list) {
 459                orb->callback(orb, &status);
 460                kref_put(&orb->kref, free_orb); /* orb callback reference */
 461        } else {
 462                dev_err(lu_dev(lu), "status write for unknown ORB\n");
 463        }
 464
 465        fw_send_response(card, request, RCODE_COMPLETE);
 466}
 467
 468static void complete_transaction(struct fw_card *card, int rcode,
 469                                 void *payload, size_t length, void *data)
 470{
 471        struct sbp2_orb *orb = data;
 472        unsigned long flags;
 473
 474        /*
 475         * This is a little tricky.  We can get the status write for
 476         * the orb before we get this callback.  The status write
 477         * handler above will assume the orb pointer transaction was
 478         * successful and set the rcode to RCODE_COMPLETE for the orb.
 479         * So this callback only sets the rcode if it hasn't already
 480         * been set and only does the cleanup if the transaction
 481         * failed and we didn't already get a status write.
 482         */
 483        spin_lock_irqsave(&card->lock, flags);
 484
 485        if (orb->rcode == -1)
 486                orb->rcode = rcode;
 487        if (orb->rcode != RCODE_COMPLETE) {
 488                list_del(&orb->link);
 489                spin_unlock_irqrestore(&card->lock, flags);
 490
 491                orb->callback(orb, NULL);
 492                kref_put(&orb->kref, free_orb); /* orb callback reference */
 493        } else {
 494                spin_unlock_irqrestore(&card->lock, flags);
 495        }
 496
 497        kref_put(&orb->kref, free_orb); /* transaction callback reference */
 498}
 499
 500static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
 501                          int node_id, int generation, u64 offset)
 502{
 503        struct fw_device *device = target_parent_device(lu->tgt);
 504        struct sbp2_pointer orb_pointer;
 505        unsigned long flags;
 506
 507        orb_pointer.high = 0;
 508        orb_pointer.low = cpu_to_be32(orb->request_bus);
 509
 510        spin_lock_irqsave(&device->card->lock, flags);
 511        list_add_tail(&orb->link, &lu->orb_list);
 512        spin_unlock_irqrestore(&device->card->lock, flags);
 513
 514        kref_get(&orb->kref); /* transaction callback reference */
 515        kref_get(&orb->kref); /* orb callback reference */
 516
 517        fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
 518                        node_id, generation, device->max_speed, offset,
 519                        &orb_pointer, 8, complete_transaction, orb);
 520}
 521
 522static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
 523{
 524        struct fw_device *device = target_parent_device(lu->tgt);
 525        struct sbp2_orb *orb, *next;
 526        struct list_head list;
 527        unsigned long flags;
 528        int retval = -ENOENT;
 529
 530        INIT_LIST_HEAD(&list);
 531        spin_lock_irqsave(&device->card->lock, flags);
 532        list_splice_init(&lu->orb_list, &list);
 533        spin_unlock_irqrestore(&device->card->lock, flags);
 534
 535        list_for_each_entry_safe(orb, next, &list, link) {
 536                retval = 0;
 537                if (fw_cancel_transaction(device->card, &orb->t) == 0)
 538                        continue;
 539
 540                orb->rcode = RCODE_CANCELLED;
 541                orb->callback(orb, NULL);
 542                kref_put(&orb->kref, free_orb); /* orb callback reference */
 543        }
 544
 545        return retval;
 546}
 547
 548static void complete_management_orb(struct sbp2_orb *base_orb,
 549                                    struct sbp2_status *status)
 550{
 551        struct sbp2_management_orb *orb =
 552                container_of(base_orb, struct sbp2_management_orb, base);
 553
 554        if (status)
 555                memcpy(&orb->status, status, sizeof(*status));
 556        complete(&orb->done);
 557}
 558
 559static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
 560                                    int generation, int function,
 561                                    int lun_or_login_id, void *response)
 562{
 563        struct fw_device *device = target_parent_device(lu->tgt);
 564        struct sbp2_management_orb *orb;
 565        unsigned int timeout;
 566        int retval = -ENOMEM;
 567
 568        if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
 569                return 0;
 570
 571        orb = kzalloc(sizeof(*orb), GFP_NOIO);
 572        if (orb == NULL)
 573                return -ENOMEM;
 574
 575        kref_init(&orb->base.kref);
 576        orb->response_bus =
 577                dma_map_single(device->card->device, &orb->response,
 578                               sizeof(orb->response), DMA_FROM_DEVICE);
 579        if (dma_mapping_error(device->card->device, orb->response_bus))
 580                goto fail_mapping_response;
 581
 582        orb->request.response.high = 0;
 583        orb->request.response.low  = cpu_to_be32(orb->response_bus);
 584
 585        orb->request.misc = cpu_to_be32(
 586                MANAGEMENT_ORB_NOTIFY |
 587                MANAGEMENT_ORB_FUNCTION(function) |
 588                MANAGEMENT_ORB_LUN(lun_or_login_id));
 589        orb->request.length = cpu_to_be32(
 590                MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)));
 591
 592        orb->request.status_fifo.high =
 593                cpu_to_be32(lu->address_handler.offset >> 32);
 594        orb->request.status_fifo.low  =
 595                cpu_to_be32(lu->address_handler.offset);
 596
 597        if (function == SBP2_LOGIN_REQUEST) {
 598                /* Ask for 2^2 == 4 seconds reconnect grace period */
 599                orb->request.misc |= cpu_to_be32(
 600                        MANAGEMENT_ORB_RECONNECT(2) |
 601                        MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login));
 602                timeout = lu->tgt->mgt_orb_timeout;
 603        } else {
 604                timeout = SBP2_ORB_TIMEOUT;
 605        }
 606
 607        init_completion(&orb->done);
 608        orb->base.callback = complete_management_orb;
 609
 610        orb->base.request_bus =
 611                dma_map_single(device->card->device, &orb->request,
 612                               sizeof(orb->request), DMA_TO_DEVICE);
 613        if (dma_mapping_error(device->card->device, orb->base.request_bus))
 614                goto fail_mapping_request;
 615
 616        sbp2_send_orb(&orb->base, lu, node_id, generation,
 617                      lu->tgt->management_agent_address);
 618
 619        wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
 620
 621        retval = -EIO;
 622        if (sbp2_cancel_orbs(lu) == 0) {
 623                dev_err(lu_dev(lu), "ORB reply timed out, rcode 0x%02x\n",
 624                        orb->base.rcode);
 625                goto out;
 626        }
 627
 628        if (orb->base.rcode != RCODE_COMPLETE) {
 629                dev_err(lu_dev(lu), "management write failed, rcode 0x%02x\n",
 630                        orb->base.rcode);
 631                goto out;
 632        }
 633
 634        if (STATUS_GET_RESPONSE(orb->status) != 0 ||
 635            STATUS_GET_SBP_STATUS(orb->status) != 0) {
 636                dev_err(lu_dev(lu), "error status: %d:%d\n",
 637                         STATUS_GET_RESPONSE(orb->status),
 638                         STATUS_GET_SBP_STATUS(orb->status));
 639                goto out;
 640        }
 641
 642        retval = 0;
 643 out:
 644        dma_unmap_single(device->card->device, orb->base.request_bus,
 645                         sizeof(orb->request), DMA_TO_DEVICE);
 646 fail_mapping_request:
 647        dma_unmap_single(device->card->device, orb->response_bus,
 648                         sizeof(orb->response), DMA_FROM_DEVICE);
 649 fail_mapping_response:
 650        if (response)
 651                memcpy(response, orb->response, sizeof(orb->response));
 652        kref_put(&orb->base.kref, free_orb);
 653
 654        return retval;
 655}
 656
 657static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
 658{
 659        struct fw_device *device = target_parent_device(lu->tgt);
 660        __be32 d = 0;
 661
 662        fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
 663                           lu->tgt->node_id, lu->generation, device->max_speed,
 664                           lu->command_block_agent_address + SBP2_AGENT_RESET,
 665                           &d, 4);
 666}
 667
 668static void complete_agent_reset_write_no_wait(struct fw_card *card,
 669                int rcode, void *payload, size_t length, void *data)
 670{
 671        kfree(data);
 672}
 673
 674static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
 675{
 676        struct fw_device *device = target_parent_device(lu->tgt);
 677        struct fw_transaction *t;
 678        static __be32 d;
 679
 680        t = kmalloc(sizeof(*t), GFP_ATOMIC);
 681        if (t == NULL)
 682                return;
 683
 684        fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
 685                        lu->tgt->node_id, lu->generation, device->max_speed,
 686                        lu->command_block_agent_address + SBP2_AGENT_RESET,
 687                        &d, 4, complete_agent_reset_write_no_wait, t);
 688}
 689
 690static inline void sbp2_allow_block(struct sbp2_logical_unit *lu)
 691{
 692        /*
 693         * We may access dont_block without taking card->lock here:
 694         * All callers of sbp2_allow_block() and all callers of sbp2_unblock()
 695         * are currently serialized against each other.
 696         * And a wrong result in sbp2_conditionally_block()'s access of
 697         * dont_block is rather harmless, it simply misses its first chance.
 698         */
 699        --lu->tgt->dont_block;
 700}
 701
 702/*
 703 * Blocks lu->tgt if all of the following conditions are met:
 704 *   - Login, INQUIRY, and high-level SCSI setup of all of the target's
 705 *     logical units have been finished (indicated by dont_block == 0).
 706 *   - lu->generation is stale.
 707 *
 708 * Note, scsi_block_requests() must be called while holding card->lock,
 709 * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
 710 * unblock the target.
 711 */
 712static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
 713{
 714        struct sbp2_target *tgt = lu->tgt;
 715        struct fw_card *card = target_parent_device(tgt)->card;
 716        struct Scsi_Host *shost =
 717                container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
 718        unsigned long flags;
 719
 720        spin_lock_irqsave(&card->lock, flags);
 721        if (!tgt->dont_block && !lu->blocked &&
 722            lu->generation != card->generation) {
 723                lu->blocked = true;
 724                if (++tgt->blocked == 1)
 725                        scsi_block_requests(shost);
 726        }
 727        spin_unlock_irqrestore(&card->lock, flags);
 728}
 729
 730/*
 731 * Unblocks lu->tgt as soon as all its logical units can be unblocked.
 732 * Note, it is harmless to run scsi_unblock_requests() outside the
 733 * card->lock protected section.  On the other hand, running it inside
 734 * the section might clash with shost->host_lock.
 735 */
 736static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
 737{
 738        struct sbp2_target *tgt = lu->tgt;
 739        struct fw_card *card = target_parent_device(tgt)->card;
 740        struct Scsi_Host *shost =
 741                container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
 742        unsigned long flags;
 743        bool unblock = false;
 744
 745        spin_lock_irqsave(&card->lock, flags);
 746        if (lu->blocked && lu->generation == card->generation) {
 747                lu->blocked = false;
 748                unblock = --tgt->blocked == 0;
 749        }
 750        spin_unlock_irqrestore(&card->lock, flags);
 751
 752        if (unblock)
 753                scsi_unblock_requests(shost);
 754}
 755
 756/*
 757 * Prevents future blocking of tgt and unblocks it.
 758 * Note, it is harmless to run scsi_unblock_requests() outside the
 759 * card->lock protected section.  On the other hand, running it inside
 760 * the section might clash with shost->host_lock.
 761 */
 762static void sbp2_unblock(struct sbp2_target *tgt)
 763{
 764        struct fw_card *card = target_parent_device(tgt)->card;
 765        struct Scsi_Host *shost =
 766                container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
 767        unsigned long flags;
 768
 769        spin_lock_irqsave(&card->lock, flags);
 770        ++tgt->dont_block;
 771        spin_unlock_irqrestore(&card->lock, flags);
 772
 773        scsi_unblock_requests(shost);
 774}
 775
 776static int sbp2_lun2int(u16 lun)
 777{
 778        struct scsi_lun eight_bytes_lun;
 779
 780        memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
 781        eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
 782        eight_bytes_lun.scsi_lun[1] = lun & 0xff;
 783
 784        return scsilun_to_int(&eight_bytes_lun);
 785}
 786
 787/*
 788 * Write retransmit retry values into the BUSY_TIMEOUT register.
 789 * - The single-phase retry protocol is supported by all SBP-2 devices, but the
 790 *   default retry_limit value is 0 (i.e. never retry transmission). We write a
 791 *   saner value after logging into the device.
 792 * - The dual-phase retry protocol is optional to implement, and if not
 793 *   supported, writes to the dual-phase portion of the register will be
 794 *   ignored. We try to write the original 1394-1995 default here.
 795 * - In the case of devices that are also SBP-3-compliant, all writes are
 796 *   ignored, as the register is read-only, but contains single-phase retry of
 797 *   15, which is what we're trying to set for all SBP-2 device anyway, so this
 798 *   write attempt is safe and yields more consistent behavior for all devices.
 799 *
 800 * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec,
 801 * and section 6.4 of the SBP-3 spec for further details.
 802 */
 803static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
 804{
 805        struct fw_device *device = target_parent_device(lu->tgt);
 806        __be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT);
 807
 808        fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
 809                           lu->tgt->node_id, lu->generation, device->max_speed,
 810                           CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, &d, 4);
 811}
 812
 813static void sbp2_reconnect(struct work_struct *work);
 814
 815static void sbp2_login(struct work_struct *work)
 816{
 817        struct sbp2_logical_unit *lu =
 818                container_of(work, struct sbp2_logical_unit, work.work);
 819        struct sbp2_target *tgt = lu->tgt;
 820        struct fw_device *device = target_parent_device(tgt);
 821        struct Scsi_Host *shost;
 822        struct scsi_device *sdev;
 823        struct sbp2_login_response response;
 824        int generation, node_id, local_node_id;
 825
 826        if (fw_device_is_shutdown(device))
 827                return;
 828
 829        generation    = device->generation;
 830        smp_rmb();    /* node IDs must not be older than generation */
 831        node_id       = device->node_id;
 832        local_node_id = device->card->node_id;
 833
 834        /* If this is a re-login attempt, log out, or we might be rejected. */
 835        if (lu->has_sdev)
 836                sbp2_send_management_orb(lu, device->node_id, generation,
 837                                SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
 838
 839        if (sbp2_send_management_orb(lu, node_id, generation,
 840                                SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
 841                if (lu->retries++ < 5) {
 842                        sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
 843                } else {
 844                        dev_err(tgt_dev(tgt), "failed to login to LUN %04x\n",
 845                                lu->lun);
 846                        /* Let any waiting I/O fail from now on. */
 847                        sbp2_unblock(lu->tgt);
 848                }
 849                return;
 850        }
 851
 852        tgt->node_id      = node_id;
 853        tgt->address_high = local_node_id << 16;
 854        smp_wmb();        /* node IDs must not be older than generation */
 855        lu->generation    = generation;
 856
 857        lu->command_block_agent_address =
 858                ((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff)
 859                      << 32) | be32_to_cpu(response.command_block_agent.low);
 860        lu->login_id = be32_to_cpu(response.misc) & 0xffff;
 861
 862        dev_notice(tgt_dev(tgt), "logged in to LUN %04x (%d retries)\n",
 863                   lu->lun, lu->retries);
 864
 865        /* set appropriate retry limit(s) in BUSY_TIMEOUT register */
 866        sbp2_set_busy_timeout(lu);
 867
 868        PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
 869        sbp2_agent_reset(lu);
 870
 871        /* This was a re-login. */
 872        if (lu->has_sdev) {
 873                sbp2_cancel_orbs(lu);
 874                sbp2_conditionally_unblock(lu);
 875
 876                return;
 877        }
 878
 879        if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
 880                ssleep(SBP2_INQUIRY_DELAY);
 881
 882        shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
 883        sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
 884        /*
 885         * FIXME:  We are unable to perform reconnects while in sbp2_login().
 886         * Therefore __scsi_add_device() will get into trouble if a bus reset
 887         * happens in parallel.  It will either fail or leave us with an
 888         * unusable sdev.  As a workaround we check for this and retry the
 889         * whole login and SCSI probing.
 890         */
 891
 892        /* Reported error during __scsi_add_device() */
 893        if (IS_ERR(sdev))
 894                goto out_logout_login;
 895
 896        /* Unreported error during __scsi_add_device() */
 897        smp_rmb(); /* get current card generation */
 898        if (generation != device->card->generation) {
 899                scsi_remove_device(sdev);
 900                scsi_device_put(sdev);
 901                goto out_logout_login;
 902        }
 903
 904        /* No error during __scsi_add_device() */
 905        lu->has_sdev = true;
 906        scsi_device_put(sdev);
 907        sbp2_allow_block(lu);
 908
 909        return;
 910
 911 out_logout_login:
 912        smp_rmb(); /* generation may have changed */
 913        generation = device->generation;
 914        smp_rmb(); /* node_id must not be older than generation */
 915
 916        sbp2_send_management_orb(lu, device->node_id, generation,
 917                                 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
 918        /*
 919         * If a bus reset happened, sbp2_update will have requeued
 920         * lu->work already.  Reset the work from reconnect to login.
 921         */
 922        PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
 923}
 924
 925static void sbp2_reconnect(struct work_struct *work)
 926{
 927        struct sbp2_logical_unit *lu =
 928                container_of(work, struct sbp2_logical_unit, work.work);
 929        struct sbp2_target *tgt = lu->tgt;
 930        struct fw_device *device = target_parent_device(tgt);
 931        int generation, node_id, local_node_id;
 932
 933        if (fw_device_is_shutdown(device))
 934                return;
 935
 936        generation    = device->generation;
 937        smp_rmb();    /* node IDs must not be older than generation */
 938        node_id       = device->node_id;
 939        local_node_id = device->card->node_id;
 940
 941        if (sbp2_send_management_orb(lu, node_id, generation,
 942                                     SBP2_RECONNECT_REQUEST,
 943                                     lu->login_id, NULL) < 0) {
 944                /*
 945                 * If reconnect was impossible even though we are in the
 946                 * current generation, fall back and try to log in again.
 947                 *
 948                 * We could check for "Function rejected" status, but
 949                 * looking at the bus generation as simpler and more general.
 950                 */
 951                smp_rmb(); /* get current card generation */
 952                if (generation == device->card->generation ||
 953                    lu->retries++ >= 5) {
 954                        dev_err(tgt_dev(tgt), "failed to reconnect\n");
 955                        lu->retries = 0;
 956                        PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
 957                }
 958                sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
 959
 960                return;
 961        }
 962
 963        tgt->node_id      = node_id;
 964        tgt->address_high = local_node_id << 16;
 965        smp_wmb();        /* node IDs must not be older than generation */
 966        lu->generation    = generation;
 967
 968        dev_notice(tgt_dev(tgt), "reconnected to LUN %04x (%d retries)\n",
 969                   lu->lun, lu->retries);
 970
 971        sbp2_agent_reset(lu);
 972        sbp2_cancel_orbs(lu);
 973        sbp2_conditionally_unblock(lu);
 974}
 975
 976static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
 977{
 978        struct sbp2_logical_unit *lu;
 979
 980        lu = kmalloc(sizeof(*lu), GFP_KERNEL);
 981        if (!lu)
 982                return -ENOMEM;
 983
 984        lu->address_handler.length           = 0x100;
 985        lu->address_handler.address_callback = sbp2_status_write;
 986        lu->address_handler.callback_data    = lu;
 987
 988        if (fw_core_add_address_handler(&lu->address_handler,
 989                                        &fw_high_memory_region) < 0) {
 990                kfree(lu);
 991                return -ENOMEM;
 992        }
 993
 994        lu->tgt      = tgt;
 995        lu->lun      = lun_entry & 0xffff;
 996        lu->login_id = INVALID_LOGIN_ID;
 997        lu->retries  = 0;
 998        lu->has_sdev = false;
 999        lu->blocked  = false;
1000        ++tgt->dont_block;
1001        INIT_LIST_HEAD(&lu->orb_list);
1002        INIT_DELAYED_WORK(&lu->work, sbp2_login);
1003
1004        list_add_tail(&lu->link, &tgt->lu_list);
1005        return 0;
1006}
1007
1008static void sbp2_get_unit_unique_id(struct sbp2_target *tgt,
1009                                    const u32 *leaf)
1010{
1011        if ((leaf[0] & 0xffff0000) == 0x00020000)
1012                tgt->guid = (u64)leaf[1] << 32 | leaf[2];
1013}
1014
1015static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt,
1016                                      const u32 *directory)
1017{
1018        struct fw_csr_iterator ci;
1019        int key, value;
1020
1021        fw_csr_iterator_init(&ci, directory);
1022        while (fw_csr_iterator_next(&ci, &key, &value))
1023                if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
1024                    sbp2_add_logical_unit(tgt, value) < 0)
1025                        return -ENOMEM;
1026        return 0;
1027}
1028
1029static int sbp2_scan_unit_dir(struct sbp2_target *tgt, const u32 *directory,
1030                              u32 *model, u32 *firmware_revision)
1031{
1032        struct fw_csr_iterator ci;
1033        int key, value;
1034
1035        fw_csr_iterator_init(&ci, directory);
1036        while (fw_csr_iterator_next(&ci, &key, &value)) {
1037                switch (key) {
1038
1039                case CSR_DEPENDENT_INFO | CSR_OFFSET:
1040                        tgt->management_agent_address =
1041                                        CSR_REGISTER_BASE + 4 * value;
1042                        break;
1043
1044                case CSR_DIRECTORY_ID:
1045                        tgt->directory_id = value;
1046                        break;
1047
1048                case CSR_MODEL:
1049                        *model = value;
1050                        break;
1051
1052                case SBP2_CSR_FIRMWARE_REVISION:
1053                        *firmware_revision = value;
1054                        break;
1055
1056                case SBP2_CSR_UNIT_CHARACTERISTICS:
1057                        /* the timeout value is stored in 500ms units */
1058                        tgt->mgt_orb_timeout = (value >> 8 & 0xff) * 500;
1059                        break;
1060
1061                case SBP2_CSR_LOGICAL_UNIT_NUMBER:
1062                        if (sbp2_add_logical_unit(tgt, value) < 0)
1063                                return -ENOMEM;
1064                        break;
1065
1066                case SBP2_CSR_UNIT_UNIQUE_ID:
1067                        sbp2_get_unit_unique_id(tgt, ci.p - 1 + value);
1068                        break;
1069
1070                case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
1071                        /* Adjust for the increment in the iterator */
1072                        if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0)
1073                                return -ENOMEM;
1074                        break;
1075                }
1076        }
1077        return 0;
1078}
1079
1080/*
1081 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
1082 * provided in the config rom. Most devices do provide a value, which
1083 * we'll use for login management orbs, but with some sane limits.
1084 */
1085static void sbp2_clamp_management_orb_timeout(struct sbp2_target *tgt)
1086{
1087        unsigned int timeout = tgt->mgt_orb_timeout;
1088
1089        if (timeout > 40000)
1090                dev_notice(tgt_dev(tgt), "%ds mgt_ORB_timeout limited to 40s\n",
1091                           timeout / 1000);
1092
1093        tgt->mgt_orb_timeout = clamp_val(timeout, 5000, 40000);
1094}
1095
1096static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
1097                                  u32 firmware_revision)
1098{
1099        int i;
1100        unsigned int w = sbp2_param_workarounds;
1101
1102        if (w)
1103                dev_notice(tgt_dev(tgt),
1104                           "Please notify linux1394-devel@lists.sf.net "
1105                           "if you need the workarounds parameter\n");
1106
1107        if (w & SBP2_WORKAROUND_OVERRIDE)
1108                goto out;
1109
1110        for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1111
1112                if (sbp2_workarounds_table[i].firmware_revision !=
1113                    (firmware_revision & 0xffffff00))
1114                        continue;
1115
1116                if (sbp2_workarounds_table[i].model != model &&
1117                    sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD)
1118                        continue;
1119
1120                w |= sbp2_workarounds_table[i].workarounds;
1121                break;
1122        }
1123 out:
1124        if (w)
1125                dev_notice(tgt_dev(tgt), "workarounds 0x%x "
1126                           "(firmware_revision 0x%06x, model_id 0x%06x)\n",
1127                           w, firmware_revision, model);
1128        tgt->workarounds = w;
1129}
1130
1131static struct scsi_host_template scsi_driver_template;
1132static int sbp2_remove(struct device *dev);
1133
1134static int sbp2_probe(struct device *dev)
1135{
1136        struct fw_unit *unit = fw_unit(dev);
1137        struct fw_device *device = fw_parent_device(unit);
1138        struct sbp2_target *tgt;
1139        struct sbp2_logical_unit *lu;
1140        struct Scsi_Host *shost;
1141        u32 model, firmware_revision;
1142
1143        /* cannot (or should not) handle targets on the local node */
1144        if (device->is_local)
1145                return -ENODEV;
1146
1147        if (dma_get_max_seg_size(device->card->device) > SBP2_MAX_SEG_SIZE)
1148                BUG_ON(dma_set_max_seg_size(device->card->device,
1149                                            SBP2_MAX_SEG_SIZE));
1150
1151        shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
1152        if (shost == NULL)
1153                return -ENOMEM;
1154
1155        tgt = (struct sbp2_target *)shost->hostdata;
1156        dev_set_drvdata(&unit->device, tgt);
1157        tgt->unit = unit;
1158        INIT_LIST_HEAD(&tgt->lu_list);
1159        tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1160
1161        if (fw_device_enable_phys_dma(device) < 0)
1162                goto fail_shost_put;
1163
1164        shost->max_cmd_len = SBP2_MAX_CDB_SIZE;
1165
1166        if (scsi_add_host(shost, &unit->device) < 0)
1167                goto fail_shost_put;
1168
1169        /* implicit directory ID */
1170        tgt->directory_id = ((unit->directory - device->config_rom) * 4
1171                             + CSR_CONFIG_ROM) & 0xffffff;
1172
1173        firmware_revision = SBP2_ROM_VALUE_MISSING;
1174        model             = SBP2_ROM_VALUE_MISSING;
1175
1176        if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
1177                               &firmware_revision) < 0)
1178                goto fail_remove;
1179
1180        sbp2_clamp_management_orb_timeout(tgt);
1181        sbp2_init_workarounds(tgt, model, firmware_revision);
1182
1183        /*
1184         * At S100 we can do 512 bytes per packet, at S200 1024 bytes,
1185         * and so on up to 4096 bytes.  The SBP-2 max_payload field
1186         * specifies the max payload size as 2 ^ (max_payload + 2), so
1187         * if we set this to max_speed + 7, we get the right value.
1188         */
1189        tgt->max_payload = min3(device->max_speed + 7, 10U,
1190                                device->card->max_receive - 1);
1191
1192        /* Do the login in a workqueue so we can easily reschedule retries. */
1193        list_for_each_entry(lu, &tgt->lu_list, link)
1194                sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1195
1196        return 0;
1197
1198 fail_remove:
1199        sbp2_remove(dev);
1200        return -ENOMEM;
1201
1202 fail_shost_put:
1203        scsi_host_put(shost);
1204        return -ENOMEM;
1205}
1206
1207static void sbp2_update(struct fw_unit *unit)
1208{
1209        struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1210        struct sbp2_logical_unit *lu;
1211
1212        fw_device_enable_phys_dma(fw_parent_device(unit));
1213
1214        /*
1215         * Fw-core serializes sbp2_update() against sbp2_remove().
1216         * Iteration over tgt->lu_list is therefore safe here.
1217         */
1218        list_for_each_entry(lu, &tgt->lu_list, link) {
1219                sbp2_conditionally_block(lu);
1220                lu->retries = 0;
1221                sbp2_queue_work(lu, 0);
1222        }
1223}
1224
1225static int sbp2_remove(struct device *dev)
1226{
1227        struct fw_unit *unit = fw_unit(dev);
1228        struct fw_device *device = fw_parent_device(unit);
1229        struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1230        struct sbp2_logical_unit *lu, *next;
1231        struct Scsi_Host *shost =
1232                container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
1233        struct scsi_device *sdev;
1234
1235        /* prevent deadlocks */
1236        sbp2_unblock(tgt);
1237
1238        list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
1239                cancel_delayed_work_sync(&lu->work);
1240                sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
1241                if (sdev) {
1242                        scsi_remove_device(sdev);
1243                        scsi_device_put(sdev);
1244                }
1245                if (lu->login_id != INVALID_LOGIN_ID) {
1246                        int generation, node_id;
1247                        /*
1248                         * tgt->node_id may be obsolete here if we failed
1249                         * during initial login or after a bus reset where
1250                         * the topology changed.
1251                         */
1252                        generation = device->generation;
1253                        smp_rmb(); /* node_id vs. generation */
1254                        node_id    = device->node_id;
1255                        sbp2_send_management_orb(lu, node_id, generation,
1256                                                 SBP2_LOGOUT_REQUEST,
1257                                                 lu->login_id, NULL);
1258                }
1259                fw_core_remove_address_handler(&lu->address_handler);
1260                list_del(&lu->link);
1261                kfree(lu);
1262        }
1263        scsi_remove_host(shost);
1264        dev_notice(dev, "released target %d:0:0\n", shost->host_no);
1265
1266        scsi_host_put(shost);
1267        return 0;
1268}
1269
1270#define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
1271#define SBP2_SW_VERSION_ENTRY   0x00010483
1272
1273static const struct ieee1394_device_id sbp2_id_table[] = {
1274        {
1275                .match_flags  = IEEE1394_MATCH_SPECIFIER_ID |
1276                                IEEE1394_MATCH_VERSION,
1277                .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1278                .version      = SBP2_SW_VERSION_ENTRY,
1279        },
1280        { }
1281};
1282
1283static struct fw_driver sbp2_driver = {
1284        .driver   = {
1285                .owner  = THIS_MODULE,
1286                .name   = KBUILD_MODNAME,
1287                .bus    = &fw_bus_type,
1288                .probe  = sbp2_probe,
1289                .remove = sbp2_remove,
1290        },
1291        .update   = sbp2_update,
1292        .id_table = sbp2_id_table,
1293};
1294
1295static void sbp2_unmap_scatterlist(struct device *card_device,
1296                                   struct sbp2_command_orb *orb)
1297{
1298        if (scsi_sg_count(orb->cmd))
1299                dma_unmap_sg(card_device, scsi_sglist(orb->cmd),
1300                             scsi_sg_count(orb->cmd),
1301                             orb->cmd->sc_data_direction);
1302
1303        if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT))
1304                dma_unmap_single(card_device, orb->page_table_bus,
1305                                 sizeof(orb->page_table), DMA_TO_DEVICE);
1306}
1307
1308static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1309{
1310        int sam_status;
1311        int sfmt = (sbp2_status[0] >> 6) & 0x03;
1312
1313        if (sfmt == 2 || sfmt == 3) {
1314                /*
1315                 * Reserved for future standardization (2) or
1316                 * Status block format vendor-dependent (3)
1317                 */
1318                return DID_ERROR << 16;
1319        }
1320
1321        sense_data[0] = 0x70 | sfmt | (sbp2_status[1] & 0x80);
1322        sense_data[1] = 0x0;
1323        sense_data[2] = ((sbp2_status[1] << 1) & 0xe0) | (sbp2_status[1] & 0x0f);
1324        sense_data[3] = sbp2_status[4];
1325        sense_data[4] = sbp2_status[5];
1326        sense_data[5] = sbp2_status[6];
1327        sense_data[6] = sbp2_status[7];
1328        sense_data[7] = 10;
1329        sense_data[8] = sbp2_status[8];
1330        sense_data[9] = sbp2_status[9];
1331        sense_data[10] = sbp2_status[10];
1332        sense_data[11] = sbp2_status[11];
1333        sense_data[12] = sbp2_status[2];
1334        sense_data[13] = sbp2_status[3];
1335        sense_data[14] = sbp2_status[12];
1336        sense_data[15] = sbp2_status[13];
1337
1338        sam_status = sbp2_status[0] & 0x3f;
1339
1340        switch (sam_status) {
1341        case SAM_STAT_GOOD:
1342        case SAM_STAT_CHECK_CONDITION:
1343        case SAM_STAT_CONDITION_MET:
1344        case SAM_STAT_BUSY:
1345        case SAM_STAT_RESERVATION_CONFLICT:
1346        case SAM_STAT_COMMAND_TERMINATED:
1347                return DID_OK << 16 | sam_status;
1348
1349        default:
1350                return DID_ERROR << 16;
1351        }
1352}
1353
1354static void complete_command_orb(struct sbp2_orb *base_orb,
1355                                 struct sbp2_status *status)
1356{
1357        struct sbp2_command_orb *orb =
1358                container_of(base_orb, struct sbp2_command_orb, base);
1359        struct fw_device *device = target_parent_device(orb->lu->tgt);
1360        int result;
1361
1362        if (status != NULL) {
1363                if (STATUS_GET_DEAD(*status))
1364                        sbp2_agent_reset_no_wait(orb->lu);
1365
1366                switch (STATUS_GET_RESPONSE(*status)) {
1367                case SBP2_STATUS_REQUEST_COMPLETE:
1368                        result = DID_OK << 16;
1369                        break;
1370                case SBP2_STATUS_TRANSPORT_FAILURE:
1371                        result = DID_BUS_BUSY << 16;
1372                        break;
1373                case SBP2_STATUS_ILLEGAL_REQUEST:
1374                case SBP2_STATUS_VENDOR_DEPENDENT:
1375                default:
1376                        result = DID_ERROR << 16;
1377                        break;
1378                }
1379
1380                if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1381                        result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1382                                                           orb->cmd->sense_buffer);
1383        } else {
1384                /*
1385                 * If the orb completes with status == NULL, something
1386                 * went wrong, typically a bus reset happened mid-orb
1387                 * or when sending the write (less likely).
1388                 */
1389                result = DID_BUS_BUSY << 16;
1390                sbp2_conditionally_block(orb->lu);
1391        }
1392
1393        dma_unmap_single(device->card->device, orb->base.request_bus,
1394                         sizeof(orb->request), DMA_TO_DEVICE);
1395        sbp2_unmap_scatterlist(device->card->device, orb);
1396
1397        orb->cmd->result = result;
1398        orb->cmd->scsi_done(orb->cmd);
1399}
1400
1401static int sbp2_map_scatterlist(struct sbp2_command_orb *orb,
1402                struct fw_device *device, struct sbp2_logical_unit *lu)
1403{
1404        struct scatterlist *sg = scsi_sglist(orb->cmd);
1405        int i, n;
1406
1407        n = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1408                       orb->cmd->sc_data_direction);
1409        if (n == 0)
1410                goto fail;
1411
1412        /*
1413         * Handle the special case where there is only one element in
1414         * the scatter list by converting it to an immediate block
1415         * request. This is also a workaround for broken devices such
1416         * as the second generation iPod which doesn't support page
1417         * tables.
1418         */
1419        if (n == 1) {
1420                orb->request.data_descriptor.high =
1421                        cpu_to_be32(lu->tgt->address_high);
1422                orb->request.data_descriptor.low  =
1423                        cpu_to_be32(sg_dma_address(sg));
1424                orb->request.misc |=
1425                        cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)));
1426                return 0;
1427        }
1428
1429        for_each_sg(sg, sg, n, i) {
1430                orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16);
1431                orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg));
1432        }
1433
1434        orb->page_table_bus =
1435                dma_map_single(device->card->device, orb->page_table,
1436                               sizeof(orb->page_table), DMA_TO_DEVICE);
1437        if (dma_mapping_error(device->card->device, orb->page_table_bus))
1438                goto fail_page_table;
1439
1440        /*
1441         * The data_descriptor pointer is the one case where we need
1442         * to fill in the node ID part of the address.  All other
1443         * pointers assume that the data referenced reside on the
1444         * initiator (i.e. us), but data_descriptor can refer to data
1445         * on other nodes so we need to put our ID in descriptor.high.
1446         */
1447        orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high);
1448        orb->request.data_descriptor.low  = cpu_to_be32(orb->page_table_bus);
1449        orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT |
1450                                         COMMAND_ORB_DATA_SIZE(n));
1451
1452        return 0;
1453
1454 fail_page_table:
1455        dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
1456                     scsi_sg_count(orb->cmd), orb->cmd->sc_data_direction);
1457 fail:
1458        return -ENOMEM;
1459}
1460
1461/* SCSI stack integration */
1462
1463static int sbp2_scsi_queuecommand(struct Scsi_Host *shost,
1464                                  struct scsi_cmnd *cmd)
1465{
1466        struct sbp2_logical_unit *lu = cmd->device->hostdata;
1467        struct fw_device *device = target_parent_device(lu->tgt);
1468        struct sbp2_command_orb *orb;
1469        int generation, retval = SCSI_MLQUEUE_HOST_BUSY;
1470
1471        /*
1472         * Bidirectional commands are not yet implemented, and unknown
1473         * transfer direction not handled.
1474         */
1475        if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1476                dev_err(lu_dev(lu), "cannot handle bidirectional command\n");
1477                cmd->result = DID_ERROR << 16;
1478                cmd->scsi_done(cmd);
1479                return 0;
1480        }
1481
1482        orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1483        if (orb == NULL) {
1484                dev_notice(lu_dev(lu), "failed to alloc ORB\n");
1485                return SCSI_MLQUEUE_HOST_BUSY;
1486        }
1487
1488        /* Initialize rcode to something not RCODE_COMPLETE. */
1489        orb->base.rcode = -1;
1490        kref_init(&orb->base.kref);
1491        orb->lu = lu;
1492        orb->cmd = cmd;
1493        orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL);
1494        orb->request.misc = cpu_to_be32(
1495                COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) |
1496                COMMAND_ORB_SPEED(device->max_speed) |
1497                COMMAND_ORB_NOTIFY);
1498
1499        if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1500                orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION);
1501
1502        generation = device->generation;
1503        smp_rmb();    /* sbp2_map_scatterlist looks at tgt->address_high */
1504
1505        if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1506                goto out;
1507
1508        memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len);
1509
1510        orb->base.callback = complete_command_orb;
1511        orb->base.request_bus =
1512                dma_map_single(device->card->device, &orb->request,
1513                               sizeof(orb->request), DMA_TO_DEVICE);
1514        if (dma_mapping_error(device->card->device, orb->base.request_bus)) {
1515                sbp2_unmap_scatterlist(device->card->device, orb);
1516                goto out;
1517        }
1518
1519        sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation,
1520                      lu->command_block_agent_address + SBP2_ORB_POINTER);
1521        retval = 0;
1522 out:
1523        kref_put(&orb->base.kref, free_orb);
1524        return retval;
1525}
1526
1527static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1528{
1529        struct sbp2_logical_unit *lu = sdev->hostdata;
1530
1531        /* (Re-)Adding logical units via the SCSI stack is not supported. */
1532        if (!lu)
1533                return -ENOSYS;
1534
1535        sdev->allow_restart = 1;
1536
1537        /* SBP-2 requires quadlet alignment of the data buffers. */
1538        blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
1539
1540        if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1541                sdev->inquiry_len = 36;
1542
1543        return 0;
1544}
1545
1546static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1547{
1548        struct sbp2_logical_unit *lu = sdev->hostdata;
1549
1550        sdev->use_10_for_rw = 1;
1551
1552        if (sbp2_param_exclusive_login)
1553                sdev->manage_start_stop = 1;
1554
1555        if (sdev->type == TYPE_ROM)
1556                sdev->use_10_for_ms = 1;
1557
1558        if (sdev->type == TYPE_DISK &&
1559            lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1560                sdev->skip_ms_page_8 = 1;
1561
1562        if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1563                sdev->fix_capacity = 1;
1564
1565        if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
1566                sdev->start_stop_pwr_cond = 1;
1567
1568        if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1569                blk_queue_max_hw_sectors(sdev->request_queue, 128 * 1024 / 512);
1570
1571        blk_queue_max_segment_size(sdev->request_queue, SBP2_MAX_SEG_SIZE);
1572
1573        return 0;
1574}
1575
1576/*
1577 * Called by scsi stack when something has really gone wrong.  Usually
1578 * called when a command has timed-out for some reason.
1579 */
1580static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1581{
1582        struct sbp2_logical_unit *lu = cmd->device->hostdata;
1583
1584        dev_notice(lu_dev(lu), "sbp2_scsi_abort\n");
1585        sbp2_agent_reset(lu);
1586        sbp2_cancel_orbs(lu);
1587
1588        return SUCCESS;
1589}
1590
1591/*
1592 * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1593 * u64 EUI-64 : u24 directory_ID : u16 LUN  (all printed in hexadecimal)
1594 *
1595 * This is the concatenation of target port identifier and logical unit
1596 * identifier as per SAM-2...SAM-4 annex A.
1597 */
1598static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
1599                        struct device_attribute *attr, char *buf)
1600{
1601        struct scsi_device *sdev = to_scsi_device(dev);
1602        struct sbp2_logical_unit *lu;
1603
1604        if (!sdev)
1605                return 0;
1606
1607        lu = sdev->hostdata;
1608
1609        return sprintf(buf, "%016llx:%06x:%04x\n",
1610                        (unsigned long long)lu->tgt->guid,
1611                        lu->tgt->directory_id, lu->lun);
1612}
1613
1614static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1615
1616static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1617        &dev_attr_ieee1394_id,
1618        NULL
1619};
1620
1621static struct scsi_host_template scsi_driver_template = {
1622        .module                 = THIS_MODULE,
1623        .name                   = "SBP-2 IEEE-1394",
1624        .proc_name              = "sbp2",
1625        .queuecommand           = sbp2_scsi_queuecommand,
1626        .slave_alloc            = sbp2_scsi_slave_alloc,
1627        .slave_configure        = sbp2_scsi_slave_configure,
1628        .eh_abort_handler       = sbp2_scsi_abort,
1629        .this_id                = -1,
1630        .sg_tablesize           = SG_ALL,
1631        .use_clustering         = ENABLE_CLUSTERING,
1632        .cmd_per_lun            = 1,
1633        .can_queue              = 1,
1634        .sdev_attrs             = sbp2_scsi_sysfs_attrs,
1635};
1636
1637MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1638MODULE_DESCRIPTION("SCSI over IEEE1394");
1639MODULE_LICENSE("GPL");
1640MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1641
1642/* Provide a module alias so root-on-sbp2 initrds don't break. */
1643#ifndef CONFIG_IEEE1394_SBP2_MODULE
1644MODULE_ALIAS("sbp2");
1645#endif
1646
1647static int __init sbp2_init(void)
1648{
1649        return driver_register(&sbp2_driver.driver);
1650}
1651
1652static void __exit sbp2_cleanup(void)
1653{
1654        driver_unregister(&sbp2_driver.driver);
1655}
1656
1657module_init(sbp2_init);
1658module_exit(sbp2_cleanup);
1659