linux/drivers/mtd/ubi/wl.c
<<
>>
Prefs
   1/*
   2 * @ubi: UBI device description object
   3 * Copyright (c) International Business Machines Corp., 2006
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License as published by
   7 * the Free Software Foundation; either version 2 of the License, or
   8 * (at your option) any later version.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
  13 * the GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, write to the Free Software
  17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18 *
  19 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
  20 */
  21
  22/*
  23 * UBI wear-leveling sub-system.
  24 *
  25 * This sub-system is responsible for wear-leveling. It works in terms of
  26 * physical eraseblocks and erase counters and knows nothing about logical
  27 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
  28 * eraseblocks are of two types - used and free. Used physical eraseblocks are
  29 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
  30 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
  31 *
  32 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
  33 * header. The rest of the physical eraseblock contains only %0xFF bytes.
  34 *
  35 * When physical eraseblocks are returned to the WL sub-system by means of the
  36 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
  37 * done asynchronously in context of the per-UBI device background thread,
  38 * which is also managed by the WL sub-system.
  39 *
  40 * The wear-leveling is ensured by means of moving the contents of used
  41 * physical eraseblocks with low erase counter to free physical eraseblocks
  42 * with high erase counter.
  43 *
  44 * The 'ubi_wl_get_peb()' function accepts data type hints which help to pick
  45 * an "optimal" physical eraseblock. For example, when it is known that the
  46 * physical eraseblock will be "put" soon because it contains short-term data,
  47 * the WL sub-system may pick a free physical eraseblock with low erase
  48 * counter, and so forth.
  49 *
  50 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
  51 * bad.
  52 *
  53 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
  54 * in a physical eraseblock, it has to be moved. Technically this is the same
  55 * as moving it for wear-leveling reasons.
  56 *
  57 * As it was said, for the UBI sub-system all physical eraseblocks are either
  58 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
  59 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
  60 * RB-trees, as well as (temporarily) in the @wl->pq queue.
  61 *
  62 * When the WL sub-system returns a physical eraseblock, the physical
  63 * eraseblock is protected from being moved for some "time". For this reason,
  64 * the physical eraseblock is not directly moved from the @wl->free tree to the
  65 * @wl->used tree. There is a protection queue in between where this
  66 * physical eraseblock is temporarily stored (@wl->pq).
  67 *
  68 * All this protection stuff is needed because:
  69 *  o we don't want to move physical eraseblocks just after we have given them
  70 *    to the user; instead, we first want to let users fill them up with data;
  71 *
  72 *  o there is a chance that the user will put the physical eraseblock very
  73 *    soon, so it makes sense not to move it for some time, but wait; this is
  74 *    especially important in case of "short term" physical eraseblocks.
  75 *
  76 * Physical eraseblocks stay protected only for limited time. But the "time" is
  77 * measured in erase cycles in this case. This is implemented with help of the
  78 * protection queue. Eraseblocks are put to the tail of this queue when they
  79 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
  80 * head of the queue on each erase operation (for any eraseblock). So the
  81 * length of the queue defines how may (global) erase cycles PEBs are protected.
  82 *
  83 * To put it differently, each physical eraseblock has 2 main states: free and
  84 * used. The former state corresponds to the @wl->free tree. The latter state
  85 * is split up on several sub-states:
  86 * o the WL movement is allowed (@wl->used tree);
  87 * o the WL movement is disallowed (@wl->erroneous) because the PEB is
  88 *   erroneous - e.g., there was a read error;
  89 * o the WL movement is temporarily prohibited (@wl->pq queue);
  90 * o scrubbing is needed (@wl->scrub tree).
  91 *
  92 * Depending on the sub-state, wear-leveling entries of the used physical
  93 * eraseblocks may be kept in one of those structures.
  94 *
  95 * Note, in this implementation, we keep a small in-RAM object for each physical
  96 * eraseblock. This is surely not a scalable solution. But it appears to be good
  97 * enough for moderately large flashes and it is simple. In future, one may
  98 * re-work this sub-system and make it more scalable.
  99 *
 100 * At the moment this sub-system does not utilize the sequence number, which
 101 * was introduced relatively recently. But it would be wise to do this because
 102 * the sequence number of a logical eraseblock characterizes how old is it. For
 103 * example, when we move a PEB with low erase counter, and we need to pick the
 104 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
 105 * pick target PEB with an average EC if our PEB is not very "old". This is a
 106 * room for future re-works of the WL sub-system.
 107 */
 108
 109#include <linux/slab.h>
 110#include <linux/crc32.h>
 111#include <linux/freezer.h>
 112#include <linux/kthread.h>
 113#include "ubi.h"
 114
 115/* Number of physical eraseblocks reserved for wear-leveling purposes */
 116#define WL_RESERVED_PEBS 1
 117
 118/*
 119 * Maximum difference between two erase counters. If this threshold is
 120 * exceeded, the WL sub-system starts moving data from used physical
 121 * eraseblocks with low erase counter to free physical eraseblocks with high
 122 * erase counter.
 123 */
 124#define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
 125
 126/*
 127 * When a physical eraseblock is moved, the WL sub-system has to pick the target
 128 * physical eraseblock to move to. The simplest way would be just to pick the
 129 * one with the highest erase counter. But in certain workloads this could lead
 130 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
 131 * situation when the picked physical eraseblock is constantly erased after the
 132 * data is written to it. So, we have a constant which limits the highest erase
 133 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
 134 * does not pick eraseblocks with erase counter greater than the lowest erase
 135 * counter plus %WL_FREE_MAX_DIFF.
 136 */
 137#define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
 138
 139/*
 140 * Maximum number of consecutive background thread failures which is enough to
 141 * switch to read-only mode.
 142 */
 143#define WL_MAX_FAILURES 32
 144
 145/**
 146 * struct ubi_work - UBI work description data structure.
 147 * @list: a link in the list of pending works
 148 * @func: worker function
 149 * @e: physical eraseblock to erase
 150 * @torture: if the physical eraseblock has to be tortured
 151 *
 152 * The @func pointer points to the worker function. If the @cancel argument is
 153 * not zero, the worker has to free the resources and exit immediately. The
 154 * worker has to return zero in case of success and a negative error code in
 155 * case of failure.
 156 */
 157struct ubi_work {
 158        struct list_head list;
 159        int (*func)(struct ubi_device *ubi, struct ubi_work *wrk, int cancel);
 160        /* The below fields are only relevant to erasure works */
 161        struct ubi_wl_entry *e;
 162        int torture;
 163};
 164
 165#ifdef CONFIG_MTD_UBI_DEBUG
 166static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec);
 167static int paranoid_check_in_wl_tree(const struct ubi_device *ubi,
 168                                     struct ubi_wl_entry *e,
 169                                     struct rb_root *root);
 170static int paranoid_check_in_pq(const struct ubi_device *ubi,
 171                                struct ubi_wl_entry *e);
 172#else
 173#define paranoid_check_ec(ubi, pnum, ec) 0
 174#define paranoid_check_in_wl_tree(ubi, e, root)
 175#define paranoid_check_in_pq(ubi, e) 0
 176#endif
 177
 178/**
 179 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
 180 * @e: the wear-leveling entry to add
 181 * @root: the root of the tree
 182 *
 183 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
 184 * the @ubi->used and @ubi->free RB-trees.
 185 */
 186static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
 187{
 188        struct rb_node **p, *parent = NULL;
 189
 190        p = &root->rb_node;
 191        while (*p) {
 192                struct ubi_wl_entry *e1;
 193
 194                parent = *p;
 195                e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
 196
 197                if (e->ec < e1->ec)
 198                        p = &(*p)->rb_left;
 199                else if (e->ec > e1->ec)
 200                        p = &(*p)->rb_right;
 201                else {
 202                        ubi_assert(e->pnum != e1->pnum);
 203                        if (e->pnum < e1->pnum)
 204                                p = &(*p)->rb_left;
 205                        else
 206                                p = &(*p)->rb_right;
 207                }
 208        }
 209
 210        rb_link_node(&e->u.rb, parent, p);
 211        rb_insert_color(&e->u.rb, root);
 212}
 213
 214/**
 215 * do_work - do one pending work.
 216 * @ubi: UBI device description object
 217 *
 218 * This function returns zero in case of success and a negative error code in
 219 * case of failure.
 220 */
 221static int do_work(struct ubi_device *ubi)
 222{
 223        int err;
 224        struct ubi_work *wrk;
 225
 226        cond_resched();
 227
 228        /*
 229         * @ubi->work_sem is used to synchronize with the workers. Workers take
 230         * it in read mode, so many of them may be doing works at a time. But
 231         * the queue flush code has to be sure the whole queue of works is
 232         * done, and it takes the mutex in write mode.
 233         */
 234        down_read(&ubi->work_sem);
 235        spin_lock(&ubi->wl_lock);
 236        if (list_empty(&ubi->works)) {
 237                spin_unlock(&ubi->wl_lock);
 238                up_read(&ubi->work_sem);
 239                return 0;
 240        }
 241
 242        wrk = list_entry(ubi->works.next, struct ubi_work, list);
 243        list_del(&wrk->list);
 244        ubi->works_count -= 1;
 245        ubi_assert(ubi->works_count >= 0);
 246        spin_unlock(&ubi->wl_lock);
 247
 248        /*
 249         * Call the worker function. Do not touch the work structure
 250         * after this call as it will have been freed or reused by that
 251         * time by the worker function.
 252         */
 253        err = wrk->func(ubi, wrk, 0);
 254        if (err)
 255                ubi_err("work failed with error code %d", err);
 256        up_read(&ubi->work_sem);
 257
 258        return err;
 259}
 260
 261/**
 262 * produce_free_peb - produce a free physical eraseblock.
 263 * @ubi: UBI device description object
 264 *
 265 * This function tries to make a free PEB by means of synchronous execution of
 266 * pending works. This may be needed if, for example the background thread is
 267 * disabled. Returns zero in case of success and a negative error code in case
 268 * of failure.
 269 */
 270static int produce_free_peb(struct ubi_device *ubi)
 271{
 272        int err;
 273
 274        spin_lock(&ubi->wl_lock);
 275        while (!ubi->free.rb_node) {
 276                spin_unlock(&ubi->wl_lock);
 277
 278                dbg_wl("do one work synchronously");
 279                err = do_work(ubi);
 280                if (err)
 281                        return err;
 282
 283                spin_lock(&ubi->wl_lock);
 284        }
 285        spin_unlock(&ubi->wl_lock);
 286
 287        return 0;
 288}
 289
 290/**
 291 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
 292 * @e: the wear-leveling entry to check
 293 * @root: the root of the tree
 294 *
 295 * This function returns non-zero if @e is in the @root RB-tree and zero if it
 296 * is not.
 297 */
 298static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
 299{
 300        struct rb_node *p;
 301
 302        p = root->rb_node;
 303        while (p) {
 304                struct ubi_wl_entry *e1;
 305
 306                e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
 307
 308                if (e->pnum == e1->pnum) {
 309                        ubi_assert(e == e1);
 310                        return 1;
 311                }
 312
 313                if (e->ec < e1->ec)
 314                        p = p->rb_left;
 315                else if (e->ec > e1->ec)
 316                        p = p->rb_right;
 317                else {
 318                        ubi_assert(e->pnum != e1->pnum);
 319                        if (e->pnum < e1->pnum)
 320                                p = p->rb_left;
 321                        else
 322                                p = p->rb_right;
 323                }
 324        }
 325
 326        return 0;
 327}
 328
 329/**
 330 * prot_queue_add - add physical eraseblock to the protection queue.
 331 * @ubi: UBI device description object
 332 * @e: the physical eraseblock to add
 333 *
 334 * This function adds @e to the tail of the protection queue @ubi->pq, where
 335 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
 336 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
 337 * be locked.
 338 */
 339static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
 340{
 341        int pq_tail = ubi->pq_head - 1;
 342
 343        if (pq_tail < 0)
 344                pq_tail = UBI_PROT_QUEUE_LEN - 1;
 345        ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
 346        list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
 347        dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
 348}
 349
 350/**
 351 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
 352 * @root: the RB-tree where to look for
 353 * @diff: maximum possible difference from the smallest erase counter
 354 *
 355 * This function looks for a wear leveling entry with erase counter closest to
 356 * min + @diff, where min is the smallest erase counter.
 357 */
 358static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int diff)
 359{
 360        struct rb_node *p;
 361        struct ubi_wl_entry *e;
 362        int max;
 363
 364        e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
 365        max = e->ec + diff;
 366
 367        p = root->rb_node;
 368        while (p) {
 369                struct ubi_wl_entry *e1;
 370
 371                e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
 372                if (e1->ec >= max)
 373                        p = p->rb_left;
 374                else {
 375                        p = p->rb_right;
 376                        e = e1;
 377                }
 378        }
 379
 380        return e;
 381}
 382
 383/**
 384 * ubi_wl_get_peb - get a physical eraseblock.
 385 * @ubi: UBI device description object
 386 * @dtype: type of data which will be stored in this physical eraseblock
 387 *
 388 * This function returns a physical eraseblock in case of success and a
 389 * negative error code in case of failure. Might sleep.
 390 */
 391int ubi_wl_get_peb(struct ubi_device *ubi, int dtype)
 392{
 393        int err;
 394        struct ubi_wl_entry *e, *first, *last;
 395
 396        ubi_assert(dtype == UBI_LONGTERM || dtype == UBI_SHORTTERM ||
 397                   dtype == UBI_UNKNOWN);
 398
 399retry:
 400        spin_lock(&ubi->wl_lock);
 401        if (!ubi->free.rb_node) {
 402                if (ubi->works_count == 0) {
 403                        ubi_assert(list_empty(&ubi->works));
 404                        ubi_err("no free eraseblocks");
 405                        spin_unlock(&ubi->wl_lock);
 406                        return -ENOSPC;
 407                }
 408                spin_unlock(&ubi->wl_lock);
 409
 410                err = produce_free_peb(ubi);
 411                if (err < 0)
 412                        return err;
 413                goto retry;
 414        }
 415
 416        switch (dtype) {
 417        case UBI_LONGTERM:
 418                /*
 419                 * For long term data we pick a physical eraseblock with high
 420                 * erase counter. But the highest erase counter we can pick is
 421                 * bounded by the the lowest erase counter plus
 422                 * %WL_FREE_MAX_DIFF.
 423                 */
 424                e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
 425                break;
 426        case UBI_UNKNOWN:
 427                /*
 428                 * For unknown data we pick a physical eraseblock with medium
 429                 * erase counter. But we by no means can pick a physical
 430                 * eraseblock with erase counter greater or equivalent than the
 431                 * lowest erase counter plus %WL_FREE_MAX_DIFF/2.
 432                 */
 433                first = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry,
 434                                        u.rb);
 435                last = rb_entry(rb_last(&ubi->free), struct ubi_wl_entry, u.rb);
 436
 437                if (last->ec - first->ec < WL_FREE_MAX_DIFF)
 438                        e = rb_entry(ubi->free.rb_node,
 439                                        struct ubi_wl_entry, u.rb);
 440                else
 441                        e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF/2);
 442                break;
 443        case UBI_SHORTTERM:
 444                /*
 445                 * For short term data we pick a physical eraseblock with the
 446                 * lowest erase counter as we expect it will be erased soon.
 447                 */
 448                e = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry, u.rb);
 449                break;
 450        default:
 451                BUG();
 452        }
 453
 454        paranoid_check_in_wl_tree(ubi, e, &ubi->free);
 455
 456        /*
 457         * Move the physical eraseblock to the protection queue where it will
 458         * be protected from being moved for some time.
 459         */
 460        rb_erase(&e->u.rb, &ubi->free);
 461        dbg_wl("PEB %d EC %d", e->pnum, e->ec);
 462        prot_queue_add(ubi, e);
 463        spin_unlock(&ubi->wl_lock);
 464
 465        err = ubi_dbg_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
 466                                   ubi->peb_size - ubi->vid_hdr_aloffset);
 467        if (err) {
 468                ubi_err("new PEB %d does not contain all 0xFF bytes", e->pnum);
 469                return err;
 470        }
 471
 472        return e->pnum;
 473}
 474
 475/**
 476 * prot_queue_del - remove a physical eraseblock from the protection queue.
 477 * @ubi: UBI device description object
 478 * @pnum: the physical eraseblock to remove
 479 *
 480 * This function deletes PEB @pnum from the protection queue and returns zero
 481 * in case of success and %-ENODEV if the PEB was not found.
 482 */
 483static int prot_queue_del(struct ubi_device *ubi, int pnum)
 484{
 485        struct ubi_wl_entry *e;
 486
 487        e = ubi->lookuptbl[pnum];
 488        if (!e)
 489                return -ENODEV;
 490
 491        if (paranoid_check_in_pq(ubi, e))
 492                return -ENODEV;
 493
 494        list_del(&e->u.list);
 495        dbg_wl("deleted PEB %d from the protection queue", e->pnum);
 496        return 0;
 497}
 498
 499/**
 500 * sync_erase - synchronously erase a physical eraseblock.
 501 * @ubi: UBI device description object
 502 * @e: the the physical eraseblock to erase
 503 * @torture: if the physical eraseblock has to be tortured
 504 *
 505 * This function returns zero in case of success and a negative error code in
 506 * case of failure.
 507 */
 508static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
 509                      int torture)
 510{
 511        int err;
 512        struct ubi_ec_hdr *ec_hdr;
 513        unsigned long long ec = e->ec;
 514
 515        dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
 516
 517        err = paranoid_check_ec(ubi, e->pnum, e->ec);
 518        if (err)
 519                return -EINVAL;
 520
 521        ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
 522        if (!ec_hdr)
 523                return -ENOMEM;
 524
 525        err = ubi_io_sync_erase(ubi, e->pnum, torture);
 526        if (err < 0)
 527                goto out_free;
 528
 529        ec += err;
 530        if (ec > UBI_MAX_ERASECOUNTER) {
 531                /*
 532                 * Erase counter overflow. Upgrade UBI and use 64-bit
 533                 * erase counters internally.
 534                 */
 535                ubi_err("erase counter overflow at PEB %d, EC %llu",
 536                        e->pnum, ec);
 537                err = -EINVAL;
 538                goto out_free;
 539        }
 540
 541        dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
 542
 543        ec_hdr->ec = cpu_to_be64(ec);
 544
 545        err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
 546        if (err)
 547                goto out_free;
 548
 549        e->ec = ec;
 550        spin_lock(&ubi->wl_lock);
 551        if (e->ec > ubi->max_ec)
 552                ubi->max_ec = e->ec;
 553        spin_unlock(&ubi->wl_lock);
 554
 555out_free:
 556        kfree(ec_hdr);
 557        return err;
 558}
 559
 560/**
 561 * serve_prot_queue - check if it is time to stop protecting PEBs.
 562 * @ubi: UBI device description object
 563 *
 564 * This function is called after each erase operation and removes PEBs from the
 565 * tail of the protection queue. These PEBs have been protected for long enough
 566 * and should be moved to the used tree.
 567 */
 568static void serve_prot_queue(struct ubi_device *ubi)
 569{
 570        struct ubi_wl_entry *e, *tmp;
 571        int count;
 572
 573        /*
 574         * There may be several protected physical eraseblock to remove,
 575         * process them all.
 576         */
 577repeat:
 578        count = 0;
 579        spin_lock(&ubi->wl_lock);
 580        list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
 581                dbg_wl("PEB %d EC %d protection over, move to used tree",
 582                        e->pnum, e->ec);
 583
 584                list_del(&e->u.list);
 585                wl_tree_add(e, &ubi->used);
 586                if (count++ > 32) {
 587                        /*
 588                         * Let's be nice and avoid holding the spinlock for
 589                         * too long.
 590                         */
 591                        spin_unlock(&ubi->wl_lock);
 592                        cond_resched();
 593                        goto repeat;
 594                }
 595        }
 596
 597        ubi->pq_head += 1;
 598        if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
 599                ubi->pq_head = 0;
 600        ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
 601        spin_unlock(&ubi->wl_lock);
 602}
 603
 604/**
 605 * schedule_ubi_work - schedule a work.
 606 * @ubi: UBI device description object
 607 * @wrk: the work to schedule
 608 *
 609 * This function adds a work defined by @wrk to the tail of the pending works
 610 * list.
 611 */
 612static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
 613{
 614        spin_lock(&ubi->wl_lock);
 615        list_add_tail(&wrk->list, &ubi->works);
 616        ubi_assert(ubi->works_count >= 0);
 617        ubi->works_count += 1;
 618        if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
 619                wake_up_process(ubi->bgt_thread);
 620        spin_unlock(&ubi->wl_lock);
 621}
 622
 623static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
 624                        int cancel);
 625
 626/**
 627 * schedule_erase - schedule an erase work.
 628 * @ubi: UBI device description object
 629 * @e: the WL entry of the physical eraseblock to erase
 630 * @torture: if the physical eraseblock has to be tortured
 631 *
 632 * This function returns zero in case of success and a %-ENOMEM in case of
 633 * failure.
 634 */
 635static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
 636                          int torture)
 637{
 638        struct ubi_work *wl_wrk;
 639
 640        dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
 641               e->pnum, e->ec, torture);
 642
 643        wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
 644        if (!wl_wrk)
 645                return -ENOMEM;
 646
 647        wl_wrk->func = &erase_worker;
 648        wl_wrk->e = e;
 649        wl_wrk->torture = torture;
 650
 651        schedule_ubi_work(ubi, wl_wrk);
 652        return 0;
 653}
 654
 655/**
 656 * wear_leveling_worker - wear-leveling worker function.
 657 * @ubi: UBI device description object
 658 * @wrk: the work object
 659 * @cancel: non-zero if the worker has to free memory and exit
 660 *
 661 * This function copies a more worn out physical eraseblock to a less worn out
 662 * one. Returns zero in case of success and a negative error code in case of
 663 * failure.
 664 */
 665static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
 666                                int cancel)
 667{
 668        int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
 669        int vol_id = -1, uninitialized_var(lnum);
 670        struct ubi_wl_entry *e1, *e2;
 671        struct ubi_vid_hdr *vid_hdr;
 672
 673        kfree(wrk);
 674        if (cancel)
 675                return 0;
 676
 677        vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
 678        if (!vid_hdr)
 679                return -ENOMEM;
 680
 681        mutex_lock(&ubi->move_mutex);
 682        spin_lock(&ubi->wl_lock);
 683        ubi_assert(!ubi->move_from && !ubi->move_to);
 684        ubi_assert(!ubi->move_to_put);
 685
 686        if (!ubi->free.rb_node ||
 687            (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
 688                /*
 689                 * No free physical eraseblocks? Well, they must be waiting in
 690                 * the queue to be erased. Cancel movement - it will be
 691                 * triggered again when a free physical eraseblock appears.
 692                 *
 693                 * No used physical eraseblocks? They must be temporarily
 694                 * protected from being moved. They will be moved to the
 695                 * @ubi->used tree later and the wear-leveling will be
 696                 * triggered again.
 697                 */
 698                dbg_wl("cancel WL, a list is empty: free %d, used %d",
 699                       !ubi->free.rb_node, !ubi->used.rb_node);
 700                goto out_cancel;
 701        }
 702
 703        if (!ubi->scrub.rb_node) {
 704                /*
 705                 * Now pick the least worn-out used physical eraseblock and a
 706                 * highly worn-out free physical eraseblock. If the erase
 707                 * counters differ much enough, start wear-leveling.
 708                 */
 709                e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
 710                e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
 711
 712                if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
 713                        dbg_wl("no WL needed: min used EC %d, max free EC %d",
 714                               e1->ec, e2->ec);
 715                        goto out_cancel;
 716                }
 717                paranoid_check_in_wl_tree(ubi, e1, &ubi->used);
 718                rb_erase(&e1->u.rb, &ubi->used);
 719                dbg_wl("move PEB %d EC %d to PEB %d EC %d",
 720                       e1->pnum, e1->ec, e2->pnum, e2->ec);
 721        } else {
 722                /* Perform scrubbing */
 723                scrubbing = 1;
 724                e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
 725                e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
 726                paranoid_check_in_wl_tree(ubi, e1, &ubi->scrub);
 727                rb_erase(&e1->u.rb, &ubi->scrub);
 728                dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
 729        }
 730
 731        paranoid_check_in_wl_tree(ubi, e2, &ubi->free);
 732        rb_erase(&e2->u.rb, &ubi->free);
 733        ubi->move_from = e1;
 734        ubi->move_to = e2;
 735        spin_unlock(&ubi->wl_lock);
 736
 737        /*
 738         * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
 739         * We so far do not know which logical eraseblock our physical
 740         * eraseblock (@e1) belongs to. We have to read the volume identifier
 741         * header first.
 742         *
 743         * Note, we are protected from this PEB being unmapped and erased. The
 744         * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
 745         * which is being moved was unmapped.
 746         */
 747
 748        err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
 749        if (err && err != UBI_IO_BITFLIPS) {
 750                if (err == UBI_IO_FF) {
 751                        /*
 752                         * We are trying to move PEB without a VID header. UBI
 753                         * always write VID headers shortly after the PEB was
 754                         * given, so we have a situation when it has not yet
 755                         * had a chance to write it, because it was preempted.
 756                         * So add this PEB to the protection queue so far,
 757                         * because presumably more data will be written there
 758                         * (including the missing VID header), and then we'll
 759                         * move it.
 760                         */
 761                        dbg_wl("PEB %d has no VID header", e1->pnum);
 762                        protect = 1;
 763                        goto out_not_moved;
 764                } else if (err == UBI_IO_FF_BITFLIPS) {
 765                        /*
 766                         * The same situation as %UBI_IO_FF, but bit-flips were
 767                         * detected. It is better to schedule this PEB for
 768                         * scrubbing.
 769                         */
 770                        dbg_wl("PEB %d has no VID header but has bit-flips",
 771                               e1->pnum);
 772                        scrubbing = 1;
 773                        goto out_not_moved;
 774                }
 775
 776                ubi_err("error %d while reading VID header from PEB %d",
 777                        err, e1->pnum);
 778                goto out_error;
 779        }
 780
 781        vol_id = be32_to_cpu(vid_hdr->vol_id);
 782        lnum = be32_to_cpu(vid_hdr->lnum);
 783
 784        err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
 785        if (err) {
 786                if (err == MOVE_CANCEL_RACE) {
 787                        /*
 788                         * The LEB has not been moved because the volume is
 789                         * being deleted or the PEB has been put meanwhile. We
 790                         * should prevent this PEB from being selected for
 791                         * wear-leveling movement again, so put it to the
 792                         * protection queue.
 793                         */
 794                        protect = 1;
 795                        goto out_not_moved;
 796                }
 797                if (err == MOVE_RETRY) {
 798                        scrubbing = 1;
 799                        goto out_not_moved;
 800                }
 801                if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
 802                    err == MOVE_TARGET_RD_ERR) {
 803                        /*
 804                         * Target PEB had bit-flips or write error - torture it.
 805                         */
 806                        torture = 1;
 807                        goto out_not_moved;
 808                }
 809
 810                if (err == MOVE_SOURCE_RD_ERR) {
 811                        /*
 812                         * An error happened while reading the source PEB. Do
 813                         * not switch to R/O mode in this case, and give the
 814                         * upper layers a possibility to recover from this,
 815                         * e.g. by unmapping corresponding LEB. Instead, just
 816                         * put this PEB to the @ubi->erroneous list to prevent
 817                         * UBI from trying to move it over and over again.
 818                         */
 819                        if (ubi->erroneous_peb_count > ubi->max_erroneous) {
 820                                ubi_err("too many erroneous eraseblocks (%d)",
 821                                        ubi->erroneous_peb_count);
 822                                goto out_error;
 823                        }
 824                        erroneous = 1;
 825                        goto out_not_moved;
 826                }
 827
 828                if (err < 0)
 829                        goto out_error;
 830
 831                ubi_assert(0);
 832        }
 833
 834        /* The PEB has been successfully moved */
 835        if (scrubbing)
 836                ubi_msg("scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
 837                        e1->pnum, vol_id, lnum, e2->pnum);
 838        ubi_free_vid_hdr(ubi, vid_hdr);
 839
 840        spin_lock(&ubi->wl_lock);
 841        if (!ubi->move_to_put) {
 842                wl_tree_add(e2, &ubi->used);
 843                e2 = NULL;
 844        }
 845        ubi->move_from = ubi->move_to = NULL;
 846        ubi->move_to_put = ubi->wl_scheduled = 0;
 847        spin_unlock(&ubi->wl_lock);
 848
 849        err = schedule_erase(ubi, e1, 0);
 850        if (err) {
 851                kmem_cache_free(ubi_wl_entry_slab, e1);
 852                if (e2)
 853                        kmem_cache_free(ubi_wl_entry_slab, e2);
 854                goto out_ro;
 855        }
 856
 857        if (e2) {
 858                /*
 859                 * Well, the target PEB was put meanwhile, schedule it for
 860                 * erasure.
 861                 */
 862                dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
 863                       e2->pnum, vol_id, lnum);
 864                err = schedule_erase(ubi, e2, 0);
 865                if (err) {
 866                        kmem_cache_free(ubi_wl_entry_slab, e2);
 867                        goto out_ro;
 868                }
 869        }
 870
 871        dbg_wl("done");
 872        mutex_unlock(&ubi->move_mutex);
 873        return 0;
 874
 875        /*
 876         * For some reasons the LEB was not moved, might be an error, might be
 877         * something else. @e1 was not changed, so return it back. @e2 might
 878         * have been changed, schedule it for erasure.
 879         */
 880out_not_moved:
 881        if (vol_id != -1)
 882                dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
 883                       e1->pnum, vol_id, lnum, e2->pnum, err);
 884        else
 885                dbg_wl("cancel moving PEB %d to PEB %d (%d)",
 886                       e1->pnum, e2->pnum, err);
 887        spin_lock(&ubi->wl_lock);
 888        if (protect)
 889                prot_queue_add(ubi, e1);
 890        else if (erroneous) {
 891                wl_tree_add(e1, &ubi->erroneous);
 892                ubi->erroneous_peb_count += 1;
 893        } else if (scrubbing)
 894                wl_tree_add(e1, &ubi->scrub);
 895        else
 896                wl_tree_add(e1, &ubi->used);
 897        ubi_assert(!ubi->move_to_put);
 898        ubi->move_from = ubi->move_to = NULL;
 899        ubi->wl_scheduled = 0;
 900        spin_unlock(&ubi->wl_lock);
 901
 902        ubi_free_vid_hdr(ubi, vid_hdr);
 903        err = schedule_erase(ubi, e2, torture);
 904        if (err) {
 905                kmem_cache_free(ubi_wl_entry_slab, e2);
 906                goto out_ro;
 907        }
 908        mutex_unlock(&ubi->move_mutex);
 909        return 0;
 910
 911out_error:
 912        if (vol_id != -1)
 913                ubi_err("error %d while moving PEB %d to PEB %d",
 914                        err, e1->pnum, e2->pnum);
 915        else
 916                ubi_err("error %d while moving PEB %d (LEB %d:%d) to PEB %d",
 917                        err, e1->pnum, vol_id, lnum, e2->pnum);
 918        spin_lock(&ubi->wl_lock);
 919        ubi->move_from = ubi->move_to = NULL;
 920        ubi->move_to_put = ubi->wl_scheduled = 0;
 921        spin_unlock(&ubi->wl_lock);
 922
 923        ubi_free_vid_hdr(ubi, vid_hdr);
 924        kmem_cache_free(ubi_wl_entry_slab, e1);
 925        kmem_cache_free(ubi_wl_entry_slab, e2);
 926
 927out_ro:
 928        ubi_ro_mode(ubi);
 929        mutex_unlock(&ubi->move_mutex);
 930        ubi_assert(err != 0);
 931        return err < 0 ? err : -EIO;
 932
 933out_cancel:
 934        ubi->wl_scheduled = 0;
 935        spin_unlock(&ubi->wl_lock);
 936        mutex_unlock(&ubi->move_mutex);
 937        ubi_free_vid_hdr(ubi, vid_hdr);
 938        return 0;
 939}
 940
 941/**
 942 * ensure_wear_leveling - schedule wear-leveling if it is needed.
 943 * @ubi: UBI device description object
 944 *
 945 * This function checks if it is time to start wear-leveling and schedules it
 946 * if yes. This function returns zero in case of success and a negative error
 947 * code in case of failure.
 948 */
 949static int ensure_wear_leveling(struct ubi_device *ubi)
 950{
 951        int err = 0;
 952        struct ubi_wl_entry *e1;
 953        struct ubi_wl_entry *e2;
 954        struct ubi_work *wrk;
 955
 956        spin_lock(&ubi->wl_lock);
 957        if (ubi->wl_scheduled)
 958                /* Wear-leveling is already in the work queue */
 959                goto out_unlock;
 960
 961        /*
 962         * If the ubi->scrub tree is not empty, scrubbing is needed, and the
 963         * the WL worker has to be scheduled anyway.
 964         */
 965        if (!ubi->scrub.rb_node) {
 966                if (!ubi->used.rb_node || !ubi->free.rb_node)
 967                        /* No physical eraseblocks - no deal */
 968                        goto out_unlock;
 969
 970                /*
 971                 * We schedule wear-leveling only if the difference between the
 972                 * lowest erase counter of used physical eraseblocks and a high
 973                 * erase counter of free physical eraseblocks is greater than
 974                 * %UBI_WL_THRESHOLD.
 975                 */
 976                e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
 977                e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
 978
 979                if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
 980                        goto out_unlock;
 981                dbg_wl("schedule wear-leveling");
 982        } else
 983                dbg_wl("schedule scrubbing");
 984
 985        ubi->wl_scheduled = 1;
 986        spin_unlock(&ubi->wl_lock);
 987
 988        wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
 989        if (!wrk) {
 990                err = -ENOMEM;
 991                goto out_cancel;
 992        }
 993
 994        wrk->func = &wear_leveling_worker;
 995        schedule_ubi_work(ubi, wrk);
 996        return err;
 997
 998out_cancel:
 999        spin_lock(&ubi->wl_lock);
1000        ubi->wl_scheduled = 0;
1001out_unlock:
1002        spin_unlock(&ubi->wl_lock);
1003        return err;
1004}
1005
1006/**
1007 * erase_worker - physical eraseblock erase worker function.
1008 * @ubi: UBI device description object
1009 * @wl_wrk: the work object
1010 * @cancel: non-zero if the worker has to free memory and exit
1011 *
1012 * This function erases a physical eraseblock and perform torture testing if
1013 * needed. It also takes care about marking the physical eraseblock bad if
1014 * needed. Returns zero in case of success and a negative error code in case of
1015 * failure.
1016 */
1017static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1018                        int cancel)
1019{
1020        struct ubi_wl_entry *e = wl_wrk->e;
1021        int pnum = e->pnum, err, need;
1022
1023        if (cancel) {
1024                dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1025                kfree(wl_wrk);
1026                kmem_cache_free(ubi_wl_entry_slab, e);
1027                return 0;
1028        }
1029
1030        dbg_wl("erase PEB %d EC %d", pnum, e->ec);
1031
1032        err = sync_erase(ubi, e, wl_wrk->torture);
1033        if (!err) {
1034                /* Fine, we've erased it successfully */
1035                kfree(wl_wrk);
1036
1037                spin_lock(&ubi->wl_lock);
1038                wl_tree_add(e, &ubi->free);
1039                spin_unlock(&ubi->wl_lock);
1040
1041                /*
1042                 * One more erase operation has happened, take care about
1043                 * protected physical eraseblocks.
1044                 */
1045                serve_prot_queue(ubi);
1046
1047                /* And take care about wear-leveling */
1048                err = ensure_wear_leveling(ubi);
1049                return err;
1050        }
1051
1052        ubi_err("failed to erase PEB %d, error %d", pnum, err);
1053        kfree(wl_wrk);
1054
1055        if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1056            err == -EBUSY) {
1057                int err1;
1058
1059                /* Re-schedule the LEB for erasure */
1060                err1 = schedule_erase(ubi, e, 0);
1061                if (err1) {
1062                        err = err1;
1063                        goto out_ro;
1064                }
1065                return err;
1066        }
1067
1068        kmem_cache_free(ubi_wl_entry_slab, e);
1069        if (err != -EIO)
1070                /*
1071                 * If this is not %-EIO, we have no idea what to do. Scheduling
1072                 * this physical eraseblock for erasure again would cause
1073                 * errors again and again. Well, lets switch to R/O mode.
1074                 */
1075                goto out_ro;
1076
1077        /* It is %-EIO, the PEB went bad */
1078
1079        if (!ubi->bad_allowed) {
1080                ubi_err("bad physical eraseblock %d detected", pnum);
1081                goto out_ro;
1082        }
1083
1084        spin_lock(&ubi->volumes_lock);
1085        need = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs + 1;
1086        if (need > 0) {
1087                need = ubi->avail_pebs >= need ? need : ubi->avail_pebs;
1088                ubi->avail_pebs -= need;
1089                ubi->rsvd_pebs += need;
1090                ubi->beb_rsvd_pebs += need;
1091                if (need > 0)
1092                        ubi_msg("reserve more %d PEBs", need);
1093        }
1094
1095        if (ubi->beb_rsvd_pebs == 0) {
1096                spin_unlock(&ubi->volumes_lock);
1097                ubi_err("no reserved physical eraseblocks");
1098                goto out_ro;
1099        }
1100        spin_unlock(&ubi->volumes_lock);
1101
1102        ubi_msg("mark PEB %d as bad", pnum);
1103        err = ubi_io_mark_bad(ubi, pnum);
1104        if (err)
1105                goto out_ro;
1106
1107        spin_lock(&ubi->volumes_lock);
1108        ubi->beb_rsvd_pebs -= 1;
1109        ubi->bad_peb_count += 1;
1110        ubi->good_peb_count -= 1;
1111        ubi_calculate_reserved(ubi);
1112        if (ubi->beb_rsvd_pebs)
1113                ubi_msg("%d PEBs left in the reserve", ubi->beb_rsvd_pebs);
1114        else
1115                ubi_warn("last PEB from the reserved pool was used");
1116        spin_unlock(&ubi->volumes_lock);
1117
1118        return err;
1119
1120out_ro:
1121        ubi_ro_mode(ubi);
1122        return err;
1123}
1124
1125/**
1126 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1127 * @ubi: UBI device description object
1128 * @pnum: physical eraseblock to return
1129 * @torture: if this physical eraseblock has to be tortured
1130 *
1131 * This function is called to return physical eraseblock @pnum to the pool of
1132 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1133 * occurred to this @pnum and it has to be tested. This function returns zero
1134 * in case of success, and a negative error code in case of failure.
1135 */
1136int ubi_wl_put_peb(struct ubi_device *ubi, int pnum, int torture)
1137{
1138        int err;
1139        struct ubi_wl_entry *e;
1140
1141        dbg_wl("PEB %d", pnum);
1142        ubi_assert(pnum >= 0);
1143        ubi_assert(pnum < ubi->peb_count);
1144
1145retry:
1146        spin_lock(&ubi->wl_lock);
1147        e = ubi->lookuptbl[pnum];
1148        if (e == ubi->move_from) {
1149                /*
1150                 * User is putting the physical eraseblock which was selected to
1151                 * be moved. It will be scheduled for erasure in the
1152                 * wear-leveling worker.
1153                 */
1154                dbg_wl("PEB %d is being moved, wait", pnum);
1155                spin_unlock(&ubi->wl_lock);
1156
1157                /* Wait for the WL worker by taking the @ubi->move_mutex */
1158                mutex_lock(&ubi->move_mutex);
1159                mutex_unlock(&ubi->move_mutex);
1160                goto retry;
1161        } else if (e == ubi->move_to) {
1162                /*
1163                 * User is putting the physical eraseblock which was selected
1164                 * as the target the data is moved to. It may happen if the EBA
1165                 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1166                 * but the WL sub-system has not put the PEB to the "used" tree
1167                 * yet, but it is about to do this. So we just set a flag which
1168                 * will tell the WL worker that the PEB is not needed anymore
1169                 * and should be scheduled for erasure.
1170                 */
1171                dbg_wl("PEB %d is the target of data moving", pnum);
1172                ubi_assert(!ubi->move_to_put);
1173                ubi->move_to_put = 1;
1174                spin_unlock(&ubi->wl_lock);
1175                return 0;
1176        } else {
1177                if (in_wl_tree(e, &ubi->used)) {
1178                        paranoid_check_in_wl_tree(ubi, e, &ubi->used);
1179                        rb_erase(&e->u.rb, &ubi->used);
1180                } else if (in_wl_tree(e, &ubi->scrub)) {
1181                        paranoid_check_in_wl_tree(ubi, e, &ubi->scrub);
1182                        rb_erase(&e->u.rb, &ubi->scrub);
1183                } else if (in_wl_tree(e, &ubi->erroneous)) {
1184                        paranoid_check_in_wl_tree(ubi, e, &ubi->erroneous);
1185                        rb_erase(&e->u.rb, &ubi->erroneous);
1186                        ubi->erroneous_peb_count -= 1;
1187                        ubi_assert(ubi->erroneous_peb_count >= 0);
1188                        /* Erroneous PEBs should be tortured */
1189                        torture = 1;
1190                } else {
1191                        err = prot_queue_del(ubi, e->pnum);
1192                        if (err) {
1193                                ubi_err("PEB %d not found", pnum);
1194                                ubi_ro_mode(ubi);
1195                                spin_unlock(&ubi->wl_lock);
1196                                return err;
1197                        }
1198                }
1199        }
1200        spin_unlock(&ubi->wl_lock);
1201
1202        err = schedule_erase(ubi, e, torture);
1203        if (err) {
1204                spin_lock(&ubi->wl_lock);
1205                wl_tree_add(e, &ubi->used);
1206                spin_unlock(&ubi->wl_lock);
1207        }
1208
1209        return err;
1210}
1211
1212/**
1213 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1214 * @ubi: UBI device description object
1215 * @pnum: the physical eraseblock to schedule
1216 *
1217 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1218 * needs scrubbing. This function schedules a physical eraseblock for
1219 * scrubbing which is done in background. This function returns zero in case of
1220 * success and a negative error code in case of failure.
1221 */
1222int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1223{
1224        struct ubi_wl_entry *e;
1225
1226        dbg_msg("schedule PEB %d for scrubbing", pnum);
1227
1228retry:
1229        spin_lock(&ubi->wl_lock);
1230        e = ubi->lookuptbl[pnum];
1231        if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1232                                   in_wl_tree(e, &ubi->erroneous)) {
1233                spin_unlock(&ubi->wl_lock);
1234                return 0;
1235        }
1236
1237        if (e == ubi->move_to) {
1238                /*
1239                 * This physical eraseblock was used to move data to. The data
1240                 * was moved but the PEB was not yet inserted to the proper
1241                 * tree. We should just wait a little and let the WL worker
1242                 * proceed.
1243                 */
1244                spin_unlock(&ubi->wl_lock);
1245                dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1246                yield();
1247                goto retry;
1248        }
1249
1250        if (in_wl_tree(e, &ubi->used)) {
1251                paranoid_check_in_wl_tree(ubi, e, &ubi->used);
1252                rb_erase(&e->u.rb, &ubi->used);
1253        } else {
1254                int err;
1255
1256                err = prot_queue_del(ubi, e->pnum);
1257                if (err) {
1258                        ubi_err("PEB %d not found", pnum);
1259                        ubi_ro_mode(ubi);
1260                        spin_unlock(&ubi->wl_lock);
1261                        return err;
1262                }
1263        }
1264
1265        wl_tree_add(e, &ubi->scrub);
1266        spin_unlock(&ubi->wl_lock);
1267
1268        /*
1269         * Technically scrubbing is the same as wear-leveling, so it is done
1270         * by the WL worker.
1271         */
1272        return ensure_wear_leveling(ubi);
1273}
1274
1275/**
1276 * ubi_wl_flush - flush all pending works.
1277 * @ubi: UBI device description object
1278 *
1279 * This function returns zero in case of success and a negative error code in
1280 * case of failure.
1281 */
1282int ubi_wl_flush(struct ubi_device *ubi)
1283{
1284        int err;
1285
1286        /*
1287         * Erase while the pending works queue is not empty, but not more than
1288         * the number of currently pending works.
1289         */
1290        dbg_wl("flush (%d pending works)", ubi->works_count);
1291        while (ubi->works_count) {
1292                err = do_work(ubi);
1293                if (err)
1294                        return err;
1295        }
1296
1297        /*
1298         * Make sure all the works which have been done in parallel are
1299         * finished.
1300         */
1301        down_write(&ubi->work_sem);
1302        up_write(&ubi->work_sem);
1303
1304        /*
1305         * And in case last was the WL worker and it canceled the LEB
1306         * movement, flush again.
1307         */
1308        while (ubi->works_count) {
1309                dbg_wl("flush more (%d pending works)", ubi->works_count);
1310                err = do_work(ubi);
1311                if (err)
1312                        return err;
1313        }
1314
1315        return 0;
1316}
1317
1318/**
1319 * tree_destroy - destroy an RB-tree.
1320 * @root: the root of the tree to destroy
1321 */
1322static void tree_destroy(struct rb_root *root)
1323{
1324        struct rb_node *rb;
1325        struct ubi_wl_entry *e;
1326
1327        rb = root->rb_node;
1328        while (rb) {
1329                if (rb->rb_left)
1330                        rb = rb->rb_left;
1331                else if (rb->rb_right)
1332                        rb = rb->rb_right;
1333                else {
1334                        e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1335
1336                        rb = rb_parent(rb);
1337                        if (rb) {
1338                                if (rb->rb_left == &e->u.rb)
1339                                        rb->rb_left = NULL;
1340                                else
1341                                        rb->rb_right = NULL;
1342                        }
1343
1344                        kmem_cache_free(ubi_wl_entry_slab, e);
1345                }
1346        }
1347}
1348
1349/**
1350 * ubi_thread - UBI background thread.
1351 * @u: the UBI device description object pointer
1352 */
1353int ubi_thread(void *u)
1354{
1355        int failures = 0;
1356        struct ubi_device *ubi = u;
1357
1358        ubi_msg("background thread \"%s\" started, PID %d",
1359                ubi->bgt_name, task_pid_nr(current));
1360
1361        set_freezable();
1362        for (;;) {
1363                int err;
1364
1365                if (kthread_should_stop())
1366                        break;
1367
1368                if (try_to_freeze())
1369                        continue;
1370
1371                spin_lock(&ubi->wl_lock);
1372                if (list_empty(&ubi->works) || ubi->ro_mode ||
1373                    !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1374                        set_current_state(TASK_INTERRUPTIBLE);
1375                        spin_unlock(&ubi->wl_lock);
1376                        schedule();
1377                        continue;
1378                }
1379                spin_unlock(&ubi->wl_lock);
1380
1381                err = do_work(ubi);
1382                if (err) {
1383                        ubi_err("%s: work failed with error code %d",
1384                                ubi->bgt_name, err);
1385                        if (failures++ > WL_MAX_FAILURES) {
1386                                /*
1387                                 * Too many failures, disable the thread and
1388                                 * switch to read-only mode.
1389                                 */
1390                                ubi_msg("%s: %d consecutive failures",
1391                                        ubi->bgt_name, WL_MAX_FAILURES);
1392                                ubi_ro_mode(ubi);
1393                                ubi->thread_enabled = 0;
1394                                continue;
1395                        }
1396                } else
1397                        failures = 0;
1398
1399                cond_resched();
1400        }
1401
1402        dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1403        return 0;
1404}
1405
1406/**
1407 * cancel_pending - cancel all pending works.
1408 * @ubi: UBI device description object
1409 */
1410static void cancel_pending(struct ubi_device *ubi)
1411{
1412        while (!list_empty(&ubi->works)) {
1413                struct ubi_work *wrk;
1414
1415                wrk = list_entry(ubi->works.next, struct ubi_work, list);
1416                list_del(&wrk->list);
1417                wrk->func(ubi, wrk, 1);
1418                ubi->works_count -= 1;
1419                ubi_assert(ubi->works_count >= 0);
1420        }
1421}
1422
1423/**
1424 * ubi_wl_init_scan - initialize the WL sub-system using scanning information.
1425 * @ubi: UBI device description object
1426 * @si: scanning information
1427 *
1428 * This function returns zero in case of success, and a negative error code in
1429 * case of failure.
1430 */
1431int ubi_wl_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
1432{
1433        int err, i;
1434        struct rb_node *rb1, *rb2;
1435        struct ubi_scan_volume *sv;
1436        struct ubi_scan_leb *seb, *tmp;
1437        struct ubi_wl_entry *e;
1438
1439        ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1440        spin_lock_init(&ubi->wl_lock);
1441        mutex_init(&ubi->move_mutex);
1442        init_rwsem(&ubi->work_sem);
1443        ubi->max_ec = si->max_ec;
1444        INIT_LIST_HEAD(&ubi->works);
1445
1446        sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1447
1448        err = -ENOMEM;
1449        ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1450        if (!ubi->lookuptbl)
1451                return err;
1452
1453        for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1454                INIT_LIST_HEAD(&ubi->pq[i]);
1455        ubi->pq_head = 0;
1456
1457        list_for_each_entry_safe(seb, tmp, &si->erase, u.list) {
1458                cond_resched();
1459
1460                e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1461                if (!e)
1462                        goto out_free;
1463
1464                e->pnum = seb->pnum;
1465                e->ec = seb->ec;
1466                ubi->lookuptbl[e->pnum] = e;
1467                if (schedule_erase(ubi, e, 0)) {
1468                        kmem_cache_free(ubi_wl_entry_slab, e);
1469                        goto out_free;
1470                }
1471        }
1472
1473        list_for_each_entry(seb, &si->free, u.list) {
1474                cond_resched();
1475
1476                e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1477                if (!e)
1478                        goto out_free;
1479
1480                e->pnum = seb->pnum;
1481                e->ec = seb->ec;
1482                ubi_assert(e->ec >= 0);
1483                wl_tree_add(e, &ubi->free);
1484                ubi->lookuptbl[e->pnum] = e;
1485        }
1486
1487        ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1488                ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1489                        cond_resched();
1490
1491                        e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1492                        if (!e)
1493                                goto out_free;
1494
1495                        e->pnum = seb->pnum;
1496                        e->ec = seb->ec;
1497                        ubi->lookuptbl[e->pnum] = e;
1498                        if (!seb->scrub) {
1499                                dbg_wl("add PEB %d EC %d to the used tree",
1500                                       e->pnum, e->ec);
1501                                wl_tree_add(e, &ubi->used);
1502                        } else {
1503                                dbg_wl("add PEB %d EC %d to the scrub tree",
1504                                       e->pnum, e->ec);
1505                                wl_tree_add(e, &ubi->scrub);
1506                        }
1507                }
1508        }
1509
1510        if (ubi->avail_pebs < WL_RESERVED_PEBS) {
1511                ubi_err("no enough physical eraseblocks (%d, need %d)",
1512                        ubi->avail_pebs, WL_RESERVED_PEBS);
1513                if (ubi->corr_peb_count)
1514                        ubi_err("%d PEBs are corrupted and not used",
1515                                ubi->corr_peb_count);
1516                goto out_free;
1517        }
1518        ubi->avail_pebs -= WL_RESERVED_PEBS;
1519        ubi->rsvd_pebs += WL_RESERVED_PEBS;
1520
1521        /* Schedule wear-leveling if needed */
1522        err = ensure_wear_leveling(ubi);
1523        if (err)
1524                goto out_free;
1525
1526        return 0;
1527
1528out_free:
1529        cancel_pending(ubi);
1530        tree_destroy(&ubi->used);
1531        tree_destroy(&ubi->free);
1532        tree_destroy(&ubi->scrub);
1533        kfree(ubi->lookuptbl);
1534        return err;
1535}
1536
1537/**
1538 * protection_queue_destroy - destroy the protection queue.
1539 * @ubi: UBI device description object
1540 */
1541static void protection_queue_destroy(struct ubi_device *ubi)
1542{
1543        int i;
1544        struct ubi_wl_entry *e, *tmp;
1545
1546        for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1547                list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1548                        list_del(&e->u.list);
1549                        kmem_cache_free(ubi_wl_entry_slab, e);
1550                }
1551        }
1552}
1553
1554/**
1555 * ubi_wl_close - close the wear-leveling sub-system.
1556 * @ubi: UBI device description object
1557 */
1558void ubi_wl_close(struct ubi_device *ubi)
1559{
1560        dbg_wl("close the WL sub-system");
1561        cancel_pending(ubi);
1562        protection_queue_destroy(ubi);
1563        tree_destroy(&ubi->used);
1564        tree_destroy(&ubi->erroneous);
1565        tree_destroy(&ubi->free);
1566        tree_destroy(&ubi->scrub);
1567        kfree(ubi->lookuptbl);
1568}
1569
1570#ifdef CONFIG_MTD_UBI_DEBUG
1571
1572/**
1573 * paranoid_check_ec - make sure that the erase counter of a PEB is correct.
1574 * @ubi: UBI device description object
1575 * @pnum: the physical eraseblock number to check
1576 * @ec: the erase counter to check
1577 *
1578 * This function returns zero if the erase counter of physical eraseblock @pnum
1579 * is equivalent to @ec, and a negative error code if not or if an error
1580 * occurred.
1581 */
1582static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec)
1583{
1584        int err;
1585        long long read_ec;
1586        struct ubi_ec_hdr *ec_hdr;
1587
1588        if (!ubi->dbg->chk_gen)
1589                return 0;
1590
1591        ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1592        if (!ec_hdr)
1593                return -ENOMEM;
1594
1595        err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1596        if (err && err != UBI_IO_BITFLIPS) {
1597                /* The header does not have to exist */
1598                err = 0;
1599                goto out_free;
1600        }
1601
1602        read_ec = be64_to_cpu(ec_hdr->ec);
1603        if (ec != read_ec) {
1604                ubi_err("paranoid check failed for PEB %d", pnum);
1605                ubi_err("read EC is %lld, should be %d", read_ec, ec);
1606                ubi_dbg_dump_stack();
1607                err = 1;
1608        } else
1609                err = 0;
1610
1611out_free:
1612        kfree(ec_hdr);
1613        return err;
1614}
1615
1616/**
1617 * paranoid_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1618 * @ubi: UBI device description object
1619 * @e: the wear-leveling entry to check
1620 * @root: the root of the tree
1621 *
1622 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
1623 * is not.
1624 */
1625static int paranoid_check_in_wl_tree(const struct ubi_device *ubi,
1626                                     struct ubi_wl_entry *e,
1627                                     struct rb_root *root)
1628{
1629        if (!ubi->dbg->chk_gen)
1630                return 0;
1631
1632        if (in_wl_tree(e, root))
1633                return 0;
1634
1635        ubi_err("paranoid check failed for PEB %d, EC %d, RB-tree %p ",
1636                e->pnum, e->ec, root);
1637        ubi_dbg_dump_stack();
1638        return -EINVAL;
1639}
1640
1641/**
1642 * paranoid_check_in_pq - check if wear-leveling entry is in the protection
1643 *                        queue.
1644 * @ubi: UBI device description object
1645 * @e: the wear-leveling entry to check
1646 *
1647 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
1648 */
1649static int paranoid_check_in_pq(const struct ubi_device *ubi,
1650                                struct ubi_wl_entry *e)
1651{
1652        struct ubi_wl_entry *p;
1653        int i;
1654
1655        if (!ubi->dbg->chk_gen)
1656                return 0;
1657
1658        for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
1659                list_for_each_entry(p, &ubi->pq[i], u.list)
1660                        if (p == e)
1661                                return 0;
1662
1663        ubi_err("paranoid check failed for PEB %d, EC %d, Protect queue",
1664                e->pnum, e->ec);
1665        ubi_dbg_dump_stack();
1666        return -EINVAL;
1667}
1668
1669#endif /* CONFIG_MTD_UBI_DEBUG */
1670