linux/drivers/mtd/nand/docg4.c
<<
>>
Prefs
   1/*
   2 *  Copyright © 2012 Mike Dunn <mikedunn@newsguy.com>
   3 *
   4 * mtd nand driver for M-Systems DiskOnChip G4
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * Tested on the Palm Treo 680.  The G4 is also present on Toshiba Portege, Asus
  12 * P526, some HTC smartphones (Wizard, Prophet, ...), O2 XDA Zinc, maybe others.
  13 * Should work on these as well.  Let me know!
  14 *
  15 * TODO:
  16 *
  17 *  Mechanism for management of password-protected areas
  18 *
  19 *  Hamming ecc when reading oob only
  20 *
  21 *  According to the M-Sys documentation, this device is also available in a
  22 *  "dual-die" configuration having a 256MB capacity, but no mechanism for
  23 *  detecting this variant is documented.  Currently this driver assumes 128MB
  24 *  capacity.
  25 *
  26 *  Support for multiple cascaded devices ("floors").  Not sure which gadgets
  27 *  contain multiple G4s in a cascaded configuration, if any.
  28 *
  29 */
  30
  31#include <linux/kernel.h>
  32#include <linux/slab.h>
  33#include <linux/init.h>
  34#include <linux/string.h>
  35#include <linux/sched.h>
  36#include <linux/delay.h>
  37#include <linux/module.h>
  38#include <linux/export.h>
  39#include <linux/platform_device.h>
  40#include <linux/io.h>
  41#include <linux/bitops.h>
  42#include <linux/mtd/partitions.h>
  43#include <linux/mtd/mtd.h>
  44#include <linux/mtd/nand.h>
  45#include <linux/bch.h>
  46#include <linux/bitrev.h>
  47
  48/*
  49 * You'll want to ignore badblocks if you're reading a partition that contains
  50 * data written by the TrueFFS library (i.e., by PalmOS, Windows, etc), since
  51 * it does not use mtd nand's method for marking bad blocks (using oob area).
  52 * This will also skip the check of the "page written" flag.
  53 */
  54static bool ignore_badblocks;
  55module_param(ignore_badblocks, bool, 0);
  56MODULE_PARM_DESC(ignore_badblocks, "no badblock checking performed");
  57
  58struct docg4_priv {
  59        struct mtd_info *mtd;
  60        struct device *dev;
  61        void __iomem *virtadr;
  62        int status;
  63        struct {
  64                unsigned int command;
  65                int column;
  66                int page;
  67        } last_command;
  68        uint8_t oob_buf[16];
  69        uint8_t ecc_buf[7];
  70        int oob_page;
  71        struct bch_control *bch;
  72};
  73
  74/*
  75 * Defines prefixed with DOCG4 are unique to the diskonchip G4.  All others are
  76 * shared with other diskonchip devices (P3, G3 at least).
  77 *
  78 * Functions with names prefixed with docg4_ are mtd / nand interface functions
  79 * (though they may also be called internally).  All others are internal.
  80 */
  81
  82#define DOC_IOSPACE_DATA                0x0800
  83
  84/* register offsets */
  85#define DOC_CHIPID                      0x1000
  86#define DOC_DEVICESELECT                0x100a
  87#define DOC_ASICMODE                    0x100c
  88#define DOC_DATAEND                     0x101e
  89#define DOC_NOP                         0x103e
  90
  91#define DOC_FLASHSEQUENCE               0x1032
  92#define DOC_FLASHCOMMAND                0x1034
  93#define DOC_FLASHADDRESS                0x1036
  94#define DOC_FLASHCONTROL                0x1038
  95#define DOC_ECCCONF0                    0x1040
  96#define DOC_ECCCONF1                    0x1042
  97#define DOC_HAMMINGPARITY               0x1046
  98#define DOC_BCH_SYNDROM(idx)            (0x1048 + idx)
  99
 100#define DOC_ASICMODECONFIRM             0x1072
 101#define DOC_CHIPID_INV                  0x1074
 102#define DOC_POWERMODE                   0x107c
 103
 104#define DOCG4_MYSTERY_REG               0x1050
 105
 106/* apparently used only to write oob bytes 6 and 7 */
 107#define DOCG4_OOB_6_7                   0x1052
 108
 109/* DOC_FLASHSEQUENCE register commands */
 110#define DOC_SEQ_RESET                   0x00
 111#define DOCG4_SEQ_PAGE_READ             0x03
 112#define DOCG4_SEQ_FLUSH                 0x29
 113#define DOCG4_SEQ_PAGEWRITE             0x16
 114#define DOCG4_SEQ_PAGEPROG              0x1e
 115#define DOCG4_SEQ_BLOCKERASE            0x24
 116
 117/* DOC_FLASHCOMMAND register commands */
 118#define DOCG4_CMD_PAGE_READ             0x00
 119#define DOC_CMD_ERASECYCLE2             0xd0
 120#define DOCG4_CMD_FLUSH                 0x70
 121#define DOCG4_CMD_READ2                 0x30
 122#define DOC_CMD_PROG_BLOCK_ADDR         0x60
 123#define DOCG4_CMD_PAGEWRITE             0x80
 124#define DOC_CMD_PROG_CYCLE2             0x10
 125#define DOC_CMD_RESET                   0xff
 126
 127/* DOC_POWERMODE register bits */
 128#define DOC_POWERDOWN_READY             0x80
 129
 130/* DOC_FLASHCONTROL register bits */
 131#define DOC_CTRL_CE                     0x10
 132#define DOC_CTRL_UNKNOWN                0x40
 133#define DOC_CTRL_FLASHREADY             0x01
 134
 135/* DOC_ECCCONF0 register bits */
 136#define DOC_ECCCONF0_READ_MODE          0x8000
 137#define DOC_ECCCONF0_UNKNOWN            0x2000
 138#define DOC_ECCCONF0_ECC_ENABLE         0x1000
 139#define DOC_ECCCONF0_DATA_BYTES_MASK    0x07ff
 140
 141/* DOC_ECCCONF1 register bits */
 142#define DOC_ECCCONF1_BCH_SYNDROM_ERR    0x80
 143#define DOC_ECCCONF1_ECC_ENABLE         0x07
 144#define DOC_ECCCONF1_PAGE_IS_WRITTEN    0x20
 145
 146/* DOC_ASICMODE register bits */
 147#define DOC_ASICMODE_RESET              0x00
 148#define DOC_ASICMODE_NORMAL             0x01
 149#define DOC_ASICMODE_POWERDOWN          0x02
 150#define DOC_ASICMODE_MDWREN             0x04
 151#define DOC_ASICMODE_BDETCT_RESET       0x08
 152#define DOC_ASICMODE_RSTIN_RESET        0x10
 153#define DOC_ASICMODE_RAM_WE             0x20
 154
 155/* good status values read after read/write/erase operations */
 156#define DOCG4_PROGSTATUS_GOOD          0x51
 157#define DOCG4_PROGSTATUS_GOOD_2        0xe0
 158
 159/*
 160 * On read operations (page and oob-only), the first byte read from I/O reg is a
 161 * status.  On error, it reads 0x73; otherwise, it reads either 0x71 (first read
 162 * after reset only) or 0x51, so bit 1 is presumed to be an error indicator.
 163 */
 164#define DOCG4_READ_ERROR           0x02 /* bit 1 indicates read error */
 165
 166/* anatomy of the device */
 167#define DOCG4_CHIP_SIZE        0x8000000
 168#define DOCG4_PAGE_SIZE        0x200
 169#define DOCG4_PAGES_PER_BLOCK  0x200
 170#define DOCG4_BLOCK_SIZE       (DOCG4_PAGES_PER_BLOCK * DOCG4_PAGE_SIZE)
 171#define DOCG4_NUMBLOCKS        (DOCG4_CHIP_SIZE / DOCG4_BLOCK_SIZE)
 172#define DOCG4_OOB_SIZE         0x10
 173#define DOCG4_CHIP_SHIFT       27    /* log_2(DOCG4_CHIP_SIZE) */
 174#define DOCG4_PAGE_SHIFT       9     /* log_2(DOCG4_PAGE_SIZE) */
 175#define DOCG4_ERASE_SHIFT      18    /* log_2(DOCG4_BLOCK_SIZE) */
 176
 177/* all but the last byte is included in ecc calculation */
 178#define DOCG4_BCH_SIZE         (DOCG4_PAGE_SIZE + DOCG4_OOB_SIZE - 1)
 179
 180#define DOCG4_USERDATA_LEN     520 /* 512 byte page plus 8 oob avail to user */
 181
 182/* expected values from the ID registers */
 183#define DOCG4_IDREG1_VALUE     0x0400
 184#define DOCG4_IDREG2_VALUE     0xfbff
 185
 186/* primitive polynomial used to build the Galois field used by hw ecc gen */
 187#define DOCG4_PRIMITIVE_POLY   0x4443
 188
 189#define DOCG4_M                14  /* Galois field is of order 2^14 */
 190#define DOCG4_T                4   /* BCH alg corrects up to 4 bit errors */
 191
 192#define DOCG4_FACTORY_BBT_PAGE 16 /* page where read-only factory bbt lives */
 193
 194/*
 195 * Oob bytes 0 - 6 are available to the user.
 196 * Byte 7 is hamming ecc for first 7 bytes.  Bytes 8 - 14 are hw-generated ecc.
 197 * Byte 15 (the last) is used by the driver as a "page written" flag.
 198 */
 199static struct nand_ecclayout docg4_oobinfo = {
 200        .eccbytes = 9,
 201        .eccpos = {7, 8, 9, 10, 11, 12, 13, 14, 15},
 202        .oobavail = 7,
 203        .oobfree = { {0, 7} }
 204};
 205
 206/*
 207 * The device has a nop register which M-Sys claims is for the purpose of
 208 * inserting precise delays.  But beware; at least some operations fail if the
 209 * nop writes are replaced with a generic delay!
 210 */
 211static inline void write_nop(void __iomem *docptr)
 212{
 213        writew(0, docptr + DOC_NOP);
 214}
 215
 216static void docg4_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
 217{
 218        int i;
 219        struct nand_chip *nand = mtd->priv;
 220        uint16_t *p = (uint16_t *) buf;
 221        len >>= 1;
 222
 223        for (i = 0; i < len; i++)
 224                p[i] = readw(nand->IO_ADDR_R);
 225}
 226
 227static void docg4_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
 228{
 229        int i;
 230        struct nand_chip *nand = mtd->priv;
 231        uint16_t *p = (uint16_t *) buf;
 232        len >>= 1;
 233
 234        for (i = 0; i < len; i++)
 235                writew(p[i], nand->IO_ADDR_W);
 236}
 237
 238static int poll_status(struct docg4_priv *doc)
 239{
 240        /*
 241         * Busy-wait for the FLASHREADY bit to be set in the FLASHCONTROL
 242         * register.  Operations known to take a long time (e.g., block erase)
 243         * should sleep for a while before calling this.
 244         */
 245
 246        uint16_t flash_status;
 247        unsigned int timeo;
 248        void __iomem *docptr = doc->virtadr;
 249
 250        dev_dbg(doc->dev, "%s...\n", __func__);
 251
 252        /* hardware quirk requires reading twice initially */
 253        flash_status = readw(docptr + DOC_FLASHCONTROL);
 254
 255        timeo = 1000;
 256        do {
 257                cpu_relax();
 258                flash_status = readb(docptr + DOC_FLASHCONTROL);
 259        } while (!(flash_status & DOC_CTRL_FLASHREADY) && --timeo);
 260
 261
 262        if (!timeo) {
 263                dev_err(doc->dev, "%s: timed out!\n", __func__);
 264                return NAND_STATUS_FAIL;
 265        }
 266
 267        if (unlikely(timeo < 50))
 268                dev_warn(doc->dev, "%s: nearly timed out; %d remaining\n",
 269                         __func__, timeo);
 270
 271        return 0;
 272}
 273
 274
 275static int docg4_wait(struct mtd_info *mtd, struct nand_chip *nand)
 276{
 277
 278        struct docg4_priv *doc = nand->priv;
 279        int status = NAND_STATUS_WP;       /* inverse logic?? */
 280        dev_dbg(doc->dev, "%s...\n", __func__);
 281
 282        /* report any previously unreported error */
 283        if (doc->status) {
 284                status |= doc->status;
 285                doc->status = 0;
 286                return status;
 287        }
 288
 289        status |= poll_status(doc);
 290        return status;
 291}
 292
 293static void docg4_select_chip(struct mtd_info *mtd, int chip)
 294{
 295        /*
 296         * Select among multiple cascaded chips ("floors").  Multiple floors are
 297         * not yet supported, so the only valid non-negative value is 0.
 298         */
 299        struct nand_chip *nand = mtd->priv;
 300        struct docg4_priv *doc = nand->priv;
 301        void __iomem *docptr = doc->virtadr;
 302
 303        dev_dbg(doc->dev, "%s: chip %d\n", __func__, chip);
 304
 305        if (chip < 0)
 306                return;         /* deselected */
 307
 308        if (chip > 0)
 309                dev_warn(doc->dev, "multiple floors currently unsupported\n");
 310
 311        writew(0, docptr + DOC_DEVICESELECT);
 312}
 313
 314static void reset(struct mtd_info *mtd)
 315{
 316        /* full device reset */
 317
 318        struct nand_chip *nand = mtd->priv;
 319        struct docg4_priv *doc = nand->priv;
 320        void __iomem *docptr = doc->virtadr;
 321
 322        writew(DOC_ASICMODE_RESET | DOC_ASICMODE_MDWREN,
 323               docptr + DOC_ASICMODE);
 324        writew(~(DOC_ASICMODE_RESET | DOC_ASICMODE_MDWREN),
 325               docptr + DOC_ASICMODECONFIRM);
 326        write_nop(docptr);
 327
 328        writew(DOC_ASICMODE_NORMAL | DOC_ASICMODE_MDWREN,
 329               docptr + DOC_ASICMODE);
 330        writew(~(DOC_ASICMODE_NORMAL | DOC_ASICMODE_MDWREN),
 331               docptr + DOC_ASICMODECONFIRM);
 332
 333        writew(DOC_ECCCONF1_ECC_ENABLE, docptr + DOC_ECCCONF1);
 334
 335        poll_status(doc);
 336}
 337
 338static void read_hw_ecc(void __iomem *docptr, uint8_t *ecc_buf)
 339{
 340        /* read the 7 hw-generated ecc bytes */
 341
 342        int i;
 343        for (i = 0; i < 7; i++) { /* hw quirk; read twice */
 344                ecc_buf[i] = readb(docptr + DOC_BCH_SYNDROM(i));
 345                ecc_buf[i] = readb(docptr + DOC_BCH_SYNDROM(i));
 346        }
 347}
 348
 349static int correct_data(struct mtd_info *mtd, uint8_t *buf, int page)
 350{
 351        /*
 352         * Called after a page read when hardware reports bitflips.
 353         * Up to four bitflips can be corrected.
 354         */
 355
 356        struct nand_chip *nand = mtd->priv;
 357        struct docg4_priv *doc = nand->priv;
 358        void __iomem *docptr = doc->virtadr;
 359        int i, numerrs, errpos[4];
 360        const uint8_t blank_read_hwecc[8] = {
 361                0xcf, 0x72, 0xfc, 0x1b, 0xa9, 0xc7, 0xb9, 0 };
 362
 363        read_hw_ecc(docptr, doc->ecc_buf); /* read 7 hw-generated ecc bytes */
 364
 365        /* check if read error is due to a blank page */
 366        if (!memcmp(doc->ecc_buf, blank_read_hwecc, 7))
 367                return 0;       /* yes */
 368
 369        /* skip additional check of "written flag" if ignore_badblocks */
 370        if (ignore_badblocks == false) {
 371
 372                /*
 373                 * If the hw ecc bytes are not those of a blank page, there's
 374                 * still a chance that the page is blank, but was read with
 375                 * errors.  Check the "written flag" in last oob byte, which
 376                 * is set to zero when a page is written.  If more than half
 377                 * the bits are set, assume a blank page.  Unfortunately, the
 378                 * bit flips(s) are not reported in stats.
 379                 */
 380
 381                if (doc->oob_buf[15]) {
 382                        int bit, numsetbits = 0;
 383                        unsigned long written_flag = doc->oob_buf[15];
 384                        for_each_set_bit(bit, &written_flag, 8)
 385                                numsetbits++;
 386                        if (numsetbits > 4) { /* assume blank */
 387                                dev_warn(doc->dev,
 388                                         "error(s) in blank page "
 389                                         "at offset %08x\n",
 390                                         page * DOCG4_PAGE_SIZE);
 391                                return 0;
 392                        }
 393                }
 394        }
 395
 396        /*
 397         * The hardware ecc unit produces oob_ecc ^ calc_ecc.  The kernel's bch
 398         * algorithm is used to decode this.  However the hw operates on page
 399         * data in a bit order that is the reverse of that of the bch alg,
 400         * requiring that the bits be reversed on the result.  Thanks to Ivan
 401         * Djelic for his analysis!
 402         */
 403        for (i = 0; i < 7; i++)
 404                doc->ecc_buf[i] = bitrev8(doc->ecc_buf[i]);
 405
 406        numerrs = decode_bch(doc->bch, NULL, DOCG4_USERDATA_LEN, NULL,
 407                             doc->ecc_buf, NULL, errpos);
 408
 409        if (numerrs == -EBADMSG) {
 410                dev_warn(doc->dev, "uncorrectable errors at offset %08x\n",
 411                         page * DOCG4_PAGE_SIZE);
 412                return -EBADMSG;
 413        }
 414
 415        BUG_ON(numerrs < 0);    /* -EINVAL, or anything other than -EBADMSG */
 416
 417        /* undo last step in BCH alg (modulo mirroring not needed) */
 418        for (i = 0; i < numerrs; i++)
 419                errpos[i] = (errpos[i] & ~7)|(7-(errpos[i] & 7));
 420
 421        /* fix the errors */
 422        for (i = 0; i < numerrs; i++) {
 423
 424                /* ignore if error within oob ecc bytes */
 425                if (errpos[i] > DOCG4_USERDATA_LEN * 8)
 426                        continue;
 427
 428                /* if error within oob area preceeding ecc bytes... */
 429                if (errpos[i] > DOCG4_PAGE_SIZE * 8)
 430                        change_bit(errpos[i] - DOCG4_PAGE_SIZE * 8,
 431                                   (unsigned long *)doc->oob_buf);
 432
 433                else    /* error in page data */
 434                        change_bit(errpos[i], (unsigned long *)buf);
 435        }
 436
 437        dev_notice(doc->dev, "%d error(s) corrected at offset %08x\n",
 438                   numerrs, page * DOCG4_PAGE_SIZE);
 439
 440        return numerrs;
 441}
 442
 443static uint8_t docg4_read_byte(struct mtd_info *mtd)
 444{
 445        struct nand_chip *nand = mtd->priv;
 446        struct docg4_priv *doc = nand->priv;
 447
 448        dev_dbg(doc->dev, "%s\n", __func__);
 449
 450        if (doc->last_command.command == NAND_CMD_STATUS) {
 451                int status;
 452
 453                /*
 454                 * Previous nand command was status request, so nand
 455                 * infrastructure code expects to read the status here.  If an
 456                 * error occurred in a previous operation, report it.
 457                 */
 458                doc->last_command.command = 0;
 459
 460                if (doc->status) {
 461                        status = doc->status;
 462                        doc->status = 0;
 463                }
 464
 465                /* why is NAND_STATUS_WP inverse logic?? */
 466                else
 467                        status = NAND_STATUS_WP | NAND_STATUS_READY;
 468
 469                return status;
 470        }
 471
 472        dev_warn(doc->dev, "unexpectd call to read_byte()\n");
 473
 474        return 0;
 475}
 476
 477static void write_addr(struct docg4_priv *doc, uint32_t docg4_addr)
 478{
 479        /* write the four address bytes packed in docg4_addr to the device */
 480
 481        void __iomem *docptr = doc->virtadr;
 482        writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
 483        docg4_addr >>= 8;
 484        writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
 485        docg4_addr >>= 8;
 486        writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
 487        docg4_addr >>= 8;
 488        writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
 489}
 490
 491static int read_progstatus(struct docg4_priv *doc)
 492{
 493        /*
 494         * This apparently checks the status of programming.  Done after an
 495         * erasure, and after page data is written.  On error, the status is
 496         * saved, to be later retrieved by the nand infrastructure code.
 497         */
 498        void __iomem *docptr = doc->virtadr;
 499
 500        /* status is read from the I/O reg */
 501        uint16_t status1 = readw(docptr + DOC_IOSPACE_DATA);
 502        uint16_t status2 = readw(docptr + DOC_IOSPACE_DATA);
 503        uint16_t status3 = readw(docptr + DOCG4_MYSTERY_REG);
 504
 505        dev_dbg(doc->dev, "docg4: %s: %02x %02x %02x\n",
 506              __func__, status1, status2, status3);
 507
 508        if (status1 != DOCG4_PROGSTATUS_GOOD
 509            || status2 != DOCG4_PROGSTATUS_GOOD_2
 510            || status3 != DOCG4_PROGSTATUS_GOOD_2) {
 511                doc->status = NAND_STATUS_FAIL;
 512                dev_warn(doc->dev, "read_progstatus failed: "
 513                         "%02x, %02x, %02x\n", status1, status2, status3);
 514                return -EIO;
 515        }
 516        return 0;
 517}
 518
 519static int pageprog(struct mtd_info *mtd)
 520{
 521        /*
 522         * Final step in writing a page.  Writes the contents of its
 523         * internal buffer out to the flash array, or some such.
 524         */
 525
 526        struct nand_chip *nand = mtd->priv;
 527        struct docg4_priv *doc = nand->priv;
 528        void __iomem *docptr = doc->virtadr;
 529        int retval = 0;
 530
 531        dev_dbg(doc->dev, "docg4: %s\n", __func__);
 532
 533        writew(DOCG4_SEQ_PAGEPROG, docptr + DOC_FLASHSEQUENCE);
 534        writew(DOC_CMD_PROG_CYCLE2, docptr + DOC_FLASHCOMMAND);
 535        write_nop(docptr);
 536        write_nop(docptr);
 537
 538        /* Just busy-wait; usleep_range() slows things down noticeably. */
 539        poll_status(doc);
 540
 541        writew(DOCG4_SEQ_FLUSH, docptr + DOC_FLASHSEQUENCE);
 542        writew(DOCG4_CMD_FLUSH, docptr + DOC_FLASHCOMMAND);
 543        writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0);
 544        write_nop(docptr);
 545        write_nop(docptr);
 546        write_nop(docptr);
 547        write_nop(docptr);
 548        write_nop(docptr);
 549
 550        retval = read_progstatus(doc);
 551        writew(0, docptr + DOC_DATAEND);
 552        write_nop(docptr);
 553        poll_status(doc);
 554        write_nop(docptr);
 555
 556        return retval;
 557}
 558
 559static void sequence_reset(struct mtd_info *mtd)
 560{
 561        /* common starting sequence for all operations */
 562
 563        struct nand_chip *nand = mtd->priv;
 564        struct docg4_priv *doc = nand->priv;
 565        void __iomem *docptr = doc->virtadr;
 566
 567        writew(DOC_CTRL_UNKNOWN | DOC_CTRL_CE, docptr + DOC_FLASHCONTROL);
 568        writew(DOC_SEQ_RESET, docptr + DOC_FLASHSEQUENCE);
 569        writew(DOC_CMD_RESET, docptr + DOC_FLASHCOMMAND);
 570        write_nop(docptr);
 571        write_nop(docptr);
 572        poll_status(doc);
 573        write_nop(docptr);
 574}
 575
 576static void read_page_prologue(struct mtd_info *mtd, uint32_t docg4_addr)
 577{
 578        /* first step in reading a page */
 579
 580        struct nand_chip *nand = mtd->priv;
 581        struct docg4_priv *doc = nand->priv;
 582        void __iomem *docptr = doc->virtadr;
 583
 584        dev_dbg(doc->dev,
 585              "docg4: %s: g4 page %08x\n", __func__, docg4_addr);
 586
 587        sequence_reset(mtd);
 588
 589        writew(DOCG4_SEQ_PAGE_READ, docptr + DOC_FLASHSEQUENCE);
 590        writew(DOCG4_CMD_PAGE_READ, docptr + DOC_FLASHCOMMAND);
 591        write_nop(docptr);
 592
 593        write_addr(doc, docg4_addr);
 594
 595        write_nop(docptr);
 596        writew(DOCG4_CMD_READ2, docptr + DOC_FLASHCOMMAND);
 597        write_nop(docptr);
 598        write_nop(docptr);
 599
 600        poll_status(doc);
 601}
 602
 603static void write_page_prologue(struct mtd_info *mtd, uint32_t docg4_addr)
 604{
 605        /* first step in writing a page */
 606
 607        struct nand_chip *nand = mtd->priv;
 608        struct docg4_priv *doc = nand->priv;
 609        void __iomem *docptr = doc->virtadr;
 610
 611        dev_dbg(doc->dev,
 612              "docg4: %s: g4 addr: %x\n", __func__, docg4_addr);
 613        sequence_reset(mtd);
 614        writew(DOCG4_SEQ_PAGEWRITE, docptr + DOC_FLASHSEQUENCE);
 615        writew(DOCG4_CMD_PAGEWRITE, docptr + DOC_FLASHCOMMAND);
 616        write_nop(docptr);
 617        write_addr(doc, docg4_addr);
 618        write_nop(docptr);
 619        write_nop(docptr);
 620        poll_status(doc);
 621}
 622
 623static uint32_t mtd_to_docg4_address(int page, int column)
 624{
 625        /*
 626         * Convert mtd address to format used by the device, 32 bit packed.
 627         *
 628         * Some notes on G4 addressing... The M-Sys documentation on this device
 629         * claims that pages are 2K in length, and indeed, the format of the
 630         * address used by the device reflects that.  But within each page are
 631         * four 512 byte "sub-pages", each with its own oob data that is
 632         * read/written immediately after the 512 bytes of page data.  This oob
 633         * data contains the ecc bytes for the preceeding 512 bytes.
 634         *
 635         * Rather than tell the mtd nand infrastructure that page size is 2k,
 636         * with four sub-pages each, we engage in a little subterfuge and tell
 637         * the infrastructure code that pages are 512 bytes in size.  This is
 638         * done because during the course of reverse-engineering the device, I
 639         * never observed an instance where an entire 2K "page" was read or
 640         * written as a unit.  Each "sub-page" is always addressed individually,
 641         * its data read/written, and ecc handled before the next "sub-page" is
 642         * addressed.
 643         *
 644         * This requires us to convert addresses passed by the mtd nand
 645         * infrastructure code to those used by the device.
 646         *
 647         * The address that is written to the device consists of four bytes: the
 648         * first two are the 2k page number, and the second is the index into
 649         * the page.  The index is in terms of 16-bit half-words and includes
 650         * the preceeding oob data, so e.g., the index into the second
 651         * "sub-page" is 0x108, and the full device address of the start of mtd
 652         * page 0x201 is 0x00800108.
 653         */
 654        int g4_page = page / 4;                       /* device's 2K page */
 655        int g4_index = (page % 4) * 0x108 + column/2; /* offset into page */
 656        return (g4_page << 16) | g4_index;            /* pack */
 657}
 658
 659static void docg4_command(struct mtd_info *mtd, unsigned command, int column,
 660                          int page_addr)
 661{
 662        /* handle standard nand commands */
 663
 664        struct nand_chip *nand = mtd->priv;
 665        struct docg4_priv *doc = nand->priv;
 666        uint32_t g4_addr = mtd_to_docg4_address(page_addr, column);
 667
 668        dev_dbg(doc->dev, "%s %x, page_addr=%x, column=%x\n",
 669              __func__, command, page_addr, column);
 670
 671        /*
 672         * Save the command and its arguments.  This enables emulation of
 673         * standard flash devices, and also some optimizations.
 674         */
 675        doc->last_command.command = command;
 676        doc->last_command.column = column;
 677        doc->last_command.page = page_addr;
 678
 679        switch (command) {
 680
 681        case NAND_CMD_RESET:
 682                reset(mtd);
 683                break;
 684
 685        case NAND_CMD_READ0:
 686                read_page_prologue(mtd, g4_addr);
 687                break;
 688
 689        case NAND_CMD_STATUS:
 690                /* next call to read_byte() will expect a status */
 691                break;
 692
 693        case NAND_CMD_SEQIN:
 694                write_page_prologue(mtd, g4_addr);
 695
 696                /* hack for deferred write of oob bytes */
 697                if (doc->oob_page == page_addr)
 698                        memcpy(nand->oob_poi, doc->oob_buf, 16);
 699                break;
 700
 701        case NAND_CMD_PAGEPROG:
 702                pageprog(mtd);
 703                break;
 704
 705        /* we don't expect these, based on review of nand_base.c */
 706        case NAND_CMD_READOOB:
 707        case NAND_CMD_READID:
 708        case NAND_CMD_ERASE1:
 709        case NAND_CMD_ERASE2:
 710                dev_warn(doc->dev, "docg4_command: "
 711                         "unexpected nand command 0x%x\n", command);
 712                break;
 713
 714        }
 715}
 716
 717static int read_page(struct mtd_info *mtd, struct nand_chip *nand,
 718                     uint8_t *buf, int page, bool use_ecc)
 719{
 720        struct docg4_priv *doc = nand->priv;
 721        void __iomem *docptr = doc->virtadr;
 722        uint16_t status, edc_err, *buf16;
 723
 724        dev_dbg(doc->dev, "%s: page %08x\n", __func__, page);
 725
 726        writew(DOC_ECCCONF0_READ_MODE |
 727               DOC_ECCCONF0_ECC_ENABLE |
 728               DOC_ECCCONF0_UNKNOWN |
 729               DOCG4_BCH_SIZE,
 730               docptr + DOC_ECCCONF0);
 731        write_nop(docptr);
 732        write_nop(docptr);
 733        write_nop(docptr);
 734        write_nop(docptr);
 735        write_nop(docptr);
 736
 737        /* the 1st byte from the I/O reg is a status; the rest is page data */
 738        status = readw(docptr + DOC_IOSPACE_DATA);
 739        if (status & DOCG4_READ_ERROR) {
 740                dev_err(doc->dev,
 741                        "docg4_read_page: bad status: 0x%02x\n", status);
 742                writew(0, docptr + DOC_DATAEND);
 743                return -EIO;
 744        }
 745
 746        dev_dbg(doc->dev, "%s: status = 0x%x\n", __func__, status);
 747
 748        docg4_read_buf(mtd, buf, DOCG4_PAGE_SIZE); /* read the page data */
 749
 750        /*
 751         * Diskonchips read oob immediately after a page read.  Mtd
 752         * infrastructure issues a separate command for reading oob after the
 753         * page is read.  So we save the oob bytes in a local buffer and just
 754         * copy it if the next command reads oob from the same page.
 755         */
 756
 757        /* first 14 oob bytes read from I/O reg */
 758        docg4_read_buf(mtd, doc->oob_buf, 14);
 759
 760        /* last 2 read from another reg */
 761        buf16 = (uint16_t *)(doc->oob_buf + 14);
 762        *buf16 = readw(docptr + DOCG4_MYSTERY_REG);
 763
 764        write_nop(docptr);
 765
 766        if (likely(use_ecc == true)) {
 767
 768                /* read the register that tells us if bitflip(s) detected  */
 769                edc_err = readw(docptr + DOC_ECCCONF1);
 770                edc_err = readw(docptr + DOC_ECCCONF1);
 771                dev_dbg(doc->dev, "%s: edc_err = 0x%02x\n", __func__, edc_err);
 772
 773                /* If bitflips are reported, attempt to correct with ecc */
 774                if (edc_err & DOC_ECCCONF1_BCH_SYNDROM_ERR) {
 775                        int bits_corrected = correct_data(mtd, buf, page);
 776                        if (bits_corrected == -EBADMSG)
 777                                mtd->ecc_stats.failed++;
 778                        else
 779                                mtd->ecc_stats.corrected += bits_corrected;
 780                }
 781        }
 782
 783        writew(0, docptr + DOC_DATAEND);
 784        return 0;
 785}
 786
 787
 788static int docg4_read_page_raw(struct mtd_info *mtd, struct nand_chip *nand,
 789                               uint8_t *buf, int page)
 790{
 791        return read_page(mtd, nand, buf, page, false);
 792}
 793
 794static int docg4_read_page(struct mtd_info *mtd, struct nand_chip *nand,
 795                           uint8_t *buf, int page)
 796{
 797        return read_page(mtd, nand, buf, page, true);
 798}
 799
 800static int docg4_read_oob(struct mtd_info *mtd, struct nand_chip *nand,
 801                          int page, int sndcmd)
 802{
 803        struct docg4_priv *doc = nand->priv;
 804        void __iomem *docptr = doc->virtadr;
 805        uint16_t status;
 806
 807        dev_dbg(doc->dev, "%s: page %x\n", __func__, page);
 808
 809        /*
 810         * Oob bytes are read as part of a normal page read.  If the previous
 811         * nand command was a read of the page whose oob is now being read, just
 812         * copy the oob bytes that we saved in a local buffer and avoid a
 813         * separate oob read.
 814         */
 815        if (doc->last_command.command == NAND_CMD_READ0 &&
 816            doc->last_command.page == page) {
 817                memcpy(nand->oob_poi, doc->oob_buf, 16);
 818                return 0;
 819        }
 820
 821        /*
 822         * Separate read of oob data only.
 823         */
 824        docg4_command(mtd, NAND_CMD_READ0, nand->ecc.size, page);
 825
 826        writew(DOC_ECCCONF0_READ_MODE | DOCG4_OOB_SIZE, docptr + DOC_ECCCONF0);
 827        write_nop(docptr);
 828        write_nop(docptr);
 829        write_nop(docptr);
 830        write_nop(docptr);
 831        write_nop(docptr);
 832
 833        /* the 1st byte from the I/O reg is a status; the rest is oob data */
 834        status = readw(docptr + DOC_IOSPACE_DATA);
 835        if (status & DOCG4_READ_ERROR) {
 836                dev_warn(doc->dev,
 837                         "docg4_read_oob failed: status = 0x%02x\n", status);
 838                return -EIO;
 839        }
 840
 841        dev_dbg(doc->dev, "%s: status = 0x%x\n", __func__, status);
 842
 843        docg4_read_buf(mtd, nand->oob_poi, 16);
 844
 845        write_nop(docptr);
 846        write_nop(docptr);
 847        write_nop(docptr);
 848        writew(0, docptr + DOC_DATAEND);
 849        write_nop(docptr);
 850
 851        return 0;
 852}
 853
 854static void docg4_erase_block(struct mtd_info *mtd, int page)
 855{
 856        struct nand_chip *nand = mtd->priv;
 857        struct docg4_priv *doc = nand->priv;
 858        void __iomem *docptr = doc->virtadr;
 859        uint16_t g4_page;
 860
 861        dev_dbg(doc->dev, "%s: page %04x\n", __func__, page);
 862
 863        sequence_reset(mtd);
 864
 865        writew(DOCG4_SEQ_BLOCKERASE, docptr + DOC_FLASHSEQUENCE);
 866        writew(DOC_CMD_PROG_BLOCK_ADDR, docptr + DOC_FLASHCOMMAND);
 867        write_nop(docptr);
 868
 869        /* only 2 bytes of address are written to specify erase block */
 870        g4_page = (uint16_t)(page / 4);  /* to g4's 2k page addressing */
 871        writeb(g4_page & 0xff, docptr + DOC_FLASHADDRESS);
 872        g4_page >>= 8;
 873        writeb(g4_page & 0xff, docptr + DOC_FLASHADDRESS);
 874        write_nop(docptr);
 875
 876        /* start the erasure */
 877        writew(DOC_CMD_ERASECYCLE2, docptr + DOC_FLASHCOMMAND);
 878        write_nop(docptr);
 879        write_nop(docptr);
 880
 881        usleep_range(500, 1000); /* erasure is long; take a snooze */
 882        poll_status(doc);
 883        writew(DOCG4_SEQ_FLUSH, docptr + DOC_FLASHSEQUENCE);
 884        writew(DOCG4_CMD_FLUSH, docptr + DOC_FLASHCOMMAND);
 885        writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0);
 886        write_nop(docptr);
 887        write_nop(docptr);
 888        write_nop(docptr);
 889        write_nop(docptr);
 890        write_nop(docptr);
 891
 892        read_progstatus(doc);
 893
 894        writew(0, docptr + DOC_DATAEND);
 895        write_nop(docptr);
 896        poll_status(doc);
 897        write_nop(docptr);
 898}
 899
 900static void write_page(struct mtd_info *mtd, struct nand_chip *nand,
 901                       const uint8_t *buf, bool use_ecc)
 902{
 903        struct docg4_priv *doc = nand->priv;
 904        void __iomem *docptr = doc->virtadr;
 905        uint8_t ecc_buf[8];
 906
 907        dev_dbg(doc->dev, "%s...\n", __func__);
 908
 909        writew(DOC_ECCCONF0_ECC_ENABLE |
 910               DOC_ECCCONF0_UNKNOWN |
 911               DOCG4_BCH_SIZE,
 912               docptr + DOC_ECCCONF0);
 913        write_nop(docptr);
 914
 915        /* write the page data */
 916        docg4_write_buf16(mtd, buf, DOCG4_PAGE_SIZE);
 917
 918        /* oob bytes 0 through 5 are written to I/O reg */
 919        docg4_write_buf16(mtd, nand->oob_poi, 6);
 920
 921        /* oob byte 6 written to a separate reg */
 922        writew(nand->oob_poi[6], docptr + DOCG4_OOB_6_7);
 923
 924        write_nop(docptr);
 925        write_nop(docptr);
 926
 927        /* write hw-generated ecc bytes to oob */
 928        if (likely(use_ecc == true)) {
 929                /* oob byte 7 is hamming code */
 930                uint8_t hamming = readb(docptr + DOC_HAMMINGPARITY);
 931                hamming = readb(docptr + DOC_HAMMINGPARITY); /* 2nd read */
 932                writew(hamming, docptr + DOCG4_OOB_6_7);
 933                write_nop(docptr);
 934
 935                /* read the 7 bch bytes from ecc regs */
 936                read_hw_ecc(docptr, ecc_buf);
 937                ecc_buf[7] = 0;         /* clear the "page written" flag */
 938        }
 939
 940        /* write user-supplied bytes to oob */
 941        else {
 942                writew(nand->oob_poi[7], docptr + DOCG4_OOB_6_7);
 943                write_nop(docptr);
 944                memcpy(ecc_buf, &nand->oob_poi[8], 8);
 945        }
 946
 947        docg4_write_buf16(mtd, ecc_buf, 8);
 948        write_nop(docptr);
 949        write_nop(docptr);
 950        writew(0, docptr + DOC_DATAEND);
 951        write_nop(docptr);
 952}
 953
 954static void docg4_write_page_raw(struct mtd_info *mtd, struct nand_chip *nand,
 955                                 const uint8_t *buf)
 956{
 957        return write_page(mtd, nand, buf, false);
 958}
 959
 960static void docg4_write_page(struct mtd_info *mtd, struct nand_chip *nand,
 961                             const uint8_t *buf)
 962{
 963        return write_page(mtd, nand, buf, true);
 964}
 965
 966static int docg4_write_oob(struct mtd_info *mtd, struct nand_chip *nand,
 967                           int page)
 968{
 969        /*
 970         * Writing oob-only is not really supported, because MLC nand must write
 971         * oob bytes at the same time as page data.  Nonetheless, we save the
 972         * oob buffer contents here, and then write it along with the page data
 973         * if the same page is subsequently written.  This allows user space
 974         * utilities that write the oob data prior to the page data to work
 975         * (e.g., nandwrite).  The disdvantage is that, if the intention was to
 976         * write oob only, the operation is quietly ignored.  Also, oob can get
 977         * corrupted if two concurrent processes are running nandwrite.
 978         */
 979
 980        /* note that bytes 7..14 are hw generated hamming/ecc and overwritten */
 981        struct docg4_priv *doc = nand->priv;
 982        doc->oob_page = page;
 983        memcpy(doc->oob_buf, nand->oob_poi, 16);
 984        return 0;
 985}
 986
 987static int __init read_factory_bbt(struct mtd_info *mtd)
 988{
 989        /*
 990         * The device contains a read-only factory bad block table.  Read it and
 991         * update the memory-based bbt accordingly.
 992         */
 993
 994        struct nand_chip *nand = mtd->priv;
 995        struct docg4_priv *doc = nand->priv;
 996        uint32_t g4_addr = mtd_to_docg4_address(DOCG4_FACTORY_BBT_PAGE, 0);
 997        uint8_t *buf;
 998        int i, block, status;
 999
1000        buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL);
1001        if (buf == NULL)
1002                return -ENOMEM;
1003
1004        read_page_prologue(mtd, g4_addr);
1005        status = docg4_read_page(mtd, nand, buf, DOCG4_FACTORY_BBT_PAGE);
1006        if (status)
1007                goto exit;
1008
1009        /*
1010         * If no memory-based bbt was created, exit.  This will happen if module
1011         * parameter ignore_badblocks is set.  Then why even call this function?
1012         * For an unknown reason, block erase always fails if it's the first
1013         * operation after device power-up.  The above read ensures it never is.
1014         * Ugly, I know.
1015         */
1016        if (nand->bbt == NULL)  /* no memory-based bbt */
1017                goto exit;
1018
1019        /*
1020         * Parse factory bbt and update memory-based bbt.  Factory bbt format is
1021         * simple: one bit per block, block numbers increase left to right (msb
1022         * to lsb).  Bit clear means bad block.
1023         */
1024        for (i = block = 0; block < DOCG4_NUMBLOCKS; block += 8, i++) {
1025                int bitnum;
1026                unsigned long bits = ~buf[i];
1027                for_each_set_bit(bitnum, &bits, 8) {
1028                        int badblock = block + 7 - bitnum;
1029                        nand->bbt[badblock / 4] |=
1030                                0x03 << ((badblock % 4) * 2);
1031                        mtd->ecc_stats.badblocks++;
1032                        dev_notice(doc->dev, "factory-marked bad block: %d\n",
1033                                   badblock);
1034                }
1035        }
1036 exit:
1037        kfree(buf);
1038        return status;
1039}
1040
1041static int docg4_block_markbad(struct mtd_info *mtd, loff_t ofs)
1042{
1043        /*
1044         * Mark a block as bad.  Bad blocks are marked in the oob area of the
1045         * first page of the block.  The default scan_bbt() in the nand
1046         * infrastructure code works fine for building the memory-based bbt
1047         * during initialization, as does the nand infrastructure function that
1048         * checks if a block is bad by reading the bbt.  This function replaces
1049         * the nand default because writes to oob-only are not supported.
1050         */
1051
1052        int ret, i;
1053        uint8_t *buf;
1054        struct nand_chip *nand = mtd->priv;
1055        struct docg4_priv *doc = nand->priv;
1056        struct nand_bbt_descr *bbtd = nand->badblock_pattern;
1057        int block = (int)(ofs >> nand->bbt_erase_shift);
1058        int page = (int)(ofs >> nand->page_shift);
1059        uint32_t g4_addr = mtd_to_docg4_address(page, 0);
1060
1061        dev_dbg(doc->dev, "%s: %08llx\n", __func__, ofs);
1062
1063        if (unlikely(ofs & (DOCG4_BLOCK_SIZE - 1)))
1064                dev_warn(doc->dev, "%s: ofs %llx not start of block!\n",
1065                         __func__, ofs);
1066
1067        /* allocate blank buffer for page data */
1068        buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL);
1069        if (buf == NULL)
1070                return -ENOMEM;
1071
1072        /* update bbt in memory */
1073        nand->bbt[block / 4] |= 0x01 << ((block & 0x03) * 2);
1074
1075        /* write bit-wise negation of pattern to oob buffer */
1076        memset(nand->oob_poi, 0xff, mtd->oobsize);
1077        for (i = 0; i < bbtd->len; i++)
1078                nand->oob_poi[bbtd->offs + i] = ~bbtd->pattern[i];
1079
1080        /* write first page of block */
1081        write_page_prologue(mtd, g4_addr);
1082        docg4_write_page(mtd, nand, buf);
1083        ret = pageprog(mtd);
1084        if (!ret)
1085                mtd->ecc_stats.badblocks++;
1086
1087        kfree(buf);
1088
1089        return ret;
1090}
1091
1092static int docg4_block_neverbad(struct mtd_info *mtd, loff_t ofs, int getchip)
1093{
1094        /* only called when module_param ignore_badblocks is set */
1095        return 0;
1096}
1097
1098static int docg4_suspend(struct platform_device *pdev, pm_message_t state)
1099{
1100        /*
1101         * Put the device into "deep power-down" mode.  Note that CE# must be
1102         * deasserted for this to take effect.  The xscale, e.g., can be
1103         * configured to float this signal when the processor enters power-down,
1104         * and a suitable pull-up ensures its deassertion.
1105         */
1106
1107        int i;
1108        uint8_t pwr_down;
1109        struct docg4_priv *doc = platform_get_drvdata(pdev);
1110        void __iomem *docptr = doc->virtadr;
1111
1112        dev_dbg(doc->dev, "%s...\n", __func__);
1113
1114        /* poll the register that tells us we're ready to go to sleep */
1115        for (i = 0; i < 10; i++) {
1116                pwr_down = readb(docptr + DOC_POWERMODE);
1117                if (pwr_down & DOC_POWERDOWN_READY)
1118                        break;
1119                usleep_range(1000, 4000);
1120        }
1121
1122        if (pwr_down & DOC_POWERDOWN_READY) {
1123                dev_err(doc->dev, "suspend failed; "
1124                        "timeout polling DOC_POWERDOWN_READY\n");
1125                return -EIO;
1126        }
1127
1128        writew(DOC_ASICMODE_POWERDOWN | DOC_ASICMODE_MDWREN,
1129               docptr + DOC_ASICMODE);
1130        writew(~(DOC_ASICMODE_POWERDOWN | DOC_ASICMODE_MDWREN),
1131               docptr + DOC_ASICMODECONFIRM);
1132
1133        write_nop(docptr);
1134
1135        return 0;
1136}
1137
1138static int docg4_resume(struct platform_device *pdev)
1139{
1140
1141        /*
1142         * Exit power-down.  Twelve consecutive reads of the address below
1143         * accomplishes this, assuming CE# has been asserted.
1144         */
1145
1146        struct docg4_priv *doc = platform_get_drvdata(pdev);
1147        void __iomem *docptr = doc->virtadr;
1148        int i;
1149
1150        dev_dbg(doc->dev, "%s...\n", __func__);
1151
1152        for (i = 0; i < 12; i++)
1153                readb(docptr + 0x1fff);
1154
1155        return 0;
1156}
1157
1158static void __init init_mtd_structs(struct mtd_info *mtd)
1159{
1160        /* initialize mtd and nand data structures */
1161
1162        /*
1163         * Note that some of the following initializations are not usually
1164         * required within a nand driver because they are performed by the nand
1165         * infrastructure code as part of nand_scan().  In this case they need
1166         * to be initialized here because we skip call to nand_scan_ident() (the
1167         * first half of nand_scan()).  The call to nand_scan_ident() is skipped
1168         * because for this device the chip id is not read in the manner of a
1169         * standard nand device.  Unfortunately, nand_scan_ident() does other
1170         * things as well, such as call nand_set_defaults().
1171         */
1172
1173        struct nand_chip *nand = mtd->priv;
1174        struct docg4_priv *doc = nand->priv;
1175
1176        mtd->size = DOCG4_CHIP_SIZE;
1177        mtd->name = "Msys_Diskonchip_G4";
1178        mtd->writesize = DOCG4_PAGE_SIZE;
1179        mtd->erasesize = DOCG4_BLOCK_SIZE;
1180        mtd->oobsize = DOCG4_OOB_SIZE;
1181        nand->chipsize = DOCG4_CHIP_SIZE;
1182        nand->chip_shift = DOCG4_CHIP_SHIFT;
1183        nand->bbt_erase_shift = nand->phys_erase_shift = DOCG4_ERASE_SHIFT;
1184        nand->chip_delay = 20;
1185        nand->page_shift = DOCG4_PAGE_SHIFT;
1186        nand->pagemask = 0x3ffff;
1187        nand->badblockpos = NAND_LARGE_BADBLOCK_POS;
1188        nand->badblockbits = 8;
1189        nand->ecc.layout = &docg4_oobinfo;
1190        nand->ecc.mode = NAND_ECC_HW_SYNDROME;
1191        nand->ecc.size = DOCG4_PAGE_SIZE;
1192        nand->ecc.prepad = 8;
1193        nand->ecc.bytes = 8;
1194        nand->ecc.strength = DOCG4_T;
1195        nand->options =
1196                NAND_BUSWIDTH_16 | NAND_NO_SUBPAGE_WRITE | NAND_NO_AUTOINCR;
1197        nand->IO_ADDR_R = nand->IO_ADDR_W = doc->virtadr + DOC_IOSPACE_DATA;
1198        nand->controller = &nand->hwcontrol;
1199        spin_lock_init(&nand->controller->lock);
1200        init_waitqueue_head(&nand->controller->wq);
1201
1202        /* methods */
1203        nand->cmdfunc = docg4_command;
1204        nand->waitfunc = docg4_wait;
1205        nand->select_chip = docg4_select_chip;
1206        nand->read_byte = docg4_read_byte;
1207        nand->block_markbad = docg4_block_markbad;
1208        nand->read_buf = docg4_read_buf;
1209        nand->write_buf = docg4_write_buf16;
1210        nand->scan_bbt = nand_default_bbt;
1211        nand->erase_cmd = docg4_erase_block;
1212        nand->ecc.read_page = docg4_read_page;
1213        nand->ecc.write_page = docg4_write_page;
1214        nand->ecc.read_page_raw = docg4_read_page_raw;
1215        nand->ecc.write_page_raw = docg4_write_page_raw;
1216        nand->ecc.read_oob = docg4_read_oob;
1217        nand->ecc.write_oob = docg4_write_oob;
1218
1219        /*
1220         * The way the nand infrastructure code is written, a memory-based bbt
1221         * is not created if NAND_SKIP_BBTSCAN is set.  With no memory bbt,
1222         * nand->block_bad() is used.  So when ignoring bad blocks, we skip the
1223         * scan and define a dummy block_bad() which always returns 0.
1224         */
1225        if (ignore_badblocks) {
1226                nand->options |= NAND_SKIP_BBTSCAN;
1227                nand->block_bad = docg4_block_neverbad;
1228        }
1229
1230}
1231
1232static int __init read_id_reg(struct mtd_info *mtd)
1233{
1234        struct nand_chip *nand = mtd->priv;
1235        struct docg4_priv *doc = nand->priv;
1236        void __iomem *docptr = doc->virtadr;
1237        uint16_t id1, id2;
1238
1239        /* check for presence of g4 chip by reading id registers */
1240        id1 = readw(docptr + DOC_CHIPID);
1241        id1 = readw(docptr + DOCG4_MYSTERY_REG);
1242        id2 = readw(docptr + DOC_CHIPID_INV);
1243        id2 = readw(docptr + DOCG4_MYSTERY_REG);
1244
1245        if (id1 == DOCG4_IDREG1_VALUE && id2 == DOCG4_IDREG2_VALUE) {
1246                dev_info(doc->dev,
1247                         "NAND device: 128MiB Diskonchip G4 detected\n");
1248                return 0;
1249        }
1250
1251        return -ENODEV;
1252}
1253
1254static char const *part_probes[] = { "cmdlinepart", "saftlpart", NULL };
1255
1256static int __init probe_docg4(struct platform_device *pdev)
1257{
1258        struct mtd_info *mtd;
1259        struct nand_chip *nand;
1260        void __iomem *virtadr;
1261        struct docg4_priv *doc;
1262        int len, retval;
1263        struct resource *r;
1264        struct device *dev = &pdev->dev;
1265
1266        r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1267        if (r == NULL) {
1268                dev_err(dev, "no io memory resource defined!\n");
1269                return -ENODEV;
1270        }
1271
1272        virtadr = ioremap(r->start, resource_size(r));
1273        if (!virtadr) {
1274                dev_err(dev, "Diskonchip ioremap failed: %pR\n", r);
1275                return -EIO;
1276        }
1277
1278        len = sizeof(struct mtd_info) + sizeof(struct nand_chip) +
1279                sizeof(struct docg4_priv);
1280        mtd = kzalloc(len, GFP_KERNEL);
1281        if (mtd == NULL) {
1282                retval = -ENOMEM;
1283                goto fail;
1284        }
1285        nand = (struct nand_chip *) (mtd + 1);
1286        doc = (struct docg4_priv *) (nand + 1);
1287        mtd->priv = nand;
1288        nand->priv = doc;
1289        mtd->owner = THIS_MODULE;
1290        doc->virtadr = virtadr;
1291        doc->dev = dev;
1292
1293        init_mtd_structs(mtd);
1294
1295        /* initialize kernel bch algorithm */
1296        doc->bch = init_bch(DOCG4_M, DOCG4_T, DOCG4_PRIMITIVE_POLY);
1297        if (doc->bch == NULL) {
1298                retval = -EINVAL;
1299                goto fail;
1300        }
1301
1302        platform_set_drvdata(pdev, doc);
1303
1304        reset(mtd);
1305        retval = read_id_reg(mtd);
1306        if (retval == -ENODEV) {
1307                dev_warn(dev, "No diskonchip G4 device found.\n");
1308                goto fail;
1309        }
1310
1311        retval = nand_scan_tail(mtd);
1312        if (retval)
1313                goto fail;
1314
1315        retval = read_factory_bbt(mtd);
1316        if (retval)
1317                goto fail;
1318
1319        retval = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
1320        if (retval)
1321                goto fail;
1322
1323        doc->mtd = mtd;
1324        return 0;
1325
1326 fail:
1327        iounmap(virtadr);
1328        if (mtd) {
1329                /* re-declarations avoid compiler warning */
1330                struct nand_chip *nand = mtd->priv;
1331                struct docg4_priv *doc = nand->priv;
1332                nand_release(mtd); /* deletes partitions and mtd devices */
1333                platform_set_drvdata(pdev, NULL);
1334                free_bch(doc->bch);
1335                kfree(mtd);
1336        }
1337
1338        return retval;
1339}
1340
1341static int __exit cleanup_docg4(struct platform_device *pdev)
1342{
1343        struct docg4_priv *doc = platform_get_drvdata(pdev);
1344        nand_release(doc->mtd);
1345        platform_set_drvdata(pdev, NULL);
1346        free_bch(doc->bch);
1347        kfree(doc->mtd);
1348        iounmap(doc->virtadr);
1349        return 0;
1350}
1351
1352static struct platform_driver docg4_driver = {
1353        .driver         = {
1354                .name   = "docg4",
1355                .owner  = THIS_MODULE,
1356        },
1357        .suspend        = docg4_suspend,
1358        .resume         = docg4_resume,
1359        .remove         = __exit_p(cleanup_docg4),
1360};
1361
1362static int __init docg4_init(void)
1363{
1364        return platform_driver_probe(&docg4_driver, probe_docg4);
1365}
1366
1367static void __exit docg4_exit(void)
1368{
1369        platform_driver_unregister(&docg4_driver);
1370}
1371
1372module_init(docg4_init);
1373module_exit(docg4_exit);
1374
1375MODULE_LICENSE("GPL");
1376MODULE_AUTHOR("Mike Dunn");
1377MODULE_DESCRIPTION("M-Systems DiskOnChip G4 device driver");
1378