linux/drivers/pci/pci.c
<<
>>
Prefs
   1/*
   2 *      PCI Bus Services, see include/linux/pci.h for further explanation.
   3 *
   4 *      Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
   5 *      David Mosberger-Tang
   6 *
   7 *      Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
   8 */
   9
  10#include <linux/kernel.h>
  11#include <linux/delay.h>
  12#include <linux/init.h>
  13#include <linux/pci.h>
  14#include <linux/pm.h>
  15#include <linux/slab.h>
  16#include <linux/module.h>
  17#include <linux/spinlock.h>
  18#include <linux/string.h>
  19#include <linux/log2.h>
  20#include <linux/pci-aspm.h>
  21#include <linux/pm_wakeup.h>
  22#include <linux/interrupt.h>
  23#include <linux/device.h>
  24#include <linux/pm_runtime.h>
  25#include <asm/setup.h>
  26#include "pci.h"
  27
  28const char *pci_power_names[] = {
  29        "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
  30};
  31EXPORT_SYMBOL_GPL(pci_power_names);
  32
  33int isa_dma_bridge_buggy;
  34EXPORT_SYMBOL(isa_dma_bridge_buggy);
  35
  36int pci_pci_problems;
  37EXPORT_SYMBOL(pci_pci_problems);
  38
  39unsigned int pci_pm_d3_delay;
  40
  41static void pci_pme_list_scan(struct work_struct *work);
  42
  43static LIST_HEAD(pci_pme_list);
  44static DEFINE_MUTEX(pci_pme_list_mutex);
  45static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
  46
  47struct pci_pme_device {
  48        struct list_head list;
  49        struct pci_dev *dev;
  50};
  51
  52#define PME_TIMEOUT 1000 /* How long between PME checks */
  53
  54static void pci_dev_d3_sleep(struct pci_dev *dev)
  55{
  56        unsigned int delay = dev->d3_delay;
  57
  58        if (delay < pci_pm_d3_delay)
  59                delay = pci_pm_d3_delay;
  60
  61        msleep(delay);
  62}
  63
  64#ifdef CONFIG_PCI_DOMAINS
  65int pci_domains_supported = 1;
  66#endif
  67
  68#define DEFAULT_CARDBUS_IO_SIZE         (256)
  69#define DEFAULT_CARDBUS_MEM_SIZE        (64*1024*1024)
  70/* pci=cbmemsize=nnM,cbiosize=nn can override this */
  71unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
  72unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
  73
  74#define DEFAULT_HOTPLUG_IO_SIZE         (256)
  75#define DEFAULT_HOTPLUG_MEM_SIZE        (2*1024*1024)
  76/* pci=hpmemsize=nnM,hpiosize=nn can override this */
  77unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
  78unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
  79
  80enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
  81
  82/*
  83 * The default CLS is used if arch didn't set CLS explicitly and not
  84 * all pci devices agree on the same value.  Arch can override either
  85 * the dfl or actual value as it sees fit.  Don't forget this is
  86 * measured in 32-bit words, not bytes.
  87 */
  88u8 pci_dfl_cache_line_size __devinitdata = L1_CACHE_BYTES >> 2;
  89u8 pci_cache_line_size;
  90
  91/*
  92 * If we set up a device for bus mastering, we need to check the latency
  93 * timer as certain BIOSes forget to set it properly.
  94 */
  95unsigned int pcibios_max_latency = 255;
  96
  97/* If set, the PCIe ARI capability will not be used. */
  98static bool pcie_ari_disabled;
  99
 100/**
 101 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
 102 * @bus: pointer to PCI bus structure to search
 103 *
 104 * Given a PCI bus, returns the highest PCI bus number present in the set
 105 * including the given PCI bus and its list of child PCI buses.
 106 */
 107unsigned char pci_bus_max_busnr(struct pci_bus* bus)
 108{
 109        struct list_head *tmp;
 110        unsigned char max, n;
 111
 112        max = bus->subordinate;
 113        list_for_each(tmp, &bus->children) {
 114                n = pci_bus_max_busnr(pci_bus_b(tmp));
 115                if(n > max)
 116                        max = n;
 117        }
 118        return max;
 119}
 120EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
 121
 122#ifdef CONFIG_HAS_IOMEM
 123void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
 124{
 125        /*
 126         * Make sure the BAR is actually a memory resource, not an IO resource
 127         */
 128        if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
 129                WARN_ON(1);
 130                return NULL;
 131        }
 132        return ioremap_nocache(pci_resource_start(pdev, bar),
 133                                     pci_resource_len(pdev, bar));
 134}
 135EXPORT_SYMBOL_GPL(pci_ioremap_bar);
 136#endif
 137
 138#if 0
 139/**
 140 * pci_max_busnr - returns maximum PCI bus number
 141 *
 142 * Returns the highest PCI bus number present in the system global list of
 143 * PCI buses.
 144 */
 145unsigned char __devinit
 146pci_max_busnr(void)
 147{
 148        struct pci_bus *bus = NULL;
 149        unsigned char max, n;
 150
 151        max = 0;
 152        while ((bus = pci_find_next_bus(bus)) != NULL) {
 153                n = pci_bus_max_busnr(bus);
 154                if(n > max)
 155                        max = n;
 156        }
 157        return max;
 158}
 159
 160#endif  /*  0  */
 161
 162#define PCI_FIND_CAP_TTL        48
 163
 164static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
 165                                   u8 pos, int cap, int *ttl)
 166{
 167        u8 id;
 168
 169        while ((*ttl)--) {
 170                pci_bus_read_config_byte(bus, devfn, pos, &pos);
 171                if (pos < 0x40)
 172                        break;
 173                pos &= ~3;
 174                pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
 175                                         &id);
 176                if (id == 0xff)
 177                        break;
 178                if (id == cap)
 179                        return pos;
 180                pos += PCI_CAP_LIST_NEXT;
 181        }
 182        return 0;
 183}
 184
 185static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
 186                               u8 pos, int cap)
 187{
 188        int ttl = PCI_FIND_CAP_TTL;
 189
 190        return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
 191}
 192
 193int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
 194{
 195        return __pci_find_next_cap(dev->bus, dev->devfn,
 196                                   pos + PCI_CAP_LIST_NEXT, cap);
 197}
 198EXPORT_SYMBOL_GPL(pci_find_next_capability);
 199
 200static int __pci_bus_find_cap_start(struct pci_bus *bus,
 201                                    unsigned int devfn, u8 hdr_type)
 202{
 203        u16 status;
 204
 205        pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
 206        if (!(status & PCI_STATUS_CAP_LIST))
 207                return 0;
 208
 209        switch (hdr_type) {
 210        case PCI_HEADER_TYPE_NORMAL:
 211        case PCI_HEADER_TYPE_BRIDGE:
 212                return PCI_CAPABILITY_LIST;
 213        case PCI_HEADER_TYPE_CARDBUS:
 214                return PCI_CB_CAPABILITY_LIST;
 215        default:
 216                return 0;
 217        }
 218
 219        return 0;
 220}
 221
 222/**
 223 * pci_find_capability - query for devices' capabilities 
 224 * @dev: PCI device to query
 225 * @cap: capability code
 226 *
 227 * Tell if a device supports a given PCI capability.
 228 * Returns the address of the requested capability structure within the
 229 * device's PCI configuration space or 0 in case the device does not
 230 * support it.  Possible values for @cap:
 231 *
 232 *  %PCI_CAP_ID_PM           Power Management 
 233 *  %PCI_CAP_ID_AGP          Accelerated Graphics Port 
 234 *  %PCI_CAP_ID_VPD          Vital Product Data 
 235 *  %PCI_CAP_ID_SLOTID       Slot Identification 
 236 *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
 237 *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap 
 238 *  %PCI_CAP_ID_PCIX         PCI-X
 239 *  %PCI_CAP_ID_EXP          PCI Express
 240 */
 241int pci_find_capability(struct pci_dev *dev, int cap)
 242{
 243        int pos;
 244
 245        pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 246        if (pos)
 247                pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
 248
 249        return pos;
 250}
 251
 252/**
 253 * pci_bus_find_capability - query for devices' capabilities 
 254 * @bus:   the PCI bus to query
 255 * @devfn: PCI device to query
 256 * @cap:   capability code
 257 *
 258 * Like pci_find_capability() but works for pci devices that do not have a
 259 * pci_dev structure set up yet. 
 260 *
 261 * Returns the address of the requested capability structure within the
 262 * device's PCI configuration space or 0 in case the device does not
 263 * support it.
 264 */
 265int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
 266{
 267        int pos;
 268        u8 hdr_type;
 269
 270        pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
 271
 272        pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
 273        if (pos)
 274                pos = __pci_find_next_cap(bus, devfn, pos, cap);
 275
 276        return pos;
 277}
 278
 279/**
 280 * pci_find_ext_capability - Find an extended capability
 281 * @dev: PCI device to query
 282 * @cap: capability code
 283 *
 284 * Returns the address of the requested extended capability structure
 285 * within the device's PCI configuration space or 0 if the device does
 286 * not support it.  Possible values for @cap:
 287 *
 288 *  %PCI_EXT_CAP_ID_ERR         Advanced Error Reporting
 289 *  %PCI_EXT_CAP_ID_VC          Virtual Channel
 290 *  %PCI_EXT_CAP_ID_DSN         Device Serial Number
 291 *  %PCI_EXT_CAP_ID_PWR         Power Budgeting
 292 */
 293int pci_find_ext_capability(struct pci_dev *dev, int cap)
 294{
 295        u32 header;
 296        int ttl;
 297        int pos = PCI_CFG_SPACE_SIZE;
 298
 299        /* minimum 8 bytes per capability */
 300        ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
 301
 302        if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
 303                return 0;
 304
 305        if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 306                return 0;
 307
 308        /*
 309         * If we have no capabilities, this is indicated by cap ID,
 310         * cap version and next pointer all being 0.
 311         */
 312        if (header == 0)
 313                return 0;
 314
 315        while (ttl-- > 0) {
 316                if (PCI_EXT_CAP_ID(header) == cap)
 317                        return pos;
 318
 319                pos = PCI_EXT_CAP_NEXT(header);
 320                if (pos < PCI_CFG_SPACE_SIZE)
 321                        break;
 322
 323                if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 324                        break;
 325        }
 326
 327        return 0;
 328}
 329EXPORT_SYMBOL_GPL(pci_find_ext_capability);
 330
 331/**
 332 * pci_bus_find_ext_capability - find an extended capability
 333 * @bus:   the PCI bus to query
 334 * @devfn: PCI device to query
 335 * @cap:   capability code
 336 *
 337 * Like pci_find_ext_capability() but works for pci devices that do not have a
 338 * pci_dev structure set up yet.
 339 *
 340 * Returns the address of the requested capability structure within the
 341 * device's PCI configuration space or 0 in case the device does not
 342 * support it.
 343 */
 344int pci_bus_find_ext_capability(struct pci_bus *bus, unsigned int devfn,
 345                                int cap)
 346{
 347        u32 header;
 348        int ttl;
 349        int pos = PCI_CFG_SPACE_SIZE;
 350
 351        /* minimum 8 bytes per capability */
 352        ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
 353
 354        if (!pci_bus_read_config_dword(bus, devfn, pos, &header))
 355                return 0;
 356        if (header == 0xffffffff || header == 0)
 357                return 0;
 358
 359        while (ttl-- > 0) {
 360                if (PCI_EXT_CAP_ID(header) == cap)
 361                        return pos;
 362
 363                pos = PCI_EXT_CAP_NEXT(header);
 364                if (pos < PCI_CFG_SPACE_SIZE)
 365                        break;
 366
 367                if (!pci_bus_read_config_dword(bus, devfn, pos, &header))
 368                        break;
 369        }
 370
 371        return 0;
 372}
 373
 374static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
 375{
 376        int rc, ttl = PCI_FIND_CAP_TTL;
 377        u8 cap, mask;
 378
 379        if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
 380                mask = HT_3BIT_CAP_MASK;
 381        else
 382                mask = HT_5BIT_CAP_MASK;
 383
 384        pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
 385                                      PCI_CAP_ID_HT, &ttl);
 386        while (pos) {
 387                rc = pci_read_config_byte(dev, pos + 3, &cap);
 388                if (rc != PCIBIOS_SUCCESSFUL)
 389                        return 0;
 390
 391                if ((cap & mask) == ht_cap)
 392                        return pos;
 393
 394                pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
 395                                              pos + PCI_CAP_LIST_NEXT,
 396                                              PCI_CAP_ID_HT, &ttl);
 397        }
 398
 399        return 0;
 400}
 401/**
 402 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
 403 * @dev: PCI device to query
 404 * @pos: Position from which to continue searching
 405 * @ht_cap: Hypertransport capability code
 406 *
 407 * To be used in conjunction with pci_find_ht_capability() to search for
 408 * all capabilities matching @ht_cap. @pos should always be a value returned
 409 * from pci_find_ht_capability().
 410 *
 411 * NB. To be 100% safe against broken PCI devices, the caller should take
 412 * steps to avoid an infinite loop.
 413 */
 414int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
 415{
 416        return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
 417}
 418EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
 419
 420/**
 421 * pci_find_ht_capability - query a device's Hypertransport capabilities
 422 * @dev: PCI device to query
 423 * @ht_cap: Hypertransport capability code
 424 *
 425 * Tell if a device supports a given Hypertransport capability.
 426 * Returns an address within the device's PCI configuration space
 427 * or 0 in case the device does not support the request capability.
 428 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
 429 * which has a Hypertransport capability matching @ht_cap.
 430 */
 431int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
 432{
 433        int pos;
 434
 435        pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 436        if (pos)
 437                pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
 438
 439        return pos;
 440}
 441EXPORT_SYMBOL_GPL(pci_find_ht_capability);
 442
 443/**
 444 * pci_find_parent_resource - return resource region of parent bus of given region
 445 * @dev: PCI device structure contains resources to be searched
 446 * @res: child resource record for which parent is sought
 447 *
 448 *  For given resource region of given device, return the resource
 449 *  region of parent bus the given region is contained in or where
 450 *  it should be allocated from.
 451 */
 452struct resource *
 453pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
 454{
 455        const struct pci_bus *bus = dev->bus;
 456        int i;
 457        struct resource *best = NULL, *r;
 458
 459        pci_bus_for_each_resource(bus, r, i) {
 460                if (!r)
 461                        continue;
 462                if (res->start && !(res->start >= r->start && res->end <= r->end))
 463                        continue;       /* Not contained */
 464                if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
 465                        continue;       /* Wrong type */
 466                if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
 467                        return r;       /* Exact match */
 468                /* We can't insert a non-prefetch resource inside a prefetchable parent .. */
 469                if (r->flags & IORESOURCE_PREFETCH)
 470                        continue;
 471                /* .. but we can put a prefetchable resource inside a non-prefetchable one */
 472                if (!best)
 473                        best = r;
 474        }
 475        return best;
 476}
 477
 478/**
 479 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
 480 * @dev: PCI device to have its BARs restored
 481 *
 482 * Restore the BAR values for a given device, so as to make it
 483 * accessible by its driver.
 484 */
 485static void
 486pci_restore_bars(struct pci_dev *dev)
 487{
 488        int i;
 489
 490        for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
 491                pci_update_resource(dev, i);
 492}
 493
 494static struct pci_platform_pm_ops *pci_platform_pm;
 495
 496int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
 497{
 498        if (!ops->is_manageable || !ops->set_state || !ops->choose_state
 499            || !ops->sleep_wake || !ops->can_wakeup)
 500                return -EINVAL;
 501        pci_platform_pm = ops;
 502        return 0;
 503}
 504
 505static inline bool platform_pci_power_manageable(struct pci_dev *dev)
 506{
 507        return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
 508}
 509
 510static inline int platform_pci_set_power_state(struct pci_dev *dev,
 511                                                pci_power_t t)
 512{
 513        return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
 514}
 515
 516static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
 517{
 518        return pci_platform_pm ?
 519                        pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
 520}
 521
 522static inline bool platform_pci_can_wakeup(struct pci_dev *dev)
 523{
 524        return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false;
 525}
 526
 527static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
 528{
 529        return pci_platform_pm ?
 530                        pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
 531}
 532
 533static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
 534{
 535        return pci_platform_pm ?
 536                        pci_platform_pm->run_wake(dev, enable) : -ENODEV;
 537}
 538
 539/**
 540 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
 541 *                           given PCI device
 542 * @dev: PCI device to handle.
 543 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
 544 *
 545 * RETURN VALUE:
 546 * -EINVAL if the requested state is invalid.
 547 * -EIO if device does not support PCI PM or its PM capabilities register has a
 548 * wrong version, or device doesn't support the requested state.
 549 * 0 if device already is in the requested state.
 550 * 0 if device's power state has been successfully changed.
 551 */
 552static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
 553{
 554        u16 pmcsr;
 555        bool need_restore = false;
 556
 557        /* Check if we're already there */
 558        if (dev->current_state == state)
 559                return 0;
 560
 561        if (!dev->pm_cap)
 562                return -EIO;
 563
 564        if (state < PCI_D0 || state > PCI_D3hot)
 565                return -EINVAL;
 566
 567        /* Validate current state:
 568         * Can enter D0 from any state, but if we can only go deeper 
 569         * to sleep if we're already in a low power state
 570         */
 571        if (state != PCI_D0 && dev->current_state <= PCI_D3cold
 572            && dev->current_state > state) {
 573                dev_err(&dev->dev, "invalid power transition "
 574                        "(from state %d to %d)\n", dev->current_state, state);
 575                return -EINVAL;
 576        }
 577
 578        /* check if this device supports the desired state */
 579        if ((state == PCI_D1 && !dev->d1_support)
 580           || (state == PCI_D2 && !dev->d2_support))
 581                return -EIO;
 582
 583        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 584
 585        /* If we're (effectively) in D3, force entire word to 0.
 586         * This doesn't affect PME_Status, disables PME_En, and
 587         * sets PowerState to 0.
 588         */
 589        switch (dev->current_state) {
 590        case PCI_D0:
 591        case PCI_D1:
 592        case PCI_D2:
 593                pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
 594                pmcsr |= state;
 595                break;
 596        case PCI_D3hot:
 597        case PCI_D3cold:
 598        case PCI_UNKNOWN: /* Boot-up */
 599                if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
 600                 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
 601                        need_restore = true;
 602                /* Fall-through: force to D0 */
 603        default:
 604                pmcsr = 0;
 605                break;
 606        }
 607
 608        /* enter specified state */
 609        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
 610
 611        /* Mandatory power management transition delays */
 612        /* see PCI PM 1.1 5.6.1 table 18 */
 613        if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
 614                pci_dev_d3_sleep(dev);
 615        else if (state == PCI_D2 || dev->current_state == PCI_D2)
 616                udelay(PCI_PM_D2_DELAY);
 617
 618        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 619        dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
 620        if (dev->current_state != state && printk_ratelimit())
 621                dev_info(&dev->dev, "Refused to change power state, "
 622                        "currently in D%d\n", dev->current_state);
 623
 624        /* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
 625         * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
 626         * from D3hot to D0 _may_ perform an internal reset, thereby
 627         * going to "D0 Uninitialized" rather than "D0 Initialized".
 628         * For example, at least some versions of the 3c905B and the
 629         * 3c556B exhibit this behaviour.
 630         *
 631         * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
 632         * devices in a D3hot state at boot.  Consequently, we need to
 633         * restore at least the BARs so that the device will be
 634         * accessible to its driver.
 635         */
 636        if (need_restore)
 637                pci_restore_bars(dev);
 638
 639        if (dev->bus->self)
 640                pcie_aspm_pm_state_change(dev->bus->self);
 641
 642        return 0;
 643}
 644
 645/**
 646 * pci_update_current_state - Read PCI power state of given device from its
 647 *                            PCI PM registers and cache it
 648 * @dev: PCI device to handle.
 649 * @state: State to cache in case the device doesn't have the PM capability
 650 */
 651void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
 652{
 653        if (dev->pm_cap) {
 654                u16 pmcsr;
 655
 656                pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 657                dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
 658        } else {
 659                dev->current_state = state;
 660        }
 661}
 662
 663/**
 664 * pci_platform_power_transition - Use platform to change device power state
 665 * @dev: PCI device to handle.
 666 * @state: State to put the device into.
 667 */
 668static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
 669{
 670        int error;
 671
 672        if (platform_pci_power_manageable(dev)) {
 673                error = platform_pci_set_power_state(dev, state);
 674                if (!error)
 675                        pci_update_current_state(dev, state);
 676                /* Fall back to PCI_D0 if native PM is not supported */
 677                if (!dev->pm_cap)
 678                        dev->current_state = PCI_D0;
 679        } else {
 680                error = -ENODEV;
 681                /* Fall back to PCI_D0 if native PM is not supported */
 682                if (!dev->pm_cap)
 683                        dev->current_state = PCI_D0;
 684        }
 685
 686        return error;
 687}
 688
 689/**
 690 * __pci_start_power_transition - Start power transition of a PCI device
 691 * @dev: PCI device to handle.
 692 * @state: State to put the device into.
 693 */
 694static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
 695{
 696        if (state == PCI_D0)
 697                pci_platform_power_transition(dev, PCI_D0);
 698}
 699
 700/**
 701 * __pci_complete_power_transition - Complete power transition of a PCI device
 702 * @dev: PCI device to handle.
 703 * @state: State to put the device into.
 704 *
 705 * This function should not be called directly by device drivers.
 706 */
 707int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
 708{
 709        return state >= PCI_D0 ?
 710                        pci_platform_power_transition(dev, state) : -EINVAL;
 711}
 712EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
 713
 714/**
 715 * pci_set_power_state - Set the power state of a PCI device
 716 * @dev: PCI device to handle.
 717 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
 718 *
 719 * Transition a device to a new power state, using the platform firmware and/or
 720 * the device's PCI PM registers.
 721 *
 722 * RETURN VALUE:
 723 * -EINVAL if the requested state is invalid.
 724 * -EIO if device does not support PCI PM or its PM capabilities register has a
 725 * wrong version, or device doesn't support the requested state.
 726 * 0 if device already is in the requested state.
 727 * 0 if device's power state has been successfully changed.
 728 */
 729int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
 730{
 731        int error;
 732
 733        /* bound the state we're entering */
 734        if (state > PCI_D3hot)
 735                state = PCI_D3hot;
 736        else if (state < PCI_D0)
 737                state = PCI_D0;
 738        else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
 739                /*
 740                 * If the device or the parent bridge do not support PCI PM,
 741                 * ignore the request if we're doing anything other than putting
 742                 * it into D0 (which would only happen on boot).
 743                 */
 744                return 0;
 745
 746        __pci_start_power_transition(dev, state);
 747
 748        /* This device is quirked not to be put into D3, so
 749           don't put it in D3 */
 750        if (state == PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
 751                return 0;
 752
 753        error = pci_raw_set_power_state(dev, state);
 754
 755        if (!__pci_complete_power_transition(dev, state))
 756                error = 0;
 757        /*
 758         * When aspm_policy is "powersave" this call ensures
 759         * that ASPM is configured.
 760         */
 761        if (!error && dev->bus->self)
 762                pcie_aspm_powersave_config_link(dev->bus->self);
 763
 764        return error;
 765}
 766
 767/**
 768 * pci_choose_state - Choose the power state of a PCI device
 769 * @dev: PCI device to be suspended
 770 * @state: target sleep state for the whole system. This is the value
 771 *      that is passed to suspend() function.
 772 *
 773 * Returns PCI power state suitable for given device and given system
 774 * message.
 775 */
 776
 777pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
 778{
 779        pci_power_t ret;
 780
 781        if (!pci_find_capability(dev, PCI_CAP_ID_PM))
 782                return PCI_D0;
 783
 784        ret = platform_pci_choose_state(dev);
 785        if (ret != PCI_POWER_ERROR)
 786                return ret;
 787
 788        switch (state.event) {
 789        case PM_EVENT_ON:
 790                return PCI_D0;
 791        case PM_EVENT_FREEZE:
 792        case PM_EVENT_PRETHAW:
 793                /* REVISIT both freeze and pre-thaw "should" use D0 */
 794        case PM_EVENT_SUSPEND:
 795        case PM_EVENT_HIBERNATE:
 796                return PCI_D3hot;
 797        default:
 798                dev_info(&dev->dev, "unrecognized suspend event %d\n",
 799                         state.event);
 800                BUG();
 801        }
 802        return PCI_D0;
 803}
 804
 805EXPORT_SYMBOL(pci_choose_state);
 806
 807#define PCI_EXP_SAVE_REGS       7
 808
 809#define pcie_cap_has_devctl(type, flags)        1
 810#define pcie_cap_has_lnkctl(type, flags)                \
 811                ((flags & PCI_EXP_FLAGS_VERS) > 1 ||    \
 812                 (type == PCI_EXP_TYPE_ROOT_PORT ||     \
 813                  type == PCI_EXP_TYPE_ENDPOINT ||      \
 814                  type == PCI_EXP_TYPE_LEG_END))
 815#define pcie_cap_has_sltctl(type, flags)                \
 816                ((flags & PCI_EXP_FLAGS_VERS) > 1 ||    \
 817                 ((type == PCI_EXP_TYPE_ROOT_PORT) ||   \
 818                  (type == PCI_EXP_TYPE_DOWNSTREAM &&   \
 819                   (flags & PCI_EXP_FLAGS_SLOT))))
 820#define pcie_cap_has_rtctl(type, flags)                 \
 821                ((flags & PCI_EXP_FLAGS_VERS) > 1 ||    \
 822                 (type == PCI_EXP_TYPE_ROOT_PORT ||     \
 823                  type == PCI_EXP_TYPE_RC_EC))
 824#define pcie_cap_has_devctl2(type, flags)               \
 825                ((flags & PCI_EXP_FLAGS_VERS) > 1)
 826#define pcie_cap_has_lnkctl2(type, flags)               \
 827                ((flags & PCI_EXP_FLAGS_VERS) > 1)
 828#define pcie_cap_has_sltctl2(type, flags)               \
 829                ((flags & PCI_EXP_FLAGS_VERS) > 1)
 830
 831static struct pci_cap_saved_state *pci_find_saved_cap(
 832        struct pci_dev *pci_dev, char cap)
 833{
 834        struct pci_cap_saved_state *tmp;
 835        struct hlist_node *pos;
 836
 837        hlist_for_each_entry(tmp, pos, &pci_dev->saved_cap_space, next) {
 838                if (tmp->cap.cap_nr == cap)
 839                        return tmp;
 840        }
 841        return NULL;
 842}
 843
 844static int pci_save_pcie_state(struct pci_dev *dev)
 845{
 846        int pos, i = 0;
 847        struct pci_cap_saved_state *save_state;
 848        u16 *cap;
 849        u16 flags;
 850
 851        pos = pci_pcie_cap(dev);
 852        if (!pos)
 853                return 0;
 854
 855        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
 856        if (!save_state) {
 857                dev_err(&dev->dev, "buffer not found in %s\n", __func__);
 858                return -ENOMEM;
 859        }
 860        cap = (u16 *)&save_state->cap.data[0];
 861
 862        pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
 863
 864        if (pcie_cap_has_devctl(dev->pcie_type, flags))
 865                pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]);
 866        if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
 867                pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]);
 868        if (pcie_cap_has_sltctl(dev->pcie_type, flags))
 869                pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]);
 870        if (pcie_cap_has_rtctl(dev->pcie_type, flags))
 871                pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]);
 872        if (pcie_cap_has_devctl2(dev->pcie_type, flags))
 873                pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &cap[i++]);
 874        if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
 875                pci_read_config_word(dev, pos + PCI_EXP_LNKCTL2, &cap[i++]);
 876        if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
 877                pci_read_config_word(dev, pos + PCI_EXP_SLTCTL2, &cap[i++]);
 878
 879        return 0;
 880}
 881
 882static void pci_restore_pcie_state(struct pci_dev *dev)
 883{
 884        int i = 0, pos;
 885        struct pci_cap_saved_state *save_state;
 886        u16 *cap;
 887        u16 flags;
 888
 889        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
 890        pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
 891        if (!save_state || pos <= 0)
 892                return;
 893        cap = (u16 *)&save_state->cap.data[0];
 894
 895        pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
 896
 897        if (pcie_cap_has_devctl(dev->pcie_type, flags))
 898                pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]);
 899        if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
 900                pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]);
 901        if (pcie_cap_has_sltctl(dev->pcie_type, flags))
 902                pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]);
 903        if (pcie_cap_has_rtctl(dev->pcie_type, flags))
 904                pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]);
 905        if (pcie_cap_has_devctl2(dev->pcie_type, flags))
 906                pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, cap[i++]);
 907        if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
 908                pci_write_config_word(dev, pos + PCI_EXP_LNKCTL2, cap[i++]);
 909        if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
 910                pci_write_config_word(dev, pos + PCI_EXP_SLTCTL2, cap[i++]);
 911}
 912
 913
 914static int pci_save_pcix_state(struct pci_dev *dev)
 915{
 916        int pos;
 917        struct pci_cap_saved_state *save_state;
 918
 919        pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
 920        if (pos <= 0)
 921                return 0;
 922
 923        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
 924        if (!save_state) {
 925                dev_err(&dev->dev, "buffer not found in %s\n", __func__);
 926                return -ENOMEM;
 927        }
 928
 929        pci_read_config_word(dev, pos + PCI_X_CMD,
 930                             (u16 *)save_state->cap.data);
 931
 932        return 0;
 933}
 934
 935static void pci_restore_pcix_state(struct pci_dev *dev)
 936{
 937        int i = 0, pos;
 938        struct pci_cap_saved_state *save_state;
 939        u16 *cap;
 940
 941        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
 942        pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
 943        if (!save_state || pos <= 0)
 944                return;
 945        cap = (u16 *)&save_state->cap.data[0];
 946
 947        pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
 948}
 949
 950
 951/**
 952 * pci_save_state - save the PCI configuration space of a device before suspending
 953 * @dev: - PCI device that we're dealing with
 954 */
 955int
 956pci_save_state(struct pci_dev *dev)
 957{
 958        int i;
 959        /* XXX: 100% dword access ok here? */
 960        for (i = 0; i < 16; i++)
 961                pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
 962        dev->state_saved = true;
 963        if ((i = pci_save_pcie_state(dev)) != 0)
 964                return i;
 965        if ((i = pci_save_pcix_state(dev)) != 0)
 966                return i;
 967        return 0;
 968}
 969
 970static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
 971                                     u32 saved_val, int retry)
 972{
 973        u32 val;
 974
 975        pci_read_config_dword(pdev, offset, &val);
 976        if (val == saved_val)
 977                return;
 978
 979        for (;;) {
 980                dev_dbg(&pdev->dev, "restoring config space at offset "
 981                        "%#x (was %#x, writing %#x)\n", offset, val, saved_val);
 982                pci_write_config_dword(pdev, offset, saved_val);
 983                if (retry-- <= 0)
 984                        return;
 985
 986                pci_read_config_dword(pdev, offset, &val);
 987                if (val == saved_val)
 988                        return;
 989
 990                mdelay(1);
 991        }
 992}
 993
 994static void pci_restore_config_space_range(struct pci_dev *pdev,
 995                                           int start, int end, int retry)
 996{
 997        int index;
 998
 999        for (index = end; index >= start; index--)
1000                pci_restore_config_dword(pdev, 4 * index,
1001                                         pdev->saved_config_space[index],
1002                                         retry);
1003}
1004
1005static void pci_restore_config_space(struct pci_dev *pdev)
1006{
1007        if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1008                pci_restore_config_space_range(pdev, 10, 15, 0);
1009                /* Restore BARs before the command register. */
1010                pci_restore_config_space_range(pdev, 4, 9, 10);
1011                pci_restore_config_space_range(pdev, 0, 3, 0);
1012        } else {
1013                pci_restore_config_space_range(pdev, 0, 15, 0);
1014        }
1015}
1016
1017/** 
1018 * pci_restore_state - Restore the saved state of a PCI device
1019 * @dev: - PCI device that we're dealing with
1020 */
1021void pci_restore_state(struct pci_dev *dev)
1022{
1023        if (!dev->state_saved)
1024                return;
1025
1026        /* PCI Express register must be restored first */
1027        pci_restore_pcie_state(dev);
1028        pci_restore_ats_state(dev);
1029
1030        pci_restore_config_space(dev);
1031
1032        pci_restore_pcix_state(dev);
1033        pci_restore_msi_state(dev);
1034        pci_restore_iov_state(dev);
1035
1036        dev->state_saved = false;
1037}
1038
1039struct pci_saved_state {
1040        u32 config_space[16];
1041        struct pci_cap_saved_data cap[0];
1042};
1043
1044/**
1045 * pci_store_saved_state - Allocate and return an opaque struct containing
1046 *                         the device saved state.
1047 * @dev: PCI device that we're dealing with
1048 *
1049 * Rerturn NULL if no state or error.
1050 */
1051struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1052{
1053        struct pci_saved_state *state;
1054        struct pci_cap_saved_state *tmp;
1055        struct pci_cap_saved_data *cap;
1056        struct hlist_node *pos;
1057        size_t size;
1058
1059        if (!dev->state_saved)
1060                return NULL;
1061
1062        size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1063
1064        hlist_for_each_entry(tmp, pos, &dev->saved_cap_space, next)
1065                size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1066
1067        state = kzalloc(size, GFP_KERNEL);
1068        if (!state)
1069                return NULL;
1070
1071        memcpy(state->config_space, dev->saved_config_space,
1072               sizeof(state->config_space));
1073
1074        cap = state->cap;
1075        hlist_for_each_entry(tmp, pos, &dev->saved_cap_space, next) {
1076                size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1077                memcpy(cap, &tmp->cap, len);
1078                cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1079        }
1080        /* Empty cap_save terminates list */
1081
1082        return state;
1083}
1084EXPORT_SYMBOL_GPL(pci_store_saved_state);
1085
1086/**
1087 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1088 * @dev: PCI device that we're dealing with
1089 * @state: Saved state returned from pci_store_saved_state()
1090 */
1091int pci_load_saved_state(struct pci_dev *dev, struct pci_saved_state *state)
1092{
1093        struct pci_cap_saved_data *cap;
1094
1095        dev->state_saved = false;
1096
1097        if (!state)
1098                return 0;
1099
1100        memcpy(dev->saved_config_space, state->config_space,
1101               sizeof(state->config_space));
1102
1103        cap = state->cap;
1104        while (cap->size) {
1105                struct pci_cap_saved_state *tmp;
1106
1107                tmp = pci_find_saved_cap(dev, cap->cap_nr);
1108                if (!tmp || tmp->cap.size != cap->size)
1109                        return -EINVAL;
1110
1111                memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1112                cap = (struct pci_cap_saved_data *)((u8 *)cap +
1113                       sizeof(struct pci_cap_saved_data) + cap->size);
1114        }
1115
1116        dev->state_saved = true;
1117        return 0;
1118}
1119EXPORT_SYMBOL_GPL(pci_load_saved_state);
1120
1121/**
1122 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1123 *                                 and free the memory allocated for it.
1124 * @dev: PCI device that we're dealing with
1125 * @state: Pointer to saved state returned from pci_store_saved_state()
1126 */
1127int pci_load_and_free_saved_state(struct pci_dev *dev,
1128                                  struct pci_saved_state **state)
1129{
1130        int ret = pci_load_saved_state(dev, *state);
1131        kfree(*state);
1132        *state = NULL;
1133        return ret;
1134}
1135EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1136
1137static int do_pci_enable_device(struct pci_dev *dev, int bars)
1138{
1139        int err;
1140
1141        err = pci_set_power_state(dev, PCI_D0);
1142        if (err < 0 && err != -EIO)
1143                return err;
1144        err = pcibios_enable_device(dev, bars);
1145        if (err < 0)
1146                return err;
1147        pci_fixup_device(pci_fixup_enable, dev);
1148
1149        return 0;
1150}
1151
1152/**
1153 * pci_reenable_device - Resume abandoned device
1154 * @dev: PCI device to be resumed
1155 *
1156 *  Note this function is a backend of pci_default_resume and is not supposed
1157 *  to be called by normal code, write proper resume handler and use it instead.
1158 */
1159int pci_reenable_device(struct pci_dev *dev)
1160{
1161        if (pci_is_enabled(dev))
1162                return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1163        return 0;
1164}
1165
1166static int __pci_enable_device_flags(struct pci_dev *dev,
1167                                     resource_size_t flags)
1168{
1169        int err;
1170        int i, bars = 0;
1171
1172        /*
1173         * Power state could be unknown at this point, either due to a fresh
1174         * boot or a device removal call.  So get the current power state
1175         * so that things like MSI message writing will behave as expected
1176         * (e.g. if the device really is in D0 at enable time).
1177         */
1178        if (dev->pm_cap) {
1179                u16 pmcsr;
1180                pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1181                dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1182        }
1183
1184        if (atomic_add_return(1, &dev->enable_cnt) > 1)
1185                return 0;               /* already enabled */
1186
1187        /* only skip sriov related */
1188        for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1189                if (dev->resource[i].flags & flags)
1190                        bars |= (1 << i);
1191        for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1192                if (dev->resource[i].flags & flags)
1193                        bars |= (1 << i);
1194
1195        err = do_pci_enable_device(dev, bars);
1196        if (err < 0)
1197                atomic_dec(&dev->enable_cnt);
1198        return err;
1199}
1200
1201/**
1202 * pci_enable_device_io - Initialize a device for use with IO space
1203 * @dev: PCI device to be initialized
1204 *
1205 *  Initialize device before it's used by a driver. Ask low-level code
1206 *  to enable I/O resources. Wake up the device if it was suspended.
1207 *  Beware, this function can fail.
1208 */
1209int pci_enable_device_io(struct pci_dev *dev)
1210{
1211        return __pci_enable_device_flags(dev, IORESOURCE_IO);
1212}
1213
1214/**
1215 * pci_enable_device_mem - Initialize a device for use with Memory space
1216 * @dev: PCI device to be initialized
1217 *
1218 *  Initialize device before it's used by a driver. Ask low-level code
1219 *  to enable Memory resources. Wake up the device if it was suspended.
1220 *  Beware, this function can fail.
1221 */
1222int pci_enable_device_mem(struct pci_dev *dev)
1223{
1224        return __pci_enable_device_flags(dev, IORESOURCE_MEM);
1225}
1226
1227/**
1228 * pci_enable_device - Initialize device before it's used by a driver.
1229 * @dev: PCI device to be initialized
1230 *
1231 *  Initialize device before it's used by a driver. Ask low-level code
1232 *  to enable I/O and memory. Wake up the device if it was suspended.
1233 *  Beware, this function can fail.
1234 *
1235 *  Note we don't actually enable the device many times if we call
1236 *  this function repeatedly (we just increment the count).
1237 */
1238int pci_enable_device(struct pci_dev *dev)
1239{
1240        return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1241}
1242
1243/*
1244 * Managed PCI resources.  This manages device on/off, intx/msi/msix
1245 * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1246 * there's no need to track it separately.  pci_devres is initialized
1247 * when a device is enabled using managed PCI device enable interface.
1248 */
1249struct pci_devres {
1250        unsigned int enabled:1;
1251        unsigned int pinned:1;
1252        unsigned int orig_intx:1;
1253        unsigned int restore_intx:1;
1254        u32 region_mask;
1255};
1256
1257static void pcim_release(struct device *gendev, void *res)
1258{
1259        struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1260        struct pci_devres *this = res;
1261        int i;
1262
1263        if (dev->msi_enabled)
1264                pci_disable_msi(dev);
1265        if (dev->msix_enabled)
1266                pci_disable_msix(dev);
1267
1268        for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1269                if (this->region_mask & (1 << i))
1270                        pci_release_region(dev, i);
1271
1272        if (this->restore_intx)
1273                pci_intx(dev, this->orig_intx);
1274
1275        if (this->enabled && !this->pinned)
1276                pci_disable_device(dev);
1277}
1278
1279static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1280{
1281        struct pci_devres *dr, *new_dr;
1282
1283        dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1284        if (dr)
1285                return dr;
1286
1287        new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1288        if (!new_dr)
1289                return NULL;
1290        return devres_get(&pdev->dev, new_dr, NULL, NULL);
1291}
1292
1293static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1294{
1295        if (pci_is_managed(pdev))
1296                return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1297        return NULL;
1298}
1299
1300/**
1301 * pcim_enable_device - Managed pci_enable_device()
1302 * @pdev: PCI device to be initialized
1303 *
1304 * Managed pci_enable_device().
1305 */
1306int pcim_enable_device(struct pci_dev *pdev)
1307{
1308        struct pci_devres *dr;
1309        int rc;
1310
1311        dr = get_pci_dr(pdev);
1312        if (unlikely(!dr))
1313                return -ENOMEM;
1314        if (dr->enabled)
1315                return 0;
1316
1317        rc = pci_enable_device(pdev);
1318        if (!rc) {
1319                pdev->is_managed = 1;
1320                dr->enabled = 1;
1321        }
1322        return rc;
1323}
1324
1325/**
1326 * pcim_pin_device - Pin managed PCI device
1327 * @pdev: PCI device to pin
1328 *
1329 * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1330 * driver detach.  @pdev must have been enabled with
1331 * pcim_enable_device().
1332 */
1333void pcim_pin_device(struct pci_dev *pdev)
1334{
1335        struct pci_devres *dr;
1336
1337        dr = find_pci_dr(pdev);
1338        WARN_ON(!dr || !dr->enabled);
1339        if (dr)
1340                dr->pinned = 1;
1341}
1342
1343/**
1344 * pcibios_disable_device - disable arch specific PCI resources for device dev
1345 * @dev: the PCI device to disable
1346 *
1347 * Disables architecture specific PCI resources for the device. This
1348 * is the default implementation. Architecture implementations can
1349 * override this.
1350 */
1351void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {}
1352
1353static void do_pci_disable_device(struct pci_dev *dev)
1354{
1355        u16 pci_command;
1356
1357        pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1358        if (pci_command & PCI_COMMAND_MASTER) {
1359                pci_command &= ~PCI_COMMAND_MASTER;
1360                pci_write_config_word(dev, PCI_COMMAND, pci_command);
1361        }
1362
1363        pcibios_disable_device(dev);
1364}
1365
1366/**
1367 * pci_disable_enabled_device - Disable device without updating enable_cnt
1368 * @dev: PCI device to disable
1369 *
1370 * NOTE: This function is a backend of PCI power management routines and is
1371 * not supposed to be called drivers.
1372 */
1373void pci_disable_enabled_device(struct pci_dev *dev)
1374{
1375        if (pci_is_enabled(dev))
1376                do_pci_disable_device(dev);
1377}
1378
1379/**
1380 * pci_disable_device - Disable PCI device after use
1381 * @dev: PCI device to be disabled
1382 *
1383 * Signal to the system that the PCI device is not in use by the system
1384 * anymore.  This only involves disabling PCI bus-mastering, if active.
1385 *
1386 * Note we don't actually disable the device until all callers of
1387 * pci_enable_device() have called pci_disable_device().
1388 */
1389void
1390pci_disable_device(struct pci_dev *dev)
1391{
1392        struct pci_devres *dr;
1393
1394        dr = find_pci_dr(dev);
1395        if (dr)
1396                dr->enabled = 0;
1397
1398        if (atomic_sub_return(1, &dev->enable_cnt) != 0)
1399                return;
1400
1401        do_pci_disable_device(dev);
1402
1403        dev->is_busmaster = 0;
1404}
1405
1406/**
1407 * pcibios_set_pcie_reset_state - set reset state for device dev
1408 * @dev: the PCIe device reset
1409 * @state: Reset state to enter into
1410 *
1411 *
1412 * Sets the PCIe reset state for the device. This is the default
1413 * implementation. Architecture implementations can override this.
1414 */
1415int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev,
1416                                                        enum pcie_reset_state state)
1417{
1418        return -EINVAL;
1419}
1420
1421/**
1422 * pci_set_pcie_reset_state - set reset state for device dev
1423 * @dev: the PCIe device reset
1424 * @state: Reset state to enter into
1425 *
1426 *
1427 * Sets the PCI reset state for the device.
1428 */
1429int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1430{
1431        return pcibios_set_pcie_reset_state(dev, state);
1432}
1433
1434/**
1435 * pci_check_pme_status - Check if given device has generated PME.
1436 * @dev: Device to check.
1437 *
1438 * Check the PME status of the device and if set, clear it and clear PME enable
1439 * (if set).  Return 'true' if PME status and PME enable were both set or
1440 * 'false' otherwise.
1441 */
1442bool pci_check_pme_status(struct pci_dev *dev)
1443{
1444        int pmcsr_pos;
1445        u16 pmcsr;
1446        bool ret = false;
1447
1448        if (!dev->pm_cap)
1449                return false;
1450
1451        pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1452        pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1453        if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1454                return false;
1455
1456        /* Clear PME status. */
1457        pmcsr |= PCI_PM_CTRL_PME_STATUS;
1458        if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1459                /* Disable PME to avoid interrupt flood. */
1460                pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1461                ret = true;
1462        }
1463
1464        pci_write_config_word(dev, pmcsr_pos, pmcsr);
1465
1466        return ret;
1467}
1468
1469/**
1470 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1471 * @dev: Device to handle.
1472 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1473 *
1474 * Check if @dev has generated PME and queue a resume request for it in that
1475 * case.
1476 */
1477static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1478{
1479        if (pme_poll_reset && dev->pme_poll)
1480                dev->pme_poll = false;
1481
1482        if (pci_check_pme_status(dev)) {
1483                pci_wakeup_event(dev);
1484                pm_request_resume(&dev->dev);
1485        }
1486        return 0;
1487}
1488
1489/**
1490 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1491 * @bus: Top bus of the subtree to walk.
1492 */
1493void pci_pme_wakeup_bus(struct pci_bus *bus)
1494{
1495        if (bus)
1496                pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1497}
1498
1499/**
1500 * pci_pme_capable - check the capability of PCI device to generate PME#
1501 * @dev: PCI device to handle.
1502 * @state: PCI state from which device will issue PME#.
1503 */
1504bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1505{
1506        if (!dev->pm_cap)
1507                return false;
1508
1509        return !!(dev->pme_support & (1 << state));
1510}
1511
1512static void pci_pme_list_scan(struct work_struct *work)
1513{
1514        struct pci_pme_device *pme_dev, *n;
1515
1516        mutex_lock(&pci_pme_list_mutex);
1517        if (!list_empty(&pci_pme_list)) {
1518                list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1519                        if (pme_dev->dev->pme_poll) {
1520                                pci_pme_wakeup(pme_dev->dev, NULL);
1521                        } else {
1522                                list_del(&pme_dev->list);
1523                                kfree(pme_dev);
1524                        }
1525                }
1526                if (!list_empty(&pci_pme_list))
1527                        schedule_delayed_work(&pci_pme_work,
1528                                              msecs_to_jiffies(PME_TIMEOUT));
1529        }
1530        mutex_unlock(&pci_pme_list_mutex);
1531}
1532
1533/**
1534 * pci_pme_active - enable or disable PCI device's PME# function
1535 * @dev: PCI device to handle.
1536 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1537 *
1538 * The caller must verify that the device is capable of generating PME# before
1539 * calling this function with @enable equal to 'true'.
1540 */
1541void pci_pme_active(struct pci_dev *dev, bool enable)
1542{
1543        u16 pmcsr;
1544
1545        if (!dev->pm_cap)
1546                return;
1547
1548        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1549        /* Clear PME_Status by writing 1 to it and enable PME# */
1550        pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1551        if (!enable)
1552                pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1553
1554        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1555
1556        /* PCI (as opposed to PCIe) PME requires that the device have
1557           its PME# line hooked up correctly. Not all hardware vendors
1558           do this, so the PME never gets delivered and the device
1559           remains asleep. The easiest way around this is to
1560           periodically walk the list of suspended devices and check
1561           whether any have their PME flag set. The assumption is that
1562           we'll wake up often enough anyway that this won't be a huge
1563           hit, and the power savings from the devices will still be a
1564           win. */
1565
1566        if (dev->pme_poll) {
1567                struct pci_pme_device *pme_dev;
1568                if (enable) {
1569                        pme_dev = kmalloc(sizeof(struct pci_pme_device),
1570                                          GFP_KERNEL);
1571                        if (!pme_dev)
1572                                goto out;
1573                        pme_dev->dev = dev;
1574                        mutex_lock(&pci_pme_list_mutex);
1575                        list_add(&pme_dev->list, &pci_pme_list);
1576                        if (list_is_singular(&pci_pme_list))
1577                                schedule_delayed_work(&pci_pme_work,
1578                                                      msecs_to_jiffies(PME_TIMEOUT));
1579                        mutex_unlock(&pci_pme_list_mutex);
1580                } else {
1581                        mutex_lock(&pci_pme_list_mutex);
1582                        list_for_each_entry(pme_dev, &pci_pme_list, list) {
1583                                if (pme_dev->dev == dev) {
1584                                        list_del(&pme_dev->list);
1585                                        kfree(pme_dev);
1586                                        break;
1587                                }
1588                        }
1589                        mutex_unlock(&pci_pme_list_mutex);
1590                }
1591        }
1592
1593out:
1594        dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1595}
1596
1597/**
1598 * __pci_enable_wake - enable PCI device as wakeup event source
1599 * @dev: PCI device affected
1600 * @state: PCI state from which device will issue wakeup events
1601 * @runtime: True if the events are to be generated at run time
1602 * @enable: True to enable event generation; false to disable
1603 *
1604 * This enables the device as a wakeup event source, or disables it.
1605 * When such events involves platform-specific hooks, those hooks are
1606 * called automatically by this routine.
1607 *
1608 * Devices with legacy power management (no standard PCI PM capabilities)
1609 * always require such platform hooks.
1610 *
1611 * RETURN VALUE:
1612 * 0 is returned on success
1613 * -EINVAL is returned if device is not supposed to wake up the system
1614 * Error code depending on the platform is returned if both the platform and
1615 * the native mechanism fail to enable the generation of wake-up events
1616 */
1617int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1618                      bool runtime, bool enable)
1619{
1620        int ret = 0;
1621
1622        if (enable && !runtime && !device_may_wakeup(&dev->dev))
1623                return -EINVAL;
1624
1625        /* Don't do the same thing twice in a row for one device. */
1626        if (!!enable == !!dev->wakeup_prepared)
1627                return 0;
1628
1629        /*
1630         * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1631         * Anderson we should be doing PME# wake enable followed by ACPI wake
1632         * enable.  To disable wake-up we call the platform first, for symmetry.
1633         */
1634
1635        if (enable) {
1636                int error;
1637
1638                if (pci_pme_capable(dev, state))
1639                        pci_pme_active(dev, true);
1640                else
1641                        ret = 1;
1642                error = runtime ? platform_pci_run_wake(dev, true) :
1643                                        platform_pci_sleep_wake(dev, true);
1644                if (ret)
1645                        ret = error;
1646                if (!ret)
1647                        dev->wakeup_prepared = true;
1648        } else {
1649                if (runtime)
1650                        platform_pci_run_wake(dev, false);
1651                else
1652                        platform_pci_sleep_wake(dev, false);
1653                pci_pme_active(dev, false);
1654                dev->wakeup_prepared = false;
1655        }
1656
1657        return ret;
1658}
1659EXPORT_SYMBOL(__pci_enable_wake);
1660
1661/**
1662 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1663 * @dev: PCI device to prepare
1664 * @enable: True to enable wake-up event generation; false to disable
1665 *
1666 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1667 * and this function allows them to set that up cleanly - pci_enable_wake()
1668 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1669 * ordering constraints.
1670 *
1671 * This function only returns error code if the device is not capable of
1672 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1673 * enable wake-up power for it.
1674 */
1675int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1676{
1677        return pci_pme_capable(dev, PCI_D3cold) ?
1678                        pci_enable_wake(dev, PCI_D3cold, enable) :
1679                        pci_enable_wake(dev, PCI_D3hot, enable);
1680}
1681
1682/**
1683 * pci_target_state - find an appropriate low power state for a given PCI dev
1684 * @dev: PCI device
1685 *
1686 * Use underlying platform code to find a supported low power state for @dev.
1687 * If the platform can't manage @dev, return the deepest state from which it
1688 * can generate wake events, based on any available PME info.
1689 */
1690pci_power_t pci_target_state(struct pci_dev *dev)
1691{
1692        pci_power_t target_state = PCI_D3hot;
1693
1694        if (platform_pci_power_manageable(dev)) {
1695                /*
1696                 * Call the platform to choose the target state of the device
1697                 * and enable wake-up from this state if supported.
1698                 */
1699                pci_power_t state = platform_pci_choose_state(dev);
1700
1701                switch (state) {
1702                case PCI_POWER_ERROR:
1703                case PCI_UNKNOWN:
1704                        break;
1705                case PCI_D1:
1706                case PCI_D2:
1707                        if (pci_no_d1d2(dev))
1708                                break;
1709                default:
1710                        target_state = state;
1711                }
1712        } else if (!dev->pm_cap) {
1713                target_state = PCI_D0;
1714        } else if (device_may_wakeup(&dev->dev)) {
1715                /*
1716                 * Find the deepest state from which the device can generate
1717                 * wake-up events, make it the target state and enable device
1718                 * to generate PME#.
1719                 */
1720                if (dev->pme_support) {
1721                        while (target_state
1722                              && !(dev->pme_support & (1 << target_state)))
1723                                target_state--;
1724                }
1725        }
1726
1727        return target_state;
1728}
1729
1730/**
1731 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1732 * @dev: Device to handle.
1733 *
1734 * Choose the power state appropriate for the device depending on whether
1735 * it can wake up the system and/or is power manageable by the platform
1736 * (PCI_D3hot is the default) and put the device into that state.
1737 */
1738int pci_prepare_to_sleep(struct pci_dev *dev)
1739{
1740        pci_power_t target_state = pci_target_state(dev);
1741        int error;
1742
1743        if (target_state == PCI_POWER_ERROR)
1744                return -EIO;
1745
1746        pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1747
1748        error = pci_set_power_state(dev, target_state);
1749
1750        if (error)
1751                pci_enable_wake(dev, target_state, false);
1752
1753        return error;
1754}
1755
1756/**
1757 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1758 * @dev: Device to handle.
1759 *
1760 * Disable device's system wake-up capability and put it into D0.
1761 */
1762int pci_back_from_sleep(struct pci_dev *dev)
1763{
1764        pci_enable_wake(dev, PCI_D0, false);
1765        return pci_set_power_state(dev, PCI_D0);
1766}
1767
1768/**
1769 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1770 * @dev: PCI device being suspended.
1771 *
1772 * Prepare @dev to generate wake-up events at run time and put it into a low
1773 * power state.
1774 */
1775int pci_finish_runtime_suspend(struct pci_dev *dev)
1776{
1777        pci_power_t target_state = pci_target_state(dev);
1778        int error;
1779
1780        if (target_state == PCI_POWER_ERROR)
1781                return -EIO;
1782
1783        __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1784
1785        error = pci_set_power_state(dev, target_state);
1786
1787        if (error)
1788                __pci_enable_wake(dev, target_state, true, false);
1789
1790        return error;
1791}
1792
1793/**
1794 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1795 * @dev: Device to check.
1796 *
1797 * Return true if the device itself is cabable of generating wake-up events
1798 * (through the platform or using the native PCIe PME) or if the device supports
1799 * PME and one of its upstream bridges can generate wake-up events.
1800 */
1801bool pci_dev_run_wake(struct pci_dev *dev)
1802{
1803        struct pci_bus *bus = dev->bus;
1804
1805        if (device_run_wake(&dev->dev))
1806                return true;
1807
1808        if (!dev->pme_support)
1809                return false;
1810
1811        while (bus->parent) {
1812                struct pci_dev *bridge = bus->self;
1813
1814                if (device_run_wake(&bridge->dev))
1815                        return true;
1816
1817                bus = bus->parent;
1818        }
1819
1820        /* We have reached the root bus. */
1821        if (bus->bridge)
1822                return device_run_wake(bus->bridge);
1823
1824        return false;
1825}
1826EXPORT_SYMBOL_GPL(pci_dev_run_wake);
1827
1828/**
1829 * pci_pm_init - Initialize PM functions of given PCI device
1830 * @dev: PCI device to handle.
1831 */
1832void pci_pm_init(struct pci_dev *dev)
1833{
1834        int pm;
1835        u16 pmc;
1836
1837        pm_runtime_forbid(&dev->dev);
1838        device_enable_async_suspend(&dev->dev);
1839        dev->wakeup_prepared = false;
1840
1841        dev->pm_cap = 0;
1842
1843        /* find PCI PM capability in list */
1844        pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1845        if (!pm)
1846                return;
1847        /* Check device's ability to generate PME# */
1848        pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1849
1850        if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1851                dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1852                        pmc & PCI_PM_CAP_VER_MASK);
1853                return;
1854        }
1855
1856        dev->pm_cap = pm;
1857        dev->d3_delay = PCI_PM_D3_WAIT;
1858
1859        dev->d1_support = false;
1860        dev->d2_support = false;
1861        if (!pci_no_d1d2(dev)) {
1862                if (pmc & PCI_PM_CAP_D1)
1863                        dev->d1_support = true;
1864                if (pmc & PCI_PM_CAP_D2)
1865                        dev->d2_support = true;
1866
1867                if (dev->d1_support || dev->d2_support)
1868                        dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1869                                   dev->d1_support ? " D1" : "",
1870                                   dev->d2_support ? " D2" : "");
1871        }
1872
1873        pmc &= PCI_PM_CAP_PME_MASK;
1874        if (pmc) {
1875                dev_printk(KERN_DEBUG, &dev->dev,
1876                         "PME# supported from%s%s%s%s%s\n",
1877                         (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1878                         (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1879                         (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1880                         (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1881                         (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1882                dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1883                dev->pme_poll = true;
1884                /*
1885                 * Make device's PM flags reflect the wake-up capability, but
1886                 * let the user space enable it to wake up the system as needed.
1887                 */
1888                device_set_wakeup_capable(&dev->dev, true);
1889                /* Disable the PME# generation functionality */
1890                pci_pme_active(dev, false);
1891        } else {
1892                dev->pme_support = 0;
1893        }
1894}
1895
1896/**
1897 * platform_pci_wakeup_init - init platform wakeup if present
1898 * @dev: PCI device
1899 *
1900 * Some devices don't have PCI PM caps but can still generate wakeup
1901 * events through platform methods (like ACPI events).  If @dev supports
1902 * platform wakeup events, set the device flag to indicate as much.  This
1903 * may be redundant if the device also supports PCI PM caps, but double
1904 * initialization should be safe in that case.
1905 */
1906void platform_pci_wakeup_init(struct pci_dev *dev)
1907{
1908        if (!platform_pci_can_wakeup(dev))
1909                return;
1910
1911        device_set_wakeup_capable(&dev->dev, true);
1912        platform_pci_sleep_wake(dev, false);
1913}
1914
1915static void pci_add_saved_cap(struct pci_dev *pci_dev,
1916        struct pci_cap_saved_state *new_cap)
1917{
1918        hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
1919}
1920
1921/**
1922 * pci_add_save_buffer - allocate buffer for saving given capability registers
1923 * @dev: the PCI device
1924 * @cap: the capability to allocate the buffer for
1925 * @size: requested size of the buffer
1926 */
1927static int pci_add_cap_save_buffer(
1928        struct pci_dev *dev, char cap, unsigned int size)
1929{
1930        int pos;
1931        struct pci_cap_saved_state *save_state;
1932
1933        pos = pci_find_capability(dev, cap);
1934        if (pos <= 0)
1935                return 0;
1936
1937        save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
1938        if (!save_state)
1939                return -ENOMEM;
1940
1941        save_state->cap.cap_nr = cap;
1942        save_state->cap.size = size;
1943        pci_add_saved_cap(dev, save_state);
1944
1945        return 0;
1946}
1947
1948/**
1949 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
1950 * @dev: the PCI device
1951 */
1952void pci_allocate_cap_save_buffers(struct pci_dev *dev)
1953{
1954        int error;
1955
1956        error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
1957                                        PCI_EXP_SAVE_REGS * sizeof(u16));
1958        if (error)
1959                dev_err(&dev->dev,
1960                        "unable to preallocate PCI Express save buffer\n");
1961
1962        error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
1963        if (error)
1964                dev_err(&dev->dev,
1965                        "unable to preallocate PCI-X save buffer\n");
1966}
1967
1968void pci_free_cap_save_buffers(struct pci_dev *dev)
1969{
1970        struct pci_cap_saved_state *tmp;
1971        struct hlist_node *pos, *n;
1972
1973        hlist_for_each_entry_safe(tmp, pos, n, &dev->saved_cap_space, next)
1974                kfree(tmp);
1975}
1976
1977/**
1978 * pci_enable_ari - enable ARI forwarding if hardware support it
1979 * @dev: the PCI device
1980 */
1981void pci_enable_ari(struct pci_dev *dev)
1982{
1983        int pos;
1984        u32 cap;
1985        u16 flags, ctrl;
1986        struct pci_dev *bridge;
1987
1988        if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
1989                return;
1990
1991        pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI);
1992        if (!pos)
1993                return;
1994
1995        bridge = dev->bus->self;
1996        if (!bridge || !pci_is_pcie(bridge))
1997                return;
1998
1999        pos = pci_pcie_cap(bridge);
2000        if (!pos)
2001                return;
2002
2003        /* ARI is a PCIe v2 feature */
2004        pci_read_config_word(bridge, pos + PCI_EXP_FLAGS, &flags);
2005        if ((flags & PCI_EXP_FLAGS_VERS) < 2)
2006                return;
2007
2008        pci_read_config_dword(bridge, pos + PCI_EXP_DEVCAP2, &cap);
2009        if (!(cap & PCI_EXP_DEVCAP2_ARI))
2010                return;
2011
2012        pci_read_config_word(bridge, pos + PCI_EXP_DEVCTL2, &ctrl);
2013        ctrl |= PCI_EXP_DEVCTL2_ARI;
2014        pci_write_config_word(bridge, pos + PCI_EXP_DEVCTL2, ctrl);
2015
2016        bridge->ari_enabled = 1;
2017}
2018
2019/**
2020 * pci_enable_ido - enable ID-based ordering on a device
2021 * @dev: the PCI device
2022 * @type: which types of IDO to enable
2023 *
2024 * Enable ID-based ordering on @dev.  @type can contain the bits
2025 * %PCI_EXP_IDO_REQUEST and/or %PCI_EXP_IDO_COMPLETION to indicate
2026 * which types of transactions are allowed to be re-ordered.
2027 */
2028void pci_enable_ido(struct pci_dev *dev, unsigned long type)
2029{
2030        int pos;
2031        u16 ctrl;
2032
2033        pos = pci_pcie_cap(dev);
2034        if (!pos)
2035                return;
2036
2037        pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2038        if (type & PCI_EXP_IDO_REQUEST)
2039                ctrl |= PCI_EXP_IDO_REQ_EN;
2040        if (type & PCI_EXP_IDO_COMPLETION)
2041                ctrl |= PCI_EXP_IDO_CMP_EN;
2042        pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2043}
2044EXPORT_SYMBOL(pci_enable_ido);
2045
2046/**
2047 * pci_disable_ido - disable ID-based ordering on a device
2048 * @dev: the PCI device
2049 * @type: which types of IDO to disable
2050 */
2051void pci_disable_ido(struct pci_dev *dev, unsigned long type)
2052{
2053        int pos;
2054        u16 ctrl;
2055
2056        if (!pci_is_pcie(dev))
2057                return;
2058
2059        pos = pci_pcie_cap(dev);
2060        if (!pos)
2061                return;
2062
2063        pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2064        if (type & PCI_EXP_IDO_REQUEST)
2065                ctrl &= ~PCI_EXP_IDO_REQ_EN;
2066        if (type & PCI_EXP_IDO_COMPLETION)
2067                ctrl &= ~PCI_EXP_IDO_CMP_EN;
2068        pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2069}
2070EXPORT_SYMBOL(pci_disable_ido);
2071
2072/**
2073 * pci_enable_obff - enable optimized buffer flush/fill
2074 * @dev: PCI device
2075 * @type: type of signaling to use
2076 *
2077 * Try to enable @type OBFF signaling on @dev.  It will try using WAKE#
2078 * signaling if possible, falling back to message signaling only if
2079 * WAKE# isn't supported.  @type should indicate whether the PCIe link
2080 * be brought out of L0s or L1 to send the message.  It should be either
2081 * %PCI_EXP_OBFF_SIGNAL_ALWAYS or %PCI_OBFF_SIGNAL_L0.
2082 *
2083 * If your device can benefit from receiving all messages, even at the
2084 * power cost of bringing the link back up from a low power state, use
2085 * %PCI_EXP_OBFF_SIGNAL_ALWAYS.  Otherwise, use %PCI_OBFF_SIGNAL_L0 (the
2086 * preferred type).
2087 *
2088 * RETURNS:
2089 * Zero on success, appropriate error number on failure.
2090 */
2091int pci_enable_obff(struct pci_dev *dev, enum pci_obff_signal_type type)
2092{
2093        int pos;
2094        u32 cap;
2095        u16 ctrl;
2096        int ret;
2097
2098        if (!pci_is_pcie(dev))
2099                return -ENOTSUPP;
2100
2101        pos = pci_pcie_cap(dev);
2102        if (!pos)
2103                return -ENOTSUPP;
2104
2105        pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP2, &cap);
2106        if (!(cap & PCI_EXP_OBFF_MASK))
2107                return -ENOTSUPP; /* no OBFF support at all */
2108
2109        /* Make sure the topology supports OBFF as well */
2110        if (dev->bus) {
2111                ret = pci_enable_obff(dev->bus->self, type);
2112                if (ret)
2113                        return ret;
2114        }
2115
2116        pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2117        if (cap & PCI_EXP_OBFF_WAKE)
2118                ctrl |= PCI_EXP_OBFF_WAKE_EN;
2119        else {
2120                switch (type) {
2121                case PCI_EXP_OBFF_SIGNAL_L0:
2122                        if (!(ctrl & PCI_EXP_OBFF_WAKE_EN))
2123                                ctrl |= PCI_EXP_OBFF_MSGA_EN;
2124                        break;
2125                case PCI_EXP_OBFF_SIGNAL_ALWAYS:
2126                        ctrl &= ~PCI_EXP_OBFF_WAKE_EN;
2127                        ctrl |= PCI_EXP_OBFF_MSGB_EN;
2128                        break;
2129                default:
2130                        WARN(1, "bad OBFF signal type\n");
2131                        return -ENOTSUPP;
2132                }
2133        }
2134        pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2135
2136        return 0;
2137}
2138EXPORT_SYMBOL(pci_enable_obff);
2139
2140/**
2141 * pci_disable_obff - disable optimized buffer flush/fill
2142 * @dev: PCI device
2143 *
2144 * Disable OBFF on @dev.
2145 */
2146void pci_disable_obff(struct pci_dev *dev)
2147{
2148        int pos;
2149        u16 ctrl;
2150
2151        if (!pci_is_pcie(dev))
2152                return;
2153
2154        pos = pci_pcie_cap(dev);
2155        if (!pos)
2156                return;
2157
2158        pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2159        ctrl &= ~PCI_EXP_OBFF_WAKE_EN;
2160        pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2161}
2162EXPORT_SYMBOL(pci_disable_obff);
2163
2164/**
2165 * pci_ltr_supported - check whether a device supports LTR
2166 * @dev: PCI device
2167 *
2168 * RETURNS:
2169 * True if @dev supports latency tolerance reporting, false otherwise.
2170 */
2171bool pci_ltr_supported(struct pci_dev *dev)
2172{
2173        int pos;
2174        u32 cap;
2175
2176        if (!pci_is_pcie(dev))
2177                return false;
2178
2179        pos = pci_pcie_cap(dev);
2180        if (!pos)
2181                return false;
2182
2183        pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP2, &cap);
2184
2185        return cap & PCI_EXP_DEVCAP2_LTR;
2186}
2187EXPORT_SYMBOL(pci_ltr_supported);
2188
2189/**
2190 * pci_enable_ltr - enable latency tolerance reporting
2191 * @dev: PCI device
2192 *
2193 * Enable LTR on @dev if possible, which means enabling it first on
2194 * upstream ports.
2195 *
2196 * RETURNS:
2197 * Zero on success, errno on failure.
2198 */
2199int pci_enable_ltr(struct pci_dev *dev)
2200{
2201        int pos;
2202        u16 ctrl;
2203        int ret;
2204
2205        if (!pci_ltr_supported(dev))
2206                return -ENOTSUPP;
2207
2208        pos = pci_pcie_cap(dev);
2209        if (!pos)
2210                return -ENOTSUPP;
2211
2212        /* Only primary function can enable/disable LTR */
2213        if (PCI_FUNC(dev->devfn) != 0)
2214                return -EINVAL;
2215
2216        /* Enable upstream ports first */
2217        if (dev->bus) {
2218                ret = pci_enable_ltr(dev->bus->self);
2219                if (ret)
2220                        return ret;
2221        }
2222
2223        pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2224        ctrl |= PCI_EXP_LTR_EN;
2225        pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2226
2227        return 0;
2228}
2229EXPORT_SYMBOL(pci_enable_ltr);
2230
2231/**
2232 * pci_disable_ltr - disable latency tolerance reporting
2233 * @dev: PCI device
2234 */
2235void pci_disable_ltr(struct pci_dev *dev)
2236{
2237        int pos;
2238        u16 ctrl;
2239
2240        if (!pci_ltr_supported(dev))
2241                return;
2242
2243        pos = pci_pcie_cap(dev);
2244        if (!pos)
2245                return;
2246
2247        /* Only primary function can enable/disable LTR */
2248        if (PCI_FUNC(dev->devfn) != 0)
2249                return;
2250
2251        pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2252        ctrl &= ~PCI_EXP_LTR_EN;
2253        pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2254}
2255EXPORT_SYMBOL(pci_disable_ltr);
2256
2257static int __pci_ltr_scale(int *val)
2258{
2259        int scale = 0;
2260
2261        while (*val > 1023) {
2262                *val = (*val + 31) / 32;
2263                scale++;
2264        }
2265        return scale;
2266}
2267
2268/**
2269 * pci_set_ltr - set LTR latency values
2270 * @dev: PCI device
2271 * @snoop_lat_ns: snoop latency in nanoseconds
2272 * @nosnoop_lat_ns: nosnoop latency in nanoseconds
2273 *
2274 * Figure out the scale and set the LTR values accordingly.
2275 */
2276int pci_set_ltr(struct pci_dev *dev, int snoop_lat_ns, int nosnoop_lat_ns)
2277{
2278        int pos, ret, snoop_scale, nosnoop_scale;
2279        u16 val;
2280
2281        if (!pci_ltr_supported(dev))
2282                return -ENOTSUPP;
2283
2284        snoop_scale = __pci_ltr_scale(&snoop_lat_ns);
2285        nosnoop_scale = __pci_ltr_scale(&nosnoop_lat_ns);
2286
2287        if (snoop_lat_ns > PCI_LTR_VALUE_MASK ||
2288            nosnoop_lat_ns > PCI_LTR_VALUE_MASK)
2289                return -EINVAL;
2290
2291        if ((snoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)) ||
2292            (nosnoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)))
2293                return -EINVAL;
2294
2295        pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
2296        if (!pos)
2297                return -ENOTSUPP;
2298
2299        val = (snoop_scale << PCI_LTR_SCALE_SHIFT) | snoop_lat_ns;
2300        ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_SNOOP_LAT, val);
2301        if (ret != 4)
2302                return -EIO;
2303
2304        val = (nosnoop_scale << PCI_LTR_SCALE_SHIFT) | nosnoop_lat_ns;
2305        ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_NOSNOOP_LAT, val);
2306        if (ret != 4)
2307                return -EIO;
2308
2309        return 0;
2310}
2311EXPORT_SYMBOL(pci_set_ltr);
2312
2313static int pci_acs_enable;
2314
2315/**
2316 * pci_request_acs - ask for ACS to be enabled if supported
2317 */
2318void pci_request_acs(void)
2319{
2320        pci_acs_enable = 1;
2321}
2322
2323/**
2324 * pci_enable_acs - enable ACS if hardware support it
2325 * @dev: the PCI device
2326 */
2327void pci_enable_acs(struct pci_dev *dev)
2328{
2329        int pos;
2330        u16 cap;
2331        u16 ctrl;
2332
2333        if (!pci_acs_enable)
2334                return;
2335
2336        if (!pci_is_pcie(dev))
2337                return;
2338
2339        pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2340        if (!pos)
2341                return;
2342
2343        pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2344        pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2345
2346        /* Source Validation */
2347        ctrl |= (cap & PCI_ACS_SV);
2348
2349        /* P2P Request Redirect */
2350        ctrl |= (cap & PCI_ACS_RR);
2351
2352        /* P2P Completion Redirect */
2353        ctrl |= (cap & PCI_ACS_CR);
2354
2355        /* Upstream Forwarding */
2356        ctrl |= (cap & PCI_ACS_UF);
2357
2358        pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2359}
2360
2361/**
2362 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2363 * @dev: the PCI device
2364 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2365 *
2366 * Perform INTx swizzling for a device behind one level of bridge.  This is
2367 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2368 * behind bridges on add-in cards.  For devices with ARI enabled, the slot
2369 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2370 * the PCI Express Base Specification, Revision 2.1)
2371 */
2372u8 pci_swizzle_interrupt_pin(struct pci_dev *dev, u8 pin)
2373{
2374        int slot;
2375
2376        if (pci_ari_enabled(dev->bus))
2377                slot = 0;
2378        else
2379                slot = PCI_SLOT(dev->devfn);
2380
2381        return (((pin - 1) + slot) % 4) + 1;
2382}
2383
2384int
2385pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2386{
2387        u8 pin;
2388
2389        pin = dev->pin;
2390        if (!pin)
2391                return -1;
2392
2393        while (!pci_is_root_bus(dev->bus)) {
2394                pin = pci_swizzle_interrupt_pin(dev, pin);
2395                dev = dev->bus->self;
2396        }
2397        *bridge = dev;
2398        return pin;
2399}
2400
2401/**
2402 * pci_common_swizzle - swizzle INTx all the way to root bridge
2403 * @dev: the PCI device
2404 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2405 *
2406 * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
2407 * bridges all the way up to a PCI root bus.
2408 */
2409u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2410{
2411        u8 pin = *pinp;
2412
2413        while (!pci_is_root_bus(dev->bus)) {
2414                pin = pci_swizzle_interrupt_pin(dev, pin);
2415                dev = dev->bus->self;
2416        }
2417        *pinp = pin;
2418        return PCI_SLOT(dev->devfn);
2419}
2420
2421/**
2422 *      pci_release_region - Release a PCI bar
2423 *      @pdev: PCI device whose resources were previously reserved by pci_request_region
2424 *      @bar: BAR to release
2425 *
2426 *      Releases the PCI I/O and memory resources previously reserved by a
2427 *      successful call to pci_request_region.  Call this function only
2428 *      after all use of the PCI regions has ceased.
2429 */
2430void pci_release_region(struct pci_dev *pdev, int bar)
2431{
2432        struct pci_devres *dr;
2433
2434        if (pci_resource_len(pdev, bar) == 0)
2435                return;
2436        if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2437                release_region(pci_resource_start(pdev, bar),
2438                                pci_resource_len(pdev, bar));
2439        else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2440                release_mem_region(pci_resource_start(pdev, bar),
2441                                pci_resource_len(pdev, bar));
2442
2443        dr = find_pci_dr(pdev);
2444        if (dr)
2445                dr->region_mask &= ~(1 << bar);
2446}
2447
2448/**
2449 *      __pci_request_region - Reserved PCI I/O and memory resource
2450 *      @pdev: PCI device whose resources are to be reserved
2451 *      @bar: BAR to be reserved
2452 *      @res_name: Name to be associated with resource.
2453 *      @exclusive: whether the region access is exclusive or not
2454 *
2455 *      Mark the PCI region associated with PCI device @pdev BR @bar as
2456 *      being reserved by owner @res_name.  Do not access any
2457 *      address inside the PCI regions unless this call returns
2458 *      successfully.
2459 *
2460 *      If @exclusive is set, then the region is marked so that userspace
2461 *      is explicitly not allowed to map the resource via /dev/mem or
2462 *      sysfs MMIO access.
2463 *
2464 *      Returns 0 on success, or %EBUSY on error.  A warning
2465 *      message is also printed on failure.
2466 */
2467static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
2468                                                                        int exclusive)
2469{
2470        struct pci_devres *dr;
2471
2472        if (pci_resource_len(pdev, bar) == 0)
2473                return 0;
2474                
2475        if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2476                if (!request_region(pci_resource_start(pdev, bar),
2477                            pci_resource_len(pdev, bar), res_name))
2478                        goto err_out;
2479        }
2480        else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2481                if (!__request_mem_region(pci_resource_start(pdev, bar),
2482                                        pci_resource_len(pdev, bar), res_name,
2483                                        exclusive))
2484                        goto err_out;
2485        }
2486
2487        dr = find_pci_dr(pdev);
2488        if (dr)
2489                dr->region_mask |= 1 << bar;
2490
2491        return 0;
2492
2493err_out:
2494        dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2495                 &pdev->resource[bar]);
2496        return -EBUSY;
2497}
2498
2499/**
2500 *      pci_request_region - Reserve PCI I/O and memory resource
2501 *      @pdev: PCI device whose resources are to be reserved
2502 *      @bar: BAR to be reserved
2503 *      @res_name: Name to be associated with resource
2504 *
2505 *      Mark the PCI region associated with PCI device @pdev BAR @bar as
2506 *      being reserved by owner @res_name.  Do not access any
2507 *      address inside the PCI regions unless this call returns
2508 *      successfully.
2509 *
2510 *      Returns 0 on success, or %EBUSY on error.  A warning
2511 *      message is also printed on failure.
2512 */
2513int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2514{
2515        return __pci_request_region(pdev, bar, res_name, 0);
2516}
2517
2518/**
2519 *      pci_request_region_exclusive - Reserved PCI I/O and memory resource
2520 *      @pdev: PCI device whose resources are to be reserved
2521 *      @bar: BAR to be reserved
2522 *      @res_name: Name to be associated with resource.
2523 *
2524 *      Mark the PCI region associated with PCI device @pdev BR @bar as
2525 *      being reserved by owner @res_name.  Do not access any
2526 *      address inside the PCI regions unless this call returns
2527 *      successfully.
2528 *
2529 *      Returns 0 on success, or %EBUSY on error.  A warning
2530 *      message is also printed on failure.
2531 *
2532 *      The key difference that _exclusive makes it that userspace is
2533 *      explicitly not allowed to map the resource via /dev/mem or
2534 *      sysfs.
2535 */
2536int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
2537{
2538        return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2539}
2540/**
2541 * pci_release_selected_regions - Release selected PCI I/O and memory resources
2542 * @pdev: PCI device whose resources were previously reserved
2543 * @bars: Bitmask of BARs to be released
2544 *
2545 * Release selected PCI I/O and memory resources previously reserved.
2546 * Call this function only after all use of the PCI regions has ceased.
2547 */
2548void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2549{
2550        int i;
2551
2552        for (i = 0; i < 6; i++)
2553                if (bars & (1 << i))
2554                        pci_release_region(pdev, i);
2555}
2556
2557int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2558                                 const char *res_name, int excl)
2559{
2560        int i;
2561
2562        for (i = 0; i < 6; i++)
2563                if (bars & (1 << i))
2564                        if (__pci_request_region(pdev, i, res_name, excl))
2565                                goto err_out;
2566        return 0;
2567
2568err_out:
2569        while(--i >= 0)
2570                if (bars & (1 << i))
2571                        pci_release_region(pdev, i);
2572
2573        return -EBUSY;
2574}
2575
2576
2577/**
2578 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2579 * @pdev: PCI device whose resources are to be reserved
2580 * @bars: Bitmask of BARs to be requested
2581 * @res_name: Name to be associated with resource
2582 */
2583int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2584                                 const char *res_name)
2585{
2586        return __pci_request_selected_regions(pdev, bars, res_name, 0);
2587}
2588
2589int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
2590                                 int bars, const char *res_name)
2591{
2592        return __pci_request_selected_regions(pdev, bars, res_name,
2593                        IORESOURCE_EXCLUSIVE);
2594}
2595
2596/**
2597 *      pci_release_regions - Release reserved PCI I/O and memory resources
2598 *      @pdev: PCI device whose resources were previously reserved by pci_request_regions
2599 *
2600 *      Releases all PCI I/O and memory resources previously reserved by a
2601 *      successful call to pci_request_regions.  Call this function only
2602 *      after all use of the PCI regions has ceased.
2603 */
2604
2605void pci_release_regions(struct pci_dev *pdev)
2606{
2607        pci_release_selected_regions(pdev, (1 << 6) - 1);
2608}
2609
2610/**
2611 *      pci_request_regions - Reserved PCI I/O and memory resources
2612 *      @pdev: PCI device whose resources are to be reserved
2613 *      @res_name: Name to be associated with resource.
2614 *
2615 *      Mark all PCI regions associated with PCI device @pdev as
2616 *      being reserved by owner @res_name.  Do not access any
2617 *      address inside the PCI regions unless this call returns
2618 *      successfully.
2619 *
2620 *      Returns 0 on success, or %EBUSY on error.  A warning
2621 *      message is also printed on failure.
2622 */
2623int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2624{
2625        return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2626}
2627
2628/**
2629 *      pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2630 *      @pdev: PCI device whose resources are to be reserved
2631 *      @res_name: Name to be associated with resource.
2632 *
2633 *      Mark all PCI regions associated with PCI device @pdev as
2634 *      being reserved by owner @res_name.  Do not access any
2635 *      address inside the PCI regions unless this call returns
2636 *      successfully.
2637 *
2638 *      pci_request_regions_exclusive() will mark the region so that
2639 *      /dev/mem and the sysfs MMIO access will not be allowed.
2640 *
2641 *      Returns 0 on success, or %EBUSY on error.  A warning
2642 *      message is also printed on failure.
2643 */
2644int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2645{
2646        return pci_request_selected_regions_exclusive(pdev,
2647                                        ((1 << 6) - 1), res_name);
2648}
2649
2650static void __pci_set_master(struct pci_dev *dev, bool enable)
2651{
2652        u16 old_cmd, cmd;
2653
2654        pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2655        if (enable)
2656                cmd = old_cmd | PCI_COMMAND_MASTER;
2657        else
2658                cmd = old_cmd & ~PCI_COMMAND_MASTER;
2659        if (cmd != old_cmd) {
2660                dev_dbg(&dev->dev, "%s bus mastering\n",
2661                        enable ? "enabling" : "disabling");
2662                pci_write_config_word(dev, PCI_COMMAND, cmd);
2663        }
2664        dev->is_busmaster = enable;
2665}
2666
2667/**
2668 * pcibios_set_master - enable PCI bus-mastering for device dev
2669 * @dev: the PCI device to enable
2670 *
2671 * Enables PCI bus-mastering for the device.  This is the default
2672 * implementation.  Architecture specific implementations can override
2673 * this if necessary.
2674 */
2675void __weak pcibios_set_master(struct pci_dev *dev)
2676{
2677        u8 lat;
2678
2679        /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2680        if (pci_is_pcie(dev))
2681                return;
2682
2683        pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
2684        if (lat < 16)
2685                lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
2686        else if (lat > pcibios_max_latency)
2687                lat = pcibios_max_latency;
2688        else
2689                return;
2690        dev_printk(KERN_DEBUG, &dev->dev, "setting latency timer to %d\n", lat);
2691        pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
2692}
2693
2694/**
2695 * pci_set_master - enables bus-mastering for device dev
2696 * @dev: the PCI device to enable
2697 *
2698 * Enables bus-mastering on the device and calls pcibios_set_master()
2699 * to do the needed arch specific settings.
2700 */
2701void pci_set_master(struct pci_dev *dev)
2702{
2703        __pci_set_master(dev, true);
2704        pcibios_set_master(dev);
2705}
2706
2707/**
2708 * pci_clear_master - disables bus-mastering for device dev
2709 * @dev: the PCI device to disable
2710 */
2711void pci_clear_master(struct pci_dev *dev)
2712{
2713        __pci_set_master(dev, false);
2714}
2715
2716/**
2717 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2718 * @dev: the PCI device for which MWI is to be enabled
2719 *
2720 * Helper function for pci_set_mwi.
2721 * Originally copied from drivers/net/acenic.c.
2722 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2723 *
2724 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2725 */
2726int pci_set_cacheline_size(struct pci_dev *dev)
2727{
2728        u8 cacheline_size;
2729
2730        if (!pci_cache_line_size)
2731                return -EINVAL;
2732
2733        /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2734           equal to or multiple of the right value. */
2735        pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2736        if (cacheline_size >= pci_cache_line_size &&
2737            (cacheline_size % pci_cache_line_size) == 0)
2738                return 0;
2739
2740        /* Write the correct value. */
2741        pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2742        /* Read it back. */
2743        pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2744        if (cacheline_size == pci_cache_line_size)
2745                return 0;
2746
2747        dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
2748                   "supported\n", pci_cache_line_size << 2);
2749
2750        return -EINVAL;
2751}
2752EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2753
2754#ifdef PCI_DISABLE_MWI
2755int pci_set_mwi(struct pci_dev *dev)
2756{
2757        return 0;
2758}
2759
2760int pci_try_set_mwi(struct pci_dev *dev)
2761{
2762        return 0;
2763}
2764
2765void pci_clear_mwi(struct pci_dev *dev)
2766{
2767}
2768
2769#else
2770
2771/**
2772 * pci_set_mwi - enables memory-write-invalidate PCI transaction
2773 * @dev: the PCI device for which MWI is enabled
2774 *
2775 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2776 *
2777 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2778 */
2779int
2780pci_set_mwi(struct pci_dev *dev)
2781{
2782        int rc;
2783        u16 cmd;
2784
2785        rc = pci_set_cacheline_size(dev);
2786        if (rc)
2787                return rc;
2788
2789        pci_read_config_word(dev, PCI_COMMAND, &cmd);
2790        if (! (cmd & PCI_COMMAND_INVALIDATE)) {
2791                dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2792                cmd |= PCI_COMMAND_INVALIDATE;
2793                pci_write_config_word(dev, PCI_COMMAND, cmd);
2794        }
2795        
2796        return 0;
2797}
2798
2799/**
2800 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2801 * @dev: the PCI device for which MWI is enabled
2802 *
2803 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2804 * Callers are not required to check the return value.
2805 *
2806 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2807 */
2808int pci_try_set_mwi(struct pci_dev *dev)
2809{
2810        int rc = pci_set_mwi(dev);
2811        return rc;
2812}
2813
2814/**
2815 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2816 * @dev: the PCI device to disable
2817 *
2818 * Disables PCI Memory-Write-Invalidate transaction on the device
2819 */
2820void
2821pci_clear_mwi(struct pci_dev *dev)
2822{
2823        u16 cmd;
2824
2825        pci_read_config_word(dev, PCI_COMMAND, &cmd);
2826        if (cmd & PCI_COMMAND_INVALIDATE) {
2827                cmd &= ~PCI_COMMAND_INVALIDATE;
2828                pci_write_config_word(dev, PCI_COMMAND, cmd);
2829        }
2830}
2831#endif /* ! PCI_DISABLE_MWI */
2832
2833/**
2834 * pci_intx - enables/disables PCI INTx for device dev
2835 * @pdev: the PCI device to operate on
2836 * @enable: boolean: whether to enable or disable PCI INTx
2837 *
2838 * Enables/disables PCI INTx for device dev
2839 */
2840void
2841pci_intx(struct pci_dev *pdev, int enable)
2842{
2843        u16 pci_command, new;
2844
2845        pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2846
2847        if (enable) {
2848                new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2849        } else {
2850                new = pci_command | PCI_COMMAND_INTX_DISABLE;
2851        }
2852
2853        if (new != pci_command) {
2854                struct pci_devres *dr;
2855
2856                pci_write_config_word(pdev, PCI_COMMAND, new);
2857
2858                dr = find_pci_dr(pdev);
2859                if (dr && !dr->restore_intx) {
2860                        dr->restore_intx = 1;
2861                        dr->orig_intx = !enable;
2862                }
2863        }
2864}
2865
2866/**
2867 * pci_intx_mask_supported - probe for INTx masking support
2868 * @dev: the PCI device to operate on
2869 *
2870 * Check if the device dev support INTx masking via the config space
2871 * command word.
2872 */
2873bool pci_intx_mask_supported(struct pci_dev *dev)
2874{
2875        bool mask_supported = false;
2876        u16 orig, new;
2877
2878        pci_cfg_access_lock(dev);
2879
2880        pci_read_config_word(dev, PCI_COMMAND, &orig);
2881        pci_write_config_word(dev, PCI_COMMAND,
2882                              orig ^ PCI_COMMAND_INTX_DISABLE);
2883        pci_read_config_word(dev, PCI_COMMAND, &new);
2884
2885        /*
2886         * There's no way to protect against hardware bugs or detect them
2887         * reliably, but as long as we know what the value should be, let's
2888         * go ahead and check it.
2889         */
2890        if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
2891                dev_err(&dev->dev, "Command register changed from "
2892                        "0x%x to 0x%x: driver or hardware bug?\n", orig, new);
2893        } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
2894                mask_supported = true;
2895                pci_write_config_word(dev, PCI_COMMAND, orig);
2896        }
2897
2898        pci_cfg_access_unlock(dev);
2899        return mask_supported;
2900}
2901EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
2902
2903static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
2904{
2905        struct pci_bus *bus = dev->bus;
2906        bool mask_updated = true;
2907        u32 cmd_status_dword;
2908        u16 origcmd, newcmd;
2909        unsigned long flags;
2910        bool irq_pending;
2911
2912        /*
2913         * We do a single dword read to retrieve both command and status.
2914         * Document assumptions that make this possible.
2915         */
2916        BUILD_BUG_ON(PCI_COMMAND % 4);
2917        BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
2918
2919        raw_spin_lock_irqsave(&pci_lock, flags);
2920
2921        bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
2922
2923        irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
2924
2925        /*
2926         * Check interrupt status register to see whether our device
2927         * triggered the interrupt (when masking) or the next IRQ is
2928         * already pending (when unmasking).
2929         */
2930        if (mask != irq_pending) {
2931                mask_updated = false;
2932                goto done;
2933        }
2934
2935        origcmd = cmd_status_dword;
2936        newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
2937        if (mask)
2938                newcmd |= PCI_COMMAND_INTX_DISABLE;
2939        if (newcmd != origcmd)
2940                bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
2941
2942done:
2943        raw_spin_unlock_irqrestore(&pci_lock, flags);
2944
2945        return mask_updated;
2946}
2947
2948/**
2949 * pci_check_and_mask_intx - mask INTx on pending interrupt
2950 * @dev: the PCI device to operate on
2951 *
2952 * Check if the device dev has its INTx line asserted, mask it and
2953 * return true in that case. False is returned if not interrupt was
2954 * pending.
2955 */
2956bool pci_check_and_mask_intx(struct pci_dev *dev)
2957{
2958        return pci_check_and_set_intx_mask(dev, true);
2959}
2960EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
2961
2962/**
2963 * pci_check_and_mask_intx - unmask INTx of no interrupt is pending
2964 * @dev: the PCI device to operate on
2965 *
2966 * Check if the device dev has its INTx line asserted, unmask it if not
2967 * and return true. False is returned and the mask remains active if
2968 * there was still an interrupt pending.
2969 */
2970bool pci_check_and_unmask_intx(struct pci_dev *dev)
2971{
2972        return pci_check_and_set_intx_mask(dev, false);
2973}
2974EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
2975
2976/**
2977 * pci_msi_off - disables any msi or msix capabilities
2978 * @dev: the PCI device to operate on
2979 *
2980 * If you want to use msi see pci_enable_msi and friends.
2981 * This is a lower level primitive that allows us to disable
2982 * msi operation at the device level.
2983 */
2984void pci_msi_off(struct pci_dev *dev)
2985{
2986        int pos;
2987        u16 control;
2988
2989        pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
2990        if (pos) {
2991                pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
2992                control &= ~PCI_MSI_FLAGS_ENABLE;
2993                pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
2994        }
2995        pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
2996        if (pos) {
2997                pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
2998                control &= ~PCI_MSIX_FLAGS_ENABLE;
2999                pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
3000        }
3001}
3002EXPORT_SYMBOL_GPL(pci_msi_off);
3003
3004int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3005{
3006        return dma_set_max_seg_size(&dev->dev, size);
3007}
3008EXPORT_SYMBOL(pci_set_dma_max_seg_size);
3009
3010int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3011{
3012        return dma_set_seg_boundary(&dev->dev, mask);
3013}
3014EXPORT_SYMBOL(pci_set_dma_seg_boundary);
3015
3016static int pcie_flr(struct pci_dev *dev, int probe)
3017{
3018        int i;
3019        int pos;
3020        u32 cap;
3021        u16 status, control;
3022
3023        pos = pci_pcie_cap(dev);
3024        if (!pos)
3025                return -ENOTTY;
3026
3027        pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP, &cap);
3028        if (!(cap & PCI_EXP_DEVCAP_FLR))
3029                return -ENOTTY;
3030
3031        if (probe)
3032                return 0;
3033
3034        /* Wait for Transaction Pending bit clean */
3035        for (i = 0; i < 4; i++) {
3036                if (i)
3037                        msleep((1 << (i - 1)) * 100);
3038
3039                pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
3040                if (!(status & PCI_EXP_DEVSTA_TRPND))
3041                        goto clear;
3042        }
3043
3044        dev_err(&dev->dev, "transaction is not cleared; "
3045                        "proceeding with reset anyway\n");
3046
3047clear:
3048        pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &control);
3049        control |= PCI_EXP_DEVCTL_BCR_FLR;
3050        pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, control);
3051
3052        msleep(100);
3053
3054        return 0;
3055}
3056
3057static int pci_af_flr(struct pci_dev *dev, int probe)
3058{
3059        int i;
3060        int pos;
3061        u8 cap;
3062        u8 status;
3063
3064        pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3065        if (!pos)
3066                return -ENOTTY;
3067
3068        pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3069        if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3070                return -ENOTTY;
3071
3072        if (probe)
3073                return 0;
3074
3075        /* Wait for Transaction Pending bit clean */
3076        for (i = 0; i < 4; i++) {
3077                if (i)
3078                        msleep((1 << (i - 1)) * 100);
3079
3080                pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status);
3081                if (!(status & PCI_AF_STATUS_TP))
3082                        goto clear;
3083        }
3084
3085        dev_err(&dev->dev, "transaction is not cleared; "
3086                        "proceeding with reset anyway\n");
3087
3088clear:
3089        pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3090        msleep(100);
3091
3092        return 0;
3093}
3094
3095/**
3096 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3097 * @dev: Device to reset.
3098 * @probe: If set, only check if the device can be reset this way.
3099 *
3100 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3101 * unset, it will be reinitialized internally when going from PCI_D3hot to
3102 * PCI_D0.  If that's the case and the device is not in a low-power state
3103 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3104 *
3105 * NOTE: This causes the caller to sleep for twice the device power transition
3106 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3107 * by devault (i.e. unless the @dev's d3_delay field has a different value).
3108 * Moreover, only devices in D0 can be reset by this function.
3109 */
3110static int pci_pm_reset(struct pci_dev *dev, int probe)
3111{
3112        u16 csr;
3113
3114        if (!dev->pm_cap)
3115                return -ENOTTY;
3116
3117        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3118        if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3119                return -ENOTTY;
3120
3121        if (probe)
3122                return 0;
3123
3124        if (dev->current_state != PCI_D0)
3125                return -EINVAL;
3126
3127        csr &= ~PCI_PM_CTRL_STATE_MASK;
3128        csr |= PCI_D3hot;
3129        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3130        pci_dev_d3_sleep(dev);
3131
3132        csr &= ~PCI_PM_CTRL_STATE_MASK;
3133        csr |= PCI_D0;
3134        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3135        pci_dev_d3_sleep(dev);
3136
3137        return 0;
3138}
3139
3140static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3141{
3142        u16 ctrl;
3143        struct pci_dev *pdev;
3144
3145        if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
3146                return -ENOTTY;
3147
3148        list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3149                if (pdev != dev)
3150                        return -ENOTTY;
3151
3152        if (probe)
3153                return 0;
3154
3155        pci_read_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, &ctrl);
3156        ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3157        pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
3158        msleep(100);
3159
3160        ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3161        pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
3162        msleep(100);
3163
3164        return 0;
3165}
3166
3167static int pci_dev_reset(struct pci_dev *dev, int probe)
3168{
3169        int rc;
3170
3171        might_sleep();
3172
3173        if (!probe) {
3174                pci_cfg_access_lock(dev);
3175                /* block PM suspend, driver probe, etc. */
3176                device_lock(&dev->dev);
3177        }
3178
3179        rc = pci_dev_specific_reset(dev, probe);
3180        if (rc != -ENOTTY)
3181                goto done;
3182
3183        rc = pcie_flr(dev, probe);
3184        if (rc != -ENOTTY)
3185                goto done;
3186
3187        rc = pci_af_flr(dev, probe);
3188        if (rc != -ENOTTY)
3189                goto done;
3190
3191        rc = pci_pm_reset(dev, probe);
3192        if (rc != -ENOTTY)
3193                goto done;
3194
3195        rc = pci_parent_bus_reset(dev, probe);
3196done:
3197        if (!probe) {
3198                device_unlock(&dev->dev);
3199                pci_cfg_access_unlock(dev);
3200        }
3201
3202        return rc;
3203}
3204
3205/**
3206 * __pci_reset_function - reset a PCI device function
3207 * @dev: PCI device to reset
3208 *
3209 * Some devices allow an individual function to be reset without affecting
3210 * other functions in the same device.  The PCI device must be responsive
3211 * to PCI config space in order to use this function.
3212 *
3213 * The device function is presumed to be unused when this function is called.
3214 * Resetting the device will make the contents of PCI configuration space
3215 * random, so any caller of this must be prepared to reinitialise the
3216 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3217 * etc.
3218 *
3219 * Returns 0 if the device function was successfully reset or negative if the
3220 * device doesn't support resetting a single function.
3221 */
3222int __pci_reset_function(struct pci_dev *dev)
3223{
3224        return pci_dev_reset(dev, 0);
3225}
3226EXPORT_SYMBOL_GPL(__pci_reset_function);
3227
3228/**
3229 * __pci_reset_function_locked - reset a PCI device function while holding
3230 * the @dev mutex lock.
3231 * @dev: PCI device to reset
3232 *
3233 * Some devices allow an individual function to be reset without affecting
3234 * other functions in the same device.  The PCI device must be responsive
3235 * to PCI config space in order to use this function.
3236 *
3237 * The device function is presumed to be unused and the caller is holding
3238 * the device mutex lock when this function is called.
3239 * Resetting the device will make the contents of PCI configuration space
3240 * random, so any caller of this must be prepared to reinitialise the
3241 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3242 * etc.
3243 *
3244 * Returns 0 if the device function was successfully reset or negative if the
3245 * device doesn't support resetting a single function.
3246 */
3247int __pci_reset_function_locked(struct pci_dev *dev)
3248{
3249        return pci_dev_reset(dev, 1);
3250}
3251EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3252
3253/**
3254 * pci_probe_reset_function - check whether the device can be safely reset
3255 * @dev: PCI device to reset
3256 *
3257 * Some devices allow an individual function to be reset without affecting
3258 * other functions in the same device.  The PCI device must be responsive
3259 * to PCI config space in order to use this function.
3260 *
3261 * Returns 0 if the device function can be reset or negative if the
3262 * device doesn't support resetting a single function.
3263 */
3264int pci_probe_reset_function(struct pci_dev *dev)
3265{
3266        return pci_dev_reset(dev, 1);
3267}
3268
3269/**
3270 * pci_reset_function - quiesce and reset a PCI device function
3271 * @dev: PCI device to reset
3272 *
3273 * Some devices allow an individual function to be reset without affecting
3274 * other functions in the same device.  The PCI device must be responsive
3275 * to PCI config space in order to use this function.
3276 *
3277 * This function does not just reset the PCI portion of a device, but
3278 * clears all the state associated with the device.  This function differs
3279 * from __pci_reset_function in that it saves and restores device state
3280 * over the reset.
3281 *
3282 * Returns 0 if the device function was successfully reset or negative if the
3283 * device doesn't support resetting a single function.
3284 */
3285int pci_reset_function(struct pci_dev *dev)
3286{
3287        int rc;
3288
3289        rc = pci_dev_reset(dev, 1);
3290        if (rc)
3291                return rc;
3292
3293        pci_save_state(dev);
3294
3295        /*
3296         * both INTx and MSI are disabled after the Interrupt Disable bit
3297         * is set and the Bus Master bit is cleared.
3298         */
3299        pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3300
3301        rc = pci_dev_reset(dev, 0);
3302
3303        pci_restore_state(dev);
3304
3305        return rc;
3306}
3307EXPORT_SYMBOL_GPL(pci_reset_function);
3308
3309/**
3310 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3311 * @dev: PCI device to query
3312 *
3313 * Returns mmrbc: maximum designed memory read count in bytes
3314 *    or appropriate error value.
3315 */
3316int pcix_get_max_mmrbc(struct pci_dev *dev)
3317{
3318        int cap;
3319        u32 stat;
3320
3321        cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3322        if (!cap)
3323                return -EINVAL;
3324
3325        if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3326                return -EINVAL;
3327
3328        return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3329}
3330EXPORT_SYMBOL(pcix_get_max_mmrbc);
3331
3332/**
3333 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3334 * @dev: PCI device to query
3335 *
3336 * Returns mmrbc: maximum memory read count in bytes
3337 *    or appropriate error value.
3338 */
3339int pcix_get_mmrbc(struct pci_dev *dev)
3340{
3341        int cap;
3342        u16 cmd;
3343
3344        cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3345        if (!cap)
3346                return -EINVAL;
3347
3348        if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3349                return -EINVAL;
3350
3351        return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
3352}
3353EXPORT_SYMBOL(pcix_get_mmrbc);
3354
3355/**
3356 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
3357 * @dev: PCI device to query
3358 * @mmrbc: maximum memory read count in bytes
3359 *    valid values are 512, 1024, 2048, 4096
3360 *
3361 * If possible sets maximum memory read byte count, some bridges have erratas
3362 * that prevent this.
3363 */
3364int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
3365{
3366        int cap;
3367        u32 stat, v, o;
3368        u16 cmd;
3369
3370        if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
3371                return -EINVAL;
3372
3373        v = ffs(mmrbc) - 10;
3374
3375        cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3376        if (!cap)
3377                return -EINVAL;
3378
3379        if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3380                return -EINVAL;
3381
3382        if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
3383                return -E2BIG;
3384
3385        if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3386                return -EINVAL;
3387
3388        o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
3389        if (o != v) {
3390                if (v > o && dev->bus &&
3391                   (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
3392                        return -EIO;
3393
3394                cmd &= ~PCI_X_CMD_MAX_READ;
3395                cmd |= v << 2;
3396                if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
3397                        return -EIO;
3398        }
3399        return 0;
3400}
3401EXPORT_SYMBOL(pcix_set_mmrbc);
3402
3403/**
3404 * pcie_get_readrq - get PCI Express read request size
3405 * @dev: PCI device to query
3406 *
3407 * Returns maximum memory read request in bytes
3408 *    or appropriate error value.
3409 */
3410int pcie_get_readrq(struct pci_dev *dev)
3411{
3412        int ret, cap;
3413        u16 ctl;
3414
3415        cap = pci_pcie_cap(dev);
3416        if (!cap)
3417                return -EINVAL;
3418
3419        ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3420        if (!ret)
3421                ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
3422
3423        return ret;
3424}
3425EXPORT_SYMBOL(pcie_get_readrq);
3426
3427/**
3428 * pcie_set_readrq - set PCI Express maximum memory read request
3429 * @dev: PCI device to query
3430 * @rq: maximum memory read count in bytes
3431 *    valid values are 128, 256, 512, 1024, 2048, 4096
3432 *
3433 * If possible sets maximum memory read request in bytes
3434 */
3435int pcie_set_readrq(struct pci_dev *dev, int rq)
3436{
3437        int cap, err = -EINVAL;
3438        u16 ctl, v;
3439
3440        if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
3441                goto out;
3442
3443        cap = pci_pcie_cap(dev);
3444        if (!cap)
3445                goto out;
3446
3447        err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3448        if (err)
3449                goto out;
3450        /*
3451         * If using the "performance" PCIe config, we clamp the
3452         * read rq size to the max packet size to prevent the
3453         * host bridge generating requests larger than we can
3454         * cope with
3455         */
3456        if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
3457                int mps = pcie_get_mps(dev);
3458
3459                if (mps < 0)
3460                        return mps;
3461                if (mps < rq)
3462                        rq = mps;
3463        }
3464
3465        v = (ffs(rq) - 8) << 12;
3466
3467        if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) {
3468                ctl &= ~PCI_EXP_DEVCTL_READRQ;
3469                ctl |= v;
3470                err = pci_write_config_word(dev, cap + PCI_EXP_DEVCTL, ctl);
3471        }
3472
3473out:
3474        return err;
3475}
3476EXPORT_SYMBOL(pcie_set_readrq);
3477
3478/**
3479 * pcie_get_mps - get PCI Express maximum payload size
3480 * @dev: PCI device to query
3481 *
3482 * Returns maximum payload size in bytes
3483 *    or appropriate error value.
3484 */
3485int pcie_get_mps(struct pci_dev *dev)
3486{
3487        int ret, cap;
3488        u16 ctl;
3489
3490        cap = pci_pcie_cap(dev);
3491        if (!cap)
3492                return -EINVAL;
3493
3494        ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3495        if (!ret)
3496                ret = 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
3497
3498        return ret;
3499}
3500
3501/**
3502 * pcie_set_mps - set PCI Express maximum payload size
3503 * @dev: PCI device to query
3504 * @mps: maximum payload size in bytes
3505 *    valid values are 128, 256, 512, 1024, 2048, 4096
3506 *
3507 * If possible sets maximum payload size
3508 */
3509int pcie_set_mps(struct pci_dev *dev, int mps)
3510{
3511        int cap, err = -EINVAL;
3512        u16 ctl, v;
3513
3514        if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
3515                goto out;
3516
3517        v = ffs(mps) - 8;
3518        if (v > dev->pcie_mpss) 
3519                goto out;
3520        v <<= 5;
3521
3522        cap = pci_pcie_cap(dev);
3523        if (!cap)
3524                goto out;
3525
3526        err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3527        if (err)
3528                goto out;
3529
3530        if ((ctl & PCI_EXP_DEVCTL_PAYLOAD) != v) {
3531                ctl &= ~PCI_EXP_DEVCTL_PAYLOAD;
3532                ctl |= v;
3533                err = pci_write_config_word(dev, cap + PCI_EXP_DEVCTL, ctl);
3534        }
3535out:
3536        return err;
3537}
3538
3539/**
3540 * pci_select_bars - Make BAR mask from the type of resource
3541 * @dev: the PCI device for which BAR mask is made
3542 * @flags: resource type mask to be selected
3543 *
3544 * This helper routine makes bar mask from the type of resource.
3545 */
3546int pci_select_bars(struct pci_dev *dev, unsigned long flags)
3547{
3548        int i, bars = 0;
3549        for (i = 0; i < PCI_NUM_RESOURCES; i++)
3550                if (pci_resource_flags(dev, i) & flags)
3551                        bars |= (1 << i);
3552        return bars;
3553}
3554
3555/**
3556 * pci_resource_bar - get position of the BAR associated with a resource
3557 * @dev: the PCI device
3558 * @resno: the resource number
3559 * @type: the BAR type to be filled in
3560 *
3561 * Returns BAR position in config space, or 0 if the BAR is invalid.
3562 */
3563int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
3564{
3565        int reg;
3566
3567        if (resno < PCI_ROM_RESOURCE) {
3568                *type = pci_bar_unknown;
3569                return PCI_BASE_ADDRESS_0 + 4 * resno;
3570        } else if (resno == PCI_ROM_RESOURCE) {
3571                *type = pci_bar_mem32;
3572                return dev->rom_base_reg;
3573        } else if (resno < PCI_BRIDGE_RESOURCES) {
3574                /* device specific resource */
3575                reg = pci_iov_resource_bar(dev, resno, type);
3576                if (reg)
3577                        return reg;
3578        }
3579
3580        dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
3581        return 0;
3582}
3583
3584/* Some architectures require additional programming to enable VGA */
3585static arch_set_vga_state_t arch_set_vga_state;
3586
3587void __init pci_register_set_vga_state(arch_set_vga_state_t func)
3588{
3589        arch_set_vga_state = func;      /* NULL disables */
3590}
3591
3592static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
3593                      unsigned int command_bits, u32 flags)
3594{
3595        if (arch_set_vga_state)
3596                return arch_set_vga_state(dev, decode, command_bits,
3597                                                flags);
3598        return 0;
3599}
3600
3601/**
3602 * pci_set_vga_state - set VGA decode state on device and parents if requested
3603 * @dev: the PCI device
3604 * @decode: true = enable decoding, false = disable decoding
3605 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
3606 * @flags: traverse ancestors and change bridges
3607 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
3608 */
3609int pci_set_vga_state(struct pci_dev *dev, bool decode,
3610                      unsigned int command_bits, u32 flags)
3611{
3612        struct pci_bus *bus;
3613        struct pci_dev *bridge;
3614        u16 cmd;
3615        int rc;
3616
3617        WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) & (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
3618
3619        /* ARCH specific VGA enables */
3620        rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
3621        if (rc)
3622                return rc;
3623
3624        if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
3625                pci_read_config_word(dev, PCI_COMMAND, &cmd);
3626                if (decode == true)
3627                        cmd |= command_bits;
3628                else
3629                        cmd &= ~command_bits;
3630                pci_write_config_word(dev, PCI_COMMAND, cmd);
3631        }
3632
3633        if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
3634                return 0;
3635
3636        bus = dev->bus;
3637        while (bus) {
3638                bridge = bus->self;
3639                if (bridge) {
3640                        pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
3641                                             &cmd);
3642                        if (decode == true)
3643                                cmd |= PCI_BRIDGE_CTL_VGA;
3644                        else
3645                                cmd &= ~PCI_BRIDGE_CTL_VGA;
3646                        pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
3647                                              cmd);
3648                }
3649                bus = bus->parent;
3650        }
3651        return 0;
3652}
3653
3654#define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
3655static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
3656static DEFINE_SPINLOCK(resource_alignment_lock);
3657
3658/**
3659 * pci_specified_resource_alignment - get resource alignment specified by user.
3660 * @dev: the PCI device to get
3661 *
3662 * RETURNS: Resource alignment if it is specified.
3663 *          Zero if it is not specified.
3664 */
3665resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
3666{
3667        int seg, bus, slot, func, align_order, count;
3668        resource_size_t align = 0;
3669        char *p;
3670
3671        spin_lock(&resource_alignment_lock);
3672        p = resource_alignment_param;
3673        while (*p) {
3674                count = 0;
3675                if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
3676                                                        p[count] == '@') {
3677                        p += count + 1;
3678                } else {
3679                        align_order = -1;
3680                }
3681                if (sscanf(p, "%x:%x:%x.%x%n",
3682                        &seg, &bus, &slot, &func, &count) != 4) {
3683                        seg = 0;
3684                        if (sscanf(p, "%x:%x.%x%n",
3685                                        &bus, &slot, &func, &count) != 3) {
3686                                /* Invalid format */
3687                                printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
3688                                        p);
3689                                break;
3690                        }
3691                }
3692                p += count;
3693                if (seg == pci_domain_nr(dev->bus) &&
3694                        bus == dev->bus->number &&
3695                        slot == PCI_SLOT(dev->devfn) &&
3696                        func == PCI_FUNC(dev->devfn)) {
3697                        if (align_order == -1) {
3698                                align = PAGE_SIZE;
3699                        } else {
3700                                align = 1 << align_order;
3701                        }
3702                        /* Found */
3703                        break;
3704                }
3705                if (*p != ';' && *p != ',') {
3706                        /* End of param or invalid format */
3707                        break;
3708                }
3709                p++;
3710        }
3711        spin_unlock(&resource_alignment_lock);
3712        return align;
3713}
3714
3715/**
3716 * pci_is_reassigndev - check if specified PCI is target device to reassign
3717 * @dev: the PCI device to check
3718 *
3719 * RETURNS: non-zero for PCI device is a target device to reassign,
3720 *          or zero is not.
3721 */
3722int pci_is_reassigndev(struct pci_dev *dev)
3723{
3724        return (pci_specified_resource_alignment(dev) != 0);
3725}
3726
3727/*
3728 * This function disables memory decoding and releases memory resources
3729 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
3730 * It also rounds up size to specified alignment.
3731 * Later on, the kernel will assign page-aligned memory resource back
3732 * to the device.
3733 */
3734void pci_reassigndev_resource_alignment(struct pci_dev *dev)
3735{
3736        int i;
3737        struct resource *r;
3738        resource_size_t align, size;
3739        u16 command;
3740
3741        if (!pci_is_reassigndev(dev))
3742                return;
3743
3744        if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
3745            (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
3746                dev_warn(&dev->dev,
3747                        "Can't reassign resources to host bridge.\n");
3748                return;
3749        }
3750
3751        dev_info(&dev->dev,
3752                "Disabling memory decoding and releasing memory resources.\n");
3753        pci_read_config_word(dev, PCI_COMMAND, &command);
3754        command &= ~PCI_COMMAND_MEMORY;
3755        pci_write_config_word(dev, PCI_COMMAND, command);
3756
3757        align = pci_specified_resource_alignment(dev);
3758        for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
3759                r = &dev->resource[i];
3760                if (!(r->flags & IORESOURCE_MEM))
3761                        continue;
3762                size = resource_size(r);
3763                if (size < align) {
3764                        size = align;
3765                        dev_info(&dev->dev,
3766                                "Rounding up size of resource #%d to %#llx.\n",
3767                                i, (unsigned long long)size);
3768                }
3769                r->end = size - 1;
3770                r->start = 0;
3771        }
3772        /* Need to disable bridge's resource window,
3773         * to enable the kernel to reassign new resource
3774         * window later on.
3775         */
3776        if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
3777            (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
3778                for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
3779                        r = &dev->resource[i];
3780                        if (!(r->flags & IORESOURCE_MEM))
3781                                continue;
3782                        r->end = resource_size(r) - 1;
3783                        r->start = 0;
3784                }
3785                pci_disable_bridge_window(dev);
3786        }
3787}
3788
3789ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
3790{
3791        if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
3792                count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
3793        spin_lock(&resource_alignment_lock);
3794        strncpy(resource_alignment_param, buf, count);
3795        resource_alignment_param[count] = '\0';
3796        spin_unlock(&resource_alignment_lock);
3797        return count;
3798}
3799
3800ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
3801{
3802        size_t count;
3803        spin_lock(&resource_alignment_lock);
3804        count = snprintf(buf, size, "%s", resource_alignment_param);
3805        spin_unlock(&resource_alignment_lock);
3806        return count;
3807}
3808
3809static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
3810{
3811        return pci_get_resource_alignment_param(buf, PAGE_SIZE);
3812}
3813
3814static ssize_t pci_resource_alignment_store(struct bus_type *bus,
3815                                        const char *buf, size_t count)
3816{
3817        return pci_set_resource_alignment_param(buf, count);
3818}
3819
3820BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
3821                                        pci_resource_alignment_store);
3822
3823static int __init pci_resource_alignment_sysfs_init(void)
3824{
3825        return bus_create_file(&pci_bus_type,
3826                                        &bus_attr_resource_alignment);
3827}
3828
3829late_initcall(pci_resource_alignment_sysfs_init);
3830
3831static void __devinit pci_no_domains(void)
3832{
3833#ifdef CONFIG_PCI_DOMAINS
3834        pci_domains_supported = 0;
3835#endif
3836}
3837
3838/**
3839 * pci_ext_cfg_enabled - can we access extended PCI config space?
3840 * @dev: The PCI device of the root bridge.
3841 *
3842 * Returns 1 if we can access PCI extended config space (offsets
3843 * greater than 0xff). This is the default implementation. Architecture
3844 * implementations can override this.
3845 */
3846int __attribute__ ((weak)) pci_ext_cfg_avail(struct pci_dev *dev)
3847{
3848        return 1;
3849}
3850
3851void __weak pci_fixup_cardbus(struct pci_bus *bus)
3852{
3853}
3854EXPORT_SYMBOL(pci_fixup_cardbus);
3855
3856static int __init pci_setup(char *str)
3857{
3858        while (str) {
3859                char *k = strchr(str, ',');
3860                if (k)
3861                        *k++ = 0;
3862                if (*str && (str = pcibios_setup(str)) && *str) {
3863                        if (!strcmp(str, "nomsi")) {
3864                                pci_no_msi();
3865                        } else if (!strcmp(str, "noaer")) {
3866                                pci_no_aer();
3867                        } else if (!strncmp(str, "realloc=", 8)) {
3868                                pci_realloc_get_opt(str + 8);
3869                        } else if (!strncmp(str, "realloc", 7)) {
3870                                pci_realloc_get_opt("on");
3871                        } else if (!strcmp(str, "nodomains")) {
3872                                pci_no_domains();
3873                        } else if (!strncmp(str, "noari", 5)) {
3874                                pcie_ari_disabled = true;
3875                        } else if (!strncmp(str, "cbiosize=", 9)) {
3876                                pci_cardbus_io_size = memparse(str + 9, &str);
3877                        } else if (!strncmp(str, "cbmemsize=", 10)) {
3878                                pci_cardbus_mem_size = memparse(str + 10, &str);
3879                        } else if (!strncmp(str, "resource_alignment=", 19)) {
3880                                pci_set_resource_alignment_param(str + 19,
3881                                                        strlen(str + 19));
3882                        } else if (!strncmp(str, "ecrc=", 5)) {
3883                                pcie_ecrc_get_policy(str + 5);
3884                        } else if (!strncmp(str, "hpiosize=", 9)) {
3885                                pci_hotplug_io_size = memparse(str + 9, &str);
3886                        } else if (!strncmp(str, "hpmemsize=", 10)) {
3887                                pci_hotplug_mem_size = memparse(str + 10, &str);
3888                        } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
3889                                pcie_bus_config = PCIE_BUS_TUNE_OFF;
3890                        } else if (!strncmp(str, "pcie_bus_safe", 13)) {
3891                                pcie_bus_config = PCIE_BUS_SAFE;
3892                        } else if (!strncmp(str, "pcie_bus_perf", 13)) {
3893                                pcie_bus_config = PCIE_BUS_PERFORMANCE;
3894                        } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
3895                                pcie_bus_config = PCIE_BUS_PEER2PEER;
3896                        } else {
3897                                printk(KERN_ERR "PCI: Unknown option `%s'\n",
3898                                                str);
3899                        }
3900                }
3901                str = k;
3902        }
3903        return 0;
3904}
3905early_param("pci", pci_setup);
3906
3907EXPORT_SYMBOL(pci_reenable_device);
3908EXPORT_SYMBOL(pci_enable_device_io);
3909EXPORT_SYMBOL(pci_enable_device_mem);
3910EXPORT_SYMBOL(pci_enable_device);
3911EXPORT_SYMBOL(pcim_enable_device);
3912EXPORT_SYMBOL(pcim_pin_device);
3913EXPORT_SYMBOL(pci_disable_device);
3914EXPORT_SYMBOL(pci_find_capability);
3915EXPORT_SYMBOL(pci_bus_find_capability);
3916EXPORT_SYMBOL(pci_release_regions);
3917EXPORT_SYMBOL(pci_request_regions);
3918EXPORT_SYMBOL(pci_request_regions_exclusive);
3919EXPORT_SYMBOL(pci_release_region);
3920EXPORT_SYMBOL(pci_request_region);
3921EXPORT_SYMBOL(pci_request_region_exclusive);
3922EXPORT_SYMBOL(pci_release_selected_regions);
3923EXPORT_SYMBOL(pci_request_selected_regions);
3924EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3925EXPORT_SYMBOL(pci_set_master);
3926EXPORT_SYMBOL(pci_clear_master);
3927EXPORT_SYMBOL(pci_set_mwi);
3928EXPORT_SYMBOL(pci_try_set_mwi);
3929EXPORT_SYMBOL(pci_clear_mwi);
3930EXPORT_SYMBOL_GPL(pci_intx);
3931EXPORT_SYMBOL(pci_assign_resource);
3932EXPORT_SYMBOL(pci_find_parent_resource);
3933EXPORT_SYMBOL(pci_select_bars);
3934
3935EXPORT_SYMBOL(pci_set_power_state);
3936EXPORT_SYMBOL(pci_save_state);
3937EXPORT_SYMBOL(pci_restore_state);
3938EXPORT_SYMBOL(pci_pme_capable);
3939EXPORT_SYMBOL(pci_pme_active);
3940EXPORT_SYMBOL(pci_wake_from_d3);
3941EXPORT_SYMBOL(pci_target_state);
3942EXPORT_SYMBOL(pci_prepare_to_sleep);
3943EXPORT_SYMBOL(pci_back_from_sleep);
3944EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
3945