linux/drivers/net/wireless/ath/ath6kl/sdio.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2004-2011 Atheros Communications Inc.
   3 * Copyright (c) 2011-2012 Qualcomm Atheros, Inc.
   4 *
   5 * Permission to use, copy, modify, and/or distribute this software for any
   6 * purpose with or without fee is hereby granted, provided that the above
   7 * copyright notice and this permission notice appear in all copies.
   8 *
   9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  16 */
  17
  18#include <linux/module.h>
  19#include <linux/mmc/card.h>
  20#include <linux/mmc/mmc.h>
  21#include <linux/mmc/host.h>
  22#include <linux/mmc/sdio_func.h>
  23#include <linux/mmc/sdio_ids.h>
  24#include <linux/mmc/sdio.h>
  25#include <linux/mmc/sd.h>
  26#include "hif.h"
  27#include "hif-ops.h"
  28#include "target.h"
  29#include "debug.h"
  30#include "cfg80211.h"
  31
  32struct ath6kl_sdio {
  33        struct sdio_func *func;
  34
  35        /* protects access to bus_req_freeq */
  36        spinlock_t lock;
  37
  38        /* free list */
  39        struct list_head bus_req_freeq;
  40
  41        /* available bus requests */
  42        struct bus_request bus_req[BUS_REQUEST_MAX_NUM];
  43
  44        struct ath6kl *ar;
  45
  46        u8 *dma_buffer;
  47
  48        /* protects access to dma_buffer */
  49        struct mutex dma_buffer_mutex;
  50
  51        /* scatter request list head */
  52        struct list_head scat_req;
  53
  54        atomic_t irq_handling;
  55        wait_queue_head_t irq_wq;
  56
  57        /* protects access to scat_req */
  58        spinlock_t scat_lock;
  59
  60        bool scatter_enabled;
  61
  62        bool is_disabled;
  63        const struct sdio_device_id *id;
  64        struct work_struct wr_async_work;
  65        struct list_head wr_asyncq;
  66
  67        /* protects access to wr_asyncq */
  68        spinlock_t wr_async_lock;
  69};
  70
  71#define CMD53_ARG_READ          0
  72#define CMD53_ARG_WRITE         1
  73#define CMD53_ARG_BLOCK_BASIS   1
  74#define CMD53_ARG_FIXED_ADDRESS 0
  75#define CMD53_ARG_INCR_ADDRESS  1
  76
  77static inline struct ath6kl_sdio *ath6kl_sdio_priv(struct ath6kl *ar)
  78{
  79        return ar->hif_priv;
  80}
  81
  82/*
  83 * Macro to check if DMA buffer is WORD-aligned and DMA-able.
  84 * Most host controllers assume the buffer is DMA'able and will
  85 * bug-check otherwise (i.e. buffers on the stack). virt_addr_valid
  86 * check fails on stack memory.
  87 */
  88static inline bool buf_needs_bounce(u8 *buf)
  89{
  90        return ((unsigned long) buf & 0x3) || !virt_addr_valid(buf);
  91}
  92
  93static void ath6kl_sdio_set_mbox_info(struct ath6kl *ar)
  94{
  95        struct ath6kl_mbox_info *mbox_info = &ar->mbox_info;
  96
  97        /* EP1 has an extended range */
  98        mbox_info->htc_addr = HIF_MBOX_BASE_ADDR;
  99        mbox_info->htc_ext_addr = HIF_MBOX0_EXT_BASE_ADDR;
 100        mbox_info->htc_ext_sz = HIF_MBOX0_EXT_WIDTH;
 101        mbox_info->block_size = HIF_MBOX_BLOCK_SIZE;
 102        mbox_info->gmbox_addr = HIF_GMBOX_BASE_ADDR;
 103        mbox_info->gmbox_sz = HIF_GMBOX_WIDTH;
 104}
 105
 106static inline void ath6kl_sdio_set_cmd53_arg(u32 *arg, u8 rw, u8 func,
 107                                             u8 mode, u8 opcode, u32 addr,
 108                                             u16 blksz)
 109{
 110        *arg = (((rw & 1) << 31) |
 111                ((func & 0x7) << 28) |
 112                ((mode & 1) << 27) |
 113                ((opcode & 1) << 26) |
 114                ((addr & 0x1FFFF) << 9) |
 115                (blksz & 0x1FF));
 116}
 117
 118static inline void ath6kl_sdio_set_cmd52_arg(u32 *arg, u8 write, u8 raw,
 119                                             unsigned int address,
 120                                             unsigned char val)
 121{
 122        const u8 func = 0;
 123
 124        *arg = ((write & 1) << 31) |
 125               ((func & 0x7) << 28) |
 126               ((raw & 1) << 27) |
 127               (1 << 26) |
 128               ((address & 0x1FFFF) << 9) |
 129               (1 << 8) |
 130               (val & 0xFF);
 131}
 132
 133static int ath6kl_sdio_func0_cmd52_wr_byte(struct mmc_card *card,
 134                                           unsigned int address,
 135                                           unsigned char byte)
 136{
 137        struct mmc_command io_cmd;
 138
 139        memset(&io_cmd, 0, sizeof(io_cmd));
 140        ath6kl_sdio_set_cmd52_arg(&io_cmd.arg, 1, 0, address, byte);
 141        io_cmd.opcode = SD_IO_RW_DIRECT;
 142        io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC;
 143
 144        return mmc_wait_for_cmd(card->host, &io_cmd, 0);
 145}
 146
 147static int ath6kl_sdio_io(struct sdio_func *func, u32 request, u32 addr,
 148                          u8 *buf, u32 len)
 149{
 150        int ret = 0;
 151
 152        sdio_claim_host(func);
 153
 154        if (request & HIF_WRITE) {
 155                /* FIXME: looks like ugly workaround for something */
 156                if (addr >= HIF_MBOX_BASE_ADDR &&
 157                    addr <= HIF_MBOX_END_ADDR)
 158                        addr += (HIF_MBOX_WIDTH - len);
 159
 160                /* FIXME: this also looks like ugly workaround */
 161                if (addr == HIF_MBOX0_EXT_BASE_ADDR)
 162                        addr += HIF_MBOX0_EXT_WIDTH - len;
 163
 164                if (request & HIF_FIXED_ADDRESS)
 165                        ret = sdio_writesb(func, addr, buf, len);
 166                else
 167                        ret = sdio_memcpy_toio(func, addr, buf, len);
 168        } else {
 169                if (request & HIF_FIXED_ADDRESS)
 170                        ret = sdio_readsb(func, buf, addr, len);
 171                else
 172                        ret = sdio_memcpy_fromio(func, buf, addr, len);
 173        }
 174
 175        sdio_release_host(func);
 176
 177        ath6kl_dbg(ATH6KL_DBG_SDIO, "%s addr 0x%x%s buf 0x%p len %d\n",
 178                   request & HIF_WRITE ? "wr" : "rd", addr,
 179                   request & HIF_FIXED_ADDRESS ? " (fixed)" : "", buf, len);
 180        ath6kl_dbg_dump(ATH6KL_DBG_SDIO_DUMP, NULL, "sdio ", buf, len);
 181
 182        return ret;
 183}
 184
 185static struct bus_request *ath6kl_sdio_alloc_busreq(struct ath6kl_sdio *ar_sdio)
 186{
 187        struct bus_request *bus_req;
 188
 189        spin_lock_bh(&ar_sdio->lock);
 190
 191        if (list_empty(&ar_sdio->bus_req_freeq)) {
 192                spin_unlock_bh(&ar_sdio->lock);
 193                return NULL;
 194        }
 195
 196        bus_req = list_first_entry(&ar_sdio->bus_req_freeq,
 197                                   struct bus_request, list);
 198        list_del(&bus_req->list);
 199
 200        spin_unlock_bh(&ar_sdio->lock);
 201        ath6kl_dbg(ATH6KL_DBG_SCATTER, "%s: bus request 0x%p\n",
 202                   __func__, bus_req);
 203
 204        return bus_req;
 205}
 206
 207static void ath6kl_sdio_free_bus_req(struct ath6kl_sdio *ar_sdio,
 208                                     struct bus_request *bus_req)
 209{
 210        ath6kl_dbg(ATH6KL_DBG_SCATTER, "%s: bus request 0x%p\n",
 211                   __func__, bus_req);
 212
 213        spin_lock_bh(&ar_sdio->lock);
 214        list_add_tail(&bus_req->list, &ar_sdio->bus_req_freeq);
 215        spin_unlock_bh(&ar_sdio->lock);
 216}
 217
 218static void ath6kl_sdio_setup_scat_data(struct hif_scatter_req *scat_req,
 219                                        struct mmc_data *data)
 220{
 221        struct scatterlist *sg;
 222        int i;
 223
 224        data->blksz = HIF_MBOX_BLOCK_SIZE;
 225        data->blocks = scat_req->len / HIF_MBOX_BLOCK_SIZE;
 226
 227        ath6kl_dbg(ATH6KL_DBG_SCATTER,
 228                   "hif-scatter: (%s) addr: 0x%X, (block len: %d, block count: %d) , (tot:%d,sg:%d)\n",
 229                   (scat_req->req & HIF_WRITE) ? "WR" : "RD", scat_req->addr,
 230                   data->blksz, data->blocks, scat_req->len,
 231                   scat_req->scat_entries);
 232
 233        data->flags = (scat_req->req & HIF_WRITE) ? MMC_DATA_WRITE :
 234                                                    MMC_DATA_READ;
 235
 236        /* fill SG entries */
 237        sg = scat_req->sgentries;
 238        sg_init_table(sg, scat_req->scat_entries);
 239
 240        /* assemble SG list */
 241        for (i = 0; i < scat_req->scat_entries; i++, sg++) {
 242                ath6kl_dbg(ATH6KL_DBG_SCATTER, "%d: addr:0x%p, len:%d\n",
 243                           i, scat_req->scat_list[i].buf,
 244                           scat_req->scat_list[i].len);
 245
 246                sg_set_buf(sg, scat_req->scat_list[i].buf,
 247                           scat_req->scat_list[i].len);
 248        }
 249
 250        /* set scatter-gather table for request */
 251        data->sg = scat_req->sgentries;
 252        data->sg_len = scat_req->scat_entries;
 253}
 254
 255static int ath6kl_sdio_scat_rw(struct ath6kl_sdio *ar_sdio,
 256                               struct bus_request *req)
 257{
 258        struct mmc_request mmc_req;
 259        struct mmc_command cmd;
 260        struct mmc_data data;
 261        struct hif_scatter_req *scat_req;
 262        u8 opcode, rw;
 263        int status, len;
 264
 265        scat_req = req->scat_req;
 266
 267        if (scat_req->virt_scat) {
 268                len = scat_req->len;
 269                if (scat_req->req & HIF_BLOCK_BASIS)
 270                        len = round_down(len, HIF_MBOX_BLOCK_SIZE);
 271
 272                status = ath6kl_sdio_io(ar_sdio->func, scat_req->req,
 273                                        scat_req->addr, scat_req->virt_dma_buf,
 274                                        len);
 275                goto scat_complete;
 276        }
 277
 278        memset(&mmc_req, 0, sizeof(struct mmc_request));
 279        memset(&cmd, 0, sizeof(struct mmc_command));
 280        memset(&data, 0, sizeof(struct mmc_data));
 281
 282        ath6kl_sdio_setup_scat_data(scat_req, &data);
 283
 284        opcode = (scat_req->req & HIF_FIXED_ADDRESS) ?
 285                  CMD53_ARG_FIXED_ADDRESS : CMD53_ARG_INCR_ADDRESS;
 286
 287        rw = (scat_req->req & HIF_WRITE) ? CMD53_ARG_WRITE : CMD53_ARG_READ;
 288
 289        /* Fixup the address so that the last byte will fall on MBOX EOM */
 290        if (scat_req->req & HIF_WRITE) {
 291                if (scat_req->addr == HIF_MBOX_BASE_ADDR)
 292                        scat_req->addr += HIF_MBOX_WIDTH - scat_req->len;
 293                else
 294                        /* Uses extended address range */
 295                        scat_req->addr += HIF_MBOX0_EXT_WIDTH - scat_req->len;
 296        }
 297
 298        /* set command argument */
 299        ath6kl_sdio_set_cmd53_arg(&cmd.arg, rw, ar_sdio->func->num,
 300                                  CMD53_ARG_BLOCK_BASIS, opcode, scat_req->addr,
 301                                  data.blocks);
 302
 303        cmd.opcode = SD_IO_RW_EXTENDED;
 304        cmd.flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_ADTC;
 305
 306        mmc_req.cmd = &cmd;
 307        mmc_req.data = &data;
 308
 309        sdio_claim_host(ar_sdio->func);
 310
 311        mmc_set_data_timeout(&data, ar_sdio->func->card);
 312        /* synchronous call to process request */
 313        mmc_wait_for_req(ar_sdio->func->card->host, &mmc_req);
 314
 315        sdio_release_host(ar_sdio->func);
 316
 317        status = cmd.error ? cmd.error : data.error;
 318
 319scat_complete:
 320        scat_req->status = status;
 321
 322        if (scat_req->status)
 323                ath6kl_err("Scatter write request failed:%d\n",
 324                           scat_req->status);
 325
 326        if (scat_req->req & HIF_ASYNCHRONOUS)
 327                scat_req->complete(ar_sdio->ar->htc_target, scat_req);
 328
 329        return status;
 330}
 331
 332static int ath6kl_sdio_alloc_prep_scat_req(struct ath6kl_sdio *ar_sdio,
 333                                           int n_scat_entry, int n_scat_req,
 334                                           bool virt_scat)
 335{
 336        struct hif_scatter_req *s_req;
 337        struct bus_request *bus_req;
 338        int i, scat_req_sz, scat_list_sz, sg_sz, buf_sz;
 339        u8 *virt_buf;
 340
 341        scat_list_sz = (n_scat_entry - 1) * sizeof(struct hif_scatter_item);
 342        scat_req_sz = sizeof(*s_req) + scat_list_sz;
 343
 344        if (!virt_scat)
 345                sg_sz = sizeof(struct scatterlist) * n_scat_entry;
 346        else
 347                buf_sz =  2 * L1_CACHE_BYTES +
 348                          ATH6KL_MAX_TRANSFER_SIZE_PER_SCATTER;
 349
 350        for (i = 0; i < n_scat_req; i++) {
 351                /* allocate the scatter request */
 352                s_req = kzalloc(scat_req_sz, GFP_KERNEL);
 353                if (!s_req)
 354                        return -ENOMEM;
 355
 356                if (virt_scat) {
 357                        virt_buf = kzalloc(buf_sz, GFP_KERNEL);
 358                        if (!virt_buf) {
 359                                kfree(s_req);
 360                                return -ENOMEM;
 361                        }
 362
 363                        s_req->virt_dma_buf =
 364                                (u8 *)L1_CACHE_ALIGN((unsigned long)virt_buf);
 365                } else {
 366                        /* allocate sglist */
 367                        s_req->sgentries = kzalloc(sg_sz, GFP_KERNEL);
 368
 369                        if (!s_req->sgentries) {
 370                                kfree(s_req);
 371                                return -ENOMEM;
 372                        }
 373                }
 374
 375                /* allocate a bus request for this scatter request */
 376                bus_req = ath6kl_sdio_alloc_busreq(ar_sdio);
 377                if (!bus_req) {
 378                        kfree(s_req->sgentries);
 379                        kfree(s_req->virt_dma_buf);
 380                        kfree(s_req);
 381                        return -ENOMEM;
 382                }
 383
 384                /* assign the scatter request to this bus request */
 385                bus_req->scat_req = s_req;
 386                s_req->busrequest = bus_req;
 387
 388                s_req->virt_scat = virt_scat;
 389
 390                /* add it to the scatter pool */
 391                hif_scatter_req_add(ar_sdio->ar, s_req);
 392        }
 393
 394        return 0;
 395}
 396
 397static int ath6kl_sdio_read_write_sync(struct ath6kl *ar, u32 addr, u8 *buf,
 398                                       u32 len, u32 request)
 399{
 400        struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
 401        u8  *tbuf = NULL;
 402        int ret;
 403        bool bounced = false;
 404
 405        if (request & HIF_BLOCK_BASIS)
 406                len = round_down(len, HIF_MBOX_BLOCK_SIZE);
 407
 408        if (buf_needs_bounce(buf)) {
 409                if (!ar_sdio->dma_buffer)
 410                        return -ENOMEM;
 411                mutex_lock(&ar_sdio->dma_buffer_mutex);
 412                tbuf = ar_sdio->dma_buffer;
 413
 414                if (request & HIF_WRITE)
 415                        memcpy(tbuf, buf, len);
 416
 417                bounced = true;
 418        } else
 419                tbuf = buf;
 420
 421        ret = ath6kl_sdio_io(ar_sdio->func, request, addr, tbuf, len);
 422        if ((request & HIF_READ) && bounced)
 423                memcpy(buf, tbuf, len);
 424
 425        if (bounced)
 426                mutex_unlock(&ar_sdio->dma_buffer_mutex);
 427
 428        return ret;
 429}
 430
 431static void __ath6kl_sdio_write_async(struct ath6kl_sdio *ar_sdio,
 432                                      struct bus_request *req)
 433{
 434        if (req->scat_req)
 435                ath6kl_sdio_scat_rw(ar_sdio, req);
 436        else {
 437                void *context;
 438                int status;
 439
 440                status = ath6kl_sdio_read_write_sync(ar_sdio->ar, req->address,
 441                                                     req->buffer, req->length,
 442                                                     req->request);
 443                context = req->packet;
 444                ath6kl_sdio_free_bus_req(ar_sdio, req);
 445                ath6kl_hif_rw_comp_handler(context, status);
 446        }
 447}
 448
 449static void ath6kl_sdio_write_async_work(struct work_struct *work)
 450{
 451        struct ath6kl_sdio *ar_sdio;
 452        struct bus_request *req, *tmp_req;
 453
 454        ar_sdio = container_of(work, struct ath6kl_sdio, wr_async_work);
 455
 456        spin_lock_bh(&ar_sdio->wr_async_lock);
 457        list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) {
 458                list_del(&req->list);
 459                spin_unlock_bh(&ar_sdio->wr_async_lock);
 460                __ath6kl_sdio_write_async(ar_sdio, req);
 461                spin_lock_bh(&ar_sdio->wr_async_lock);
 462        }
 463        spin_unlock_bh(&ar_sdio->wr_async_lock);
 464}
 465
 466static void ath6kl_sdio_irq_handler(struct sdio_func *func)
 467{
 468        int status;
 469        struct ath6kl_sdio *ar_sdio;
 470
 471        ath6kl_dbg(ATH6KL_DBG_SDIO, "irq\n");
 472
 473        ar_sdio = sdio_get_drvdata(func);
 474        atomic_set(&ar_sdio->irq_handling, 1);
 475        /*
 476         * Release the host during interrups so we can pick it back up when
 477         * we process commands.
 478         */
 479        sdio_release_host(ar_sdio->func);
 480
 481        status = ath6kl_hif_intr_bh_handler(ar_sdio->ar);
 482        sdio_claim_host(ar_sdio->func);
 483
 484        atomic_set(&ar_sdio->irq_handling, 0);
 485        wake_up(&ar_sdio->irq_wq);
 486
 487        WARN_ON(status && status != -ECANCELED);
 488}
 489
 490static int ath6kl_sdio_power_on(struct ath6kl *ar)
 491{
 492        struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
 493        struct sdio_func *func = ar_sdio->func;
 494        int ret = 0;
 495
 496        if (!ar_sdio->is_disabled)
 497                return 0;
 498
 499        ath6kl_dbg(ATH6KL_DBG_BOOT, "sdio power on\n");
 500
 501        sdio_claim_host(func);
 502
 503        ret = sdio_enable_func(func);
 504        if (ret) {
 505                ath6kl_err("Unable to enable sdio func: %d)\n", ret);
 506                sdio_release_host(func);
 507                return ret;
 508        }
 509
 510        sdio_release_host(func);
 511
 512        /*
 513         * Wait for hardware to initialise. It should take a lot less than
 514         * 10 ms but let's be conservative here.
 515         */
 516        msleep(10);
 517
 518        ar_sdio->is_disabled = false;
 519
 520        return ret;
 521}
 522
 523static int ath6kl_sdio_power_off(struct ath6kl *ar)
 524{
 525        struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
 526        int ret;
 527
 528        if (ar_sdio->is_disabled)
 529                return 0;
 530
 531        ath6kl_dbg(ATH6KL_DBG_BOOT, "sdio power off\n");
 532
 533        /* Disable the card */
 534        sdio_claim_host(ar_sdio->func);
 535        ret = sdio_disable_func(ar_sdio->func);
 536        sdio_release_host(ar_sdio->func);
 537
 538        if (ret)
 539                return ret;
 540
 541        ar_sdio->is_disabled = true;
 542
 543        return ret;
 544}
 545
 546static int ath6kl_sdio_write_async(struct ath6kl *ar, u32 address, u8 *buffer,
 547                                   u32 length, u32 request,
 548                                   struct htc_packet *packet)
 549{
 550        struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
 551        struct bus_request *bus_req;
 552
 553        bus_req = ath6kl_sdio_alloc_busreq(ar_sdio);
 554
 555        if (!bus_req)
 556                return -ENOMEM;
 557
 558        bus_req->address = address;
 559        bus_req->buffer = buffer;
 560        bus_req->length = length;
 561        bus_req->request = request;
 562        bus_req->packet = packet;
 563
 564        spin_lock_bh(&ar_sdio->wr_async_lock);
 565        list_add_tail(&bus_req->list, &ar_sdio->wr_asyncq);
 566        spin_unlock_bh(&ar_sdio->wr_async_lock);
 567        queue_work(ar->ath6kl_wq, &ar_sdio->wr_async_work);
 568
 569        return 0;
 570}
 571
 572static void ath6kl_sdio_irq_enable(struct ath6kl *ar)
 573{
 574        struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
 575        int ret;
 576
 577        sdio_claim_host(ar_sdio->func);
 578
 579        /* Register the isr */
 580        ret =  sdio_claim_irq(ar_sdio->func, ath6kl_sdio_irq_handler);
 581        if (ret)
 582                ath6kl_err("Failed to claim sdio irq: %d\n", ret);
 583
 584        sdio_release_host(ar_sdio->func);
 585}
 586
 587static bool ath6kl_sdio_is_on_irq(struct ath6kl *ar)
 588{
 589        struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
 590
 591        return !atomic_read(&ar_sdio->irq_handling);
 592}
 593
 594static void ath6kl_sdio_irq_disable(struct ath6kl *ar)
 595{
 596        struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
 597        int ret;
 598
 599        sdio_claim_host(ar_sdio->func);
 600
 601        if (atomic_read(&ar_sdio->irq_handling)) {
 602                sdio_release_host(ar_sdio->func);
 603
 604                ret = wait_event_interruptible(ar_sdio->irq_wq,
 605                                               ath6kl_sdio_is_on_irq(ar));
 606                if (ret)
 607                        return;
 608
 609                sdio_claim_host(ar_sdio->func);
 610        }
 611
 612        ret = sdio_release_irq(ar_sdio->func);
 613        if (ret)
 614                ath6kl_err("Failed to release sdio irq: %d\n", ret);
 615
 616        sdio_release_host(ar_sdio->func);
 617}
 618
 619static struct hif_scatter_req *ath6kl_sdio_scatter_req_get(struct ath6kl *ar)
 620{
 621        struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
 622        struct hif_scatter_req *node = NULL;
 623
 624        spin_lock_bh(&ar_sdio->scat_lock);
 625
 626        if (!list_empty(&ar_sdio->scat_req)) {
 627                node = list_first_entry(&ar_sdio->scat_req,
 628                                        struct hif_scatter_req, list);
 629                list_del(&node->list);
 630
 631                node->scat_q_depth = get_queue_depth(&ar_sdio->scat_req);
 632        }
 633
 634        spin_unlock_bh(&ar_sdio->scat_lock);
 635
 636        return node;
 637}
 638
 639static void ath6kl_sdio_scatter_req_add(struct ath6kl *ar,
 640                                        struct hif_scatter_req *s_req)
 641{
 642        struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
 643
 644        spin_lock_bh(&ar_sdio->scat_lock);
 645
 646        list_add_tail(&s_req->list, &ar_sdio->scat_req);
 647
 648        spin_unlock_bh(&ar_sdio->scat_lock);
 649
 650}
 651
 652/* scatter gather read write request */
 653static int ath6kl_sdio_async_rw_scatter(struct ath6kl *ar,
 654                                        struct hif_scatter_req *scat_req)
 655{
 656        struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
 657        u32 request = scat_req->req;
 658        int status = 0;
 659
 660        if (!scat_req->len)
 661                return -EINVAL;
 662
 663        ath6kl_dbg(ATH6KL_DBG_SCATTER,
 664                   "hif-scatter: total len: %d scatter entries: %d\n",
 665                   scat_req->len, scat_req->scat_entries);
 666
 667        if (request & HIF_SYNCHRONOUS)
 668                status = ath6kl_sdio_scat_rw(ar_sdio, scat_req->busrequest);
 669        else {
 670                spin_lock_bh(&ar_sdio->wr_async_lock);
 671                list_add_tail(&scat_req->busrequest->list, &ar_sdio->wr_asyncq);
 672                spin_unlock_bh(&ar_sdio->wr_async_lock);
 673                queue_work(ar->ath6kl_wq, &ar_sdio->wr_async_work);
 674        }
 675
 676        return status;
 677}
 678
 679/* clean up scatter support */
 680static void ath6kl_sdio_cleanup_scatter(struct ath6kl *ar)
 681{
 682        struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
 683        struct hif_scatter_req *s_req, *tmp_req;
 684
 685        /* empty the free list */
 686        spin_lock_bh(&ar_sdio->scat_lock);
 687        list_for_each_entry_safe(s_req, tmp_req, &ar_sdio->scat_req, list) {
 688                list_del(&s_req->list);
 689                spin_unlock_bh(&ar_sdio->scat_lock);
 690
 691                /*
 692                 * FIXME: should we also call completion handler with
 693                 * ath6kl_hif_rw_comp_handler() with status -ECANCELED so
 694                 * that the packet is properly freed?
 695                 */
 696                if (s_req->busrequest)
 697                        ath6kl_sdio_free_bus_req(ar_sdio, s_req->busrequest);
 698                kfree(s_req->virt_dma_buf);
 699                kfree(s_req->sgentries);
 700                kfree(s_req);
 701
 702                spin_lock_bh(&ar_sdio->scat_lock);
 703        }
 704        spin_unlock_bh(&ar_sdio->scat_lock);
 705}
 706
 707/* setup of HIF scatter resources */
 708static int ath6kl_sdio_enable_scatter(struct ath6kl *ar)
 709{
 710        struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
 711        struct htc_target *target = ar->htc_target;
 712        int ret;
 713        bool virt_scat = false;
 714
 715        if (ar_sdio->scatter_enabled)
 716                return 0;
 717
 718        ar_sdio->scatter_enabled = true;
 719
 720        /* check if host supports scatter and it meets our requirements */
 721        if (ar_sdio->func->card->host->max_segs < MAX_SCATTER_ENTRIES_PER_REQ) {
 722                ath6kl_err("host only supports scatter of :%d entries, need: %d\n",
 723                           ar_sdio->func->card->host->max_segs,
 724                           MAX_SCATTER_ENTRIES_PER_REQ);
 725                virt_scat = true;
 726        }
 727
 728        if (!virt_scat) {
 729                ret = ath6kl_sdio_alloc_prep_scat_req(ar_sdio,
 730                                MAX_SCATTER_ENTRIES_PER_REQ,
 731                                MAX_SCATTER_REQUESTS, virt_scat);
 732
 733                if (!ret) {
 734                        ath6kl_dbg(ATH6KL_DBG_BOOT,
 735                                   "hif-scatter enabled requests %d entries %d\n",
 736                                   MAX_SCATTER_REQUESTS,
 737                                   MAX_SCATTER_ENTRIES_PER_REQ);
 738
 739                        target->max_scat_entries = MAX_SCATTER_ENTRIES_PER_REQ;
 740                        target->max_xfer_szper_scatreq =
 741                                                MAX_SCATTER_REQ_TRANSFER_SIZE;
 742                } else {
 743                        ath6kl_sdio_cleanup_scatter(ar);
 744                        ath6kl_warn("hif scatter resource setup failed, trying virtual scatter method\n");
 745                }
 746        }
 747
 748        if (virt_scat || ret) {
 749                ret = ath6kl_sdio_alloc_prep_scat_req(ar_sdio,
 750                                ATH6KL_SCATTER_ENTRIES_PER_REQ,
 751                                ATH6KL_SCATTER_REQS, virt_scat);
 752
 753                if (ret) {
 754                        ath6kl_err("failed to alloc virtual scatter resources !\n");
 755                        ath6kl_sdio_cleanup_scatter(ar);
 756                        return ret;
 757                }
 758
 759                ath6kl_dbg(ATH6KL_DBG_BOOT,
 760                           "virtual scatter enabled requests %d entries %d\n",
 761                           ATH6KL_SCATTER_REQS, ATH6KL_SCATTER_ENTRIES_PER_REQ);
 762
 763                target->max_scat_entries = ATH6KL_SCATTER_ENTRIES_PER_REQ;
 764                target->max_xfer_szper_scatreq =
 765                                        ATH6KL_MAX_TRANSFER_SIZE_PER_SCATTER;
 766        }
 767
 768        return 0;
 769}
 770
 771static int ath6kl_sdio_config(struct ath6kl *ar)
 772{
 773        struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
 774        struct sdio_func *func = ar_sdio->func;
 775        int ret;
 776
 777        sdio_claim_host(func);
 778
 779        if ((ar_sdio->id->device & MANUFACTURER_ID_ATH6KL_BASE_MASK) >=
 780            MANUFACTURER_ID_AR6003_BASE) {
 781                /* enable 4-bit ASYNC interrupt on AR6003 or later */
 782                ret = ath6kl_sdio_func0_cmd52_wr_byte(func->card,
 783                                                CCCR_SDIO_IRQ_MODE_REG,
 784                                                SDIO_IRQ_MODE_ASYNC_4BIT_IRQ);
 785                if (ret) {
 786                        ath6kl_err("Failed to enable 4-bit async irq mode %d\n",
 787                                   ret);
 788                        goto out;
 789                }
 790
 791                ath6kl_dbg(ATH6KL_DBG_BOOT, "4-bit async irq mode enabled\n");
 792        }
 793
 794        /* give us some time to enable, in ms */
 795        func->enable_timeout = 100;
 796
 797        ret = sdio_set_block_size(func, HIF_MBOX_BLOCK_SIZE);
 798        if (ret) {
 799                ath6kl_err("Set sdio block size %d failed: %d)\n",
 800                           HIF_MBOX_BLOCK_SIZE, ret);
 801                goto out;
 802        }
 803
 804out:
 805        sdio_release_host(func);
 806
 807        return ret;
 808}
 809
 810static int ath6kl_set_sdio_pm_caps(struct ath6kl *ar)
 811{
 812        struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
 813        struct sdio_func *func = ar_sdio->func;
 814        mmc_pm_flag_t flags;
 815        int ret;
 816
 817        flags = sdio_get_host_pm_caps(func);
 818
 819        ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio suspend pm_caps 0x%x\n", flags);
 820
 821        if (!(flags & MMC_PM_WAKE_SDIO_IRQ) ||
 822            !(flags & MMC_PM_KEEP_POWER))
 823                return -EINVAL;
 824
 825        ret = sdio_set_host_pm_flags(func, MMC_PM_KEEP_POWER);
 826        if (ret) {
 827                ath6kl_err("set sdio keep pwr flag failed: %d\n", ret);
 828                return ret;
 829        }
 830
 831        /* sdio irq wakes up host */
 832        ret = sdio_set_host_pm_flags(func, MMC_PM_WAKE_SDIO_IRQ);
 833        if (ret)
 834                ath6kl_err("set sdio wake irq flag failed: %d\n", ret);
 835
 836        return ret;
 837}
 838
 839static int ath6kl_sdio_suspend(struct ath6kl *ar, struct cfg80211_wowlan *wow)
 840{
 841        struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
 842        struct sdio_func *func = ar_sdio->func;
 843        mmc_pm_flag_t flags;
 844        bool try_deepsleep = false;
 845        int ret;
 846
 847        if (ar->state == ATH6KL_STATE_SCHED_SCAN) {
 848                ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sched scan is in progress\n");
 849
 850                ret = ath6kl_set_sdio_pm_caps(ar);
 851                if (ret)
 852                        goto cut_pwr;
 853
 854                ret =  ath6kl_cfg80211_suspend(ar,
 855                                               ATH6KL_CFG_SUSPEND_SCHED_SCAN,
 856                                               NULL);
 857                if (ret)
 858                        goto cut_pwr;
 859
 860                return 0;
 861        }
 862
 863        if (ar->suspend_mode == WLAN_POWER_STATE_WOW ||
 864            (!ar->suspend_mode && wow)) {
 865
 866                ret = ath6kl_set_sdio_pm_caps(ar);
 867                if (ret)
 868                        goto cut_pwr;
 869
 870                ret = ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_WOW, wow);
 871                if (ret && ret != -ENOTCONN)
 872                        ath6kl_err("wow suspend failed: %d\n", ret);
 873
 874                if (ret &&
 875                    (!ar->wow_suspend_mode ||
 876                     ar->wow_suspend_mode == WLAN_POWER_STATE_DEEP_SLEEP))
 877                        try_deepsleep = true;
 878                else if (ret &&
 879                         ar->wow_suspend_mode == WLAN_POWER_STATE_CUT_PWR)
 880                        goto cut_pwr;
 881                if (!ret)
 882                        return 0;
 883        }
 884
 885        if (ar->suspend_mode == WLAN_POWER_STATE_DEEP_SLEEP ||
 886            !ar->suspend_mode || try_deepsleep) {
 887
 888                flags = sdio_get_host_pm_caps(func);
 889                if (!(flags & MMC_PM_KEEP_POWER))
 890                        goto cut_pwr;
 891
 892                ret = sdio_set_host_pm_flags(func, MMC_PM_KEEP_POWER);
 893                if (ret)
 894                        goto cut_pwr;
 895
 896                /*
 897                 * Workaround to support Deep Sleep with MSM, set the host pm
 898                 * flag as MMC_PM_WAKE_SDIO_IRQ to allow SDCC deiver to disable
 899                 * the sdc2_clock and internally allows MSM to enter
 900                 * TCXO shutdown properly.
 901                 */
 902                if ((flags & MMC_PM_WAKE_SDIO_IRQ)) {
 903                        ret = sdio_set_host_pm_flags(func,
 904                                                MMC_PM_WAKE_SDIO_IRQ);
 905                        if (ret)
 906                                goto cut_pwr;
 907                }
 908
 909                ret = ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_DEEPSLEEP,
 910                                              NULL);
 911                if (ret)
 912                        goto cut_pwr;
 913
 914                return 0;
 915        }
 916
 917cut_pwr:
 918        return ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_CUTPOWER, NULL);
 919}
 920
 921static int ath6kl_sdio_resume(struct ath6kl *ar)
 922{
 923        switch (ar->state) {
 924        case ATH6KL_STATE_OFF:
 925        case ATH6KL_STATE_CUTPOWER:
 926                ath6kl_dbg(ATH6KL_DBG_SUSPEND,
 927                           "sdio resume configuring sdio\n");
 928
 929                /* need to set sdio settings after power is cut from sdio */
 930                ath6kl_sdio_config(ar);
 931                break;
 932
 933        case ATH6KL_STATE_ON:
 934                break;
 935
 936        case ATH6KL_STATE_DEEPSLEEP:
 937                break;
 938
 939        case ATH6KL_STATE_WOW:
 940                break;
 941
 942        case ATH6KL_STATE_SCHED_SCAN:
 943                break;
 944
 945        case ATH6KL_STATE_SUSPENDING:
 946                break;
 947
 948        case ATH6KL_STATE_RESUMING:
 949                break;
 950        }
 951
 952        ath6kl_cfg80211_resume(ar);
 953
 954        return 0;
 955}
 956
 957/* set the window address register (using 4-byte register access ). */
 958static int ath6kl_set_addrwin_reg(struct ath6kl *ar, u32 reg_addr, u32 addr)
 959{
 960        int status;
 961        u8 addr_val[4];
 962        s32 i;
 963
 964        /*
 965         * Write bytes 1,2,3 of the register to set the upper address bytes,
 966         * the LSB is written last to initiate the access cycle
 967         */
 968
 969        for (i = 1; i <= 3; i++) {
 970                /*
 971                 * Fill the buffer with the address byte value we want to
 972                 * hit 4 times.
 973                 */
 974                memset(addr_val, ((u8 *)&addr)[i], 4);
 975
 976                /*
 977                 * Hit each byte of the register address with a 4-byte
 978                 * write operation to the same address, this is a harmless
 979                 * operation.
 980                 */
 981                status = ath6kl_sdio_read_write_sync(ar, reg_addr + i, addr_val,
 982                                             4, HIF_WR_SYNC_BYTE_FIX);
 983                if (status)
 984                        break;
 985        }
 986
 987        if (status) {
 988                ath6kl_err("%s: failed to write initial bytes of 0x%x "
 989                           "to window reg: 0x%X\n", __func__,
 990                           addr, reg_addr);
 991                return status;
 992        }
 993
 994        /*
 995         * Write the address register again, this time write the whole
 996         * 4-byte value. The effect here is that the LSB write causes the
 997         * cycle to start, the extra 3 byte write to bytes 1,2,3 has no
 998         * effect since we are writing the same values again
 999         */
1000        status = ath6kl_sdio_read_write_sync(ar, reg_addr, (u8 *)(&addr),
1001                                     4, HIF_WR_SYNC_BYTE_INC);
1002
1003        if (status) {
1004                ath6kl_err("%s: failed to write 0x%x to window reg: 0x%X\n",
1005                           __func__, addr, reg_addr);
1006                return status;
1007        }
1008
1009        return 0;
1010}
1011
1012static int ath6kl_sdio_diag_read32(struct ath6kl *ar, u32 address, u32 *data)
1013{
1014        int status;
1015
1016        /* set window register to start read cycle */
1017        status = ath6kl_set_addrwin_reg(ar, WINDOW_READ_ADDR_ADDRESS,
1018                                        address);
1019
1020        if (status)
1021                return status;
1022
1023        /* read the data */
1024        status = ath6kl_sdio_read_write_sync(ar, WINDOW_DATA_ADDRESS,
1025                                (u8 *)data, sizeof(u32), HIF_RD_SYNC_BYTE_INC);
1026        if (status) {
1027                ath6kl_err("%s: failed to read from window data addr\n",
1028                           __func__);
1029                return status;
1030        }
1031
1032        return status;
1033}
1034
1035static int ath6kl_sdio_diag_write32(struct ath6kl *ar, u32 address,
1036                                    __le32 data)
1037{
1038        int status;
1039        u32 val = (__force u32) data;
1040
1041        /* set write data */
1042        status = ath6kl_sdio_read_write_sync(ar, WINDOW_DATA_ADDRESS,
1043                                (u8 *) &val, sizeof(u32), HIF_WR_SYNC_BYTE_INC);
1044        if (status) {
1045                ath6kl_err("%s: failed to write 0x%x to window data addr\n",
1046                           __func__, data);
1047                return status;
1048        }
1049
1050        /* set window register, which starts the write cycle */
1051        return ath6kl_set_addrwin_reg(ar, WINDOW_WRITE_ADDR_ADDRESS,
1052                                      address);
1053}
1054
1055static int ath6kl_sdio_bmi_credits(struct ath6kl *ar)
1056{
1057        u32 addr;
1058        unsigned long timeout;
1059        int ret;
1060
1061        ar->bmi.cmd_credits = 0;
1062
1063        /* Read the counter register to get the command credits */
1064        addr = COUNT_DEC_ADDRESS + (HTC_MAILBOX_NUM_MAX + ENDPOINT1) * 4;
1065
1066        timeout = jiffies + msecs_to_jiffies(BMI_COMMUNICATION_TIMEOUT);
1067        while (time_before(jiffies, timeout) && !ar->bmi.cmd_credits) {
1068
1069                /*
1070                 * Hit the credit counter with a 4-byte access, the first byte
1071                 * read will hit the counter and cause a decrement, while the
1072                 * remaining 3 bytes has no effect. The rationale behind this
1073                 * is to make all HIF accesses 4-byte aligned.
1074                 */
1075                ret = ath6kl_sdio_read_write_sync(ar, addr,
1076                                         (u8 *)&ar->bmi.cmd_credits, 4,
1077                                         HIF_RD_SYNC_BYTE_INC);
1078                if (ret) {
1079                        ath6kl_err("Unable to decrement the command credit "
1080                                                "count register: %d\n", ret);
1081                        return ret;
1082                }
1083
1084                /* The counter is only 8 bits.
1085                 * Ignore anything in the upper 3 bytes
1086                 */
1087                ar->bmi.cmd_credits &= 0xFF;
1088        }
1089
1090        if (!ar->bmi.cmd_credits) {
1091                ath6kl_err("bmi communication timeout\n");
1092                return -ETIMEDOUT;
1093        }
1094
1095        return 0;
1096}
1097
1098static int ath6kl_bmi_get_rx_lkahd(struct ath6kl *ar)
1099{
1100        unsigned long timeout;
1101        u32 rx_word = 0;
1102        int ret = 0;
1103
1104        timeout = jiffies + msecs_to_jiffies(BMI_COMMUNICATION_TIMEOUT);
1105        while ((time_before(jiffies, timeout)) && !rx_word) {
1106                ret = ath6kl_sdio_read_write_sync(ar,
1107                                        RX_LOOKAHEAD_VALID_ADDRESS,
1108                                        (u8 *)&rx_word, sizeof(rx_word),
1109                                        HIF_RD_SYNC_BYTE_INC);
1110                if (ret) {
1111                        ath6kl_err("unable to read RX_LOOKAHEAD_VALID\n");
1112                        return ret;
1113                }
1114
1115                 /* all we really want is one bit */
1116                rx_word &= (1 << ENDPOINT1);
1117        }
1118
1119        if (!rx_word) {
1120                ath6kl_err("bmi_recv_buf FIFO empty\n");
1121                return -EINVAL;
1122        }
1123
1124        return ret;
1125}
1126
1127static int ath6kl_sdio_bmi_write(struct ath6kl *ar, u8 *buf, u32 len)
1128{
1129        int ret;
1130        u32 addr;
1131
1132        ret = ath6kl_sdio_bmi_credits(ar);
1133        if (ret)
1134                return ret;
1135
1136        addr = ar->mbox_info.htc_addr;
1137
1138        ret = ath6kl_sdio_read_write_sync(ar, addr, buf, len,
1139                                          HIF_WR_SYNC_BYTE_INC);
1140        if (ret)
1141                ath6kl_err("unable to send the bmi data to the device\n");
1142
1143        return ret;
1144}
1145
1146static int ath6kl_sdio_bmi_read(struct ath6kl *ar, u8 *buf, u32 len)
1147{
1148        int ret;
1149        u32 addr;
1150
1151        /*
1152         * During normal bootup, small reads may be required.
1153         * Rather than issue an HIF Read and then wait as the Target
1154         * adds successive bytes to the FIFO, we wait here until
1155         * we know that response data is available.
1156         *
1157         * This allows us to cleanly timeout on an unexpected
1158         * Target failure rather than risk problems at the HIF level.
1159         * In particular, this avoids SDIO timeouts and possibly garbage
1160         * data on some host controllers.  And on an interconnect
1161         * such as Compact Flash (as well as some SDIO masters) which
1162         * does not provide any indication on data timeout, it avoids
1163         * a potential hang or garbage response.
1164         *
1165         * Synchronization is more difficult for reads larger than the
1166         * size of the MBOX FIFO (128B), because the Target is unable
1167         * to push the 129th byte of data until AFTER the Host posts an
1168         * HIF Read and removes some FIFO data.  So for large reads the
1169         * Host proceeds to post an HIF Read BEFORE all the data is
1170         * actually available to read.  Fortunately, large BMI reads do
1171         * not occur in practice -- they're supported for debug/development.
1172         *
1173         * So Host/Target BMI synchronization is divided into these cases:
1174         *  CASE 1: length < 4
1175         *        Should not happen
1176         *
1177         *  CASE 2: 4 <= length <= 128
1178         *        Wait for first 4 bytes to be in FIFO
1179         *        If CONSERVATIVE_BMI_READ is enabled, also wait for
1180         *        a BMI command credit, which indicates that the ENTIRE
1181         *        response is available in the the FIFO
1182         *
1183         *  CASE 3: length > 128
1184         *        Wait for the first 4 bytes to be in FIFO
1185         *
1186         * For most uses, a small timeout should be sufficient and we will
1187         * usually see a response quickly; but there may be some unusual
1188         * (debug) cases of BMI_EXECUTE where we want an larger timeout.
1189         * For now, we use an unbounded busy loop while waiting for
1190         * BMI_EXECUTE.
1191         *
1192         * If BMI_EXECUTE ever needs to support longer-latency execution,
1193         * especially in production, this code needs to be enhanced to sleep
1194         * and yield.  Also note that BMI_COMMUNICATION_TIMEOUT is currently
1195         * a function of Host processor speed.
1196         */
1197        if (len >= 4) { /* NB: Currently, always true */
1198                ret = ath6kl_bmi_get_rx_lkahd(ar);
1199                if (ret)
1200                        return ret;
1201        }
1202
1203        addr = ar->mbox_info.htc_addr;
1204        ret = ath6kl_sdio_read_write_sync(ar, addr, buf, len,
1205                                  HIF_RD_SYNC_BYTE_INC);
1206        if (ret) {
1207                ath6kl_err("Unable to read the bmi data from the device: %d\n",
1208                           ret);
1209                return ret;
1210        }
1211
1212        return 0;
1213}
1214
1215static void ath6kl_sdio_stop(struct ath6kl *ar)
1216{
1217        struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
1218        struct bus_request *req, *tmp_req;
1219        void *context;
1220
1221        /* FIXME: make sure that wq is not queued again */
1222
1223        cancel_work_sync(&ar_sdio->wr_async_work);
1224
1225        spin_lock_bh(&ar_sdio->wr_async_lock);
1226
1227        list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) {
1228                list_del(&req->list);
1229
1230                if (req->scat_req) {
1231                        /* this is a scatter gather request */
1232                        req->scat_req->status = -ECANCELED;
1233                        req->scat_req->complete(ar_sdio->ar->htc_target,
1234                                                req->scat_req);
1235                } else {
1236                        context = req->packet;
1237                        ath6kl_sdio_free_bus_req(ar_sdio, req);
1238                        ath6kl_hif_rw_comp_handler(context, -ECANCELED);
1239                }
1240        }
1241
1242        spin_unlock_bh(&ar_sdio->wr_async_lock);
1243
1244        WARN_ON(get_queue_depth(&ar_sdio->scat_req) != 4);
1245}
1246
1247static const struct ath6kl_hif_ops ath6kl_sdio_ops = {
1248        .read_write_sync = ath6kl_sdio_read_write_sync,
1249        .write_async = ath6kl_sdio_write_async,
1250        .irq_enable = ath6kl_sdio_irq_enable,
1251        .irq_disable = ath6kl_sdio_irq_disable,
1252        .scatter_req_get = ath6kl_sdio_scatter_req_get,
1253        .scatter_req_add = ath6kl_sdio_scatter_req_add,
1254        .enable_scatter = ath6kl_sdio_enable_scatter,
1255        .scat_req_rw = ath6kl_sdio_async_rw_scatter,
1256        .cleanup_scatter = ath6kl_sdio_cleanup_scatter,
1257        .suspend = ath6kl_sdio_suspend,
1258        .resume = ath6kl_sdio_resume,
1259        .diag_read32 = ath6kl_sdio_diag_read32,
1260        .diag_write32 = ath6kl_sdio_diag_write32,
1261        .bmi_read = ath6kl_sdio_bmi_read,
1262        .bmi_write = ath6kl_sdio_bmi_write,
1263        .power_on = ath6kl_sdio_power_on,
1264        .power_off = ath6kl_sdio_power_off,
1265        .stop = ath6kl_sdio_stop,
1266};
1267
1268#ifdef CONFIG_PM_SLEEP
1269
1270/*
1271 * Empty handlers so that mmc subsystem doesn't remove us entirely during
1272 * suspend. We instead follow cfg80211 suspend/resume handlers.
1273 */
1274static int ath6kl_sdio_pm_suspend(struct device *device)
1275{
1276        ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio pm suspend\n");
1277
1278        return 0;
1279}
1280
1281static int ath6kl_sdio_pm_resume(struct device *device)
1282{
1283        ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio pm resume\n");
1284
1285        return 0;
1286}
1287
1288static SIMPLE_DEV_PM_OPS(ath6kl_sdio_pm_ops, ath6kl_sdio_pm_suspend,
1289                         ath6kl_sdio_pm_resume);
1290
1291#define ATH6KL_SDIO_PM_OPS (&ath6kl_sdio_pm_ops)
1292
1293#else
1294
1295#define ATH6KL_SDIO_PM_OPS NULL
1296
1297#endif /* CONFIG_PM_SLEEP */
1298
1299static int ath6kl_sdio_probe(struct sdio_func *func,
1300                             const struct sdio_device_id *id)
1301{
1302        int ret;
1303        struct ath6kl_sdio *ar_sdio;
1304        struct ath6kl *ar;
1305        int count;
1306
1307        ath6kl_dbg(ATH6KL_DBG_BOOT,
1308                   "sdio new func %d vendor 0x%x device 0x%x block 0x%x/0x%x\n",
1309                   func->num, func->vendor, func->device,
1310                   func->max_blksize, func->cur_blksize);
1311
1312        ar_sdio = kzalloc(sizeof(struct ath6kl_sdio), GFP_KERNEL);
1313        if (!ar_sdio)
1314                return -ENOMEM;
1315
1316        ar_sdio->dma_buffer = kzalloc(HIF_DMA_BUFFER_SIZE, GFP_KERNEL);
1317        if (!ar_sdio->dma_buffer) {
1318                ret = -ENOMEM;
1319                goto err_hif;
1320        }
1321
1322        ar_sdio->func = func;
1323        sdio_set_drvdata(func, ar_sdio);
1324
1325        ar_sdio->id = id;
1326        ar_sdio->is_disabled = true;
1327
1328        spin_lock_init(&ar_sdio->lock);
1329        spin_lock_init(&ar_sdio->scat_lock);
1330        spin_lock_init(&ar_sdio->wr_async_lock);
1331        mutex_init(&ar_sdio->dma_buffer_mutex);
1332
1333        INIT_LIST_HEAD(&ar_sdio->scat_req);
1334        INIT_LIST_HEAD(&ar_sdio->bus_req_freeq);
1335        INIT_LIST_HEAD(&ar_sdio->wr_asyncq);
1336
1337        INIT_WORK(&ar_sdio->wr_async_work, ath6kl_sdio_write_async_work);
1338
1339        init_waitqueue_head(&ar_sdio->irq_wq);
1340
1341        for (count = 0; count < BUS_REQUEST_MAX_NUM; count++)
1342                ath6kl_sdio_free_bus_req(ar_sdio, &ar_sdio->bus_req[count]);
1343
1344        ar = ath6kl_core_create(&ar_sdio->func->dev);
1345        if (!ar) {
1346                ath6kl_err("Failed to alloc ath6kl core\n");
1347                ret = -ENOMEM;
1348                goto err_dma;
1349        }
1350
1351        ar_sdio->ar = ar;
1352        ar->hif_type = ATH6KL_HIF_TYPE_SDIO;
1353        ar->hif_priv = ar_sdio;
1354        ar->hif_ops = &ath6kl_sdio_ops;
1355        ar->bmi.max_data_size = 256;
1356
1357        ath6kl_sdio_set_mbox_info(ar);
1358
1359        ret = ath6kl_sdio_config(ar);
1360        if (ret) {
1361                ath6kl_err("Failed to config sdio: %d\n", ret);
1362                goto err_core_alloc;
1363        }
1364
1365        ret = ath6kl_core_init(ar);
1366        if (ret) {
1367                ath6kl_err("Failed to init ath6kl core\n");
1368                goto err_core_alloc;
1369        }
1370
1371        return ret;
1372
1373err_core_alloc:
1374        ath6kl_core_destroy(ar_sdio->ar);
1375err_dma:
1376        kfree(ar_sdio->dma_buffer);
1377err_hif:
1378        kfree(ar_sdio);
1379
1380        return ret;
1381}
1382
1383static void ath6kl_sdio_remove(struct sdio_func *func)
1384{
1385        struct ath6kl_sdio *ar_sdio;
1386
1387        ath6kl_dbg(ATH6KL_DBG_BOOT,
1388                   "sdio removed func %d vendor 0x%x device 0x%x\n",
1389                   func->num, func->vendor, func->device);
1390
1391        ar_sdio = sdio_get_drvdata(func);
1392
1393        ath6kl_stop_txrx(ar_sdio->ar);
1394        cancel_work_sync(&ar_sdio->wr_async_work);
1395
1396        ath6kl_core_cleanup(ar_sdio->ar);
1397        ath6kl_core_destroy(ar_sdio->ar);
1398
1399        kfree(ar_sdio->dma_buffer);
1400        kfree(ar_sdio);
1401}
1402
1403static const struct sdio_device_id ath6kl_sdio_devices[] = {
1404        {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6003_BASE | 0x0))},
1405        {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6003_BASE | 0x1))},
1406        {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x0))},
1407        {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x1))},
1408        {},
1409};
1410
1411MODULE_DEVICE_TABLE(sdio, ath6kl_sdio_devices);
1412
1413static struct sdio_driver ath6kl_sdio_driver = {
1414        .name = "ath6kl_sdio",
1415        .id_table = ath6kl_sdio_devices,
1416        .probe = ath6kl_sdio_probe,
1417        .remove = ath6kl_sdio_remove,
1418        .drv.pm = ATH6KL_SDIO_PM_OPS,
1419};
1420
1421static int __init ath6kl_sdio_init(void)
1422{
1423        int ret;
1424
1425        ret = sdio_register_driver(&ath6kl_sdio_driver);
1426        if (ret)
1427                ath6kl_err("sdio driver registration failed: %d\n", ret);
1428
1429        return ret;
1430}
1431
1432static void __exit ath6kl_sdio_exit(void)
1433{
1434        sdio_unregister_driver(&ath6kl_sdio_driver);
1435}
1436
1437module_init(ath6kl_sdio_init);
1438module_exit(ath6kl_sdio_exit);
1439
1440MODULE_AUTHOR("Atheros Communications, Inc.");
1441MODULE_DESCRIPTION("Driver support for Atheros AR600x SDIO devices");
1442MODULE_LICENSE("Dual BSD/GPL");
1443
1444MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_OTP_FILE);
1445MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_FIRMWARE_FILE);
1446MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_PATCH_FILE);
1447MODULE_FIRMWARE(AR6003_HW_2_0_BOARD_DATA_FILE);
1448MODULE_FIRMWARE(AR6003_HW_2_0_DEFAULT_BOARD_DATA_FILE);
1449MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_OTP_FILE);
1450MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_FIRMWARE_FILE);
1451MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_PATCH_FILE);
1452MODULE_FIRMWARE(AR6003_HW_2_1_1_BOARD_DATA_FILE);
1453MODULE_FIRMWARE(AR6003_HW_2_1_1_DEFAULT_BOARD_DATA_FILE);
1454MODULE_FIRMWARE(AR6004_HW_1_0_FW_DIR "/" AR6004_HW_1_0_FIRMWARE_FILE);
1455MODULE_FIRMWARE(AR6004_HW_1_0_BOARD_DATA_FILE);
1456MODULE_FIRMWARE(AR6004_HW_1_0_DEFAULT_BOARD_DATA_FILE);
1457MODULE_FIRMWARE(AR6004_HW_1_1_FW_DIR "/" AR6004_HW_1_1_FIRMWARE_FILE);
1458MODULE_FIRMWARE(AR6004_HW_1_1_BOARD_DATA_FILE);
1459MODULE_FIRMWARE(AR6004_HW_1_1_DEFAULT_BOARD_DATA_FILE);
1460