linux/drivers/net/ethernet/intel/e1000e/nvm.c
<<
>>
Prefs
   1/*******************************************************************************
   2
   3  Intel PRO/1000 Linux driver
   4  Copyright(c) 1999 - 2012 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28
  29#include "e1000.h"
  30
  31/**
  32 *  e1000_raise_eec_clk - Raise EEPROM clock
  33 *  @hw: pointer to the HW structure
  34 *  @eecd: pointer to the EEPROM
  35 *
  36 *  Enable/Raise the EEPROM clock bit.
  37 **/
  38static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
  39{
  40        *eecd = *eecd | E1000_EECD_SK;
  41        ew32(EECD, *eecd);
  42        e1e_flush();
  43        udelay(hw->nvm.delay_usec);
  44}
  45
  46/**
  47 *  e1000_lower_eec_clk - Lower EEPROM clock
  48 *  @hw: pointer to the HW structure
  49 *  @eecd: pointer to the EEPROM
  50 *
  51 *  Clear/Lower the EEPROM clock bit.
  52 **/
  53static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
  54{
  55        *eecd = *eecd & ~E1000_EECD_SK;
  56        ew32(EECD, *eecd);
  57        e1e_flush();
  58        udelay(hw->nvm.delay_usec);
  59}
  60
  61/**
  62 *  e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
  63 *  @hw: pointer to the HW structure
  64 *  @data: data to send to the EEPROM
  65 *  @count: number of bits to shift out
  66 *
  67 *  We need to shift 'count' bits out to the EEPROM.  So, the value in the
  68 *  "data" parameter will be shifted out to the EEPROM one bit at a time.
  69 *  In order to do this, "data" must be broken down into bits.
  70 **/
  71static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
  72{
  73        struct e1000_nvm_info *nvm = &hw->nvm;
  74        u32 eecd = er32(EECD);
  75        u32 mask;
  76
  77        mask = 0x01 << (count - 1);
  78        if (nvm->type == e1000_nvm_eeprom_spi)
  79                eecd |= E1000_EECD_DO;
  80
  81        do {
  82                eecd &= ~E1000_EECD_DI;
  83
  84                if (data & mask)
  85                        eecd |= E1000_EECD_DI;
  86
  87                ew32(EECD, eecd);
  88                e1e_flush();
  89
  90                udelay(nvm->delay_usec);
  91
  92                e1000_raise_eec_clk(hw, &eecd);
  93                e1000_lower_eec_clk(hw, &eecd);
  94
  95                mask >>= 1;
  96        } while (mask);
  97
  98        eecd &= ~E1000_EECD_DI;
  99        ew32(EECD, eecd);
 100}
 101
 102/**
 103 *  e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
 104 *  @hw: pointer to the HW structure
 105 *  @count: number of bits to shift in
 106 *
 107 *  In order to read a register from the EEPROM, we need to shift 'count' bits
 108 *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to
 109 *  the EEPROM (setting the SK bit), and then reading the value of the data out
 110 *  "DO" bit.  During this "shifting in" process the data in "DI" bit should
 111 *  always be clear.
 112 **/
 113static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
 114{
 115        u32 eecd;
 116        u32 i;
 117        u16 data;
 118
 119        eecd = er32(EECD);
 120
 121        eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
 122        data = 0;
 123
 124        for (i = 0; i < count; i++) {
 125                data <<= 1;
 126                e1000_raise_eec_clk(hw, &eecd);
 127
 128                eecd = er32(EECD);
 129
 130                eecd &= ~E1000_EECD_DI;
 131                if (eecd & E1000_EECD_DO)
 132                        data |= 1;
 133
 134                e1000_lower_eec_clk(hw, &eecd);
 135        }
 136
 137        return data;
 138}
 139
 140/**
 141 *  e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion
 142 *  @hw: pointer to the HW structure
 143 *  @ee_reg: EEPROM flag for polling
 144 *
 145 *  Polls the EEPROM status bit for either read or write completion based
 146 *  upon the value of 'ee_reg'.
 147 **/
 148s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
 149{
 150        u32 attempts = 100000;
 151        u32 i, reg = 0;
 152
 153        for (i = 0; i < attempts; i++) {
 154                if (ee_reg == E1000_NVM_POLL_READ)
 155                        reg = er32(EERD);
 156                else
 157                        reg = er32(EEWR);
 158
 159                if (reg & E1000_NVM_RW_REG_DONE)
 160                        return 0;
 161
 162                udelay(5);
 163        }
 164
 165        return -E1000_ERR_NVM;
 166}
 167
 168/**
 169 *  e1000e_acquire_nvm - Generic request for access to EEPROM
 170 *  @hw: pointer to the HW structure
 171 *
 172 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
 173 *  Return successful if access grant bit set, else clear the request for
 174 *  EEPROM access and return -E1000_ERR_NVM (-1).
 175 **/
 176s32 e1000e_acquire_nvm(struct e1000_hw *hw)
 177{
 178        u32 eecd = er32(EECD);
 179        s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
 180
 181        ew32(EECD, eecd | E1000_EECD_REQ);
 182        eecd = er32(EECD);
 183
 184        while (timeout) {
 185                if (eecd & E1000_EECD_GNT)
 186                        break;
 187                udelay(5);
 188                eecd = er32(EECD);
 189                timeout--;
 190        }
 191
 192        if (!timeout) {
 193                eecd &= ~E1000_EECD_REQ;
 194                ew32(EECD, eecd);
 195                e_dbg("Could not acquire NVM grant\n");
 196                return -E1000_ERR_NVM;
 197        }
 198
 199        return 0;
 200}
 201
 202/**
 203 *  e1000_standby_nvm - Return EEPROM to standby state
 204 *  @hw: pointer to the HW structure
 205 *
 206 *  Return the EEPROM to a standby state.
 207 **/
 208static void e1000_standby_nvm(struct e1000_hw *hw)
 209{
 210        struct e1000_nvm_info *nvm = &hw->nvm;
 211        u32 eecd = er32(EECD);
 212
 213        if (nvm->type == e1000_nvm_eeprom_spi) {
 214                /* Toggle CS to flush commands */
 215                eecd |= E1000_EECD_CS;
 216                ew32(EECD, eecd);
 217                e1e_flush();
 218                udelay(nvm->delay_usec);
 219                eecd &= ~E1000_EECD_CS;
 220                ew32(EECD, eecd);
 221                e1e_flush();
 222                udelay(nvm->delay_usec);
 223        }
 224}
 225
 226/**
 227 *  e1000_stop_nvm - Terminate EEPROM command
 228 *  @hw: pointer to the HW structure
 229 *
 230 *  Terminates the current command by inverting the EEPROM's chip select pin.
 231 **/
 232static void e1000_stop_nvm(struct e1000_hw *hw)
 233{
 234        u32 eecd;
 235
 236        eecd = er32(EECD);
 237        if (hw->nvm.type == e1000_nvm_eeprom_spi) {
 238                /* Pull CS high */
 239                eecd |= E1000_EECD_CS;
 240                e1000_lower_eec_clk(hw, &eecd);
 241        }
 242}
 243
 244/**
 245 *  e1000e_release_nvm - Release exclusive access to EEPROM
 246 *  @hw: pointer to the HW structure
 247 *
 248 *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
 249 **/
 250void e1000e_release_nvm(struct e1000_hw *hw)
 251{
 252        u32 eecd;
 253
 254        e1000_stop_nvm(hw);
 255
 256        eecd = er32(EECD);
 257        eecd &= ~E1000_EECD_REQ;
 258        ew32(EECD, eecd);
 259}
 260
 261/**
 262 *  e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
 263 *  @hw: pointer to the HW structure
 264 *
 265 *  Setups the EEPROM for reading and writing.
 266 **/
 267static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
 268{
 269        struct e1000_nvm_info *nvm = &hw->nvm;
 270        u32 eecd = er32(EECD);
 271        u8 spi_stat_reg;
 272
 273        if (nvm->type == e1000_nvm_eeprom_spi) {
 274                u16 timeout = NVM_MAX_RETRY_SPI;
 275
 276                /* Clear SK and CS */
 277                eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
 278                ew32(EECD, eecd);
 279                e1e_flush();
 280                udelay(1);
 281
 282                /*
 283                 * Read "Status Register" repeatedly until the LSB is cleared.
 284                 * The EEPROM will signal that the command has been completed
 285                 * by clearing bit 0 of the internal status register.  If it's
 286                 * not cleared within 'timeout', then error out.
 287                 */
 288                while (timeout) {
 289                        e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
 290                                                 hw->nvm.opcode_bits);
 291                        spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
 292                        if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
 293                                break;
 294
 295                        udelay(5);
 296                        e1000_standby_nvm(hw);
 297                        timeout--;
 298                }
 299
 300                if (!timeout) {
 301                        e_dbg("SPI NVM Status error\n");
 302                        return -E1000_ERR_NVM;
 303                }
 304        }
 305
 306        return 0;
 307}
 308
 309/**
 310 *  e1000e_read_nvm_eerd - Reads EEPROM using EERD register
 311 *  @hw: pointer to the HW structure
 312 *  @offset: offset of word in the EEPROM to read
 313 *  @words: number of words to read
 314 *  @data: word read from the EEPROM
 315 *
 316 *  Reads a 16 bit word from the EEPROM using the EERD register.
 317 **/
 318s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
 319{
 320        struct e1000_nvm_info *nvm = &hw->nvm;
 321        u32 i, eerd = 0;
 322        s32 ret_val = 0;
 323
 324        /*
 325         * A check for invalid values:  offset too large, too many words,
 326         * too many words for the offset, and not enough words.
 327         */
 328        if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
 329            (words == 0)) {
 330                e_dbg("nvm parameter(s) out of bounds\n");
 331                return -E1000_ERR_NVM;
 332        }
 333
 334        for (i = 0; i < words; i++) {
 335                eerd = ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) +
 336                    E1000_NVM_RW_REG_START;
 337
 338                ew32(EERD, eerd);
 339                ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
 340                if (ret_val)
 341                        break;
 342
 343                data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA);
 344        }
 345
 346        return ret_val;
 347}
 348
 349/**
 350 *  e1000e_write_nvm_spi - Write to EEPROM using SPI
 351 *  @hw: pointer to the HW structure
 352 *  @offset: offset within the EEPROM to be written to
 353 *  @words: number of words to write
 354 *  @data: 16 bit word(s) to be written to the EEPROM
 355 *
 356 *  Writes data to EEPROM at offset using SPI interface.
 357 *
 358 *  If e1000e_update_nvm_checksum is not called after this function , the
 359 *  EEPROM will most likely contain an invalid checksum.
 360 **/
 361s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
 362{
 363        struct e1000_nvm_info *nvm = &hw->nvm;
 364        s32 ret_val;
 365        u16 widx = 0;
 366
 367        /*
 368         * A check for invalid values:  offset too large, too many words,
 369         * and not enough words.
 370         */
 371        if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
 372            (words == 0)) {
 373                e_dbg("nvm parameter(s) out of bounds\n");
 374                return -E1000_ERR_NVM;
 375        }
 376
 377        ret_val = nvm->ops.acquire(hw);
 378        if (ret_val)
 379                return ret_val;
 380
 381        while (widx < words) {
 382                u8 write_opcode = NVM_WRITE_OPCODE_SPI;
 383
 384                ret_val = e1000_ready_nvm_eeprom(hw);
 385                if (ret_val)
 386                        goto release;
 387
 388                e1000_standby_nvm(hw);
 389
 390                /* Send the WRITE ENABLE command (8 bit opcode) */
 391                e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
 392                                         nvm->opcode_bits);
 393
 394                e1000_standby_nvm(hw);
 395
 396                /*
 397                 * Some SPI eeproms use the 8th address bit embedded in the
 398                 * opcode
 399                 */
 400                if ((nvm->address_bits == 8) && (offset >= 128))
 401                        write_opcode |= NVM_A8_OPCODE_SPI;
 402
 403                /* Send the Write command (8-bit opcode + addr) */
 404                e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
 405                e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
 406                                         nvm->address_bits);
 407
 408                /* Loop to allow for up to whole page write of eeprom */
 409                while (widx < words) {
 410                        u16 word_out = data[widx];
 411                        word_out = (word_out >> 8) | (word_out << 8);
 412                        e1000_shift_out_eec_bits(hw, word_out, 16);
 413                        widx++;
 414
 415                        if ((((offset + widx) * 2) % nvm->page_size) == 0) {
 416                                e1000_standby_nvm(hw);
 417                                break;
 418                        }
 419                }
 420        }
 421
 422        usleep_range(10000, 20000);
 423release:
 424        nvm->ops.release(hw);
 425
 426        return ret_val;
 427}
 428
 429/**
 430 *  e1000_read_pba_string_generic - Read device part number
 431 *  @hw: pointer to the HW structure
 432 *  @pba_num: pointer to device part number
 433 *  @pba_num_size: size of part number buffer
 434 *
 435 *  Reads the product board assembly (PBA) number from the EEPROM and stores
 436 *  the value in pba_num.
 437 **/
 438s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
 439                                  u32 pba_num_size)
 440{
 441        s32 ret_val;
 442        u16 nvm_data;
 443        u16 pba_ptr;
 444        u16 offset;
 445        u16 length;
 446
 447        if (pba_num == NULL) {
 448                e_dbg("PBA string buffer was null\n");
 449                return -E1000_ERR_INVALID_ARGUMENT;
 450        }
 451
 452        ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
 453        if (ret_val) {
 454                e_dbg("NVM Read Error\n");
 455                return ret_val;
 456        }
 457
 458        ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
 459        if (ret_val) {
 460                e_dbg("NVM Read Error\n");
 461                return ret_val;
 462        }
 463
 464        /*
 465         * if nvm_data is not ptr guard the PBA must be in legacy format which
 466         * means pba_ptr is actually our second data word for the PBA number
 467         * and we can decode it into an ascii string
 468         */
 469        if (nvm_data != NVM_PBA_PTR_GUARD) {
 470                e_dbg("NVM PBA number is not stored as string\n");
 471
 472                /* we will need 11 characters to store the PBA */
 473                if (pba_num_size < 11) {
 474                        e_dbg("PBA string buffer too small\n");
 475                        return E1000_ERR_NO_SPACE;
 476                }
 477
 478                /* extract hex string from data and pba_ptr */
 479                pba_num[0] = (nvm_data >> 12) & 0xF;
 480                pba_num[1] = (nvm_data >> 8) & 0xF;
 481                pba_num[2] = (nvm_data >> 4) & 0xF;
 482                pba_num[3] = nvm_data & 0xF;
 483                pba_num[4] = (pba_ptr >> 12) & 0xF;
 484                pba_num[5] = (pba_ptr >> 8) & 0xF;
 485                pba_num[6] = '-';
 486                pba_num[7] = 0;
 487                pba_num[8] = (pba_ptr >> 4) & 0xF;
 488                pba_num[9] = pba_ptr & 0xF;
 489
 490                /* put a null character on the end of our string */
 491                pba_num[10] = '\0';
 492
 493                /* switch all the data but the '-' to hex char */
 494                for (offset = 0; offset < 10; offset++) {
 495                        if (pba_num[offset] < 0xA)
 496                                pba_num[offset] += '0';
 497                        else if (pba_num[offset] < 0x10)
 498                                pba_num[offset] += 'A' - 0xA;
 499                }
 500
 501                return 0;
 502        }
 503
 504        ret_val = e1000_read_nvm(hw, pba_ptr, 1, &length);
 505        if (ret_val) {
 506                e_dbg("NVM Read Error\n");
 507                return ret_val;
 508        }
 509
 510        if (length == 0xFFFF || length == 0) {
 511                e_dbg("NVM PBA number section invalid length\n");
 512                return -E1000_ERR_NVM_PBA_SECTION;
 513        }
 514        /* check if pba_num buffer is big enough */
 515        if (pba_num_size < (((u32)length * 2) - 1)) {
 516                e_dbg("PBA string buffer too small\n");
 517                return -E1000_ERR_NO_SPACE;
 518        }
 519
 520        /* trim pba length from start of string */
 521        pba_ptr++;
 522        length--;
 523
 524        for (offset = 0; offset < length; offset++) {
 525                ret_val = e1000_read_nvm(hw, pba_ptr + offset, 1, &nvm_data);
 526                if (ret_val) {
 527                        e_dbg("NVM Read Error\n");
 528                        return ret_val;
 529                }
 530                pba_num[offset * 2] = (u8)(nvm_data >> 8);
 531                pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
 532        }
 533        pba_num[offset * 2] = '\0';
 534
 535        return 0;
 536}
 537
 538/**
 539 *  e1000_read_mac_addr_generic - Read device MAC address
 540 *  @hw: pointer to the HW structure
 541 *
 542 *  Reads the device MAC address from the EEPROM and stores the value.
 543 *  Since devices with two ports use the same EEPROM, we increment the
 544 *  last bit in the MAC address for the second port.
 545 **/
 546s32 e1000_read_mac_addr_generic(struct e1000_hw *hw)
 547{
 548        u32 rar_high;
 549        u32 rar_low;
 550        u16 i;
 551
 552        rar_high = er32(RAH(0));
 553        rar_low = er32(RAL(0));
 554
 555        for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
 556                hw->mac.perm_addr[i] = (u8)(rar_low >> (i * 8));
 557
 558        for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
 559                hw->mac.perm_addr[i + 4] = (u8)(rar_high >> (i * 8));
 560
 561        for (i = 0; i < ETH_ALEN; i++)
 562                hw->mac.addr[i] = hw->mac.perm_addr[i];
 563
 564        return 0;
 565}
 566
 567/**
 568 *  e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum
 569 *  @hw: pointer to the HW structure
 570 *
 571 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
 572 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
 573 **/
 574s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw)
 575{
 576        s32 ret_val;
 577        u16 checksum = 0;
 578        u16 i, nvm_data;
 579
 580        for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
 581                ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
 582                if (ret_val) {
 583                        e_dbg("NVM Read Error\n");
 584                        return ret_val;
 585                }
 586                checksum += nvm_data;
 587        }
 588
 589        if (checksum != (u16)NVM_SUM) {
 590                e_dbg("NVM Checksum Invalid\n");
 591                return -E1000_ERR_NVM;
 592        }
 593
 594        return 0;
 595}
 596
 597/**
 598 *  e1000e_update_nvm_checksum_generic - Update EEPROM checksum
 599 *  @hw: pointer to the HW structure
 600 *
 601 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
 602 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
 603 *  value to the EEPROM.
 604 **/
 605s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw)
 606{
 607        s32 ret_val;
 608        u16 checksum = 0;
 609        u16 i, nvm_data;
 610
 611        for (i = 0; i < NVM_CHECKSUM_REG; i++) {
 612                ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
 613                if (ret_val) {
 614                        e_dbg("NVM Read Error while updating checksum.\n");
 615                        return ret_val;
 616                }
 617                checksum += nvm_data;
 618        }
 619        checksum = (u16)NVM_SUM - checksum;
 620        ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum);
 621        if (ret_val)
 622                e_dbg("NVM Write Error while updating checksum.\n");
 623
 624        return ret_val;
 625}
 626
 627/**
 628 *  e1000e_reload_nvm_generic - Reloads EEPROM
 629 *  @hw: pointer to the HW structure
 630 *
 631 *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
 632 *  extended control register.
 633 **/
 634void e1000e_reload_nvm_generic(struct e1000_hw *hw)
 635{
 636        u32 ctrl_ext;
 637
 638        udelay(10);
 639        ctrl_ext = er32(CTRL_EXT);
 640        ctrl_ext |= E1000_CTRL_EXT_EE_RST;
 641        ew32(CTRL_EXT, ctrl_ext);
 642        e1e_flush();
 643}
 644