linux/drivers/mtd/nand/omap2.c
<<
>>
Prefs
   1/*
   2 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
   3 * Copyright © 2004 Micron Technology Inc.
   4 * Copyright © 2004 David Brownell
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10
  11#include <linux/platform_device.h>
  12#include <linux/dma-mapping.h>
  13#include <linux/delay.h>
  14#include <linux/module.h>
  15#include <linux/interrupt.h>
  16#include <linux/jiffies.h>
  17#include <linux/sched.h>
  18#include <linux/mtd/mtd.h>
  19#include <linux/mtd/nand.h>
  20#include <linux/mtd/partitions.h>
  21#include <linux/io.h>
  22#include <linux/slab.h>
  23
  24#include <plat/dma.h>
  25#include <plat/gpmc.h>
  26#include <plat/nand.h>
  27
  28#define DRIVER_NAME     "omap2-nand"
  29#define OMAP_NAND_TIMEOUT_MS    5000
  30
  31#define NAND_Ecc_P1e            (1 << 0)
  32#define NAND_Ecc_P2e            (1 << 1)
  33#define NAND_Ecc_P4e            (1 << 2)
  34#define NAND_Ecc_P8e            (1 << 3)
  35#define NAND_Ecc_P16e           (1 << 4)
  36#define NAND_Ecc_P32e           (1 << 5)
  37#define NAND_Ecc_P64e           (1 << 6)
  38#define NAND_Ecc_P128e          (1 << 7)
  39#define NAND_Ecc_P256e          (1 << 8)
  40#define NAND_Ecc_P512e          (1 << 9)
  41#define NAND_Ecc_P1024e         (1 << 10)
  42#define NAND_Ecc_P2048e         (1 << 11)
  43
  44#define NAND_Ecc_P1o            (1 << 16)
  45#define NAND_Ecc_P2o            (1 << 17)
  46#define NAND_Ecc_P4o            (1 << 18)
  47#define NAND_Ecc_P8o            (1 << 19)
  48#define NAND_Ecc_P16o           (1 << 20)
  49#define NAND_Ecc_P32o           (1 << 21)
  50#define NAND_Ecc_P64o           (1 << 22)
  51#define NAND_Ecc_P128o          (1 << 23)
  52#define NAND_Ecc_P256o          (1 << 24)
  53#define NAND_Ecc_P512o          (1 << 25)
  54#define NAND_Ecc_P1024o         (1 << 26)
  55#define NAND_Ecc_P2048o         (1 << 27)
  56
  57#define TF(value)       (value ? 1 : 0)
  58
  59#define P2048e(a)       (TF(a & NAND_Ecc_P2048e)        << 0)
  60#define P2048o(a)       (TF(a & NAND_Ecc_P2048o)        << 1)
  61#define P1e(a)          (TF(a & NAND_Ecc_P1e)           << 2)
  62#define P1o(a)          (TF(a & NAND_Ecc_P1o)           << 3)
  63#define P2e(a)          (TF(a & NAND_Ecc_P2e)           << 4)
  64#define P2o(a)          (TF(a & NAND_Ecc_P2o)           << 5)
  65#define P4e(a)          (TF(a & NAND_Ecc_P4e)           << 6)
  66#define P4o(a)          (TF(a & NAND_Ecc_P4o)           << 7)
  67
  68#define P8e(a)          (TF(a & NAND_Ecc_P8e)           << 0)
  69#define P8o(a)          (TF(a & NAND_Ecc_P8o)           << 1)
  70#define P16e(a)         (TF(a & NAND_Ecc_P16e)          << 2)
  71#define P16o(a)         (TF(a & NAND_Ecc_P16o)          << 3)
  72#define P32e(a)         (TF(a & NAND_Ecc_P32e)          << 4)
  73#define P32o(a)         (TF(a & NAND_Ecc_P32o)          << 5)
  74#define P64e(a)         (TF(a & NAND_Ecc_P64e)          << 6)
  75#define P64o(a)         (TF(a & NAND_Ecc_P64o)          << 7)
  76
  77#define P128e(a)        (TF(a & NAND_Ecc_P128e)         << 0)
  78#define P128o(a)        (TF(a & NAND_Ecc_P128o)         << 1)
  79#define P256e(a)        (TF(a & NAND_Ecc_P256e)         << 2)
  80#define P256o(a)        (TF(a & NAND_Ecc_P256o)         << 3)
  81#define P512e(a)        (TF(a & NAND_Ecc_P512e)         << 4)
  82#define P512o(a)        (TF(a & NAND_Ecc_P512o)         << 5)
  83#define P1024e(a)       (TF(a & NAND_Ecc_P1024e)        << 6)
  84#define P1024o(a)       (TF(a & NAND_Ecc_P1024o)        << 7)
  85
  86#define P8e_s(a)        (TF(a & NAND_Ecc_P8e)           << 0)
  87#define P8o_s(a)        (TF(a & NAND_Ecc_P8o)           << 1)
  88#define P16e_s(a)       (TF(a & NAND_Ecc_P16e)          << 2)
  89#define P16o_s(a)       (TF(a & NAND_Ecc_P16o)          << 3)
  90#define P1e_s(a)        (TF(a & NAND_Ecc_P1e)           << 4)
  91#define P1o_s(a)        (TF(a & NAND_Ecc_P1o)           << 5)
  92#define P2e_s(a)        (TF(a & NAND_Ecc_P2e)           << 6)
  93#define P2o_s(a)        (TF(a & NAND_Ecc_P2o)           << 7)
  94
  95#define P4e_s(a)        (TF(a & NAND_Ecc_P4e)           << 0)
  96#define P4o_s(a)        (TF(a & NAND_Ecc_P4o)           << 1)
  97
  98/* oob info generated runtime depending on ecc algorithm and layout selected */
  99static struct nand_ecclayout omap_oobinfo;
 100/* Define some generic bad / good block scan pattern which are used
 101 * while scanning a device for factory marked good / bad blocks
 102 */
 103static uint8_t scan_ff_pattern[] = { 0xff };
 104static struct nand_bbt_descr bb_descrip_flashbased = {
 105        .options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES,
 106        .offs = 0,
 107        .len = 1,
 108        .pattern = scan_ff_pattern,
 109};
 110
 111
 112struct omap_nand_info {
 113        struct nand_hw_control          controller;
 114        struct omap_nand_platform_data  *pdata;
 115        struct mtd_info                 mtd;
 116        struct nand_chip                nand;
 117        struct platform_device          *pdev;
 118
 119        int                             gpmc_cs;
 120        unsigned long                   phys_base;
 121        struct completion               comp;
 122        int                             dma_ch;
 123        int                             gpmc_irq;
 124        enum {
 125                OMAP_NAND_IO_READ = 0,  /* read */
 126                OMAP_NAND_IO_WRITE,     /* write */
 127        } iomode;
 128        u_char                          *buf;
 129        int                                     buf_len;
 130};
 131
 132/**
 133 * omap_hwcontrol - hardware specific access to control-lines
 134 * @mtd: MTD device structure
 135 * @cmd: command to device
 136 * @ctrl:
 137 * NAND_NCE: bit 0 -> don't care
 138 * NAND_CLE: bit 1 -> Command Latch
 139 * NAND_ALE: bit 2 -> Address Latch
 140 *
 141 * NOTE: boards may use different bits for these!!
 142 */
 143static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
 144{
 145        struct omap_nand_info *info = container_of(mtd,
 146                                        struct omap_nand_info, mtd);
 147
 148        if (cmd != NAND_CMD_NONE) {
 149                if (ctrl & NAND_CLE)
 150                        gpmc_nand_write(info->gpmc_cs, GPMC_NAND_COMMAND, cmd);
 151
 152                else if (ctrl & NAND_ALE)
 153                        gpmc_nand_write(info->gpmc_cs, GPMC_NAND_ADDRESS, cmd);
 154
 155                else /* NAND_NCE */
 156                        gpmc_nand_write(info->gpmc_cs, GPMC_NAND_DATA, cmd);
 157        }
 158}
 159
 160/**
 161 * omap_read_buf8 - read data from NAND controller into buffer
 162 * @mtd: MTD device structure
 163 * @buf: buffer to store date
 164 * @len: number of bytes to read
 165 */
 166static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
 167{
 168        struct nand_chip *nand = mtd->priv;
 169
 170        ioread8_rep(nand->IO_ADDR_R, buf, len);
 171}
 172
 173/**
 174 * omap_write_buf8 - write buffer to NAND controller
 175 * @mtd: MTD device structure
 176 * @buf: data buffer
 177 * @len: number of bytes to write
 178 */
 179static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
 180{
 181        struct omap_nand_info *info = container_of(mtd,
 182                                                struct omap_nand_info, mtd);
 183        u_char *p = (u_char *)buf;
 184        u32     status = 0;
 185
 186        while (len--) {
 187                iowrite8(*p++, info->nand.IO_ADDR_W);
 188                /* wait until buffer is available for write */
 189                do {
 190                        status = gpmc_read_status(GPMC_STATUS_BUFFER);
 191                } while (!status);
 192        }
 193}
 194
 195/**
 196 * omap_read_buf16 - read data from NAND controller into buffer
 197 * @mtd: MTD device structure
 198 * @buf: buffer to store date
 199 * @len: number of bytes to read
 200 */
 201static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
 202{
 203        struct nand_chip *nand = mtd->priv;
 204
 205        ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
 206}
 207
 208/**
 209 * omap_write_buf16 - write buffer to NAND controller
 210 * @mtd: MTD device structure
 211 * @buf: data buffer
 212 * @len: number of bytes to write
 213 */
 214static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
 215{
 216        struct omap_nand_info *info = container_of(mtd,
 217                                                struct omap_nand_info, mtd);
 218        u16 *p = (u16 *) buf;
 219        u32     status = 0;
 220        /* FIXME try bursts of writesw() or DMA ... */
 221        len >>= 1;
 222
 223        while (len--) {
 224                iowrite16(*p++, info->nand.IO_ADDR_W);
 225                /* wait until buffer is available for write */
 226                do {
 227                        status = gpmc_read_status(GPMC_STATUS_BUFFER);
 228                } while (!status);
 229        }
 230}
 231
 232/**
 233 * omap_read_buf_pref - read data from NAND controller into buffer
 234 * @mtd: MTD device structure
 235 * @buf: buffer to store date
 236 * @len: number of bytes to read
 237 */
 238static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
 239{
 240        struct omap_nand_info *info = container_of(mtd,
 241                                                struct omap_nand_info, mtd);
 242        uint32_t r_count = 0;
 243        int ret = 0;
 244        u32 *p = (u32 *)buf;
 245
 246        /* take care of subpage reads */
 247        if (len % 4) {
 248                if (info->nand.options & NAND_BUSWIDTH_16)
 249                        omap_read_buf16(mtd, buf, len % 4);
 250                else
 251                        omap_read_buf8(mtd, buf, len % 4);
 252                p = (u32 *) (buf + len % 4);
 253                len -= len % 4;
 254        }
 255
 256        /* configure and start prefetch transfer */
 257        ret = gpmc_prefetch_enable(info->gpmc_cs,
 258                        PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0);
 259        if (ret) {
 260                /* PFPW engine is busy, use cpu copy method */
 261                if (info->nand.options & NAND_BUSWIDTH_16)
 262                        omap_read_buf16(mtd, (u_char *)p, len);
 263                else
 264                        omap_read_buf8(mtd, (u_char *)p, len);
 265        } else {
 266                do {
 267                        r_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
 268                        r_count = r_count >> 2;
 269                        ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
 270                        p += r_count;
 271                        len -= r_count << 2;
 272                } while (len);
 273                /* disable and stop the PFPW engine */
 274                gpmc_prefetch_reset(info->gpmc_cs);
 275        }
 276}
 277
 278/**
 279 * omap_write_buf_pref - write buffer to NAND controller
 280 * @mtd: MTD device structure
 281 * @buf: data buffer
 282 * @len: number of bytes to write
 283 */
 284static void omap_write_buf_pref(struct mtd_info *mtd,
 285                                        const u_char *buf, int len)
 286{
 287        struct omap_nand_info *info = container_of(mtd,
 288                                                struct omap_nand_info, mtd);
 289        uint32_t w_count = 0;
 290        int i = 0, ret = 0;
 291        u16 *p = (u16 *)buf;
 292        unsigned long tim, limit;
 293
 294        /* take care of subpage writes */
 295        if (len % 2 != 0) {
 296                writeb(*buf, info->nand.IO_ADDR_W);
 297                p = (u16 *)(buf + 1);
 298                len--;
 299        }
 300
 301        /*  configure and start prefetch transfer */
 302        ret = gpmc_prefetch_enable(info->gpmc_cs,
 303                        PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1);
 304        if (ret) {
 305                /* PFPW engine is busy, use cpu copy method */
 306                if (info->nand.options & NAND_BUSWIDTH_16)
 307                        omap_write_buf16(mtd, (u_char *)p, len);
 308                else
 309                        omap_write_buf8(mtd, (u_char *)p, len);
 310        } else {
 311                while (len) {
 312                        w_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
 313                        w_count = w_count >> 1;
 314                        for (i = 0; (i < w_count) && len; i++, len -= 2)
 315                                iowrite16(*p++, info->nand.IO_ADDR_W);
 316                }
 317                /* wait for data to flushed-out before reset the prefetch */
 318                tim = 0;
 319                limit = (loops_per_jiffy *
 320                                        msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
 321                while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
 322                        cpu_relax();
 323
 324                /* disable and stop the PFPW engine */
 325                gpmc_prefetch_reset(info->gpmc_cs);
 326        }
 327}
 328
 329/*
 330 * omap_nand_dma_cb: callback on the completion of dma transfer
 331 * @lch: logical channel
 332 * @ch_satuts: channel status
 333 * @data: pointer to completion data structure
 334 */
 335static void omap_nand_dma_cb(int lch, u16 ch_status, void *data)
 336{
 337        complete((struct completion *) data);
 338}
 339
 340/*
 341 * omap_nand_dma_transfer: configer and start dma transfer
 342 * @mtd: MTD device structure
 343 * @addr: virtual address in RAM of source/destination
 344 * @len: number of data bytes to be transferred
 345 * @is_write: flag for read/write operation
 346 */
 347static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
 348                                        unsigned int len, int is_write)
 349{
 350        struct omap_nand_info *info = container_of(mtd,
 351                                        struct omap_nand_info, mtd);
 352        enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
 353                                                        DMA_FROM_DEVICE;
 354        dma_addr_t dma_addr;
 355        int ret;
 356        unsigned long tim, limit;
 357
 358        /* The fifo depth is 64 bytes max.
 359         * But configure the FIFO-threahold to 32 to get a sync at each frame
 360         * and frame length is 32 bytes.
 361         */
 362        int buf_len = len >> 6;
 363
 364        if (addr >= high_memory) {
 365                struct page *p1;
 366
 367                if (((size_t)addr & PAGE_MASK) !=
 368                        ((size_t)(addr + len - 1) & PAGE_MASK))
 369                        goto out_copy;
 370                p1 = vmalloc_to_page(addr);
 371                if (!p1)
 372                        goto out_copy;
 373                addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
 374        }
 375
 376        dma_addr = dma_map_single(&info->pdev->dev, addr, len, dir);
 377        if (dma_mapping_error(&info->pdev->dev, dma_addr)) {
 378                dev_err(&info->pdev->dev,
 379                        "Couldn't DMA map a %d byte buffer\n", len);
 380                goto out_copy;
 381        }
 382
 383        if (is_write) {
 384            omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
 385                                                info->phys_base, 0, 0);
 386            omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
 387                                                        dma_addr, 0, 0);
 388            omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
 389                                        0x10, buf_len, OMAP_DMA_SYNC_FRAME,
 390                                        OMAP24XX_DMA_GPMC, OMAP_DMA_DST_SYNC);
 391        } else {
 392            omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
 393                                                info->phys_base, 0, 0);
 394            omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
 395                                                        dma_addr, 0, 0);
 396            omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
 397                                        0x10, buf_len, OMAP_DMA_SYNC_FRAME,
 398                                        OMAP24XX_DMA_GPMC, OMAP_DMA_SRC_SYNC);
 399        }
 400        /*  configure and start prefetch transfer */
 401        ret = gpmc_prefetch_enable(info->gpmc_cs,
 402                        PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write);
 403        if (ret)
 404                /* PFPW engine is busy, use cpu copy method */
 405                goto out_copy;
 406
 407        init_completion(&info->comp);
 408
 409        omap_start_dma(info->dma_ch);
 410
 411        /* setup and start DMA using dma_addr */
 412        wait_for_completion(&info->comp);
 413        tim = 0;
 414        limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
 415        while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
 416                cpu_relax();
 417
 418        /* disable and stop the PFPW engine */
 419        gpmc_prefetch_reset(info->gpmc_cs);
 420
 421        dma_unmap_single(&info->pdev->dev, dma_addr, len, dir);
 422        return 0;
 423
 424out_copy:
 425        if (info->nand.options & NAND_BUSWIDTH_16)
 426                is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
 427                        : omap_write_buf16(mtd, (u_char *) addr, len);
 428        else
 429                is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
 430                        : omap_write_buf8(mtd, (u_char *) addr, len);
 431        return 0;
 432}
 433
 434/**
 435 * omap_read_buf_dma_pref - read data from NAND controller into buffer
 436 * @mtd: MTD device structure
 437 * @buf: buffer to store date
 438 * @len: number of bytes to read
 439 */
 440static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
 441{
 442        if (len <= mtd->oobsize)
 443                omap_read_buf_pref(mtd, buf, len);
 444        else
 445                /* start transfer in DMA mode */
 446                omap_nand_dma_transfer(mtd, buf, len, 0x0);
 447}
 448
 449/**
 450 * omap_write_buf_dma_pref - write buffer to NAND controller
 451 * @mtd: MTD device structure
 452 * @buf: data buffer
 453 * @len: number of bytes to write
 454 */
 455static void omap_write_buf_dma_pref(struct mtd_info *mtd,
 456                                        const u_char *buf, int len)
 457{
 458        if (len <= mtd->oobsize)
 459                omap_write_buf_pref(mtd, buf, len);
 460        else
 461                /* start transfer in DMA mode */
 462                omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
 463}
 464
 465/*
 466 * omap_nand_irq - GMPC irq handler
 467 * @this_irq: gpmc irq number
 468 * @dev: omap_nand_info structure pointer is passed here
 469 */
 470static irqreturn_t omap_nand_irq(int this_irq, void *dev)
 471{
 472        struct omap_nand_info *info = (struct omap_nand_info *) dev;
 473        u32 bytes;
 474        u32 irq_stat;
 475
 476        irq_stat = gpmc_read_status(GPMC_GET_IRQ_STATUS);
 477        bytes = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
 478        bytes = bytes  & 0xFFFC; /* io in multiple of 4 bytes */
 479        if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
 480                if (irq_stat & 0x2)
 481                        goto done;
 482
 483                if (info->buf_len && (info->buf_len < bytes))
 484                        bytes = info->buf_len;
 485                else if (!info->buf_len)
 486                        bytes = 0;
 487                iowrite32_rep(info->nand.IO_ADDR_W,
 488                                                (u32 *)info->buf, bytes >> 2);
 489                info->buf = info->buf + bytes;
 490                info->buf_len -= bytes;
 491
 492        } else {
 493                ioread32_rep(info->nand.IO_ADDR_R,
 494                                                (u32 *)info->buf, bytes >> 2);
 495                info->buf = info->buf + bytes;
 496
 497                if (irq_stat & 0x2)
 498                        goto done;
 499        }
 500        gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, irq_stat);
 501
 502        return IRQ_HANDLED;
 503
 504done:
 505        complete(&info->comp);
 506        /* disable irq */
 507        gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ, 0);
 508
 509        /* clear status */
 510        gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, irq_stat);
 511
 512        return IRQ_HANDLED;
 513}
 514
 515/*
 516 * omap_read_buf_irq_pref - read data from NAND controller into buffer
 517 * @mtd: MTD device structure
 518 * @buf: buffer to store date
 519 * @len: number of bytes to read
 520 */
 521static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
 522{
 523        struct omap_nand_info *info = container_of(mtd,
 524                                                struct omap_nand_info, mtd);
 525        int ret = 0;
 526
 527        if (len <= mtd->oobsize) {
 528                omap_read_buf_pref(mtd, buf, len);
 529                return;
 530        }
 531
 532        info->iomode = OMAP_NAND_IO_READ;
 533        info->buf = buf;
 534        init_completion(&info->comp);
 535
 536        /*  configure and start prefetch transfer */
 537        ret = gpmc_prefetch_enable(info->gpmc_cs,
 538                        PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0);
 539        if (ret)
 540                /* PFPW engine is busy, use cpu copy method */
 541                goto out_copy;
 542
 543        info->buf_len = len;
 544        /* enable irq */
 545        gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ,
 546                (GPMC_IRQ_FIFOEVENTENABLE | GPMC_IRQ_COUNT_EVENT));
 547
 548        /* waiting for read to complete */
 549        wait_for_completion(&info->comp);
 550
 551        /* disable and stop the PFPW engine */
 552        gpmc_prefetch_reset(info->gpmc_cs);
 553        return;
 554
 555out_copy:
 556        if (info->nand.options & NAND_BUSWIDTH_16)
 557                omap_read_buf16(mtd, buf, len);
 558        else
 559                omap_read_buf8(mtd, buf, len);
 560}
 561
 562/*
 563 * omap_write_buf_irq_pref - write buffer to NAND controller
 564 * @mtd: MTD device structure
 565 * @buf: data buffer
 566 * @len: number of bytes to write
 567 */
 568static void omap_write_buf_irq_pref(struct mtd_info *mtd,
 569                                        const u_char *buf, int len)
 570{
 571        struct omap_nand_info *info = container_of(mtd,
 572                                                struct omap_nand_info, mtd);
 573        int ret = 0;
 574        unsigned long tim, limit;
 575
 576        if (len <= mtd->oobsize) {
 577                omap_write_buf_pref(mtd, buf, len);
 578                return;
 579        }
 580
 581        info->iomode = OMAP_NAND_IO_WRITE;
 582        info->buf = (u_char *) buf;
 583        init_completion(&info->comp);
 584
 585        /* configure and start prefetch transfer : size=24 */
 586        ret = gpmc_prefetch_enable(info->gpmc_cs,
 587                        (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1);
 588        if (ret)
 589                /* PFPW engine is busy, use cpu copy method */
 590                goto out_copy;
 591
 592        info->buf_len = len;
 593        /* enable irq */
 594        gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ,
 595                        (GPMC_IRQ_FIFOEVENTENABLE | GPMC_IRQ_COUNT_EVENT));
 596
 597        /* waiting for write to complete */
 598        wait_for_completion(&info->comp);
 599        /* wait for data to flushed-out before reset the prefetch */
 600        tim = 0;
 601        limit = (loops_per_jiffy *  msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
 602        while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
 603                cpu_relax();
 604
 605        /* disable and stop the PFPW engine */
 606        gpmc_prefetch_reset(info->gpmc_cs);
 607        return;
 608
 609out_copy:
 610        if (info->nand.options & NAND_BUSWIDTH_16)
 611                omap_write_buf16(mtd, buf, len);
 612        else
 613                omap_write_buf8(mtd, buf, len);
 614}
 615
 616/**
 617 * omap_verify_buf - Verify chip data against buffer
 618 * @mtd: MTD device structure
 619 * @buf: buffer containing the data to compare
 620 * @len: number of bytes to compare
 621 */
 622static int omap_verify_buf(struct mtd_info *mtd, const u_char * buf, int len)
 623{
 624        struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
 625                                                        mtd);
 626        u16 *p = (u16 *) buf;
 627
 628        len >>= 1;
 629        while (len--) {
 630                if (*p++ != cpu_to_le16(readw(info->nand.IO_ADDR_R)))
 631                        return -EFAULT;
 632        }
 633
 634        return 0;
 635}
 636
 637/**
 638 * gen_true_ecc - This function will generate true ECC value
 639 * @ecc_buf: buffer to store ecc code
 640 *
 641 * This generated true ECC value can be used when correcting
 642 * data read from NAND flash memory core
 643 */
 644static void gen_true_ecc(u8 *ecc_buf)
 645{
 646        u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
 647                ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
 648
 649        ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
 650                        P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
 651        ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
 652                        P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
 653        ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
 654                        P1e(tmp) | P2048o(tmp) | P2048e(tmp));
 655}
 656
 657/**
 658 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
 659 * @ecc_data1:  ecc code from nand spare area
 660 * @ecc_data2:  ecc code from hardware register obtained from hardware ecc
 661 * @page_data:  page data
 662 *
 663 * This function compares two ECC's and indicates if there is an error.
 664 * If the error can be corrected it will be corrected to the buffer.
 665 * If there is no error, %0 is returned. If there is an error but it
 666 * was corrected, %1 is returned. Otherwise, %-1 is returned.
 667 */
 668static int omap_compare_ecc(u8 *ecc_data1,      /* read from NAND memory */
 669                            u8 *ecc_data2,      /* read from register */
 670                            u8 *page_data)
 671{
 672        uint    i;
 673        u8      tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
 674        u8      comp0_bit[8], comp1_bit[8], comp2_bit[8];
 675        u8      ecc_bit[24];
 676        u8      ecc_sum = 0;
 677        u8      find_bit = 0;
 678        uint    find_byte = 0;
 679        int     isEccFF;
 680
 681        isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
 682
 683        gen_true_ecc(ecc_data1);
 684        gen_true_ecc(ecc_data2);
 685
 686        for (i = 0; i <= 2; i++) {
 687                *(ecc_data1 + i) = ~(*(ecc_data1 + i));
 688                *(ecc_data2 + i) = ~(*(ecc_data2 + i));
 689        }
 690
 691        for (i = 0; i < 8; i++) {
 692                tmp0_bit[i]     = *ecc_data1 % 2;
 693                *ecc_data1      = *ecc_data1 / 2;
 694        }
 695
 696        for (i = 0; i < 8; i++) {
 697                tmp1_bit[i]      = *(ecc_data1 + 1) % 2;
 698                *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
 699        }
 700
 701        for (i = 0; i < 8; i++) {
 702                tmp2_bit[i]      = *(ecc_data1 + 2) % 2;
 703                *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
 704        }
 705
 706        for (i = 0; i < 8; i++) {
 707                comp0_bit[i]     = *ecc_data2 % 2;
 708                *ecc_data2       = *ecc_data2 / 2;
 709        }
 710
 711        for (i = 0; i < 8; i++) {
 712                comp1_bit[i]     = *(ecc_data2 + 1) % 2;
 713                *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
 714        }
 715
 716        for (i = 0; i < 8; i++) {
 717                comp2_bit[i]     = *(ecc_data2 + 2) % 2;
 718                *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
 719        }
 720
 721        for (i = 0; i < 6; i++)
 722                ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
 723
 724        for (i = 0; i < 8; i++)
 725                ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
 726
 727        for (i = 0; i < 8; i++)
 728                ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
 729
 730        ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
 731        ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
 732
 733        for (i = 0; i < 24; i++)
 734                ecc_sum += ecc_bit[i];
 735
 736        switch (ecc_sum) {
 737        case 0:
 738                /* Not reached because this function is not called if
 739                 *  ECC values are equal
 740                 */
 741                return 0;
 742
 743        case 1:
 744                /* Uncorrectable error */
 745                pr_debug("ECC UNCORRECTED_ERROR 1\n");
 746                return -1;
 747
 748        case 11:
 749                /* UN-Correctable error */
 750                pr_debug("ECC UNCORRECTED_ERROR B\n");
 751                return -1;
 752
 753        case 12:
 754                /* Correctable error */
 755                find_byte = (ecc_bit[23] << 8) +
 756                            (ecc_bit[21] << 7) +
 757                            (ecc_bit[19] << 6) +
 758                            (ecc_bit[17] << 5) +
 759                            (ecc_bit[15] << 4) +
 760                            (ecc_bit[13] << 3) +
 761                            (ecc_bit[11] << 2) +
 762                            (ecc_bit[9]  << 1) +
 763                            ecc_bit[7];
 764
 765                find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
 766
 767                pr_debug("Correcting single bit ECC error at offset: "
 768                                "%d, bit: %d\n", find_byte, find_bit);
 769
 770                page_data[find_byte] ^= (1 << find_bit);
 771
 772                return 1;
 773        default:
 774                if (isEccFF) {
 775                        if (ecc_data2[0] == 0 &&
 776                            ecc_data2[1] == 0 &&
 777                            ecc_data2[2] == 0)
 778                                return 0;
 779                }
 780                pr_debug("UNCORRECTED_ERROR default\n");
 781                return -1;
 782        }
 783}
 784
 785/**
 786 * omap_correct_data - Compares the ECC read with HW generated ECC
 787 * @mtd: MTD device structure
 788 * @dat: page data
 789 * @read_ecc: ecc read from nand flash
 790 * @calc_ecc: ecc read from HW ECC registers
 791 *
 792 * Compares the ecc read from nand spare area with ECC registers values
 793 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
 794 * detection and correction. If there are no errors, %0 is returned. If
 795 * there were errors and all of the errors were corrected, the number of
 796 * corrected errors is returned. If uncorrectable errors exist, %-1 is
 797 * returned.
 798 */
 799static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
 800                                u_char *read_ecc, u_char *calc_ecc)
 801{
 802        struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
 803                                                        mtd);
 804        int blockCnt = 0, i = 0, ret = 0;
 805        int stat = 0;
 806
 807        /* Ex NAND_ECC_HW12_2048 */
 808        if ((info->nand.ecc.mode == NAND_ECC_HW) &&
 809                        (info->nand.ecc.size  == 2048))
 810                blockCnt = 4;
 811        else
 812                blockCnt = 1;
 813
 814        for (i = 0; i < blockCnt; i++) {
 815                if (memcmp(read_ecc, calc_ecc, 3) != 0) {
 816                        ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
 817                        if (ret < 0)
 818                                return ret;
 819                        /* keep track of the number of corrected errors */
 820                        stat += ret;
 821                }
 822                read_ecc += 3;
 823                calc_ecc += 3;
 824                dat      += 512;
 825        }
 826        return stat;
 827}
 828
 829/**
 830 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
 831 * @mtd: MTD device structure
 832 * @dat: The pointer to data on which ecc is computed
 833 * @ecc_code: The ecc_code buffer
 834 *
 835 * Using noninverted ECC can be considered ugly since writing a blank
 836 * page ie. padding will clear the ECC bytes. This is no problem as long
 837 * nobody is trying to write data on the seemingly unused page. Reading
 838 * an erased page will produce an ECC mismatch between generated and read
 839 * ECC bytes that has to be dealt with separately.
 840 */
 841static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
 842                                u_char *ecc_code)
 843{
 844        struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
 845                                                        mtd);
 846        return gpmc_calculate_ecc(info->gpmc_cs, dat, ecc_code);
 847}
 848
 849/**
 850 * omap_enable_hwecc - This function enables the hardware ecc functionality
 851 * @mtd: MTD device structure
 852 * @mode: Read/Write mode
 853 */
 854static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
 855{
 856        struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
 857                                                        mtd);
 858        struct nand_chip *chip = mtd->priv;
 859        unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
 860
 861        gpmc_enable_hwecc(info->gpmc_cs, mode, dev_width, info->nand.ecc.size);
 862}
 863
 864/**
 865 * omap_wait - wait until the command is done
 866 * @mtd: MTD device structure
 867 * @chip: NAND Chip structure
 868 *
 869 * Wait function is called during Program and erase operations and
 870 * the way it is called from MTD layer, we should wait till the NAND
 871 * chip is ready after the programming/erase operation has completed.
 872 *
 873 * Erase can take up to 400ms and program up to 20ms according to
 874 * general NAND and SmartMedia specs
 875 */
 876static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
 877{
 878        struct nand_chip *this = mtd->priv;
 879        struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
 880                                                        mtd);
 881        unsigned long timeo = jiffies;
 882        int status = NAND_STATUS_FAIL, state = this->state;
 883
 884        if (state == FL_ERASING)
 885                timeo += (HZ * 400) / 1000;
 886        else
 887                timeo += (HZ * 20) / 1000;
 888
 889        gpmc_nand_write(info->gpmc_cs,
 890                        GPMC_NAND_COMMAND, (NAND_CMD_STATUS & 0xFF));
 891        while (time_before(jiffies, timeo)) {
 892                status = gpmc_nand_read(info->gpmc_cs, GPMC_NAND_DATA);
 893                if (status & NAND_STATUS_READY)
 894                        break;
 895                cond_resched();
 896        }
 897        return status;
 898}
 899
 900/**
 901 * omap_dev_ready - calls the platform specific dev_ready function
 902 * @mtd: MTD device structure
 903 */
 904static int omap_dev_ready(struct mtd_info *mtd)
 905{
 906        unsigned int val = 0;
 907        struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
 908                                                        mtd);
 909
 910        val = gpmc_read_status(GPMC_GET_IRQ_STATUS);
 911        if ((val & 0x100) == 0x100) {
 912                /* Clear IRQ Interrupt */
 913                val |= 0x100;
 914                val &= ~(0x0);
 915                gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, val);
 916        } else {
 917                unsigned int cnt = 0;
 918                while (cnt++ < 0x1FF) {
 919                        if  ((val & 0x100) == 0x100)
 920                                return 0;
 921                        val = gpmc_read_status(GPMC_GET_IRQ_STATUS);
 922                }
 923        }
 924
 925        return 1;
 926}
 927
 928static int __devinit omap_nand_probe(struct platform_device *pdev)
 929{
 930        struct omap_nand_info           *info;
 931        struct omap_nand_platform_data  *pdata;
 932        int                             err;
 933        int                             i, offset;
 934
 935        pdata = pdev->dev.platform_data;
 936        if (pdata == NULL) {
 937                dev_err(&pdev->dev, "platform data missing\n");
 938                return -ENODEV;
 939        }
 940
 941        info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL);
 942        if (!info)
 943                return -ENOMEM;
 944
 945        platform_set_drvdata(pdev, info);
 946
 947        spin_lock_init(&info->controller.lock);
 948        init_waitqueue_head(&info->controller.wq);
 949
 950        info->pdev = pdev;
 951
 952        info->gpmc_cs           = pdata->cs;
 953        info->phys_base         = pdata->phys_base;
 954
 955        info->mtd.priv          = &info->nand;
 956        info->mtd.name          = dev_name(&pdev->dev);
 957        info->mtd.owner         = THIS_MODULE;
 958
 959        info->nand.options      = pdata->devsize;
 960        info->nand.options      |= NAND_SKIP_BBTSCAN;
 961
 962        /* NAND write protect off */
 963        gpmc_cs_configure(info->gpmc_cs, GPMC_CONFIG_WP, 0);
 964
 965        if (!request_mem_region(info->phys_base, NAND_IO_SIZE,
 966                                pdev->dev.driver->name)) {
 967                err = -EBUSY;
 968                goto out_free_info;
 969        }
 970
 971        info->nand.IO_ADDR_R = ioremap(info->phys_base, NAND_IO_SIZE);
 972        if (!info->nand.IO_ADDR_R) {
 973                err = -ENOMEM;
 974                goto out_release_mem_region;
 975        }
 976
 977        info->nand.controller = &info->controller;
 978
 979        info->nand.IO_ADDR_W = info->nand.IO_ADDR_R;
 980        info->nand.cmd_ctrl  = omap_hwcontrol;
 981
 982        /*
 983         * If RDY/BSY line is connected to OMAP then use the omap ready
 984         * funcrtion and the generic nand_wait function which reads the status
 985         * register after monitoring the RDY/BSY line.Otherwise use a standard
 986         * chip delay which is slightly more than tR (AC Timing) of the NAND
 987         * device and read status register until you get a failure or success
 988         */
 989        if (pdata->dev_ready) {
 990                info->nand.dev_ready = omap_dev_ready;
 991                info->nand.chip_delay = 0;
 992        } else {
 993                info->nand.waitfunc = omap_wait;
 994                info->nand.chip_delay = 50;
 995        }
 996
 997        switch (pdata->xfer_type) {
 998        case NAND_OMAP_PREFETCH_POLLED:
 999                info->nand.read_buf   = omap_read_buf_pref;
1000                info->nand.write_buf  = omap_write_buf_pref;
1001                break;
1002
1003        case NAND_OMAP_POLLED:
1004                if (info->nand.options & NAND_BUSWIDTH_16) {
1005                        info->nand.read_buf   = omap_read_buf16;
1006                        info->nand.write_buf  = omap_write_buf16;
1007                } else {
1008                        info->nand.read_buf   = omap_read_buf8;
1009                        info->nand.write_buf  = omap_write_buf8;
1010                }
1011                break;
1012
1013        case NAND_OMAP_PREFETCH_DMA:
1014                err = omap_request_dma(OMAP24XX_DMA_GPMC, "NAND",
1015                                omap_nand_dma_cb, &info->comp, &info->dma_ch);
1016                if (err < 0) {
1017                        info->dma_ch = -1;
1018                        dev_err(&pdev->dev, "DMA request failed!\n");
1019                        goto out_release_mem_region;
1020                } else {
1021                        omap_set_dma_dest_burst_mode(info->dma_ch,
1022                                        OMAP_DMA_DATA_BURST_16);
1023                        omap_set_dma_src_burst_mode(info->dma_ch,
1024                                        OMAP_DMA_DATA_BURST_16);
1025
1026                        info->nand.read_buf   = omap_read_buf_dma_pref;
1027                        info->nand.write_buf  = omap_write_buf_dma_pref;
1028                }
1029                break;
1030
1031        case NAND_OMAP_PREFETCH_IRQ:
1032                err = request_irq(pdata->gpmc_irq,
1033                                omap_nand_irq, IRQF_SHARED, "gpmc-nand", info);
1034                if (err) {
1035                        dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1036                                                        pdata->gpmc_irq, err);
1037                        goto out_release_mem_region;
1038                } else {
1039                        info->gpmc_irq       = pdata->gpmc_irq;
1040                        info->nand.read_buf  = omap_read_buf_irq_pref;
1041                        info->nand.write_buf = omap_write_buf_irq_pref;
1042                }
1043                break;
1044
1045        default:
1046                dev_err(&pdev->dev,
1047                        "xfer_type(%d) not supported!\n", pdata->xfer_type);
1048                err = -EINVAL;
1049                goto out_release_mem_region;
1050        }
1051
1052        info->nand.verify_buf = omap_verify_buf;
1053
1054        /* selsect the ecc type */
1055        if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_DEFAULT)
1056                info->nand.ecc.mode = NAND_ECC_SOFT;
1057        else if ((pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW) ||
1058                (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE)) {
1059                info->nand.ecc.bytes            = 3;
1060                info->nand.ecc.size             = 512;
1061                info->nand.ecc.strength         = 1;
1062                info->nand.ecc.calculate        = omap_calculate_ecc;
1063                info->nand.ecc.hwctl            = omap_enable_hwecc;
1064                info->nand.ecc.correct          = omap_correct_data;
1065                info->nand.ecc.mode             = NAND_ECC_HW;
1066        }
1067
1068        /* DIP switches on some boards change between 8 and 16 bit
1069         * bus widths for flash.  Try the other width if the first try fails.
1070         */
1071        if (nand_scan_ident(&info->mtd, 1, NULL)) {
1072                info->nand.options ^= NAND_BUSWIDTH_16;
1073                if (nand_scan_ident(&info->mtd, 1, NULL)) {
1074                        err = -ENXIO;
1075                        goto out_release_mem_region;
1076                }
1077        }
1078
1079        /* rom code layout */
1080        if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE) {
1081
1082                if (info->nand.options & NAND_BUSWIDTH_16)
1083                        offset = 2;
1084                else {
1085                        offset = 1;
1086                        info->nand.badblock_pattern = &bb_descrip_flashbased;
1087                }
1088                omap_oobinfo.eccbytes = 3 * (info->mtd.oobsize/16);
1089                for (i = 0; i < omap_oobinfo.eccbytes; i++)
1090                        omap_oobinfo.eccpos[i] = i+offset;
1091
1092                omap_oobinfo.oobfree->offset = offset + omap_oobinfo.eccbytes;
1093                omap_oobinfo.oobfree->length = info->mtd.oobsize -
1094                                        (offset + omap_oobinfo.eccbytes);
1095
1096                info->nand.ecc.layout = &omap_oobinfo;
1097        }
1098
1099        /* second phase scan */
1100        if (nand_scan_tail(&info->mtd)) {
1101                err = -ENXIO;
1102                goto out_release_mem_region;
1103        }
1104
1105        mtd_device_parse_register(&info->mtd, NULL, NULL, pdata->parts,
1106                                  pdata->nr_parts);
1107
1108        platform_set_drvdata(pdev, &info->mtd);
1109
1110        return 0;
1111
1112out_release_mem_region:
1113        release_mem_region(info->phys_base, NAND_IO_SIZE);
1114out_free_info:
1115        kfree(info);
1116
1117        return err;
1118}
1119
1120static int omap_nand_remove(struct platform_device *pdev)
1121{
1122        struct mtd_info *mtd = platform_get_drvdata(pdev);
1123        struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1124                                                        mtd);
1125
1126        platform_set_drvdata(pdev, NULL);
1127        if (info->dma_ch != -1)
1128                omap_free_dma(info->dma_ch);
1129
1130        if (info->gpmc_irq)
1131                free_irq(info->gpmc_irq, info);
1132
1133        /* Release NAND device, its internal structures and partitions */
1134        nand_release(&info->mtd);
1135        iounmap(info->nand.IO_ADDR_R);
1136        kfree(&info->mtd);
1137        return 0;
1138}
1139
1140static struct platform_driver omap_nand_driver = {
1141        .probe          = omap_nand_probe,
1142        .remove         = omap_nand_remove,
1143        .driver         = {
1144                .name   = DRIVER_NAME,
1145                .owner  = THIS_MODULE,
1146        },
1147};
1148
1149module_platform_driver(omap_nand_driver);
1150
1151MODULE_ALIAS("platform:" DRIVER_NAME);
1152MODULE_LICENSE("GPL");
1153MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");
1154