linux/drivers/scsi/scsi_lib.c
<<
>>
Prefs
   1/*
   2 *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
   3 *
   4 *  SCSI queueing library.
   5 *      Initial versions: Eric Youngdale (eric@andante.org).
   6 *                        Based upon conversations with large numbers
   7 *                        of people at Linux Expo.
   8 */
   9
  10#include <linux/bio.h>
  11#include <linux/bitops.h>
  12#include <linux/blkdev.h>
  13#include <linux/completion.h>
  14#include <linux/kernel.h>
  15#include <linux/export.h>
  16#include <linux/mempool.h>
  17#include <linux/slab.h>
  18#include <linux/init.h>
  19#include <linux/pci.h>
  20#include <linux/delay.h>
  21#include <linux/hardirq.h>
  22#include <linux/scatterlist.h>
  23
  24#include <scsi/scsi.h>
  25#include <scsi/scsi_cmnd.h>
  26#include <scsi/scsi_dbg.h>
  27#include <scsi/scsi_device.h>
  28#include <scsi/scsi_driver.h>
  29#include <scsi/scsi_eh.h>
  30#include <scsi/scsi_host.h>
  31
  32#include "scsi_priv.h"
  33#include "scsi_logging.h"
  34
  35
  36#define SG_MEMPOOL_NR           ARRAY_SIZE(scsi_sg_pools)
  37#define SG_MEMPOOL_SIZE         2
  38
  39struct scsi_host_sg_pool {
  40        size_t          size;
  41        char            *name;
  42        struct kmem_cache       *slab;
  43        mempool_t       *pool;
  44};
  45
  46#define SP(x) { x, "sgpool-" __stringify(x) }
  47#if (SCSI_MAX_SG_SEGMENTS < 32)
  48#error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
  49#endif
  50static struct scsi_host_sg_pool scsi_sg_pools[] = {
  51        SP(8),
  52        SP(16),
  53#if (SCSI_MAX_SG_SEGMENTS > 32)
  54        SP(32),
  55#if (SCSI_MAX_SG_SEGMENTS > 64)
  56        SP(64),
  57#if (SCSI_MAX_SG_SEGMENTS > 128)
  58        SP(128),
  59#if (SCSI_MAX_SG_SEGMENTS > 256)
  60#error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
  61#endif
  62#endif
  63#endif
  64#endif
  65        SP(SCSI_MAX_SG_SEGMENTS)
  66};
  67#undef SP
  68
  69struct kmem_cache *scsi_sdb_cache;
  70
  71/*
  72 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
  73 * not change behaviour from the previous unplug mechanism, experimentation
  74 * may prove this needs changing.
  75 */
  76#define SCSI_QUEUE_DELAY        3
  77
  78/*
  79 * Function:    scsi_unprep_request()
  80 *
  81 * Purpose:     Remove all preparation done for a request, including its
  82 *              associated scsi_cmnd, so that it can be requeued.
  83 *
  84 * Arguments:   req     - request to unprepare
  85 *
  86 * Lock status: Assumed that no locks are held upon entry.
  87 *
  88 * Returns:     Nothing.
  89 */
  90static void scsi_unprep_request(struct request *req)
  91{
  92        struct scsi_cmnd *cmd = req->special;
  93
  94        blk_unprep_request(req);
  95        req->special = NULL;
  96
  97        scsi_put_command(cmd);
  98}
  99
 100/**
 101 * __scsi_queue_insert - private queue insertion
 102 * @cmd: The SCSI command being requeued
 103 * @reason:  The reason for the requeue
 104 * @unbusy: Whether the queue should be unbusied
 105 *
 106 * This is a private queue insertion.  The public interface
 107 * scsi_queue_insert() always assumes the queue should be unbusied
 108 * because it's always called before the completion.  This function is
 109 * for a requeue after completion, which should only occur in this
 110 * file.
 111 */
 112static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
 113{
 114        struct Scsi_Host *host = cmd->device->host;
 115        struct scsi_device *device = cmd->device;
 116        struct scsi_target *starget = scsi_target(device);
 117        struct request_queue *q = device->request_queue;
 118        unsigned long flags;
 119
 120        SCSI_LOG_MLQUEUE(1,
 121                 printk("Inserting command %p into mlqueue\n", cmd));
 122
 123        /*
 124         * Set the appropriate busy bit for the device/host.
 125         *
 126         * If the host/device isn't busy, assume that something actually
 127         * completed, and that we should be able to queue a command now.
 128         *
 129         * Note that the prior mid-layer assumption that any host could
 130         * always queue at least one command is now broken.  The mid-layer
 131         * will implement a user specifiable stall (see
 132         * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
 133         * if a command is requeued with no other commands outstanding
 134         * either for the device or for the host.
 135         */
 136        switch (reason) {
 137        case SCSI_MLQUEUE_HOST_BUSY:
 138                host->host_blocked = host->max_host_blocked;
 139                break;
 140        case SCSI_MLQUEUE_DEVICE_BUSY:
 141        case SCSI_MLQUEUE_EH_RETRY:
 142                device->device_blocked = device->max_device_blocked;
 143                break;
 144        case SCSI_MLQUEUE_TARGET_BUSY:
 145                starget->target_blocked = starget->max_target_blocked;
 146                break;
 147        }
 148
 149        /*
 150         * Decrement the counters, since these commands are no longer
 151         * active on the host/device.
 152         */
 153        if (unbusy)
 154                scsi_device_unbusy(device);
 155
 156        /*
 157         * Requeue this command.  It will go before all other commands
 158         * that are already in the queue.
 159         */
 160        spin_lock_irqsave(q->queue_lock, flags);
 161        blk_requeue_request(q, cmd->request);
 162        spin_unlock_irqrestore(q->queue_lock, flags);
 163
 164        kblockd_schedule_work(q, &device->requeue_work);
 165
 166        return 0;
 167}
 168
 169/*
 170 * Function:    scsi_queue_insert()
 171 *
 172 * Purpose:     Insert a command in the midlevel queue.
 173 *
 174 * Arguments:   cmd    - command that we are adding to queue.
 175 *              reason - why we are inserting command to queue.
 176 *
 177 * Lock status: Assumed that lock is not held upon entry.
 178 *
 179 * Returns:     Nothing.
 180 *
 181 * Notes:       We do this for one of two cases.  Either the host is busy
 182 *              and it cannot accept any more commands for the time being,
 183 *              or the device returned QUEUE_FULL and can accept no more
 184 *              commands.
 185 * Notes:       This could be called either from an interrupt context or a
 186 *              normal process context.
 187 */
 188int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
 189{
 190        return __scsi_queue_insert(cmd, reason, 1);
 191}
 192/**
 193 * scsi_execute - insert request and wait for the result
 194 * @sdev:       scsi device
 195 * @cmd:        scsi command
 196 * @data_direction: data direction
 197 * @buffer:     data buffer
 198 * @bufflen:    len of buffer
 199 * @sense:      optional sense buffer
 200 * @timeout:    request timeout in seconds
 201 * @retries:    number of times to retry request
 202 * @flags:      or into request flags;
 203 * @resid:      optional residual length
 204 *
 205 * returns the req->errors value which is the scsi_cmnd result
 206 * field.
 207 */
 208int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
 209                 int data_direction, void *buffer, unsigned bufflen,
 210                 unsigned char *sense, int timeout, int retries, int flags,
 211                 int *resid)
 212{
 213        struct request *req;
 214        int write = (data_direction == DMA_TO_DEVICE);
 215        int ret = DRIVER_ERROR << 24;
 216
 217        req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
 218        if (!req)
 219                return ret;
 220
 221        if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
 222                                        buffer, bufflen, __GFP_WAIT))
 223                goto out;
 224
 225        req->cmd_len = COMMAND_SIZE(cmd[0]);
 226        memcpy(req->cmd, cmd, req->cmd_len);
 227        req->sense = sense;
 228        req->sense_len = 0;
 229        req->retries = retries;
 230        req->timeout = timeout;
 231        req->cmd_type = REQ_TYPE_BLOCK_PC;
 232        req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
 233
 234        /*
 235         * head injection *required* here otherwise quiesce won't work
 236         */
 237        blk_execute_rq(req->q, NULL, req, 1);
 238
 239        /*
 240         * Some devices (USB mass-storage in particular) may transfer
 241         * garbage data together with a residue indicating that the data
 242         * is invalid.  Prevent the garbage from being misinterpreted
 243         * and prevent security leaks by zeroing out the excess data.
 244         */
 245        if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
 246                memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
 247
 248        if (resid)
 249                *resid = req->resid_len;
 250        ret = req->errors;
 251 out:
 252        blk_put_request(req);
 253
 254        return ret;
 255}
 256EXPORT_SYMBOL(scsi_execute);
 257
 258
 259int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
 260                     int data_direction, void *buffer, unsigned bufflen,
 261                     struct scsi_sense_hdr *sshdr, int timeout, int retries,
 262                     int *resid)
 263{
 264        char *sense = NULL;
 265        int result;
 266        
 267        if (sshdr) {
 268                sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
 269                if (!sense)
 270                        return DRIVER_ERROR << 24;
 271        }
 272        result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
 273                              sense, timeout, retries, 0, resid);
 274        if (sshdr)
 275                scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
 276
 277        kfree(sense);
 278        return result;
 279}
 280EXPORT_SYMBOL(scsi_execute_req);
 281
 282/*
 283 * Function:    scsi_init_cmd_errh()
 284 *
 285 * Purpose:     Initialize cmd fields related to error handling.
 286 *
 287 * Arguments:   cmd     - command that is ready to be queued.
 288 *
 289 * Notes:       This function has the job of initializing a number of
 290 *              fields related to error handling.   Typically this will
 291 *              be called once for each command, as required.
 292 */
 293static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
 294{
 295        cmd->serial_number = 0;
 296        scsi_set_resid(cmd, 0);
 297        memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
 298        if (cmd->cmd_len == 0)
 299                cmd->cmd_len = scsi_command_size(cmd->cmnd);
 300}
 301
 302void scsi_device_unbusy(struct scsi_device *sdev)
 303{
 304        struct Scsi_Host *shost = sdev->host;
 305        struct scsi_target *starget = scsi_target(sdev);
 306        unsigned long flags;
 307
 308        spin_lock_irqsave(shost->host_lock, flags);
 309        shost->host_busy--;
 310        starget->target_busy--;
 311        if (unlikely(scsi_host_in_recovery(shost) &&
 312                     (shost->host_failed || shost->host_eh_scheduled)))
 313                scsi_eh_wakeup(shost);
 314        spin_unlock(shost->host_lock);
 315        spin_lock(sdev->request_queue->queue_lock);
 316        sdev->device_busy--;
 317        spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
 318}
 319
 320/*
 321 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
 322 * and call blk_run_queue for all the scsi_devices on the target -
 323 * including current_sdev first.
 324 *
 325 * Called with *no* scsi locks held.
 326 */
 327static void scsi_single_lun_run(struct scsi_device *current_sdev)
 328{
 329        struct Scsi_Host *shost = current_sdev->host;
 330        struct scsi_device *sdev, *tmp;
 331        struct scsi_target *starget = scsi_target(current_sdev);
 332        unsigned long flags;
 333
 334        spin_lock_irqsave(shost->host_lock, flags);
 335        starget->starget_sdev_user = NULL;
 336        spin_unlock_irqrestore(shost->host_lock, flags);
 337
 338        /*
 339         * Call blk_run_queue for all LUNs on the target, starting with
 340         * current_sdev. We race with others (to set starget_sdev_user),
 341         * but in most cases, we will be first. Ideally, each LU on the
 342         * target would get some limited time or requests on the target.
 343         */
 344        blk_run_queue(current_sdev->request_queue);
 345
 346        spin_lock_irqsave(shost->host_lock, flags);
 347        if (starget->starget_sdev_user)
 348                goto out;
 349        list_for_each_entry_safe(sdev, tmp, &starget->devices,
 350                        same_target_siblings) {
 351                if (sdev == current_sdev)
 352                        continue;
 353                if (scsi_device_get(sdev))
 354                        continue;
 355
 356                spin_unlock_irqrestore(shost->host_lock, flags);
 357                blk_run_queue(sdev->request_queue);
 358                spin_lock_irqsave(shost->host_lock, flags);
 359        
 360                scsi_device_put(sdev);
 361        }
 362 out:
 363        spin_unlock_irqrestore(shost->host_lock, flags);
 364}
 365
 366static inline int scsi_device_is_busy(struct scsi_device *sdev)
 367{
 368        if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
 369                return 1;
 370
 371        return 0;
 372}
 373
 374static inline int scsi_target_is_busy(struct scsi_target *starget)
 375{
 376        return ((starget->can_queue > 0 &&
 377                 starget->target_busy >= starget->can_queue) ||
 378                 starget->target_blocked);
 379}
 380
 381static inline int scsi_host_is_busy(struct Scsi_Host *shost)
 382{
 383        if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
 384            shost->host_blocked || shost->host_self_blocked)
 385                return 1;
 386
 387        return 0;
 388}
 389
 390/*
 391 * Function:    scsi_run_queue()
 392 *
 393 * Purpose:     Select a proper request queue to serve next
 394 *
 395 * Arguments:   q       - last request's queue
 396 *
 397 * Returns:     Nothing
 398 *
 399 * Notes:       The previous command was completely finished, start
 400 *              a new one if possible.
 401 */
 402static void scsi_run_queue(struct request_queue *q)
 403{
 404        struct scsi_device *sdev = q->queuedata;
 405        struct Scsi_Host *shost;
 406        LIST_HEAD(starved_list);
 407        unsigned long flags;
 408
 409        /* if the device is dead, sdev will be NULL, so no queue to run */
 410        if (!sdev)
 411                return;
 412
 413        shost = sdev->host;
 414        if (scsi_target(sdev)->single_lun)
 415                scsi_single_lun_run(sdev);
 416
 417        spin_lock_irqsave(shost->host_lock, flags);
 418        list_splice_init(&shost->starved_list, &starved_list);
 419
 420        while (!list_empty(&starved_list)) {
 421                /*
 422                 * As long as shost is accepting commands and we have
 423                 * starved queues, call blk_run_queue. scsi_request_fn
 424                 * drops the queue_lock and can add us back to the
 425                 * starved_list.
 426                 *
 427                 * host_lock protects the starved_list and starved_entry.
 428                 * scsi_request_fn must get the host_lock before checking
 429                 * or modifying starved_list or starved_entry.
 430                 */
 431                if (scsi_host_is_busy(shost))
 432                        break;
 433
 434                sdev = list_entry(starved_list.next,
 435                                  struct scsi_device, starved_entry);
 436                list_del_init(&sdev->starved_entry);
 437                if (scsi_target_is_busy(scsi_target(sdev))) {
 438                        list_move_tail(&sdev->starved_entry,
 439                                       &shost->starved_list);
 440                        continue;
 441                }
 442
 443                spin_unlock(shost->host_lock);
 444                spin_lock(sdev->request_queue->queue_lock);
 445                __blk_run_queue(sdev->request_queue);
 446                spin_unlock(sdev->request_queue->queue_lock);
 447                spin_lock(shost->host_lock);
 448        }
 449        /* put any unprocessed entries back */
 450        list_splice(&starved_list, &shost->starved_list);
 451        spin_unlock_irqrestore(shost->host_lock, flags);
 452
 453        blk_run_queue(q);
 454}
 455
 456void scsi_requeue_run_queue(struct work_struct *work)
 457{
 458        struct scsi_device *sdev;
 459        struct request_queue *q;
 460
 461        sdev = container_of(work, struct scsi_device, requeue_work);
 462        q = sdev->request_queue;
 463        scsi_run_queue(q);
 464}
 465
 466/*
 467 * Function:    scsi_requeue_command()
 468 *
 469 * Purpose:     Handle post-processing of completed commands.
 470 *
 471 * Arguments:   q       - queue to operate on
 472 *              cmd     - command that may need to be requeued.
 473 *
 474 * Returns:     Nothing
 475 *
 476 * Notes:       After command completion, there may be blocks left
 477 *              over which weren't finished by the previous command
 478 *              this can be for a number of reasons - the main one is
 479 *              I/O errors in the middle of the request, in which case
 480 *              we need to request the blocks that come after the bad
 481 *              sector.
 482 * Notes:       Upon return, cmd is a stale pointer.
 483 */
 484static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
 485{
 486        struct request *req = cmd->request;
 487        unsigned long flags;
 488
 489        spin_lock_irqsave(q->queue_lock, flags);
 490        scsi_unprep_request(req);
 491        blk_requeue_request(q, req);
 492        spin_unlock_irqrestore(q->queue_lock, flags);
 493
 494        scsi_run_queue(q);
 495}
 496
 497void scsi_next_command(struct scsi_cmnd *cmd)
 498{
 499        struct scsi_device *sdev = cmd->device;
 500        struct request_queue *q = sdev->request_queue;
 501
 502        /* need to hold a reference on the device before we let go of the cmd */
 503        get_device(&sdev->sdev_gendev);
 504
 505        scsi_put_command(cmd);
 506        scsi_run_queue(q);
 507
 508        /* ok to remove device now */
 509        put_device(&sdev->sdev_gendev);
 510}
 511
 512void scsi_run_host_queues(struct Scsi_Host *shost)
 513{
 514        struct scsi_device *sdev;
 515
 516        shost_for_each_device(sdev, shost)
 517                scsi_run_queue(sdev->request_queue);
 518}
 519
 520static void __scsi_release_buffers(struct scsi_cmnd *, int);
 521
 522/*
 523 * Function:    scsi_end_request()
 524 *
 525 * Purpose:     Post-processing of completed commands (usually invoked at end
 526 *              of upper level post-processing and scsi_io_completion).
 527 *
 528 * Arguments:   cmd      - command that is complete.
 529 *              error    - 0 if I/O indicates success, < 0 for I/O error.
 530 *              bytes    - number of bytes of completed I/O
 531 *              requeue  - indicates whether we should requeue leftovers.
 532 *
 533 * Lock status: Assumed that lock is not held upon entry.
 534 *
 535 * Returns:     cmd if requeue required, NULL otherwise.
 536 *
 537 * Notes:       This is called for block device requests in order to
 538 *              mark some number of sectors as complete.
 539 * 
 540 *              We are guaranteeing that the request queue will be goosed
 541 *              at some point during this call.
 542 * Notes:       If cmd was requeued, upon return it will be a stale pointer.
 543 */
 544static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
 545                                          int bytes, int requeue)
 546{
 547        struct request_queue *q = cmd->device->request_queue;
 548        struct request *req = cmd->request;
 549
 550        /*
 551         * If there are blocks left over at the end, set up the command
 552         * to queue the remainder of them.
 553         */
 554        if (blk_end_request(req, error, bytes)) {
 555                /* kill remainder if no retrys */
 556                if (error && scsi_noretry_cmd(cmd))
 557                        blk_end_request_all(req, error);
 558                else {
 559                        if (requeue) {
 560                                /*
 561                                 * Bleah.  Leftovers again.  Stick the
 562                                 * leftovers in the front of the
 563                                 * queue, and goose the queue again.
 564                                 */
 565                                scsi_release_buffers(cmd);
 566                                scsi_requeue_command(q, cmd);
 567                                cmd = NULL;
 568                        }
 569                        return cmd;
 570                }
 571        }
 572
 573        /*
 574         * This will goose the queue request function at the end, so we don't
 575         * need to worry about launching another command.
 576         */
 577        __scsi_release_buffers(cmd, 0);
 578        scsi_next_command(cmd);
 579        return NULL;
 580}
 581
 582static inline unsigned int scsi_sgtable_index(unsigned short nents)
 583{
 584        unsigned int index;
 585
 586        BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
 587
 588        if (nents <= 8)
 589                index = 0;
 590        else
 591                index = get_count_order(nents) - 3;
 592
 593        return index;
 594}
 595
 596static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
 597{
 598        struct scsi_host_sg_pool *sgp;
 599
 600        sgp = scsi_sg_pools + scsi_sgtable_index(nents);
 601        mempool_free(sgl, sgp->pool);
 602}
 603
 604static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
 605{
 606        struct scsi_host_sg_pool *sgp;
 607
 608        sgp = scsi_sg_pools + scsi_sgtable_index(nents);
 609        return mempool_alloc(sgp->pool, gfp_mask);
 610}
 611
 612static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
 613                              gfp_t gfp_mask)
 614{
 615        int ret;
 616
 617        BUG_ON(!nents);
 618
 619        ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
 620                               gfp_mask, scsi_sg_alloc);
 621        if (unlikely(ret))
 622                __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
 623                                scsi_sg_free);
 624
 625        return ret;
 626}
 627
 628static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
 629{
 630        __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
 631}
 632
 633static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
 634{
 635
 636        if (cmd->sdb.table.nents)
 637                scsi_free_sgtable(&cmd->sdb);
 638
 639        memset(&cmd->sdb, 0, sizeof(cmd->sdb));
 640
 641        if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
 642                struct scsi_data_buffer *bidi_sdb =
 643                        cmd->request->next_rq->special;
 644                scsi_free_sgtable(bidi_sdb);
 645                kmem_cache_free(scsi_sdb_cache, bidi_sdb);
 646                cmd->request->next_rq->special = NULL;
 647        }
 648
 649        if (scsi_prot_sg_count(cmd))
 650                scsi_free_sgtable(cmd->prot_sdb);
 651}
 652
 653/*
 654 * Function:    scsi_release_buffers()
 655 *
 656 * Purpose:     Completion processing for block device I/O requests.
 657 *
 658 * Arguments:   cmd     - command that we are bailing.
 659 *
 660 * Lock status: Assumed that no lock is held upon entry.
 661 *
 662 * Returns:     Nothing
 663 *
 664 * Notes:       In the event that an upper level driver rejects a
 665 *              command, we must release resources allocated during
 666 *              the __init_io() function.  Primarily this would involve
 667 *              the scatter-gather table, and potentially any bounce
 668 *              buffers.
 669 */
 670void scsi_release_buffers(struct scsi_cmnd *cmd)
 671{
 672        __scsi_release_buffers(cmd, 1);
 673}
 674EXPORT_SYMBOL(scsi_release_buffers);
 675
 676static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
 677{
 678        int error = 0;
 679
 680        switch(host_byte(result)) {
 681        case DID_TRANSPORT_FAILFAST:
 682                error = -ENOLINK;
 683                break;
 684        case DID_TARGET_FAILURE:
 685                set_host_byte(cmd, DID_OK);
 686                error = -EREMOTEIO;
 687                break;
 688        case DID_NEXUS_FAILURE:
 689                set_host_byte(cmd, DID_OK);
 690                error = -EBADE;
 691                break;
 692        default:
 693                error = -EIO;
 694                break;
 695        }
 696
 697        return error;
 698}
 699
 700/*
 701 * Function:    scsi_io_completion()
 702 *
 703 * Purpose:     Completion processing for block device I/O requests.
 704 *
 705 * Arguments:   cmd   - command that is finished.
 706 *
 707 * Lock status: Assumed that no lock is held upon entry.
 708 *
 709 * Returns:     Nothing
 710 *
 711 * Notes:       This function is matched in terms of capabilities to
 712 *              the function that created the scatter-gather list.
 713 *              In other words, if there are no bounce buffers
 714 *              (the normal case for most drivers), we don't need
 715 *              the logic to deal with cleaning up afterwards.
 716 *
 717 *              We must call scsi_end_request().  This will finish off
 718 *              the specified number of sectors.  If we are done, the
 719 *              command block will be released and the queue function
 720 *              will be goosed.  If we are not done then we have to
 721 *              figure out what to do next:
 722 *
 723 *              a) We can call scsi_requeue_command().  The request
 724 *                 will be unprepared and put back on the queue.  Then
 725 *                 a new command will be created for it.  This should
 726 *                 be used if we made forward progress, or if we want
 727 *                 to switch from READ(10) to READ(6) for example.
 728 *
 729 *              b) We can call scsi_queue_insert().  The request will
 730 *                 be put back on the queue and retried using the same
 731 *                 command as before, possibly after a delay.
 732 *
 733 *              c) We can call blk_end_request() with -EIO to fail
 734 *                 the remainder of the request.
 735 */
 736void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
 737{
 738        int result = cmd->result;
 739        struct request_queue *q = cmd->device->request_queue;
 740        struct request *req = cmd->request;
 741        int error = 0;
 742        struct scsi_sense_hdr sshdr;
 743        int sense_valid = 0;
 744        int sense_deferred = 0;
 745        enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
 746              ACTION_DELAYED_RETRY} action;
 747        char *description = NULL;
 748
 749        if (result) {
 750                sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 751                if (sense_valid)
 752                        sense_deferred = scsi_sense_is_deferred(&sshdr);
 753        }
 754
 755        if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
 756                req->errors = result;
 757                if (result) {
 758                        if (sense_valid && req->sense) {
 759                                /*
 760                                 * SG_IO wants current and deferred errors
 761                                 */
 762                                int len = 8 + cmd->sense_buffer[7];
 763
 764                                if (len > SCSI_SENSE_BUFFERSIZE)
 765                                        len = SCSI_SENSE_BUFFERSIZE;
 766                                memcpy(req->sense, cmd->sense_buffer,  len);
 767                                req->sense_len = len;
 768                        }
 769                        if (!sense_deferred)
 770                                error = __scsi_error_from_host_byte(cmd, result);
 771                }
 772
 773                req->resid_len = scsi_get_resid(cmd);
 774
 775                if (scsi_bidi_cmnd(cmd)) {
 776                        /*
 777                         * Bidi commands Must be complete as a whole,
 778                         * both sides at once.
 779                         */
 780                        req->next_rq->resid_len = scsi_in(cmd)->resid;
 781
 782                        scsi_release_buffers(cmd);
 783                        blk_end_request_all(req, 0);
 784
 785                        scsi_next_command(cmd);
 786                        return;
 787                }
 788        }
 789
 790        /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
 791        BUG_ON(blk_bidi_rq(req));
 792
 793        /*
 794         * Next deal with any sectors which we were able to correctly
 795         * handle.
 796         */
 797        SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
 798                                      "%d bytes done.\n",
 799                                      blk_rq_sectors(req), good_bytes));
 800
 801        /*
 802         * Recovered errors need reporting, but they're always treated
 803         * as success, so fiddle the result code here.  For BLOCK_PC
 804         * we already took a copy of the original into rq->errors which
 805         * is what gets returned to the user
 806         */
 807        if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
 808                /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
 809                 * print since caller wants ATA registers. Only occurs on
 810                 * SCSI ATA PASS_THROUGH commands when CK_COND=1
 811                 */
 812                if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
 813                        ;
 814                else if (!(req->cmd_flags & REQ_QUIET))
 815                        scsi_print_sense("", cmd);
 816                result = 0;
 817                /* BLOCK_PC may have set error */
 818                error = 0;
 819        }
 820
 821        /*
 822         * A number of bytes were successfully read.  If there
 823         * are leftovers and there is some kind of error
 824         * (result != 0), retry the rest.
 825         */
 826        if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
 827                return;
 828
 829        error = __scsi_error_from_host_byte(cmd, result);
 830
 831        if (host_byte(result) == DID_RESET) {
 832                /* Third party bus reset or reset for error recovery
 833                 * reasons.  Just retry the command and see what
 834                 * happens.
 835                 */
 836                action = ACTION_RETRY;
 837        } else if (sense_valid && !sense_deferred) {
 838                switch (sshdr.sense_key) {
 839                case UNIT_ATTENTION:
 840                        if (cmd->device->removable) {
 841                                /* Detected disc change.  Set a bit
 842                                 * and quietly refuse further access.
 843                                 */
 844                                cmd->device->changed = 1;
 845                                description = "Media Changed";
 846                                action = ACTION_FAIL;
 847                        } else {
 848                                /* Must have been a power glitch, or a
 849                                 * bus reset.  Could not have been a
 850                                 * media change, so we just retry the
 851                                 * command and see what happens.
 852                                 */
 853                                action = ACTION_RETRY;
 854                        }
 855                        break;
 856                case ILLEGAL_REQUEST:
 857                        /* If we had an ILLEGAL REQUEST returned, then
 858                         * we may have performed an unsupported
 859                         * command.  The only thing this should be
 860                         * would be a ten byte read where only a six
 861                         * byte read was supported.  Also, on a system
 862                         * where READ CAPACITY failed, we may have
 863                         * read past the end of the disk.
 864                         */
 865                        if ((cmd->device->use_10_for_rw &&
 866                            sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
 867                            (cmd->cmnd[0] == READ_10 ||
 868                             cmd->cmnd[0] == WRITE_10)) {
 869                                /* This will issue a new 6-byte command. */
 870                                cmd->device->use_10_for_rw = 0;
 871                                action = ACTION_REPREP;
 872                        } else if (sshdr.asc == 0x10) /* DIX */ {
 873                                description = "Host Data Integrity Failure";
 874                                action = ACTION_FAIL;
 875                                error = -EILSEQ;
 876                        /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
 877                        } else if ((sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
 878                                   (cmd->cmnd[0] == UNMAP ||
 879                                    cmd->cmnd[0] == WRITE_SAME_16 ||
 880                                    cmd->cmnd[0] == WRITE_SAME)) {
 881                                description = "Discard failure";
 882                                action = ACTION_FAIL;
 883                                error = -EREMOTEIO;
 884                        } else
 885                                action = ACTION_FAIL;
 886                        break;
 887                case ABORTED_COMMAND:
 888                        action = ACTION_FAIL;
 889                        if (sshdr.asc == 0x10) { /* DIF */
 890                                description = "Target Data Integrity Failure";
 891                                error = -EILSEQ;
 892                        }
 893                        break;
 894                case NOT_READY:
 895                        /* If the device is in the process of becoming
 896                         * ready, or has a temporary blockage, retry.
 897                         */
 898                        if (sshdr.asc == 0x04) {
 899                                switch (sshdr.ascq) {
 900                                case 0x01: /* becoming ready */
 901                                case 0x04: /* format in progress */
 902                                case 0x05: /* rebuild in progress */
 903                                case 0x06: /* recalculation in progress */
 904                                case 0x07: /* operation in progress */
 905                                case 0x08: /* Long write in progress */
 906                                case 0x09: /* self test in progress */
 907                                case 0x14: /* space allocation in progress */
 908                                        action = ACTION_DELAYED_RETRY;
 909                                        break;
 910                                default:
 911                                        description = "Device not ready";
 912                                        action = ACTION_FAIL;
 913                                        break;
 914                                }
 915                        } else {
 916                                description = "Device not ready";
 917                                action = ACTION_FAIL;
 918                        }
 919                        break;
 920                case VOLUME_OVERFLOW:
 921                        /* See SSC3rXX or current. */
 922                        action = ACTION_FAIL;
 923                        break;
 924                default:
 925                        description = "Unhandled sense code";
 926                        action = ACTION_FAIL;
 927                        break;
 928                }
 929        } else {
 930                description = "Unhandled error code";
 931                action = ACTION_FAIL;
 932        }
 933
 934        switch (action) {
 935        case ACTION_FAIL:
 936                /* Give up and fail the remainder of the request */
 937                scsi_release_buffers(cmd);
 938                if (!(req->cmd_flags & REQ_QUIET)) {
 939                        if (description)
 940                                scmd_printk(KERN_INFO, cmd, "%s\n",
 941                                            description);
 942                        scsi_print_result(cmd);
 943                        if (driver_byte(result) & DRIVER_SENSE)
 944                                scsi_print_sense("", cmd);
 945                        scsi_print_command(cmd);
 946                }
 947                if (blk_end_request_err(req, error))
 948                        scsi_requeue_command(q, cmd);
 949                else
 950                        scsi_next_command(cmd);
 951                break;
 952        case ACTION_REPREP:
 953                /* Unprep the request and put it back at the head of the queue.
 954                 * A new command will be prepared and issued.
 955                 */
 956                scsi_release_buffers(cmd);
 957                scsi_requeue_command(q, cmd);
 958                break;
 959        case ACTION_RETRY:
 960                /* Retry the same command immediately */
 961                __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
 962                break;
 963        case ACTION_DELAYED_RETRY:
 964                /* Retry the same command after a delay */
 965                __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
 966                break;
 967        }
 968}
 969
 970static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
 971                             gfp_t gfp_mask)
 972{
 973        int count;
 974
 975        /*
 976         * If sg table allocation fails, requeue request later.
 977         */
 978        if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
 979                                        gfp_mask))) {
 980                return BLKPREP_DEFER;
 981        }
 982
 983        req->buffer = NULL;
 984
 985        /* 
 986         * Next, walk the list, and fill in the addresses and sizes of
 987         * each segment.
 988         */
 989        count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
 990        BUG_ON(count > sdb->table.nents);
 991        sdb->table.nents = count;
 992        sdb->length = blk_rq_bytes(req);
 993        return BLKPREP_OK;
 994}
 995
 996/*
 997 * Function:    scsi_init_io()
 998 *
 999 * Purpose:     SCSI I/O initialize function.
1000 *
1001 * Arguments:   cmd   - Command descriptor we wish to initialize
1002 *
1003 * Returns:     0 on success
1004 *              BLKPREP_DEFER if the failure is retryable
1005 *              BLKPREP_KILL if the failure is fatal
1006 */
1007int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1008{
1009        struct request *rq = cmd->request;
1010
1011        int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1012        if (error)
1013                goto err_exit;
1014
1015        if (blk_bidi_rq(rq)) {
1016                struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1017                        scsi_sdb_cache, GFP_ATOMIC);
1018                if (!bidi_sdb) {
1019                        error = BLKPREP_DEFER;
1020                        goto err_exit;
1021                }
1022
1023                rq->next_rq->special = bidi_sdb;
1024                error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1025                if (error)
1026                        goto err_exit;
1027        }
1028
1029        if (blk_integrity_rq(rq)) {
1030                struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1031                int ivecs, count;
1032
1033                BUG_ON(prot_sdb == NULL);
1034                ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1035
1036                if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1037                        error = BLKPREP_DEFER;
1038                        goto err_exit;
1039                }
1040
1041                count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1042                                                prot_sdb->table.sgl);
1043                BUG_ON(unlikely(count > ivecs));
1044                BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1045
1046                cmd->prot_sdb = prot_sdb;
1047                cmd->prot_sdb->table.nents = count;
1048        }
1049
1050        return BLKPREP_OK ;
1051
1052err_exit:
1053        scsi_release_buffers(cmd);
1054        cmd->request->special = NULL;
1055        scsi_put_command(cmd);
1056        return error;
1057}
1058EXPORT_SYMBOL(scsi_init_io);
1059
1060static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1061                struct request *req)
1062{
1063        struct scsi_cmnd *cmd;
1064
1065        if (!req->special) {
1066                cmd = scsi_get_command(sdev, GFP_ATOMIC);
1067                if (unlikely(!cmd))
1068                        return NULL;
1069                req->special = cmd;
1070        } else {
1071                cmd = req->special;
1072        }
1073
1074        /* pull a tag out of the request if we have one */
1075        cmd->tag = req->tag;
1076        cmd->request = req;
1077
1078        cmd->cmnd = req->cmd;
1079        cmd->prot_op = SCSI_PROT_NORMAL;
1080
1081        return cmd;
1082}
1083
1084int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1085{
1086        struct scsi_cmnd *cmd;
1087        int ret = scsi_prep_state_check(sdev, req);
1088
1089        if (ret != BLKPREP_OK)
1090                return ret;
1091
1092        cmd = scsi_get_cmd_from_req(sdev, req);
1093        if (unlikely(!cmd))
1094                return BLKPREP_DEFER;
1095
1096        /*
1097         * BLOCK_PC requests may transfer data, in which case they must
1098         * a bio attached to them.  Or they might contain a SCSI command
1099         * that does not transfer data, in which case they may optionally
1100         * submit a request without an attached bio.
1101         */
1102        if (req->bio) {
1103                int ret;
1104
1105                BUG_ON(!req->nr_phys_segments);
1106
1107                ret = scsi_init_io(cmd, GFP_ATOMIC);
1108                if (unlikely(ret))
1109                        return ret;
1110        } else {
1111                BUG_ON(blk_rq_bytes(req));
1112
1113                memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1114                req->buffer = NULL;
1115        }
1116
1117        cmd->cmd_len = req->cmd_len;
1118        if (!blk_rq_bytes(req))
1119                cmd->sc_data_direction = DMA_NONE;
1120        else if (rq_data_dir(req) == WRITE)
1121                cmd->sc_data_direction = DMA_TO_DEVICE;
1122        else
1123                cmd->sc_data_direction = DMA_FROM_DEVICE;
1124        
1125        cmd->transfersize = blk_rq_bytes(req);
1126        cmd->allowed = req->retries;
1127        return BLKPREP_OK;
1128}
1129EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1130
1131/*
1132 * Setup a REQ_TYPE_FS command.  These are simple read/write request
1133 * from filesystems that still need to be translated to SCSI CDBs from
1134 * the ULD.
1135 */
1136int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1137{
1138        struct scsi_cmnd *cmd;
1139        int ret = scsi_prep_state_check(sdev, req);
1140
1141        if (ret != BLKPREP_OK)
1142                return ret;
1143
1144        if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1145                         && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1146                ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1147                if (ret != BLKPREP_OK)
1148                        return ret;
1149        }
1150
1151        /*
1152         * Filesystem requests must transfer data.
1153         */
1154        BUG_ON(!req->nr_phys_segments);
1155
1156        cmd = scsi_get_cmd_from_req(sdev, req);
1157        if (unlikely(!cmd))
1158                return BLKPREP_DEFER;
1159
1160        memset(cmd->cmnd, 0, BLK_MAX_CDB);
1161        return scsi_init_io(cmd, GFP_ATOMIC);
1162}
1163EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1164
1165int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1166{
1167        int ret = BLKPREP_OK;
1168
1169        /*
1170         * If the device is not in running state we will reject some
1171         * or all commands.
1172         */
1173        if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1174                switch (sdev->sdev_state) {
1175                case SDEV_OFFLINE:
1176                        /*
1177                         * If the device is offline we refuse to process any
1178                         * commands.  The device must be brought online
1179                         * before trying any recovery commands.
1180                         */
1181                        sdev_printk(KERN_ERR, sdev,
1182                                    "rejecting I/O to offline device\n");
1183                        ret = BLKPREP_KILL;
1184                        break;
1185                case SDEV_DEL:
1186                        /*
1187                         * If the device is fully deleted, we refuse to
1188                         * process any commands as well.
1189                         */
1190                        sdev_printk(KERN_ERR, sdev,
1191                                    "rejecting I/O to dead device\n");
1192                        ret = BLKPREP_KILL;
1193                        break;
1194                case SDEV_QUIESCE:
1195                case SDEV_BLOCK:
1196                case SDEV_CREATED_BLOCK:
1197                        /*
1198                         * If the devices is blocked we defer normal commands.
1199                         */
1200                        if (!(req->cmd_flags & REQ_PREEMPT))
1201                                ret = BLKPREP_DEFER;
1202                        break;
1203                default:
1204                        /*
1205                         * For any other not fully online state we only allow
1206                         * special commands.  In particular any user initiated
1207                         * command is not allowed.
1208                         */
1209                        if (!(req->cmd_flags & REQ_PREEMPT))
1210                                ret = BLKPREP_KILL;
1211                        break;
1212                }
1213        }
1214        return ret;
1215}
1216EXPORT_SYMBOL(scsi_prep_state_check);
1217
1218int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1219{
1220        struct scsi_device *sdev = q->queuedata;
1221
1222        switch (ret) {
1223        case BLKPREP_KILL:
1224                req->errors = DID_NO_CONNECT << 16;
1225                /* release the command and kill it */
1226                if (req->special) {
1227                        struct scsi_cmnd *cmd = req->special;
1228                        scsi_release_buffers(cmd);
1229                        scsi_put_command(cmd);
1230                        req->special = NULL;
1231                }
1232                break;
1233        case BLKPREP_DEFER:
1234                /*
1235                 * If we defer, the blk_peek_request() returns NULL, but the
1236                 * queue must be restarted, so we schedule a callback to happen
1237                 * shortly.
1238                 */
1239                if (sdev->device_busy == 0)
1240                        blk_delay_queue(q, SCSI_QUEUE_DELAY);
1241                break;
1242        default:
1243                req->cmd_flags |= REQ_DONTPREP;
1244        }
1245
1246        return ret;
1247}
1248EXPORT_SYMBOL(scsi_prep_return);
1249
1250int scsi_prep_fn(struct request_queue *q, struct request *req)
1251{
1252        struct scsi_device *sdev = q->queuedata;
1253        int ret = BLKPREP_KILL;
1254
1255        if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1256                ret = scsi_setup_blk_pc_cmnd(sdev, req);
1257        return scsi_prep_return(q, req, ret);
1258}
1259EXPORT_SYMBOL(scsi_prep_fn);
1260
1261/*
1262 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1263 * return 0.
1264 *
1265 * Called with the queue_lock held.
1266 */
1267static inline int scsi_dev_queue_ready(struct request_queue *q,
1268                                  struct scsi_device *sdev)
1269{
1270        if (sdev->device_busy == 0 && sdev->device_blocked) {
1271                /*
1272                 * unblock after device_blocked iterates to zero
1273                 */
1274                if (--sdev->device_blocked == 0) {
1275                        SCSI_LOG_MLQUEUE(3,
1276                                   sdev_printk(KERN_INFO, sdev,
1277                                   "unblocking device at zero depth\n"));
1278                } else {
1279                        blk_delay_queue(q, SCSI_QUEUE_DELAY);
1280                        return 0;
1281                }
1282        }
1283        if (scsi_device_is_busy(sdev))
1284                return 0;
1285
1286        return 1;
1287}
1288
1289
1290/*
1291 * scsi_target_queue_ready: checks if there we can send commands to target
1292 * @sdev: scsi device on starget to check.
1293 *
1294 * Called with the host lock held.
1295 */
1296static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1297                                           struct scsi_device *sdev)
1298{
1299        struct scsi_target *starget = scsi_target(sdev);
1300
1301        if (starget->single_lun) {
1302                if (starget->starget_sdev_user &&
1303                    starget->starget_sdev_user != sdev)
1304                        return 0;
1305                starget->starget_sdev_user = sdev;
1306        }
1307
1308        if (starget->target_busy == 0 && starget->target_blocked) {
1309                /*
1310                 * unblock after target_blocked iterates to zero
1311                 */
1312                if (--starget->target_blocked == 0) {
1313                        SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1314                                         "unblocking target at zero depth\n"));
1315                } else
1316                        return 0;
1317        }
1318
1319        if (scsi_target_is_busy(starget)) {
1320                list_move_tail(&sdev->starved_entry, &shost->starved_list);
1321                return 0;
1322        }
1323
1324        return 1;
1325}
1326
1327/*
1328 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1329 * return 0. We must end up running the queue again whenever 0 is
1330 * returned, else IO can hang.
1331 *
1332 * Called with host_lock held.
1333 */
1334static inline int scsi_host_queue_ready(struct request_queue *q,
1335                                   struct Scsi_Host *shost,
1336                                   struct scsi_device *sdev)
1337{
1338        if (scsi_host_in_recovery(shost))
1339                return 0;
1340        if (shost->host_busy == 0 && shost->host_blocked) {
1341                /*
1342                 * unblock after host_blocked iterates to zero
1343                 */
1344                if (--shost->host_blocked == 0) {
1345                        SCSI_LOG_MLQUEUE(3,
1346                                printk("scsi%d unblocking host at zero depth\n",
1347                                        shost->host_no));
1348                } else {
1349                        return 0;
1350                }
1351        }
1352        if (scsi_host_is_busy(shost)) {
1353                if (list_empty(&sdev->starved_entry))
1354                        list_add_tail(&sdev->starved_entry, &shost->starved_list);
1355                return 0;
1356        }
1357
1358        /* We're OK to process the command, so we can't be starved */
1359        if (!list_empty(&sdev->starved_entry))
1360                list_del_init(&sdev->starved_entry);
1361
1362        return 1;
1363}
1364
1365/*
1366 * Busy state exporting function for request stacking drivers.
1367 *
1368 * For efficiency, no lock is taken to check the busy state of
1369 * shost/starget/sdev, since the returned value is not guaranteed and
1370 * may be changed after request stacking drivers call the function,
1371 * regardless of taking lock or not.
1372 *
1373 * When scsi can't dispatch I/Os anymore and needs to kill I/Os
1374 * (e.g. !sdev), scsi needs to return 'not busy'.
1375 * Otherwise, request stacking drivers may hold requests forever.
1376 */
1377static int scsi_lld_busy(struct request_queue *q)
1378{
1379        struct scsi_device *sdev = q->queuedata;
1380        struct Scsi_Host *shost;
1381        struct scsi_target *starget;
1382
1383        if (!sdev)
1384                return 0;
1385
1386        shost = sdev->host;
1387        starget = scsi_target(sdev);
1388
1389        if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) ||
1390            scsi_target_is_busy(starget) || scsi_device_is_busy(sdev))
1391                return 1;
1392
1393        return 0;
1394}
1395
1396/*
1397 * Kill a request for a dead device
1398 */
1399static void scsi_kill_request(struct request *req, struct request_queue *q)
1400{
1401        struct scsi_cmnd *cmd = req->special;
1402        struct scsi_device *sdev;
1403        struct scsi_target *starget;
1404        struct Scsi_Host *shost;
1405
1406        blk_start_request(req);
1407
1408        scmd_printk(KERN_INFO, cmd, "killing request\n");
1409
1410        sdev = cmd->device;
1411        starget = scsi_target(sdev);
1412        shost = sdev->host;
1413        scsi_init_cmd_errh(cmd);
1414        cmd->result = DID_NO_CONNECT << 16;
1415        atomic_inc(&cmd->device->iorequest_cnt);
1416
1417        /*
1418         * SCSI request completion path will do scsi_device_unbusy(),
1419         * bump busy counts.  To bump the counters, we need to dance
1420         * with the locks as normal issue path does.
1421         */
1422        sdev->device_busy++;
1423        spin_unlock(sdev->request_queue->queue_lock);
1424        spin_lock(shost->host_lock);
1425        shost->host_busy++;
1426        starget->target_busy++;
1427        spin_unlock(shost->host_lock);
1428        spin_lock(sdev->request_queue->queue_lock);
1429
1430        blk_complete_request(req);
1431}
1432
1433static void scsi_softirq_done(struct request *rq)
1434{
1435        struct scsi_cmnd *cmd = rq->special;
1436        unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1437        int disposition;
1438
1439        INIT_LIST_HEAD(&cmd->eh_entry);
1440
1441        atomic_inc(&cmd->device->iodone_cnt);
1442        if (cmd->result)
1443                atomic_inc(&cmd->device->ioerr_cnt);
1444
1445        disposition = scsi_decide_disposition(cmd);
1446        if (disposition != SUCCESS &&
1447            time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1448                sdev_printk(KERN_ERR, cmd->device,
1449                            "timing out command, waited %lus\n",
1450                            wait_for/HZ);
1451                disposition = SUCCESS;
1452        }
1453                        
1454        scsi_log_completion(cmd, disposition);
1455
1456        switch (disposition) {
1457                case SUCCESS:
1458                        scsi_finish_command(cmd);
1459                        break;
1460                case NEEDS_RETRY:
1461                        scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1462                        break;
1463                case ADD_TO_MLQUEUE:
1464                        scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1465                        break;
1466                default:
1467                        if (!scsi_eh_scmd_add(cmd, 0))
1468                                scsi_finish_command(cmd);
1469        }
1470}
1471
1472/*
1473 * Function:    scsi_request_fn()
1474 *
1475 * Purpose:     Main strategy routine for SCSI.
1476 *
1477 * Arguments:   q       - Pointer to actual queue.
1478 *
1479 * Returns:     Nothing
1480 *
1481 * Lock status: IO request lock assumed to be held when called.
1482 */
1483static void scsi_request_fn(struct request_queue *q)
1484{
1485        struct scsi_device *sdev = q->queuedata;
1486        struct Scsi_Host *shost;
1487        struct scsi_cmnd *cmd;
1488        struct request *req;
1489
1490        if (!sdev) {
1491                while ((req = blk_peek_request(q)) != NULL)
1492                        scsi_kill_request(req, q);
1493                return;
1494        }
1495
1496        if(!get_device(&sdev->sdev_gendev))
1497                /* We must be tearing the block queue down already */
1498                return;
1499
1500        /*
1501         * To start with, we keep looping until the queue is empty, or until
1502         * the host is no longer able to accept any more requests.
1503         */
1504        shost = sdev->host;
1505        for (;;) {
1506                int rtn;
1507                /*
1508                 * get next queueable request.  We do this early to make sure
1509                 * that the request is fully prepared even if we cannot 
1510                 * accept it.
1511                 */
1512                req = blk_peek_request(q);
1513                if (!req || !scsi_dev_queue_ready(q, sdev))
1514                        break;
1515
1516                if (unlikely(!scsi_device_online(sdev))) {
1517                        sdev_printk(KERN_ERR, sdev,
1518                                    "rejecting I/O to offline device\n");
1519                        scsi_kill_request(req, q);
1520                        continue;
1521                }
1522
1523
1524                /*
1525                 * Remove the request from the request list.
1526                 */
1527                if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1528                        blk_start_request(req);
1529                sdev->device_busy++;
1530
1531                spin_unlock(q->queue_lock);
1532                cmd = req->special;
1533                if (unlikely(cmd == NULL)) {
1534                        printk(KERN_CRIT "impossible request in %s.\n"
1535                                         "please mail a stack trace to "
1536                                         "linux-scsi@vger.kernel.org\n",
1537                                         __func__);
1538                        blk_dump_rq_flags(req, "foo");
1539                        BUG();
1540                }
1541                spin_lock(shost->host_lock);
1542
1543                /*
1544                 * We hit this when the driver is using a host wide
1545                 * tag map. For device level tag maps the queue_depth check
1546                 * in the device ready fn would prevent us from trying
1547                 * to allocate a tag. Since the map is a shared host resource
1548                 * we add the dev to the starved list so it eventually gets
1549                 * a run when a tag is freed.
1550                 */
1551                if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1552                        if (list_empty(&sdev->starved_entry))
1553                                list_add_tail(&sdev->starved_entry,
1554                                              &shost->starved_list);
1555                        goto not_ready;
1556                }
1557
1558                if (!scsi_target_queue_ready(shost, sdev))
1559                        goto not_ready;
1560
1561                if (!scsi_host_queue_ready(q, shost, sdev))
1562                        goto not_ready;
1563
1564                scsi_target(sdev)->target_busy++;
1565                shost->host_busy++;
1566
1567                /*
1568                 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1569                 *              take the lock again.
1570                 */
1571                spin_unlock_irq(shost->host_lock);
1572
1573                /*
1574                 * Finally, initialize any error handling parameters, and set up
1575                 * the timers for timeouts.
1576                 */
1577                scsi_init_cmd_errh(cmd);
1578
1579                /*
1580                 * Dispatch the command to the low-level driver.
1581                 */
1582                rtn = scsi_dispatch_cmd(cmd);
1583                spin_lock_irq(q->queue_lock);
1584                if (rtn)
1585                        goto out_delay;
1586        }
1587
1588        goto out;
1589
1590 not_ready:
1591        spin_unlock_irq(shost->host_lock);
1592
1593        /*
1594         * lock q, handle tag, requeue req, and decrement device_busy. We
1595         * must return with queue_lock held.
1596         *
1597         * Decrementing device_busy without checking it is OK, as all such
1598         * cases (host limits or settings) should run the queue at some
1599         * later time.
1600         */
1601        spin_lock_irq(q->queue_lock);
1602        blk_requeue_request(q, req);
1603        sdev->device_busy--;
1604out_delay:
1605        if (sdev->device_busy == 0)
1606                blk_delay_queue(q, SCSI_QUEUE_DELAY);
1607out:
1608        /* must be careful here...if we trigger the ->remove() function
1609         * we cannot be holding the q lock */
1610        spin_unlock_irq(q->queue_lock);
1611        put_device(&sdev->sdev_gendev);
1612        spin_lock_irq(q->queue_lock);
1613}
1614
1615u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1616{
1617        struct device *host_dev;
1618        u64 bounce_limit = 0xffffffff;
1619
1620        if (shost->unchecked_isa_dma)
1621                return BLK_BOUNCE_ISA;
1622        /*
1623         * Platforms with virtual-DMA translation
1624         * hardware have no practical limit.
1625         */
1626        if (!PCI_DMA_BUS_IS_PHYS)
1627                return BLK_BOUNCE_ANY;
1628
1629        host_dev = scsi_get_device(shost);
1630        if (host_dev && host_dev->dma_mask)
1631                bounce_limit = *host_dev->dma_mask;
1632
1633        return bounce_limit;
1634}
1635EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1636
1637struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1638                                         request_fn_proc *request_fn)
1639{
1640        struct request_queue *q;
1641        struct device *dev = shost->dma_dev;
1642
1643        q = blk_init_queue(request_fn, NULL);
1644        if (!q)
1645                return NULL;
1646
1647        /*
1648         * this limit is imposed by hardware restrictions
1649         */
1650        blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1651                                        SCSI_MAX_SG_CHAIN_SEGMENTS));
1652
1653        if (scsi_host_prot_dma(shost)) {
1654                shost->sg_prot_tablesize =
1655                        min_not_zero(shost->sg_prot_tablesize,
1656                                     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1657                BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1658                blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1659        }
1660
1661        blk_queue_max_hw_sectors(q, shost->max_sectors);
1662        blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1663        blk_queue_segment_boundary(q, shost->dma_boundary);
1664        dma_set_seg_boundary(dev, shost->dma_boundary);
1665
1666        blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1667
1668        if (!shost->use_clustering)
1669                q->limits.cluster = 0;
1670
1671        /*
1672         * set a reasonable default alignment on word boundaries: the
1673         * host and device may alter it using
1674         * blk_queue_update_dma_alignment() later.
1675         */
1676        blk_queue_dma_alignment(q, 0x03);
1677
1678        return q;
1679}
1680EXPORT_SYMBOL(__scsi_alloc_queue);
1681
1682struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1683{
1684        struct request_queue *q;
1685
1686        q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1687        if (!q)
1688                return NULL;
1689
1690        blk_queue_prep_rq(q, scsi_prep_fn);
1691        blk_queue_softirq_done(q, scsi_softirq_done);
1692        blk_queue_rq_timed_out(q, scsi_times_out);
1693        blk_queue_lld_busy(q, scsi_lld_busy);
1694        return q;
1695}
1696
1697void scsi_free_queue(struct request_queue *q)
1698{
1699        unsigned long flags;
1700
1701        WARN_ON(q->queuedata);
1702
1703        /* cause scsi_request_fn() to kill all non-finished requests */
1704        spin_lock_irqsave(q->queue_lock, flags);
1705        q->request_fn(q);
1706        spin_unlock_irqrestore(q->queue_lock, flags);
1707
1708        blk_cleanup_queue(q);
1709}
1710
1711/*
1712 * Function:    scsi_block_requests()
1713 *
1714 * Purpose:     Utility function used by low-level drivers to prevent further
1715 *              commands from being queued to the device.
1716 *
1717 * Arguments:   shost       - Host in question
1718 *
1719 * Returns:     Nothing
1720 *
1721 * Lock status: No locks are assumed held.
1722 *
1723 * Notes:       There is no timer nor any other means by which the requests
1724 *              get unblocked other than the low-level driver calling
1725 *              scsi_unblock_requests().
1726 */
1727void scsi_block_requests(struct Scsi_Host *shost)
1728{
1729        shost->host_self_blocked = 1;
1730}
1731EXPORT_SYMBOL(scsi_block_requests);
1732
1733/*
1734 * Function:    scsi_unblock_requests()
1735 *
1736 * Purpose:     Utility function used by low-level drivers to allow further
1737 *              commands from being queued to the device.
1738 *
1739 * Arguments:   shost       - Host in question
1740 *
1741 * Returns:     Nothing
1742 *
1743 * Lock status: No locks are assumed held.
1744 *
1745 * Notes:       There is no timer nor any other means by which the requests
1746 *              get unblocked other than the low-level driver calling
1747 *              scsi_unblock_requests().
1748 *
1749 *              This is done as an API function so that changes to the
1750 *              internals of the scsi mid-layer won't require wholesale
1751 *              changes to drivers that use this feature.
1752 */
1753void scsi_unblock_requests(struct Scsi_Host *shost)
1754{
1755        shost->host_self_blocked = 0;
1756        scsi_run_host_queues(shost);
1757}
1758EXPORT_SYMBOL(scsi_unblock_requests);
1759
1760int __init scsi_init_queue(void)
1761{
1762        int i;
1763
1764        scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1765                                           sizeof(struct scsi_data_buffer),
1766                                           0, 0, NULL);
1767        if (!scsi_sdb_cache) {
1768                printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1769                return -ENOMEM;
1770        }
1771
1772        for (i = 0; i < SG_MEMPOOL_NR; i++) {
1773                struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1774                int size = sgp->size * sizeof(struct scatterlist);
1775
1776                sgp->slab = kmem_cache_create(sgp->name, size, 0,
1777                                SLAB_HWCACHE_ALIGN, NULL);
1778                if (!sgp->slab) {
1779                        printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1780                                        sgp->name);
1781                        goto cleanup_sdb;
1782                }
1783
1784                sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1785                                                     sgp->slab);
1786                if (!sgp->pool) {
1787                        printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1788                                        sgp->name);
1789                        goto cleanup_sdb;
1790                }
1791        }
1792
1793        return 0;
1794
1795cleanup_sdb:
1796        for (i = 0; i < SG_MEMPOOL_NR; i++) {
1797                struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1798                if (sgp->pool)
1799                        mempool_destroy(sgp->pool);
1800                if (sgp->slab)
1801                        kmem_cache_destroy(sgp->slab);
1802        }
1803        kmem_cache_destroy(scsi_sdb_cache);
1804
1805        return -ENOMEM;
1806}
1807
1808void scsi_exit_queue(void)
1809{
1810        int i;
1811
1812        kmem_cache_destroy(scsi_sdb_cache);
1813
1814        for (i = 0; i < SG_MEMPOOL_NR; i++) {
1815                struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1816                mempool_destroy(sgp->pool);
1817                kmem_cache_destroy(sgp->slab);
1818        }
1819}
1820
1821/**
1822 *      scsi_mode_select - issue a mode select
1823 *      @sdev:  SCSI device to be queried
1824 *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
1825 *      @sp:    Save page bit (0 == don't save, 1 == save)
1826 *      @modepage: mode page being requested
1827 *      @buffer: request buffer (may not be smaller than eight bytes)
1828 *      @len:   length of request buffer.
1829 *      @timeout: command timeout
1830 *      @retries: number of retries before failing
1831 *      @data: returns a structure abstracting the mode header data
1832 *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1833 *              must be SCSI_SENSE_BUFFERSIZE big.
1834 *
1835 *      Returns zero if successful; negative error number or scsi
1836 *      status on error
1837 *
1838 */
1839int
1840scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1841                 unsigned char *buffer, int len, int timeout, int retries,
1842                 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1843{
1844        unsigned char cmd[10];
1845        unsigned char *real_buffer;
1846        int ret;
1847
1848        memset(cmd, 0, sizeof(cmd));
1849        cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1850
1851        if (sdev->use_10_for_ms) {
1852                if (len > 65535)
1853                        return -EINVAL;
1854                real_buffer = kmalloc(8 + len, GFP_KERNEL);
1855                if (!real_buffer)
1856                        return -ENOMEM;
1857                memcpy(real_buffer + 8, buffer, len);
1858                len += 8;
1859                real_buffer[0] = 0;
1860                real_buffer[1] = 0;
1861                real_buffer[2] = data->medium_type;
1862                real_buffer[3] = data->device_specific;
1863                real_buffer[4] = data->longlba ? 0x01 : 0;
1864                real_buffer[5] = 0;
1865                real_buffer[6] = data->block_descriptor_length >> 8;
1866                real_buffer[7] = data->block_descriptor_length;
1867
1868                cmd[0] = MODE_SELECT_10;
1869                cmd[7] = len >> 8;
1870                cmd[8] = len;
1871        } else {
1872                if (len > 255 || data->block_descriptor_length > 255 ||
1873                    data->longlba)
1874                        return -EINVAL;
1875
1876                real_buffer = kmalloc(4 + len, GFP_KERNEL);
1877                if (!real_buffer)
1878                        return -ENOMEM;
1879                memcpy(real_buffer + 4, buffer, len);
1880                len += 4;
1881                real_buffer[0] = 0;
1882                real_buffer[1] = data->medium_type;
1883                real_buffer[2] = data->device_specific;
1884                real_buffer[3] = data->block_descriptor_length;
1885                
1886
1887                cmd[0] = MODE_SELECT;
1888                cmd[4] = len;
1889        }
1890
1891        ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1892                               sshdr, timeout, retries, NULL);
1893        kfree(real_buffer);
1894        return ret;
1895}
1896EXPORT_SYMBOL_GPL(scsi_mode_select);
1897
1898/**
1899 *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1900 *      @sdev:  SCSI device to be queried
1901 *      @dbd:   set if mode sense will allow block descriptors to be returned
1902 *      @modepage: mode page being requested
1903 *      @buffer: request buffer (may not be smaller than eight bytes)
1904 *      @len:   length of request buffer.
1905 *      @timeout: command timeout
1906 *      @retries: number of retries before failing
1907 *      @data: returns a structure abstracting the mode header data
1908 *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1909 *              must be SCSI_SENSE_BUFFERSIZE big.
1910 *
1911 *      Returns zero if unsuccessful, or the header offset (either 4
1912 *      or 8 depending on whether a six or ten byte command was
1913 *      issued) if successful.
1914 */
1915int
1916scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1917                  unsigned char *buffer, int len, int timeout, int retries,
1918                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1919{
1920        unsigned char cmd[12];
1921        int use_10_for_ms;
1922        int header_length;
1923        int result;
1924        struct scsi_sense_hdr my_sshdr;
1925
1926        memset(data, 0, sizeof(*data));
1927        memset(&cmd[0], 0, 12);
1928        cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
1929        cmd[2] = modepage;
1930
1931        /* caller might not be interested in sense, but we need it */
1932        if (!sshdr)
1933                sshdr = &my_sshdr;
1934
1935 retry:
1936        use_10_for_ms = sdev->use_10_for_ms;
1937
1938        if (use_10_for_ms) {
1939                if (len < 8)
1940                        len = 8;
1941
1942                cmd[0] = MODE_SENSE_10;
1943                cmd[8] = len;
1944                header_length = 8;
1945        } else {
1946                if (len < 4)
1947                        len = 4;
1948
1949                cmd[0] = MODE_SENSE;
1950                cmd[4] = len;
1951                header_length = 4;
1952        }
1953
1954        memset(buffer, 0, len);
1955
1956        result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1957                                  sshdr, timeout, retries, NULL);
1958
1959        /* This code looks awful: what it's doing is making sure an
1960         * ILLEGAL REQUEST sense return identifies the actual command
1961         * byte as the problem.  MODE_SENSE commands can return
1962         * ILLEGAL REQUEST if the code page isn't supported */
1963
1964        if (use_10_for_ms && !scsi_status_is_good(result) &&
1965            (driver_byte(result) & DRIVER_SENSE)) {
1966                if (scsi_sense_valid(sshdr)) {
1967                        if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1968                            (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1969                                /* 
1970                                 * Invalid command operation code
1971                                 */
1972                                sdev->use_10_for_ms = 0;
1973                                goto retry;
1974                        }
1975                }
1976        }
1977
1978        if(scsi_status_is_good(result)) {
1979                if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1980                             (modepage == 6 || modepage == 8))) {
1981                        /* Initio breakage? */
1982                        header_length = 0;
1983                        data->length = 13;
1984                        data->medium_type = 0;
1985                        data->device_specific = 0;
1986                        data->longlba = 0;
1987                        data->block_descriptor_length = 0;
1988                } else if(use_10_for_ms) {
1989                        data->length = buffer[0]*256 + buffer[1] + 2;
1990                        data->medium_type = buffer[2];
1991                        data->device_specific = buffer[3];
1992                        data->longlba = buffer[4] & 0x01;
1993                        data->block_descriptor_length = buffer[6]*256
1994                                + buffer[7];
1995                } else {
1996                        data->length = buffer[0] + 1;
1997                        data->medium_type = buffer[1];
1998                        data->device_specific = buffer[2];
1999                        data->block_descriptor_length = buffer[3];
2000                }
2001                data->header_length = header_length;
2002        }
2003
2004        return result;
2005}
2006EXPORT_SYMBOL(scsi_mode_sense);
2007
2008/**
2009 *      scsi_test_unit_ready - test if unit is ready
2010 *      @sdev:  scsi device to change the state of.
2011 *      @timeout: command timeout
2012 *      @retries: number of retries before failing
2013 *      @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2014 *              returning sense. Make sure that this is cleared before passing
2015 *              in.
2016 *
2017 *      Returns zero if unsuccessful or an error if TUR failed.  For
2018 *      removable media, UNIT_ATTENTION sets ->changed flag.
2019 **/
2020int
2021scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2022                     struct scsi_sense_hdr *sshdr_external)
2023{
2024        char cmd[] = {
2025                TEST_UNIT_READY, 0, 0, 0, 0, 0,
2026        };
2027        struct scsi_sense_hdr *sshdr;
2028        int result;
2029
2030        if (!sshdr_external)
2031                sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2032        else
2033                sshdr = sshdr_external;
2034
2035        /* try to eat the UNIT_ATTENTION if there are enough retries */
2036        do {
2037                result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2038                                          timeout, retries, NULL);
2039                if (sdev->removable && scsi_sense_valid(sshdr) &&
2040                    sshdr->sense_key == UNIT_ATTENTION)
2041                        sdev->changed = 1;
2042        } while (scsi_sense_valid(sshdr) &&
2043                 sshdr->sense_key == UNIT_ATTENTION && --retries);
2044
2045        if (!sshdr_external)
2046                kfree(sshdr);
2047        return result;
2048}
2049EXPORT_SYMBOL(scsi_test_unit_ready);
2050
2051/**
2052 *      scsi_device_set_state - Take the given device through the device state model.
2053 *      @sdev:  scsi device to change the state of.
2054 *      @state: state to change to.
2055 *
2056 *      Returns zero if unsuccessful or an error if the requested 
2057 *      transition is illegal.
2058 */
2059int
2060scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2061{
2062        enum scsi_device_state oldstate = sdev->sdev_state;
2063
2064        if (state == oldstate)
2065                return 0;
2066
2067        switch (state) {
2068        case SDEV_CREATED:
2069                switch (oldstate) {
2070                case SDEV_CREATED_BLOCK:
2071                        break;
2072                default:
2073                        goto illegal;
2074                }
2075                break;
2076                        
2077        case SDEV_RUNNING:
2078                switch (oldstate) {
2079                case SDEV_CREATED:
2080                case SDEV_OFFLINE:
2081                case SDEV_QUIESCE:
2082                case SDEV_BLOCK:
2083                        break;
2084                default:
2085                        goto illegal;
2086                }
2087                break;
2088
2089        case SDEV_QUIESCE:
2090                switch (oldstate) {
2091                case SDEV_RUNNING:
2092                case SDEV_OFFLINE:
2093                        break;
2094                default:
2095                        goto illegal;
2096                }
2097                break;
2098
2099        case SDEV_OFFLINE:
2100                switch (oldstate) {
2101                case SDEV_CREATED:
2102                case SDEV_RUNNING:
2103                case SDEV_QUIESCE:
2104                case SDEV_BLOCK:
2105                        break;
2106                default:
2107                        goto illegal;
2108                }
2109                break;
2110
2111        case SDEV_BLOCK:
2112                switch (oldstate) {
2113                case SDEV_RUNNING:
2114                case SDEV_CREATED_BLOCK:
2115                        break;
2116                default:
2117                        goto illegal;
2118                }
2119                break;
2120
2121        case SDEV_CREATED_BLOCK:
2122                switch (oldstate) {
2123                case SDEV_CREATED:
2124                        break;
2125                default:
2126                        goto illegal;
2127                }
2128                break;
2129
2130        case SDEV_CANCEL:
2131                switch (oldstate) {
2132                case SDEV_CREATED:
2133                case SDEV_RUNNING:
2134                case SDEV_QUIESCE:
2135                case SDEV_OFFLINE:
2136                case SDEV_BLOCK:
2137                        break;
2138                default:
2139                        goto illegal;
2140                }
2141                break;
2142
2143        case SDEV_DEL:
2144                switch (oldstate) {
2145                case SDEV_CREATED:
2146                case SDEV_RUNNING:
2147                case SDEV_OFFLINE:
2148                case SDEV_CANCEL:
2149                        break;
2150                default:
2151                        goto illegal;
2152                }
2153                break;
2154
2155        }
2156        sdev->sdev_state = state;
2157        return 0;
2158
2159 illegal:
2160        SCSI_LOG_ERROR_RECOVERY(1, 
2161                                sdev_printk(KERN_ERR, sdev,
2162                                            "Illegal state transition %s->%s\n",
2163                                            scsi_device_state_name(oldstate),
2164                                            scsi_device_state_name(state))
2165                                );
2166        return -EINVAL;
2167}
2168EXPORT_SYMBOL(scsi_device_set_state);
2169
2170/**
2171 *      sdev_evt_emit - emit a single SCSI device uevent
2172 *      @sdev: associated SCSI device
2173 *      @evt: event to emit
2174 *
2175 *      Send a single uevent (scsi_event) to the associated scsi_device.
2176 */
2177static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2178{
2179        int idx = 0;
2180        char *envp[3];
2181
2182        switch (evt->evt_type) {
2183        case SDEV_EVT_MEDIA_CHANGE:
2184                envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2185                break;
2186
2187        default:
2188                /* do nothing */
2189                break;
2190        }
2191
2192        envp[idx++] = NULL;
2193
2194        kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2195}
2196
2197/**
2198 *      sdev_evt_thread - send a uevent for each scsi event
2199 *      @work: work struct for scsi_device
2200 *
2201 *      Dispatch queued events to their associated scsi_device kobjects
2202 *      as uevents.
2203 */
2204void scsi_evt_thread(struct work_struct *work)
2205{
2206        struct scsi_device *sdev;
2207        LIST_HEAD(event_list);
2208
2209        sdev = container_of(work, struct scsi_device, event_work);
2210
2211        while (1) {
2212                struct scsi_event *evt;
2213                struct list_head *this, *tmp;
2214                unsigned long flags;
2215
2216                spin_lock_irqsave(&sdev->list_lock, flags);
2217                list_splice_init(&sdev->event_list, &event_list);
2218                spin_unlock_irqrestore(&sdev->list_lock, flags);
2219
2220                if (list_empty(&event_list))
2221                        break;
2222
2223                list_for_each_safe(this, tmp, &event_list) {
2224                        evt = list_entry(this, struct scsi_event, node);
2225                        list_del(&evt->node);
2226                        scsi_evt_emit(sdev, evt);
2227                        kfree(evt);
2228                }
2229        }
2230}
2231
2232/**
2233 *      sdev_evt_send - send asserted event to uevent thread
2234 *      @sdev: scsi_device event occurred on
2235 *      @evt: event to send
2236 *
2237 *      Assert scsi device event asynchronously.
2238 */
2239void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2240{
2241        unsigned long flags;
2242
2243#if 0
2244        /* FIXME: currently this check eliminates all media change events
2245         * for polled devices.  Need to update to discriminate between AN
2246         * and polled events */
2247        if (!test_bit(evt->evt_type, sdev->supported_events)) {
2248                kfree(evt);
2249                return;
2250        }
2251#endif
2252
2253        spin_lock_irqsave(&sdev->list_lock, flags);
2254        list_add_tail(&evt->node, &sdev->event_list);
2255        schedule_work(&sdev->event_work);
2256        spin_unlock_irqrestore(&sdev->list_lock, flags);
2257}
2258EXPORT_SYMBOL_GPL(sdev_evt_send);
2259
2260/**
2261 *      sdev_evt_alloc - allocate a new scsi event
2262 *      @evt_type: type of event to allocate
2263 *      @gfpflags: GFP flags for allocation
2264 *
2265 *      Allocates and returns a new scsi_event.
2266 */
2267struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2268                                  gfp_t gfpflags)
2269{
2270        struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2271        if (!evt)
2272                return NULL;
2273
2274        evt->evt_type = evt_type;
2275        INIT_LIST_HEAD(&evt->node);
2276
2277        /* evt_type-specific initialization, if any */
2278        switch (evt_type) {
2279        case SDEV_EVT_MEDIA_CHANGE:
2280        default:
2281                /* do nothing */
2282                break;
2283        }
2284
2285        return evt;
2286}
2287EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2288
2289/**
2290 *      sdev_evt_send_simple - send asserted event to uevent thread
2291 *      @sdev: scsi_device event occurred on
2292 *      @evt_type: type of event to send
2293 *      @gfpflags: GFP flags for allocation
2294 *
2295 *      Assert scsi device event asynchronously, given an event type.
2296 */
2297void sdev_evt_send_simple(struct scsi_device *sdev,
2298                          enum scsi_device_event evt_type, gfp_t gfpflags)
2299{
2300        struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2301        if (!evt) {
2302                sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2303                            evt_type);
2304                return;
2305        }
2306
2307        sdev_evt_send(sdev, evt);
2308}
2309EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2310
2311/**
2312 *      scsi_device_quiesce - Block user issued commands.
2313 *      @sdev:  scsi device to quiesce.
2314 *
2315 *      This works by trying to transition to the SDEV_QUIESCE state
2316 *      (which must be a legal transition).  When the device is in this
2317 *      state, only special requests will be accepted, all others will
2318 *      be deferred.  Since special requests may also be requeued requests,
2319 *      a successful return doesn't guarantee the device will be 
2320 *      totally quiescent.
2321 *
2322 *      Must be called with user context, may sleep.
2323 *
2324 *      Returns zero if unsuccessful or an error if not.
2325 */
2326int
2327scsi_device_quiesce(struct scsi_device *sdev)
2328{
2329        int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2330        if (err)
2331                return err;
2332
2333        scsi_run_queue(sdev->request_queue);
2334        while (sdev->device_busy) {
2335                msleep_interruptible(200);
2336                scsi_run_queue(sdev->request_queue);
2337        }
2338        return 0;
2339}
2340EXPORT_SYMBOL(scsi_device_quiesce);
2341
2342/**
2343 *      scsi_device_resume - Restart user issued commands to a quiesced device.
2344 *      @sdev:  scsi device to resume.
2345 *
2346 *      Moves the device from quiesced back to running and restarts the
2347 *      queues.
2348 *
2349 *      Must be called with user context, may sleep.
2350 */
2351void
2352scsi_device_resume(struct scsi_device *sdev)
2353{
2354        if(scsi_device_set_state(sdev, SDEV_RUNNING))
2355                return;
2356        scsi_run_queue(sdev->request_queue);
2357}
2358EXPORT_SYMBOL(scsi_device_resume);
2359
2360static void
2361device_quiesce_fn(struct scsi_device *sdev, void *data)
2362{
2363        scsi_device_quiesce(sdev);
2364}
2365
2366void
2367scsi_target_quiesce(struct scsi_target *starget)
2368{
2369        starget_for_each_device(starget, NULL, device_quiesce_fn);
2370}
2371EXPORT_SYMBOL(scsi_target_quiesce);
2372
2373static void
2374device_resume_fn(struct scsi_device *sdev, void *data)
2375{
2376        scsi_device_resume(sdev);
2377}
2378
2379void
2380scsi_target_resume(struct scsi_target *starget)
2381{
2382        starget_for_each_device(starget, NULL, device_resume_fn);
2383}
2384EXPORT_SYMBOL(scsi_target_resume);
2385
2386/**
2387 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2388 * @sdev:       device to block
2389 *
2390 * Block request made by scsi lld's to temporarily stop all
2391 * scsi commands on the specified device.  Called from interrupt
2392 * or normal process context.
2393 *
2394 * Returns zero if successful or error if not
2395 *
2396 * Notes:       
2397 *      This routine transitions the device to the SDEV_BLOCK state
2398 *      (which must be a legal transition).  When the device is in this
2399 *      state, all commands are deferred until the scsi lld reenables
2400 *      the device with scsi_device_unblock or device_block_tmo fires.
2401 *      This routine assumes the host_lock is held on entry.
2402 */
2403int
2404scsi_internal_device_block(struct scsi_device *sdev)
2405{
2406        struct request_queue *q = sdev->request_queue;
2407        unsigned long flags;
2408        int err = 0;
2409
2410        err = scsi_device_set_state(sdev, SDEV_BLOCK);
2411        if (err) {
2412                err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2413
2414                if (err)
2415                        return err;
2416        }
2417
2418        /* 
2419         * The device has transitioned to SDEV_BLOCK.  Stop the
2420         * block layer from calling the midlayer with this device's
2421         * request queue. 
2422         */
2423        spin_lock_irqsave(q->queue_lock, flags);
2424        blk_stop_queue(q);
2425        spin_unlock_irqrestore(q->queue_lock, flags);
2426
2427        return 0;
2428}
2429EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2430 
2431/**
2432 * scsi_internal_device_unblock - resume a device after a block request
2433 * @sdev:       device to resume
2434 *
2435 * Called by scsi lld's or the midlayer to restart the device queue
2436 * for the previously suspended scsi device.  Called from interrupt or
2437 * normal process context.
2438 *
2439 * Returns zero if successful or error if not.
2440 *
2441 * Notes:       
2442 *      This routine transitions the device to the SDEV_RUNNING state
2443 *      (which must be a legal transition) allowing the midlayer to
2444 *      goose the queue for this device.  This routine assumes the 
2445 *      host_lock is held upon entry.
2446 */
2447int
2448scsi_internal_device_unblock(struct scsi_device *sdev)
2449{
2450        struct request_queue *q = sdev->request_queue; 
2451        unsigned long flags;
2452        
2453        /* 
2454         * Try to transition the scsi device to SDEV_RUNNING
2455         * and goose the device queue if successful.  
2456         */
2457        if (sdev->sdev_state == SDEV_BLOCK)
2458                sdev->sdev_state = SDEV_RUNNING;
2459        else if (sdev->sdev_state == SDEV_CREATED_BLOCK)
2460                sdev->sdev_state = SDEV_CREATED;
2461        else if (sdev->sdev_state != SDEV_CANCEL &&
2462                 sdev->sdev_state != SDEV_OFFLINE)
2463                return -EINVAL;
2464
2465        spin_lock_irqsave(q->queue_lock, flags);
2466        blk_start_queue(q);
2467        spin_unlock_irqrestore(q->queue_lock, flags);
2468
2469        return 0;
2470}
2471EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2472
2473static void
2474device_block(struct scsi_device *sdev, void *data)
2475{
2476        scsi_internal_device_block(sdev);
2477}
2478
2479static int
2480target_block(struct device *dev, void *data)
2481{
2482        if (scsi_is_target_device(dev))
2483                starget_for_each_device(to_scsi_target(dev), NULL,
2484                                        device_block);
2485        return 0;
2486}
2487
2488void
2489scsi_target_block(struct device *dev)
2490{
2491        if (scsi_is_target_device(dev))
2492                starget_for_each_device(to_scsi_target(dev), NULL,
2493                                        device_block);
2494        else
2495                device_for_each_child(dev, NULL, target_block);
2496}
2497EXPORT_SYMBOL_GPL(scsi_target_block);
2498
2499static void
2500device_unblock(struct scsi_device *sdev, void *data)
2501{
2502        scsi_internal_device_unblock(sdev);
2503}
2504
2505static int
2506target_unblock(struct device *dev, void *data)
2507{
2508        if (scsi_is_target_device(dev))
2509                starget_for_each_device(to_scsi_target(dev), NULL,
2510                                        device_unblock);
2511        return 0;
2512}
2513
2514void
2515scsi_target_unblock(struct device *dev)
2516{
2517        if (scsi_is_target_device(dev))
2518                starget_for_each_device(to_scsi_target(dev), NULL,
2519                                        device_unblock);
2520        else
2521                device_for_each_child(dev, NULL, target_unblock);
2522}
2523EXPORT_SYMBOL_GPL(scsi_target_unblock);
2524
2525/**
2526 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2527 * @sgl:        scatter-gather list
2528 * @sg_count:   number of segments in sg
2529 * @offset:     offset in bytes into sg, on return offset into the mapped area
2530 * @len:        bytes to map, on return number of bytes mapped
2531 *
2532 * Returns virtual address of the start of the mapped page
2533 */
2534void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2535                          size_t *offset, size_t *len)
2536{
2537        int i;
2538        size_t sg_len = 0, len_complete = 0;
2539        struct scatterlist *sg;
2540        struct page *page;
2541
2542        WARN_ON(!irqs_disabled());
2543
2544        for_each_sg(sgl, sg, sg_count, i) {
2545                len_complete = sg_len; /* Complete sg-entries */
2546                sg_len += sg->length;
2547                if (sg_len > *offset)
2548                        break;
2549        }
2550
2551        if (unlikely(i == sg_count)) {
2552                printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2553                        "elements %d\n",
2554                       __func__, sg_len, *offset, sg_count);
2555                WARN_ON(1);
2556                return NULL;
2557        }
2558
2559        /* Offset starting from the beginning of first page in this sg-entry */
2560        *offset = *offset - len_complete + sg->offset;
2561
2562        /* Assumption: contiguous pages can be accessed as "page + i" */
2563        page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2564        *offset &= ~PAGE_MASK;
2565
2566        /* Bytes in this sg-entry from *offset to the end of the page */
2567        sg_len = PAGE_SIZE - *offset;
2568        if (*len > sg_len)
2569                *len = sg_len;
2570
2571        return kmap_atomic(page);
2572}
2573EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2574
2575/**
2576 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2577 * @virt:       virtual address to be unmapped
2578 */
2579void scsi_kunmap_atomic_sg(void *virt)
2580{
2581        kunmap_atomic(virt);
2582}
2583EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2584