linux/drivers/md/persistent-data/dm-btree.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2011 Red Hat, Inc.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm-btree-internal.h"
   8#include "dm-space-map.h"
   9#include "dm-transaction-manager.h"
  10
  11#include <linux/export.h>
  12#include <linux/device-mapper.h>
  13
  14#define DM_MSG_PREFIX "btree"
  15
  16/*----------------------------------------------------------------
  17 * Array manipulation
  18 *--------------------------------------------------------------*/
  19static void memcpy_disk(void *dest, const void *src, size_t len)
  20        __dm_written_to_disk(src)
  21{
  22        memcpy(dest, src, len);
  23        __dm_unbless_for_disk(src);
  24}
  25
  26static void array_insert(void *base, size_t elt_size, unsigned nr_elts,
  27                         unsigned index, void *elt)
  28        __dm_written_to_disk(elt)
  29{
  30        if (index < nr_elts)
  31                memmove(base + (elt_size * (index + 1)),
  32                        base + (elt_size * index),
  33                        (nr_elts - index) * elt_size);
  34
  35        memcpy_disk(base + (elt_size * index), elt, elt_size);
  36}
  37
  38/*----------------------------------------------------------------*/
  39
  40/* makes the assumption that no two keys are the same. */
  41static int bsearch(struct node *n, uint64_t key, int want_hi)
  42{
  43        int lo = -1, hi = le32_to_cpu(n->header.nr_entries);
  44
  45        while (hi - lo > 1) {
  46                int mid = lo + ((hi - lo) / 2);
  47                uint64_t mid_key = le64_to_cpu(n->keys[mid]);
  48
  49                if (mid_key == key)
  50                        return mid;
  51
  52                if (mid_key < key)
  53                        lo = mid;
  54                else
  55                        hi = mid;
  56        }
  57
  58        return want_hi ? hi : lo;
  59}
  60
  61int lower_bound(struct node *n, uint64_t key)
  62{
  63        return bsearch(n, key, 0);
  64}
  65
  66void inc_children(struct dm_transaction_manager *tm, struct node *n,
  67                  struct dm_btree_value_type *vt)
  68{
  69        unsigned i;
  70        uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
  71
  72        if (le32_to_cpu(n->header.flags) & INTERNAL_NODE)
  73                for (i = 0; i < nr_entries; i++)
  74                        dm_tm_inc(tm, value64(n, i));
  75        else if (vt->inc)
  76                for (i = 0; i < nr_entries; i++)
  77                        vt->inc(vt->context, value_ptr(n, i));
  78}
  79
  80static int insert_at(size_t value_size, struct node *node, unsigned index,
  81                      uint64_t key, void *value)
  82                      __dm_written_to_disk(value)
  83{
  84        uint32_t nr_entries = le32_to_cpu(node->header.nr_entries);
  85        __le64 key_le = cpu_to_le64(key);
  86
  87        if (index > nr_entries ||
  88            index >= le32_to_cpu(node->header.max_entries)) {
  89                DMERR("too many entries in btree node for insert");
  90                __dm_unbless_for_disk(value);
  91                return -ENOMEM;
  92        }
  93
  94        __dm_bless_for_disk(&key_le);
  95
  96        array_insert(node->keys, sizeof(*node->keys), nr_entries, index, &key_le);
  97        array_insert(value_base(node), value_size, nr_entries, index, value);
  98        node->header.nr_entries = cpu_to_le32(nr_entries + 1);
  99
 100        return 0;
 101}
 102
 103/*----------------------------------------------------------------*/
 104
 105/*
 106 * We want 3n entries (for some n).  This works more nicely for repeated
 107 * insert remove loops than (2n + 1).
 108 */
 109static uint32_t calc_max_entries(size_t value_size, size_t block_size)
 110{
 111        uint32_t total, n;
 112        size_t elt_size = sizeof(uint64_t) + value_size; /* key + value */
 113
 114        block_size -= sizeof(struct node_header);
 115        total = block_size / elt_size;
 116        n = total / 3;          /* rounds down */
 117
 118        return 3 * n;
 119}
 120
 121int dm_btree_empty(struct dm_btree_info *info, dm_block_t *root)
 122{
 123        int r;
 124        struct dm_block *b;
 125        struct node *n;
 126        size_t block_size;
 127        uint32_t max_entries;
 128
 129        r = new_block(info, &b);
 130        if (r < 0)
 131                return r;
 132
 133        block_size = dm_bm_block_size(dm_tm_get_bm(info->tm));
 134        max_entries = calc_max_entries(info->value_type.size, block_size);
 135
 136        n = dm_block_data(b);
 137        memset(n, 0, block_size);
 138        n->header.flags = cpu_to_le32(LEAF_NODE);
 139        n->header.nr_entries = cpu_to_le32(0);
 140        n->header.max_entries = cpu_to_le32(max_entries);
 141        n->header.value_size = cpu_to_le32(info->value_type.size);
 142
 143        *root = dm_block_location(b);
 144        return unlock_block(info, b);
 145}
 146EXPORT_SYMBOL_GPL(dm_btree_empty);
 147
 148/*----------------------------------------------------------------*/
 149
 150/*
 151 * Deletion uses a recursive algorithm, since we have limited stack space
 152 * we explicitly manage our own stack on the heap.
 153 */
 154#define MAX_SPINE_DEPTH 64
 155struct frame {
 156        struct dm_block *b;
 157        struct node *n;
 158        unsigned level;
 159        unsigned nr_children;
 160        unsigned current_child;
 161};
 162
 163struct del_stack {
 164        struct dm_transaction_manager *tm;
 165        int top;
 166        struct frame spine[MAX_SPINE_DEPTH];
 167};
 168
 169static int top_frame(struct del_stack *s, struct frame **f)
 170{
 171        if (s->top < 0) {
 172                DMERR("btree deletion stack empty");
 173                return -EINVAL;
 174        }
 175
 176        *f = s->spine + s->top;
 177
 178        return 0;
 179}
 180
 181static int unprocessed_frames(struct del_stack *s)
 182{
 183        return s->top >= 0;
 184}
 185
 186static int push_frame(struct del_stack *s, dm_block_t b, unsigned level)
 187{
 188        int r;
 189        uint32_t ref_count;
 190
 191        if (s->top >= MAX_SPINE_DEPTH - 1) {
 192                DMERR("btree deletion stack out of memory");
 193                return -ENOMEM;
 194        }
 195
 196        r = dm_tm_ref(s->tm, b, &ref_count);
 197        if (r)
 198                return r;
 199
 200        if (ref_count > 1)
 201                /*
 202                 * This is a shared node, so we can just decrement it's
 203                 * reference counter and leave the children.
 204                 */
 205                dm_tm_dec(s->tm, b);
 206
 207        else {
 208                struct frame *f = s->spine + ++s->top;
 209
 210                r = dm_tm_read_lock(s->tm, b, &btree_node_validator, &f->b);
 211                if (r) {
 212                        s->top--;
 213                        return r;
 214                }
 215
 216                f->n = dm_block_data(f->b);
 217                f->level = level;
 218                f->nr_children = le32_to_cpu(f->n->header.nr_entries);
 219                f->current_child = 0;
 220        }
 221
 222        return 0;
 223}
 224
 225static void pop_frame(struct del_stack *s)
 226{
 227        struct frame *f = s->spine + s->top--;
 228
 229        dm_tm_dec(s->tm, dm_block_location(f->b));
 230        dm_tm_unlock(s->tm, f->b);
 231}
 232
 233int dm_btree_del(struct dm_btree_info *info, dm_block_t root)
 234{
 235        int r;
 236        struct del_stack *s;
 237
 238        s = kmalloc(sizeof(*s), GFP_KERNEL);
 239        if (!s)
 240                return -ENOMEM;
 241        s->tm = info->tm;
 242        s->top = -1;
 243
 244        r = push_frame(s, root, 1);
 245        if (r)
 246                goto out;
 247
 248        while (unprocessed_frames(s)) {
 249                uint32_t flags;
 250                struct frame *f;
 251                dm_block_t b;
 252
 253                r = top_frame(s, &f);
 254                if (r)
 255                        goto out;
 256
 257                if (f->current_child >= f->nr_children) {
 258                        pop_frame(s);
 259                        continue;
 260                }
 261
 262                flags = le32_to_cpu(f->n->header.flags);
 263                if (flags & INTERNAL_NODE) {
 264                        b = value64(f->n, f->current_child);
 265                        f->current_child++;
 266                        r = push_frame(s, b, f->level);
 267                        if (r)
 268                                goto out;
 269
 270                } else if (f->level != (info->levels - 1)) {
 271                        b = value64(f->n, f->current_child);
 272                        f->current_child++;
 273                        r = push_frame(s, b, f->level + 1);
 274                        if (r)
 275                                goto out;
 276
 277                } else {
 278                        if (info->value_type.dec) {
 279                                unsigned i;
 280
 281                                for (i = 0; i < f->nr_children; i++)
 282                                        info->value_type.dec(info->value_type.context,
 283                                                             value_ptr(f->n, i));
 284                        }
 285                        f->current_child = f->nr_children;
 286                }
 287        }
 288
 289out:
 290        kfree(s);
 291        return r;
 292}
 293EXPORT_SYMBOL_GPL(dm_btree_del);
 294
 295/*----------------------------------------------------------------*/
 296
 297static int btree_lookup_raw(struct ro_spine *s, dm_block_t block, uint64_t key,
 298                            int (*search_fn)(struct node *, uint64_t),
 299                            uint64_t *result_key, void *v, size_t value_size)
 300{
 301        int i, r;
 302        uint32_t flags, nr_entries;
 303
 304        do {
 305                r = ro_step(s, block);
 306                if (r < 0)
 307                        return r;
 308
 309                i = search_fn(ro_node(s), key);
 310
 311                flags = le32_to_cpu(ro_node(s)->header.flags);
 312                nr_entries = le32_to_cpu(ro_node(s)->header.nr_entries);
 313                if (i < 0 || i >= nr_entries)
 314                        return -ENODATA;
 315
 316                if (flags & INTERNAL_NODE)
 317                        block = value64(ro_node(s), i);
 318
 319        } while (!(flags & LEAF_NODE));
 320
 321        *result_key = le64_to_cpu(ro_node(s)->keys[i]);
 322        memcpy(v, value_ptr(ro_node(s), i), value_size);
 323
 324        return 0;
 325}
 326
 327int dm_btree_lookup(struct dm_btree_info *info, dm_block_t root,
 328                    uint64_t *keys, void *value_le)
 329{
 330        unsigned level, last_level = info->levels - 1;
 331        int r = -ENODATA;
 332        uint64_t rkey;
 333        __le64 internal_value_le;
 334        struct ro_spine spine;
 335
 336        init_ro_spine(&spine, info);
 337        for (level = 0; level < info->levels; level++) {
 338                size_t size;
 339                void *value_p;
 340
 341                if (level == last_level) {
 342                        value_p = value_le;
 343                        size = info->value_type.size;
 344
 345                } else {
 346                        value_p = &internal_value_le;
 347                        size = sizeof(uint64_t);
 348                }
 349
 350                r = btree_lookup_raw(&spine, root, keys[level],
 351                                     lower_bound, &rkey,
 352                                     value_p, size);
 353
 354                if (!r) {
 355                        if (rkey != keys[level]) {
 356                                exit_ro_spine(&spine);
 357                                return -ENODATA;
 358                        }
 359                } else {
 360                        exit_ro_spine(&spine);
 361                        return r;
 362                }
 363
 364                root = le64_to_cpu(internal_value_le);
 365        }
 366        exit_ro_spine(&spine);
 367
 368        return r;
 369}
 370EXPORT_SYMBOL_GPL(dm_btree_lookup);
 371
 372/*
 373 * Splits a node by creating a sibling node and shifting half the nodes
 374 * contents across.  Assumes there is a parent node, and it has room for
 375 * another child.
 376 *
 377 * Before:
 378 *        +--------+
 379 *        | Parent |
 380 *        +--------+
 381 *           |
 382 *           v
 383 *      +----------+
 384 *      | A ++++++ |
 385 *      +----------+
 386 *
 387 *
 388 * After:
 389 *              +--------+
 390 *              | Parent |
 391 *              +--------+
 392 *                |     |
 393 *                v     +------+
 394 *          +---------+        |
 395 *          | A* +++  |        v
 396 *          +---------+   +-------+
 397 *                        | B +++ |
 398 *                        +-------+
 399 *
 400 * Where A* is a shadow of A.
 401 */
 402static int btree_split_sibling(struct shadow_spine *s, dm_block_t root,
 403                               unsigned parent_index, uint64_t key)
 404{
 405        int r;
 406        size_t size;
 407        unsigned nr_left, nr_right;
 408        struct dm_block *left, *right, *parent;
 409        struct node *ln, *rn, *pn;
 410        __le64 location;
 411
 412        left = shadow_current(s);
 413
 414        r = new_block(s->info, &right);
 415        if (r < 0)
 416                return r;
 417
 418        ln = dm_block_data(left);
 419        rn = dm_block_data(right);
 420
 421        nr_left = le32_to_cpu(ln->header.nr_entries) / 2;
 422        nr_right = le32_to_cpu(ln->header.nr_entries) - nr_left;
 423
 424        ln->header.nr_entries = cpu_to_le32(nr_left);
 425
 426        rn->header.flags = ln->header.flags;
 427        rn->header.nr_entries = cpu_to_le32(nr_right);
 428        rn->header.max_entries = ln->header.max_entries;
 429        rn->header.value_size = ln->header.value_size;
 430        memcpy(rn->keys, ln->keys + nr_left, nr_right * sizeof(rn->keys[0]));
 431
 432        size = le32_to_cpu(ln->header.flags) & INTERNAL_NODE ?
 433                sizeof(uint64_t) : s->info->value_type.size;
 434        memcpy(value_ptr(rn, 0), value_ptr(ln, nr_left),
 435               size * nr_right);
 436
 437        /*
 438         * Patch up the parent
 439         */
 440        parent = shadow_parent(s);
 441
 442        pn = dm_block_data(parent);
 443        location = cpu_to_le64(dm_block_location(left));
 444        __dm_bless_for_disk(&location);
 445        memcpy_disk(value_ptr(pn, parent_index),
 446                    &location, sizeof(__le64));
 447
 448        location = cpu_to_le64(dm_block_location(right));
 449        __dm_bless_for_disk(&location);
 450
 451        r = insert_at(sizeof(__le64), pn, parent_index + 1,
 452                      le64_to_cpu(rn->keys[0]), &location);
 453        if (r)
 454                return r;
 455
 456        if (key < le64_to_cpu(rn->keys[0])) {
 457                unlock_block(s->info, right);
 458                s->nodes[1] = left;
 459        } else {
 460                unlock_block(s->info, left);
 461                s->nodes[1] = right;
 462        }
 463
 464        return 0;
 465}
 466
 467/*
 468 * Splits a node by creating two new children beneath the given node.
 469 *
 470 * Before:
 471 *        +----------+
 472 *        | A ++++++ |
 473 *        +----------+
 474 *
 475 *
 476 * After:
 477 *      +------------+
 478 *      | A (shadow) |
 479 *      +------------+
 480 *          |   |
 481 *   +------+   +----+
 482 *   |               |
 483 *   v               v
 484 * +-------+     +-------+
 485 * | B +++ |     | C +++ |
 486 * +-------+     +-------+
 487 */
 488static int btree_split_beneath(struct shadow_spine *s, uint64_t key)
 489{
 490        int r;
 491        size_t size;
 492        unsigned nr_left, nr_right;
 493        struct dm_block *left, *right, *new_parent;
 494        struct node *pn, *ln, *rn;
 495        __le64 val;
 496
 497        new_parent = shadow_current(s);
 498
 499        r = new_block(s->info, &left);
 500        if (r < 0)
 501                return r;
 502
 503        r = new_block(s->info, &right);
 504        if (r < 0) {
 505                /* FIXME: put left */
 506                return r;
 507        }
 508
 509        pn = dm_block_data(new_parent);
 510        ln = dm_block_data(left);
 511        rn = dm_block_data(right);
 512
 513        nr_left = le32_to_cpu(pn->header.nr_entries) / 2;
 514        nr_right = le32_to_cpu(pn->header.nr_entries) - nr_left;
 515
 516        ln->header.flags = pn->header.flags;
 517        ln->header.nr_entries = cpu_to_le32(nr_left);
 518        ln->header.max_entries = pn->header.max_entries;
 519        ln->header.value_size = pn->header.value_size;
 520
 521        rn->header.flags = pn->header.flags;
 522        rn->header.nr_entries = cpu_to_le32(nr_right);
 523        rn->header.max_entries = pn->header.max_entries;
 524        rn->header.value_size = pn->header.value_size;
 525
 526        memcpy(ln->keys, pn->keys, nr_left * sizeof(pn->keys[0]));
 527        memcpy(rn->keys, pn->keys + nr_left, nr_right * sizeof(pn->keys[0]));
 528
 529        size = le32_to_cpu(pn->header.flags) & INTERNAL_NODE ?
 530                sizeof(__le64) : s->info->value_type.size;
 531        memcpy(value_ptr(ln, 0), value_ptr(pn, 0), nr_left * size);
 532        memcpy(value_ptr(rn, 0), value_ptr(pn, nr_left),
 533               nr_right * size);
 534
 535        /* new_parent should just point to l and r now */
 536        pn->header.flags = cpu_to_le32(INTERNAL_NODE);
 537        pn->header.nr_entries = cpu_to_le32(2);
 538        pn->header.max_entries = cpu_to_le32(
 539                calc_max_entries(sizeof(__le64),
 540                                 dm_bm_block_size(
 541                                         dm_tm_get_bm(s->info->tm))));
 542        pn->header.value_size = cpu_to_le32(sizeof(__le64));
 543
 544        val = cpu_to_le64(dm_block_location(left));
 545        __dm_bless_for_disk(&val);
 546        pn->keys[0] = ln->keys[0];
 547        memcpy_disk(value_ptr(pn, 0), &val, sizeof(__le64));
 548
 549        val = cpu_to_le64(dm_block_location(right));
 550        __dm_bless_for_disk(&val);
 551        pn->keys[1] = rn->keys[0];
 552        memcpy_disk(value_ptr(pn, 1), &val, sizeof(__le64));
 553
 554        /*
 555         * rejig the spine.  This is ugly, since it knows too
 556         * much about the spine
 557         */
 558        if (s->nodes[0] != new_parent) {
 559                unlock_block(s->info, s->nodes[0]);
 560                s->nodes[0] = new_parent;
 561        }
 562        if (key < le64_to_cpu(rn->keys[0])) {
 563                unlock_block(s->info, right);
 564                s->nodes[1] = left;
 565        } else {
 566                unlock_block(s->info, left);
 567                s->nodes[1] = right;
 568        }
 569        s->count = 2;
 570
 571        return 0;
 572}
 573
 574static int btree_insert_raw(struct shadow_spine *s, dm_block_t root,
 575                            struct dm_btree_value_type *vt,
 576                            uint64_t key, unsigned *index)
 577{
 578        int r, i = *index, top = 1;
 579        struct node *node;
 580
 581        for (;;) {
 582                r = shadow_step(s, root, vt);
 583                if (r < 0)
 584                        return r;
 585
 586                node = dm_block_data(shadow_current(s));
 587
 588                /*
 589                 * We have to patch up the parent node, ugly, but I don't
 590                 * see a way to do this automatically as part of the spine
 591                 * op.
 592                 */
 593                if (shadow_has_parent(s) && i >= 0) { /* FIXME: second clause unness. */
 594                        __le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
 595
 596                        __dm_bless_for_disk(&location);
 597                        memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i),
 598                                    &location, sizeof(__le64));
 599                }
 600
 601                node = dm_block_data(shadow_current(s));
 602
 603                if (node->header.nr_entries == node->header.max_entries) {
 604                        if (top)
 605                                r = btree_split_beneath(s, key);
 606                        else
 607                                r = btree_split_sibling(s, root, i, key);
 608
 609                        if (r < 0)
 610                                return r;
 611                }
 612
 613                node = dm_block_data(shadow_current(s));
 614
 615                i = lower_bound(node, key);
 616
 617                if (le32_to_cpu(node->header.flags) & LEAF_NODE)
 618                        break;
 619
 620                if (i < 0) {
 621                        /* change the bounds on the lowest key */
 622                        node->keys[0] = cpu_to_le64(key);
 623                        i = 0;
 624                }
 625
 626                root = value64(node, i);
 627                top = 0;
 628        }
 629
 630        if (i < 0 || le64_to_cpu(node->keys[i]) != key)
 631                i++;
 632
 633        *index = i;
 634        return 0;
 635}
 636
 637static int insert(struct dm_btree_info *info, dm_block_t root,
 638                  uint64_t *keys, void *value, dm_block_t *new_root,
 639                  int *inserted)
 640                  __dm_written_to_disk(value)
 641{
 642        int r, need_insert;
 643        unsigned level, index = -1, last_level = info->levels - 1;
 644        dm_block_t block = root;
 645        struct shadow_spine spine;
 646        struct node *n;
 647        struct dm_btree_value_type le64_type;
 648
 649        le64_type.context = NULL;
 650        le64_type.size = sizeof(__le64);
 651        le64_type.inc = NULL;
 652        le64_type.dec = NULL;
 653        le64_type.equal = NULL;
 654
 655        init_shadow_spine(&spine, info);
 656
 657        for (level = 0; level < (info->levels - 1); level++) {
 658                r = btree_insert_raw(&spine, block, &le64_type, keys[level], &index);
 659                if (r < 0)
 660                        goto bad;
 661
 662                n = dm_block_data(shadow_current(&spine));
 663                need_insert = ((index >= le32_to_cpu(n->header.nr_entries)) ||
 664                               (le64_to_cpu(n->keys[index]) != keys[level]));
 665
 666                if (need_insert) {
 667                        dm_block_t new_tree;
 668                        __le64 new_le;
 669
 670                        r = dm_btree_empty(info, &new_tree);
 671                        if (r < 0)
 672                                goto bad;
 673
 674                        new_le = cpu_to_le64(new_tree);
 675                        __dm_bless_for_disk(&new_le);
 676
 677                        r = insert_at(sizeof(uint64_t), n, index,
 678                                      keys[level], &new_le);
 679                        if (r)
 680                                goto bad;
 681                }
 682
 683                if (level < last_level)
 684                        block = value64(n, index);
 685        }
 686
 687        r = btree_insert_raw(&spine, block, &info->value_type,
 688                             keys[level], &index);
 689        if (r < 0)
 690                goto bad;
 691
 692        n = dm_block_data(shadow_current(&spine));
 693        need_insert = ((index >= le32_to_cpu(n->header.nr_entries)) ||
 694                       (le64_to_cpu(n->keys[index]) != keys[level]));
 695
 696        if (need_insert) {
 697                if (inserted)
 698                        *inserted = 1;
 699
 700                r = insert_at(info->value_type.size, n, index,
 701                              keys[level], value);
 702                if (r)
 703                        goto bad_unblessed;
 704        } else {
 705                if (inserted)
 706                        *inserted = 0;
 707
 708                if (info->value_type.dec &&
 709                    (!info->value_type.equal ||
 710                     !info->value_type.equal(
 711                             info->value_type.context,
 712                             value_ptr(n, index),
 713                             value))) {
 714                        info->value_type.dec(info->value_type.context,
 715                                             value_ptr(n, index));
 716                }
 717                memcpy_disk(value_ptr(n, index),
 718                            value, info->value_type.size);
 719        }
 720
 721        *new_root = shadow_root(&spine);
 722        exit_shadow_spine(&spine);
 723
 724        return 0;
 725
 726bad:
 727        __dm_unbless_for_disk(value);
 728bad_unblessed:
 729        exit_shadow_spine(&spine);
 730        return r;
 731}
 732
 733int dm_btree_insert(struct dm_btree_info *info, dm_block_t root,
 734                    uint64_t *keys, void *value, dm_block_t *new_root)
 735                    __dm_written_to_disk(value)
 736{
 737        return insert(info, root, keys, value, new_root, NULL);
 738}
 739EXPORT_SYMBOL_GPL(dm_btree_insert);
 740
 741int dm_btree_insert_notify(struct dm_btree_info *info, dm_block_t root,
 742                           uint64_t *keys, void *value, dm_block_t *new_root,
 743                           int *inserted)
 744                           __dm_written_to_disk(value)
 745{
 746        return insert(info, root, keys, value, new_root, inserted);
 747}
 748EXPORT_SYMBOL_GPL(dm_btree_insert_notify);
 749
 750/*----------------------------------------------------------------*/
 751
 752static int find_highest_key(struct ro_spine *s, dm_block_t block,
 753                            uint64_t *result_key, dm_block_t *next_block)
 754{
 755        int i, r;
 756        uint32_t flags;
 757
 758        do {
 759                r = ro_step(s, block);
 760                if (r < 0)
 761                        return r;
 762
 763                flags = le32_to_cpu(ro_node(s)->header.flags);
 764                i = le32_to_cpu(ro_node(s)->header.nr_entries);
 765                if (!i)
 766                        return -ENODATA;
 767                else
 768                        i--;
 769
 770                *result_key = le64_to_cpu(ro_node(s)->keys[i]);
 771                if (next_block || flags & INTERNAL_NODE)
 772                        block = value64(ro_node(s), i);
 773
 774        } while (flags & INTERNAL_NODE);
 775
 776        if (next_block)
 777                *next_block = block;
 778        return 0;
 779}
 780
 781int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root,
 782                              uint64_t *result_keys)
 783{
 784        int r = 0, count = 0, level;
 785        struct ro_spine spine;
 786
 787        init_ro_spine(&spine, info);
 788        for (level = 0; level < info->levels; level++) {
 789                r = find_highest_key(&spine, root, result_keys + level,
 790                                     level == info->levels - 1 ? NULL : &root);
 791                if (r == -ENODATA) {
 792                        r = 0;
 793                        break;
 794
 795                } else if (r)
 796                        break;
 797
 798                count++;
 799        }
 800        exit_ro_spine(&spine);
 801
 802        return r ? r : count;
 803}
 804EXPORT_SYMBOL_GPL(dm_btree_find_highest_key);
 805