linux/fs/btrfs/extent_io.c
<<
>>
Prefs
   1#include <linux/bitops.h>
   2#include <linux/slab.h>
   3#include <linux/bio.h>
   4#include <linux/mm.h>
   5#include <linux/pagemap.h>
   6#include <linux/page-flags.h>
   7#include <linux/module.h>
   8#include <linux/spinlock.h>
   9#include <linux/blkdev.h>
  10#include <linux/swap.h>
  11#include <linux/writeback.h>
  12#include <linux/pagevec.h>
  13#include <linux/prefetch.h>
  14#include <linux/cleancache.h>
  15#include "extent_io.h"
  16#include "extent_map.h"
  17#include "compat.h"
  18#include "ctree.h"
  19#include "btrfs_inode.h"
  20#include "volumes.h"
  21#include "check-integrity.h"
  22#include "locking.h"
  23
  24static struct kmem_cache *extent_state_cache;
  25static struct kmem_cache *extent_buffer_cache;
  26
  27static LIST_HEAD(buffers);
  28static LIST_HEAD(states);
  29
  30#define LEAK_DEBUG 0
  31#if LEAK_DEBUG
  32static DEFINE_SPINLOCK(leak_lock);
  33#endif
  34
  35#define BUFFER_LRU_MAX 64
  36
  37struct tree_entry {
  38        u64 start;
  39        u64 end;
  40        struct rb_node rb_node;
  41};
  42
  43struct extent_page_data {
  44        struct bio *bio;
  45        struct extent_io_tree *tree;
  46        get_extent_t *get_extent;
  47
  48        /* tells writepage not to lock the state bits for this range
  49         * it still does the unlocking
  50         */
  51        unsigned int extent_locked:1;
  52
  53        /* tells the submit_bio code to use a WRITE_SYNC */
  54        unsigned int sync_io:1;
  55};
  56
  57static noinline void flush_write_bio(void *data);
  58static inline struct btrfs_fs_info *
  59tree_fs_info(struct extent_io_tree *tree)
  60{
  61        return btrfs_sb(tree->mapping->host->i_sb);
  62}
  63
  64int __init extent_io_init(void)
  65{
  66        extent_state_cache = kmem_cache_create("extent_state",
  67                        sizeof(struct extent_state), 0,
  68                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
  69        if (!extent_state_cache)
  70                return -ENOMEM;
  71
  72        extent_buffer_cache = kmem_cache_create("extent_buffers",
  73                        sizeof(struct extent_buffer), 0,
  74                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
  75        if (!extent_buffer_cache)
  76                goto free_state_cache;
  77        return 0;
  78
  79free_state_cache:
  80        kmem_cache_destroy(extent_state_cache);
  81        return -ENOMEM;
  82}
  83
  84void extent_io_exit(void)
  85{
  86        struct extent_state *state;
  87        struct extent_buffer *eb;
  88
  89        while (!list_empty(&states)) {
  90                state = list_entry(states.next, struct extent_state, leak_list);
  91                printk(KERN_ERR "btrfs state leak: start %llu end %llu "
  92                       "state %lu in tree %p refs %d\n",
  93                       (unsigned long long)state->start,
  94                       (unsigned long long)state->end,
  95                       state->state, state->tree, atomic_read(&state->refs));
  96                list_del(&state->leak_list);
  97                kmem_cache_free(extent_state_cache, state);
  98
  99        }
 100
 101        while (!list_empty(&buffers)) {
 102                eb = list_entry(buffers.next, struct extent_buffer, leak_list);
 103                printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
 104                       "refs %d\n", (unsigned long long)eb->start,
 105                       eb->len, atomic_read(&eb->refs));
 106                list_del(&eb->leak_list);
 107                kmem_cache_free(extent_buffer_cache, eb);
 108        }
 109        if (extent_state_cache)
 110                kmem_cache_destroy(extent_state_cache);
 111        if (extent_buffer_cache)
 112                kmem_cache_destroy(extent_buffer_cache);
 113}
 114
 115void extent_io_tree_init(struct extent_io_tree *tree,
 116                         struct address_space *mapping)
 117{
 118        tree->state = RB_ROOT;
 119        INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
 120        tree->ops = NULL;
 121        tree->dirty_bytes = 0;
 122        spin_lock_init(&tree->lock);
 123        spin_lock_init(&tree->buffer_lock);
 124        tree->mapping = mapping;
 125}
 126
 127static struct extent_state *alloc_extent_state(gfp_t mask)
 128{
 129        struct extent_state *state;
 130#if LEAK_DEBUG
 131        unsigned long flags;
 132#endif
 133
 134        state = kmem_cache_alloc(extent_state_cache, mask);
 135        if (!state)
 136                return state;
 137        state->state = 0;
 138        state->private = 0;
 139        state->tree = NULL;
 140#if LEAK_DEBUG
 141        spin_lock_irqsave(&leak_lock, flags);
 142        list_add(&state->leak_list, &states);
 143        spin_unlock_irqrestore(&leak_lock, flags);
 144#endif
 145        atomic_set(&state->refs, 1);
 146        init_waitqueue_head(&state->wq);
 147        trace_alloc_extent_state(state, mask, _RET_IP_);
 148        return state;
 149}
 150
 151void free_extent_state(struct extent_state *state)
 152{
 153        if (!state)
 154                return;
 155        if (atomic_dec_and_test(&state->refs)) {
 156#if LEAK_DEBUG
 157                unsigned long flags;
 158#endif
 159                WARN_ON(state->tree);
 160#if LEAK_DEBUG
 161                spin_lock_irqsave(&leak_lock, flags);
 162                list_del(&state->leak_list);
 163                spin_unlock_irqrestore(&leak_lock, flags);
 164#endif
 165                trace_free_extent_state(state, _RET_IP_);
 166                kmem_cache_free(extent_state_cache, state);
 167        }
 168}
 169
 170static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
 171                                   struct rb_node *node)
 172{
 173        struct rb_node **p = &root->rb_node;
 174        struct rb_node *parent = NULL;
 175        struct tree_entry *entry;
 176
 177        while (*p) {
 178                parent = *p;
 179                entry = rb_entry(parent, struct tree_entry, rb_node);
 180
 181                if (offset < entry->start)
 182                        p = &(*p)->rb_left;
 183                else if (offset > entry->end)
 184                        p = &(*p)->rb_right;
 185                else
 186                        return parent;
 187        }
 188
 189        entry = rb_entry(node, struct tree_entry, rb_node);
 190        rb_link_node(node, parent, p);
 191        rb_insert_color(node, root);
 192        return NULL;
 193}
 194
 195static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
 196                                     struct rb_node **prev_ret,
 197                                     struct rb_node **next_ret)
 198{
 199        struct rb_root *root = &tree->state;
 200        struct rb_node *n = root->rb_node;
 201        struct rb_node *prev = NULL;
 202        struct rb_node *orig_prev = NULL;
 203        struct tree_entry *entry;
 204        struct tree_entry *prev_entry = NULL;
 205
 206        while (n) {
 207                entry = rb_entry(n, struct tree_entry, rb_node);
 208                prev = n;
 209                prev_entry = entry;
 210
 211                if (offset < entry->start)
 212                        n = n->rb_left;
 213                else if (offset > entry->end)
 214                        n = n->rb_right;
 215                else
 216                        return n;
 217        }
 218
 219        if (prev_ret) {
 220                orig_prev = prev;
 221                while (prev && offset > prev_entry->end) {
 222                        prev = rb_next(prev);
 223                        prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 224                }
 225                *prev_ret = prev;
 226                prev = orig_prev;
 227        }
 228
 229        if (next_ret) {
 230                prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 231                while (prev && offset < prev_entry->start) {
 232                        prev = rb_prev(prev);
 233                        prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 234                }
 235                *next_ret = prev;
 236        }
 237        return NULL;
 238}
 239
 240static inline struct rb_node *tree_search(struct extent_io_tree *tree,
 241                                          u64 offset)
 242{
 243        struct rb_node *prev = NULL;
 244        struct rb_node *ret;
 245
 246        ret = __etree_search(tree, offset, &prev, NULL);
 247        if (!ret)
 248                return prev;
 249        return ret;
 250}
 251
 252static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
 253                     struct extent_state *other)
 254{
 255        if (tree->ops && tree->ops->merge_extent_hook)
 256                tree->ops->merge_extent_hook(tree->mapping->host, new,
 257                                             other);
 258}
 259
 260/*
 261 * utility function to look for merge candidates inside a given range.
 262 * Any extents with matching state are merged together into a single
 263 * extent in the tree.  Extents with EXTENT_IO in their state field
 264 * are not merged because the end_io handlers need to be able to do
 265 * operations on them without sleeping (or doing allocations/splits).
 266 *
 267 * This should be called with the tree lock held.
 268 */
 269static void merge_state(struct extent_io_tree *tree,
 270                        struct extent_state *state)
 271{
 272        struct extent_state *other;
 273        struct rb_node *other_node;
 274
 275        if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
 276                return;
 277
 278        other_node = rb_prev(&state->rb_node);
 279        if (other_node) {
 280                other = rb_entry(other_node, struct extent_state, rb_node);
 281                if (other->end == state->start - 1 &&
 282                    other->state == state->state) {
 283                        merge_cb(tree, state, other);
 284                        state->start = other->start;
 285                        other->tree = NULL;
 286                        rb_erase(&other->rb_node, &tree->state);
 287                        free_extent_state(other);
 288                }
 289        }
 290        other_node = rb_next(&state->rb_node);
 291        if (other_node) {
 292                other = rb_entry(other_node, struct extent_state, rb_node);
 293                if (other->start == state->end + 1 &&
 294                    other->state == state->state) {
 295                        merge_cb(tree, state, other);
 296                        state->end = other->end;
 297                        other->tree = NULL;
 298                        rb_erase(&other->rb_node, &tree->state);
 299                        free_extent_state(other);
 300                }
 301        }
 302}
 303
 304static void set_state_cb(struct extent_io_tree *tree,
 305                         struct extent_state *state, int *bits)
 306{
 307        if (tree->ops && tree->ops->set_bit_hook)
 308                tree->ops->set_bit_hook(tree->mapping->host, state, bits);
 309}
 310
 311static void clear_state_cb(struct extent_io_tree *tree,
 312                           struct extent_state *state, int *bits)
 313{
 314        if (tree->ops && tree->ops->clear_bit_hook)
 315                tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
 316}
 317
 318static void set_state_bits(struct extent_io_tree *tree,
 319                           struct extent_state *state, int *bits);
 320
 321/*
 322 * insert an extent_state struct into the tree.  'bits' are set on the
 323 * struct before it is inserted.
 324 *
 325 * This may return -EEXIST if the extent is already there, in which case the
 326 * state struct is freed.
 327 *
 328 * The tree lock is not taken internally.  This is a utility function and
 329 * probably isn't what you want to call (see set/clear_extent_bit).
 330 */
 331static int insert_state(struct extent_io_tree *tree,
 332                        struct extent_state *state, u64 start, u64 end,
 333                        int *bits)
 334{
 335        struct rb_node *node;
 336
 337        if (end < start) {
 338                printk(KERN_ERR "btrfs end < start %llu %llu\n",
 339                       (unsigned long long)end,
 340                       (unsigned long long)start);
 341                WARN_ON(1);
 342        }
 343        state->start = start;
 344        state->end = end;
 345
 346        set_state_bits(tree, state, bits);
 347
 348        node = tree_insert(&tree->state, end, &state->rb_node);
 349        if (node) {
 350                struct extent_state *found;
 351                found = rb_entry(node, struct extent_state, rb_node);
 352                printk(KERN_ERR "btrfs found node %llu %llu on insert of "
 353                       "%llu %llu\n", (unsigned long long)found->start,
 354                       (unsigned long long)found->end,
 355                       (unsigned long long)start, (unsigned long long)end);
 356                return -EEXIST;
 357        }
 358        state->tree = tree;
 359        merge_state(tree, state);
 360        return 0;
 361}
 362
 363static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
 364                     u64 split)
 365{
 366        if (tree->ops && tree->ops->split_extent_hook)
 367                tree->ops->split_extent_hook(tree->mapping->host, orig, split);
 368}
 369
 370/*
 371 * split a given extent state struct in two, inserting the preallocated
 372 * struct 'prealloc' as the newly created second half.  'split' indicates an
 373 * offset inside 'orig' where it should be split.
 374 *
 375 * Before calling,
 376 * the tree has 'orig' at [orig->start, orig->end].  After calling, there
 377 * are two extent state structs in the tree:
 378 * prealloc: [orig->start, split - 1]
 379 * orig: [ split, orig->end ]
 380 *
 381 * The tree locks are not taken by this function. They need to be held
 382 * by the caller.
 383 */
 384static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
 385                       struct extent_state *prealloc, u64 split)
 386{
 387        struct rb_node *node;
 388
 389        split_cb(tree, orig, split);
 390
 391        prealloc->start = orig->start;
 392        prealloc->end = split - 1;
 393        prealloc->state = orig->state;
 394        orig->start = split;
 395
 396        node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
 397        if (node) {
 398                free_extent_state(prealloc);
 399                return -EEXIST;
 400        }
 401        prealloc->tree = tree;
 402        return 0;
 403}
 404
 405static struct extent_state *next_state(struct extent_state *state)
 406{
 407        struct rb_node *next = rb_next(&state->rb_node);
 408        if (next)
 409                return rb_entry(next, struct extent_state, rb_node);
 410        else
 411                return NULL;
 412}
 413
 414/*
 415 * utility function to clear some bits in an extent state struct.
 416 * it will optionally wake up any one waiting on this state (wake == 1)
 417 *
 418 * If no bits are set on the state struct after clearing things, the
 419 * struct is freed and removed from the tree
 420 */
 421static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
 422                                            struct extent_state *state,
 423                                            int *bits, int wake)
 424{
 425        struct extent_state *next;
 426        int bits_to_clear = *bits & ~EXTENT_CTLBITS;
 427
 428        if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
 429                u64 range = state->end - state->start + 1;
 430                WARN_ON(range > tree->dirty_bytes);
 431                tree->dirty_bytes -= range;
 432        }
 433        clear_state_cb(tree, state, bits);
 434        state->state &= ~bits_to_clear;
 435        if (wake)
 436                wake_up(&state->wq);
 437        if (state->state == 0) {
 438                next = next_state(state);
 439                if (state->tree) {
 440                        rb_erase(&state->rb_node, &tree->state);
 441                        state->tree = NULL;
 442                        free_extent_state(state);
 443                } else {
 444                        WARN_ON(1);
 445                }
 446        } else {
 447                merge_state(tree, state);
 448                next = next_state(state);
 449        }
 450        return next;
 451}
 452
 453static struct extent_state *
 454alloc_extent_state_atomic(struct extent_state *prealloc)
 455{
 456        if (!prealloc)
 457                prealloc = alloc_extent_state(GFP_ATOMIC);
 458
 459        return prealloc;
 460}
 461
 462void extent_io_tree_panic(struct extent_io_tree *tree, int err)
 463{
 464        btrfs_panic(tree_fs_info(tree), err, "Locking error: "
 465                    "Extent tree was modified by another "
 466                    "thread while locked.");
 467}
 468
 469/*
 470 * clear some bits on a range in the tree.  This may require splitting
 471 * or inserting elements in the tree, so the gfp mask is used to
 472 * indicate which allocations or sleeping are allowed.
 473 *
 474 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
 475 * the given range from the tree regardless of state (ie for truncate).
 476 *
 477 * the range [start, end] is inclusive.
 478 *
 479 * This takes the tree lock, and returns 0 on success and < 0 on error.
 480 */
 481int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 482                     int bits, int wake, int delete,
 483                     struct extent_state **cached_state,
 484                     gfp_t mask)
 485{
 486        struct extent_state *state;
 487        struct extent_state *cached;
 488        struct extent_state *prealloc = NULL;
 489        struct rb_node *node;
 490        u64 last_end;
 491        int err;
 492        int clear = 0;
 493
 494        if (delete)
 495                bits |= ~EXTENT_CTLBITS;
 496        bits |= EXTENT_FIRST_DELALLOC;
 497
 498        if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
 499                clear = 1;
 500again:
 501        if (!prealloc && (mask & __GFP_WAIT)) {
 502                prealloc = alloc_extent_state(mask);
 503                if (!prealloc)
 504                        return -ENOMEM;
 505        }
 506
 507        spin_lock(&tree->lock);
 508        if (cached_state) {
 509                cached = *cached_state;
 510
 511                if (clear) {
 512                        *cached_state = NULL;
 513                        cached_state = NULL;
 514                }
 515
 516                if (cached && cached->tree && cached->start <= start &&
 517                    cached->end > start) {
 518                        if (clear)
 519                                atomic_dec(&cached->refs);
 520                        state = cached;
 521                        goto hit_next;
 522                }
 523                if (clear)
 524                        free_extent_state(cached);
 525        }
 526        /*
 527         * this search will find the extents that end after
 528         * our range starts
 529         */
 530        node = tree_search(tree, start);
 531        if (!node)
 532                goto out;
 533        state = rb_entry(node, struct extent_state, rb_node);
 534hit_next:
 535        if (state->start > end)
 536                goto out;
 537        WARN_ON(state->end < start);
 538        last_end = state->end;
 539
 540        /* the state doesn't have the wanted bits, go ahead */
 541        if (!(state->state & bits)) {
 542                state = next_state(state);
 543                goto next;
 544        }
 545
 546        /*
 547         *     | ---- desired range ---- |
 548         *  | state | or
 549         *  | ------------- state -------------- |
 550         *
 551         * We need to split the extent we found, and may flip
 552         * bits on second half.
 553         *
 554         * If the extent we found extends past our range, we
 555         * just split and search again.  It'll get split again
 556         * the next time though.
 557         *
 558         * If the extent we found is inside our range, we clear
 559         * the desired bit on it.
 560         */
 561
 562        if (state->start < start) {
 563                prealloc = alloc_extent_state_atomic(prealloc);
 564                BUG_ON(!prealloc);
 565                err = split_state(tree, state, prealloc, start);
 566                if (err)
 567                        extent_io_tree_panic(tree, err);
 568
 569                prealloc = NULL;
 570                if (err)
 571                        goto out;
 572                if (state->end <= end) {
 573                        clear_state_bit(tree, state, &bits, wake);
 574                        if (last_end == (u64)-1)
 575                                goto out;
 576                        start = last_end + 1;
 577                }
 578                goto search_again;
 579        }
 580        /*
 581         * | ---- desired range ---- |
 582         *                        | state |
 583         * We need to split the extent, and clear the bit
 584         * on the first half
 585         */
 586        if (state->start <= end && state->end > end) {
 587                prealloc = alloc_extent_state_atomic(prealloc);
 588                BUG_ON(!prealloc);
 589                err = split_state(tree, state, prealloc, end + 1);
 590                if (err)
 591                        extent_io_tree_panic(tree, err);
 592
 593                if (wake)
 594                        wake_up(&state->wq);
 595
 596                clear_state_bit(tree, prealloc, &bits, wake);
 597
 598                prealloc = NULL;
 599                goto out;
 600        }
 601
 602        state = clear_state_bit(tree, state, &bits, wake);
 603next:
 604        if (last_end == (u64)-1)
 605                goto out;
 606        start = last_end + 1;
 607        if (start <= end && state && !need_resched())
 608                goto hit_next;
 609        goto search_again;
 610
 611out:
 612        spin_unlock(&tree->lock);
 613        if (prealloc)
 614                free_extent_state(prealloc);
 615
 616        return 0;
 617
 618search_again:
 619        if (start > end)
 620                goto out;
 621        spin_unlock(&tree->lock);
 622        if (mask & __GFP_WAIT)
 623                cond_resched();
 624        goto again;
 625}
 626
 627static void wait_on_state(struct extent_io_tree *tree,
 628                          struct extent_state *state)
 629                __releases(tree->lock)
 630                __acquires(tree->lock)
 631{
 632        DEFINE_WAIT(wait);
 633        prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
 634        spin_unlock(&tree->lock);
 635        schedule();
 636        spin_lock(&tree->lock);
 637        finish_wait(&state->wq, &wait);
 638}
 639
 640/*
 641 * waits for one or more bits to clear on a range in the state tree.
 642 * The range [start, end] is inclusive.
 643 * The tree lock is taken by this function
 644 */
 645void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
 646{
 647        struct extent_state *state;
 648        struct rb_node *node;
 649
 650        spin_lock(&tree->lock);
 651again:
 652        while (1) {
 653                /*
 654                 * this search will find all the extents that end after
 655                 * our range starts
 656                 */
 657                node = tree_search(tree, start);
 658                if (!node)
 659                        break;
 660
 661                state = rb_entry(node, struct extent_state, rb_node);
 662
 663                if (state->start > end)
 664                        goto out;
 665
 666                if (state->state & bits) {
 667                        start = state->start;
 668                        atomic_inc(&state->refs);
 669                        wait_on_state(tree, state);
 670                        free_extent_state(state);
 671                        goto again;
 672                }
 673                start = state->end + 1;
 674
 675                if (start > end)
 676                        break;
 677
 678                cond_resched_lock(&tree->lock);
 679        }
 680out:
 681        spin_unlock(&tree->lock);
 682}
 683
 684static void set_state_bits(struct extent_io_tree *tree,
 685                           struct extent_state *state,
 686                           int *bits)
 687{
 688        int bits_to_set = *bits & ~EXTENT_CTLBITS;
 689
 690        set_state_cb(tree, state, bits);
 691        if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
 692                u64 range = state->end - state->start + 1;
 693                tree->dirty_bytes += range;
 694        }
 695        state->state |= bits_to_set;
 696}
 697
 698static void cache_state(struct extent_state *state,
 699                        struct extent_state **cached_ptr)
 700{
 701        if (cached_ptr && !(*cached_ptr)) {
 702                if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
 703                        *cached_ptr = state;
 704                        atomic_inc(&state->refs);
 705                }
 706        }
 707}
 708
 709static void uncache_state(struct extent_state **cached_ptr)
 710{
 711        if (cached_ptr && (*cached_ptr)) {
 712                struct extent_state *state = *cached_ptr;
 713                *cached_ptr = NULL;
 714                free_extent_state(state);
 715        }
 716}
 717
 718/*
 719 * set some bits on a range in the tree.  This may require allocations or
 720 * sleeping, so the gfp mask is used to indicate what is allowed.
 721 *
 722 * If any of the exclusive bits are set, this will fail with -EEXIST if some
 723 * part of the range already has the desired bits set.  The start of the
 724 * existing range is returned in failed_start in this case.
 725 *
 726 * [start, end] is inclusive This takes the tree lock.
 727 */
 728
 729static int __must_check
 730__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 731                 int bits, int exclusive_bits, u64 *failed_start,
 732                 struct extent_state **cached_state, gfp_t mask)
 733{
 734        struct extent_state *state;
 735        struct extent_state *prealloc = NULL;
 736        struct rb_node *node;
 737        int err = 0;
 738        u64 last_start;
 739        u64 last_end;
 740
 741        bits |= EXTENT_FIRST_DELALLOC;
 742again:
 743        if (!prealloc && (mask & __GFP_WAIT)) {
 744                prealloc = alloc_extent_state(mask);
 745                BUG_ON(!prealloc);
 746        }
 747
 748        spin_lock(&tree->lock);
 749        if (cached_state && *cached_state) {
 750                state = *cached_state;
 751                if (state->start <= start && state->end > start &&
 752                    state->tree) {
 753                        node = &state->rb_node;
 754                        goto hit_next;
 755                }
 756        }
 757        /*
 758         * this search will find all the extents that end after
 759         * our range starts.
 760         */
 761        node = tree_search(tree, start);
 762        if (!node) {
 763                prealloc = alloc_extent_state_atomic(prealloc);
 764                BUG_ON(!prealloc);
 765                err = insert_state(tree, prealloc, start, end, &bits);
 766                if (err)
 767                        extent_io_tree_panic(tree, err);
 768
 769                prealloc = NULL;
 770                goto out;
 771        }
 772        state = rb_entry(node, struct extent_state, rb_node);
 773hit_next:
 774        last_start = state->start;
 775        last_end = state->end;
 776
 777        /*
 778         * | ---- desired range ---- |
 779         * | state |
 780         *
 781         * Just lock what we found and keep going
 782         */
 783        if (state->start == start && state->end <= end) {
 784                struct rb_node *next_node;
 785                if (state->state & exclusive_bits) {
 786                        *failed_start = state->start;
 787                        err = -EEXIST;
 788                        goto out;
 789                }
 790
 791                set_state_bits(tree, state, &bits);
 792
 793                cache_state(state, cached_state);
 794                merge_state(tree, state);
 795                if (last_end == (u64)-1)
 796                        goto out;
 797
 798                start = last_end + 1;
 799                next_node = rb_next(&state->rb_node);
 800                if (next_node && start < end && prealloc && !need_resched()) {
 801                        state = rb_entry(next_node, struct extent_state,
 802                                         rb_node);
 803                        if (state->start == start)
 804                                goto hit_next;
 805                }
 806                goto search_again;
 807        }
 808
 809        /*
 810         *     | ---- desired range ---- |
 811         * | state |
 812         *   or
 813         * | ------------- state -------------- |
 814         *
 815         * We need to split the extent we found, and may flip bits on
 816         * second half.
 817         *
 818         * If the extent we found extends past our
 819         * range, we just split and search again.  It'll get split
 820         * again the next time though.
 821         *
 822         * If the extent we found is inside our range, we set the
 823         * desired bit on it.
 824         */
 825        if (state->start < start) {
 826                if (state->state & exclusive_bits) {
 827                        *failed_start = start;
 828                        err = -EEXIST;
 829                        goto out;
 830                }
 831
 832                prealloc = alloc_extent_state_atomic(prealloc);
 833                BUG_ON(!prealloc);
 834                err = split_state(tree, state, prealloc, start);
 835                if (err)
 836                        extent_io_tree_panic(tree, err);
 837
 838                prealloc = NULL;
 839                if (err)
 840                        goto out;
 841                if (state->end <= end) {
 842                        set_state_bits(tree, state, &bits);
 843                        cache_state(state, cached_state);
 844                        merge_state(tree, state);
 845                        if (last_end == (u64)-1)
 846                                goto out;
 847                        start = last_end + 1;
 848                }
 849                goto search_again;
 850        }
 851        /*
 852         * | ---- desired range ---- |
 853         *     | state | or               | state |
 854         *
 855         * There's a hole, we need to insert something in it and
 856         * ignore the extent we found.
 857         */
 858        if (state->start > start) {
 859                u64 this_end;
 860                if (end < last_start)
 861                        this_end = end;
 862                else
 863                        this_end = last_start - 1;
 864
 865                prealloc = alloc_extent_state_atomic(prealloc);
 866                BUG_ON(!prealloc);
 867
 868                /*
 869                 * Avoid to free 'prealloc' if it can be merged with
 870                 * the later extent.
 871                 */
 872                err = insert_state(tree, prealloc, start, this_end,
 873                                   &bits);
 874                if (err)
 875                        extent_io_tree_panic(tree, err);
 876
 877                cache_state(prealloc, cached_state);
 878                prealloc = NULL;
 879                start = this_end + 1;
 880                goto search_again;
 881        }
 882        /*
 883         * | ---- desired range ---- |
 884         *                        | state |
 885         * We need to split the extent, and set the bit
 886         * on the first half
 887         */
 888        if (state->start <= end && state->end > end) {
 889                if (state->state & exclusive_bits) {
 890                        *failed_start = start;
 891                        err = -EEXIST;
 892                        goto out;
 893                }
 894
 895                prealloc = alloc_extent_state_atomic(prealloc);
 896                BUG_ON(!prealloc);
 897                err = split_state(tree, state, prealloc, end + 1);
 898                if (err)
 899                        extent_io_tree_panic(tree, err);
 900
 901                set_state_bits(tree, prealloc, &bits);
 902                cache_state(prealloc, cached_state);
 903                merge_state(tree, prealloc);
 904                prealloc = NULL;
 905                goto out;
 906        }
 907
 908        goto search_again;
 909
 910out:
 911        spin_unlock(&tree->lock);
 912        if (prealloc)
 913                free_extent_state(prealloc);
 914
 915        return err;
 916
 917search_again:
 918        if (start > end)
 919                goto out;
 920        spin_unlock(&tree->lock);
 921        if (mask & __GFP_WAIT)
 922                cond_resched();
 923        goto again;
 924}
 925
 926int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits,
 927                   u64 *failed_start, struct extent_state **cached_state,
 928                   gfp_t mask)
 929{
 930        return __set_extent_bit(tree, start, end, bits, 0, failed_start,
 931                                cached_state, mask);
 932}
 933
 934
 935/**
 936 * convert_extent - convert all bits in a given range from one bit to another
 937 * @tree:       the io tree to search
 938 * @start:      the start offset in bytes
 939 * @end:        the end offset in bytes (inclusive)
 940 * @bits:       the bits to set in this range
 941 * @clear_bits: the bits to clear in this range
 942 * @mask:       the allocation mask
 943 *
 944 * This will go through and set bits for the given range.  If any states exist
 945 * already in this range they are set with the given bit and cleared of the
 946 * clear_bits.  This is only meant to be used by things that are mergeable, ie
 947 * converting from say DELALLOC to DIRTY.  This is not meant to be used with
 948 * boundary bits like LOCK.
 949 */
 950int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 951                       int bits, int clear_bits, gfp_t mask)
 952{
 953        struct extent_state *state;
 954        struct extent_state *prealloc = NULL;
 955        struct rb_node *node;
 956        int err = 0;
 957        u64 last_start;
 958        u64 last_end;
 959
 960again:
 961        if (!prealloc && (mask & __GFP_WAIT)) {
 962                prealloc = alloc_extent_state(mask);
 963                if (!prealloc)
 964                        return -ENOMEM;
 965        }
 966
 967        spin_lock(&tree->lock);
 968        /*
 969         * this search will find all the extents that end after
 970         * our range starts.
 971         */
 972        node = tree_search(tree, start);
 973        if (!node) {
 974                prealloc = alloc_extent_state_atomic(prealloc);
 975                if (!prealloc) {
 976                        err = -ENOMEM;
 977                        goto out;
 978                }
 979                err = insert_state(tree, prealloc, start, end, &bits);
 980                prealloc = NULL;
 981                if (err)
 982                        extent_io_tree_panic(tree, err);
 983                goto out;
 984        }
 985        state = rb_entry(node, struct extent_state, rb_node);
 986hit_next:
 987        last_start = state->start;
 988        last_end = state->end;
 989
 990        /*
 991         * | ---- desired range ---- |
 992         * | state |
 993         *
 994         * Just lock what we found and keep going
 995         */
 996        if (state->start == start && state->end <= end) {
 997                struct rb_node *next_node;
 998
 999                set_state_bits(tree, state, &bits);
1000                clear_state_bit(tree, state, &clear_bits, 0);
1001                if (last_end == (u64)-1)
1002                        goto out;
1003
1004                start = last_end + 1;
1005                next_node = rb_next(&state->rb_node);
1006                if (next_node && start < end && prealloc && !need_resched()) {
1007                        state = rb_entry(next_node, struct extent_state,
1008                                         rb_node);
1009                        if (state->start == start)
1010                                goto hit_next;
1011                }
1012                goto search_again;
1013        }
1014
1015        /*
1016         *     | ---- desired range ---- |
1017         * | state |
1018         *   or
1019         * | ------------- state -------------- |
1020         *
1021         * We need to split the extent we found, and may flip bits on
1022         * second half.
1023         *
1024         * If the extent we found extends past our
1025         * range, we just split and search again.  It'll get split
1026         * again the next time though.
1027         *
1028         * If the extent we found is inside our range, we set the
1029         * desired bit on it.
1030         */
1031        if (state->start < start) {
1032                prealloc = alloc_extent_state_atomic(prealloc);
1033                if (!prealloc) {
1034                        err = -ENOMEM;
1035                        goto out;
1036                }
1037                err = split_state(tree, state, prealloc, start);
1038                if (err)
1039                        extent_io_tree_panic(tree, err);
1040                prealloc = NULL;
1041                if (err)
1042                        goto out;
1043                if (state->end <= end) {
1044                        set_state_bits(tree, state, &bits);
1045                        clear_state_bit(tree, state, &clear_bits, 0);
1046                        if (last_end == (u64)-1)
1047                                goto out;
1048                        start = last_end + 1;
1049                }
1050                goto search_again;
1051        }
1052        /*
1053         * | ---- desired range ---- |
1054         *     | state | or               | state |
1055         *
1056         * There's a hole, we need to insert something in it and
1057         * ignore the extent we found.
1058         */
1059        if (state->start > start) {
1060                u64 this_end;
1061                if (end < last_start)
1062                        this_end = end;
1063                else
1064                        this_end = last_start - 1;
1065
1066                prealloc = alloc_extent_state_atomic(prealloc);
1067                if (!prealloc) {
1068                        err = -ENOMEM;
1069                        goto out;
1070                }
1071
1072                /*
1073                 * Avoid to free 'prealloc' if it can be merged with
1074                 * the later extent.
1075                 */
1076                err = insert_state(tree, prealloc, start, this_end,
1077                                   &bits);
1078                if (err)
1079                        extent_io_tree_panic(tree, err);
1080                prealloc = NULL;
1081                start = this_end + 1;
1082                goto search_again;
1083        }
1084        /*
1085         * | ---- desired range ---- |
1086         *                        | state |
1087         * We need to split the extent, and set the bit
1088         * on the first half
1089         */
1090        if (state->start <= end && state->end > end) {
1091                prealloc = alloc_extent_state_atomic(prealloc);
1092                if (!prealloc) {
1093                        err = -ENOMEM;
1094                        goto out;
1095                }
1096
1097                err = split_state(tree, state, prealloc, end + 1);
1098                if (err)
1099                        extent_io_tree_panic(tree, err);
1100
1101                set_state_bits(tree, prealloc, &bits);
1102                clear_state_bit(tree, prealloc, &clear_bits, 0);
1103                prealloc = NULL;
1104                goto out;
1105        }
1106
1107        goto search_again;
1108
1109out:
1110        spin_unlock(&tree->lock);
1111        if (prealloc)
1112                free_extent_state(prealloc);
1113
1114        return err;
1115
1116search_again:
1117        if (start > end)
1118                goto out;
1119        spin_unlock(&tree->lock);
1120        if (mask & __GFP_WAIT)
1121                cond_resched();
1122        goto again;
1123}
1124
1125/* wrappers around set/clear extent bit */
1126int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1127                     gfp_t mask)
1128{
1129        return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1130                              NULL, mask);
1131}
1132
1133int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1134                    int bits, gfp_t mask)
1135{
1136        return set_extent_bit(tree, start, end, bits, NULL,
1137                              NULL, mask);
1138}
1139
1140int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1141                      int bits, gfp_t mask)
1142{
1143        return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1144}
1145
1146int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1147                        struct extent_state **cached_state, gfp_t mask)
1148{
1149        return set_extent_bit(tree, start, end,
1150                              EXTENT_DELALLOC | EXTENT_UPTODATE,
1151                              NULL, cached_state, mask);
1152}
1153
1154int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1155                       gfp_t mask)
1156{
1157        return clear_extent_bit(tree, start, end,
1158                                EXTENT_DIRTY | EXTENT_DELALLOC |
1159                                EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1160}
1161
1162int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1163                     gfp_t mask)
1164{
1165        return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1166                              NULL, mask);
1167}
1168
1169int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1170                        struct extent_state **cached_state, gfp_t mask)
1171{
1172        return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0,
1173                              cached_state, mask);
1174}
1175
1176static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start,
1177                                 u64 end, struct extent_state **cached_state,
1178                                 gfp_t mask)
1179{
1180        return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1181                                cached_state, mask);
1182}
1183
1184/*
1185 * either insert or lock state struct between start and end use mask to tell
1186 * us if waiting is desired.
1187 */
1188int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1189                     int bits, struct extent_state **cached_state)
1190{
1191        int err;
1192        u64 failed_start;
1193        while (1) {
1194                err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1195                                       EXTENT_LOCKED, &failed_start,
1196                                       cached_state, GFP_NOFS);
1197                if (err == -EEXIST) {
1198                        wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1199                        start = failed_start;
1200                } else
1201                        break;
1202                WARN_ON(start > end);
1203        }
1204        return err;
1205}
1206
1207int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1208{
1209        return lock_extent_bits(tree, start, end, 0, NULL);
1210}
1211
1212int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1213{
1214        int err;
1215        u64 failed_start;
1216
1217        err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1218                               &failed_start, NULL, GFP_NOFS);
1219        if (err == -EEXIST) {
1220                if (failed_start > start)
1221                        clear_extent_bit(tree, start, failed_start - 1,
1222                                         EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1223                return 0;
1224        }
1225        return 1;
1226}
1227
1228int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1229                         struct extent_state **cached, gfp_t mask)
1230{
1231        return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1232                                mask);
1233}
1234
1235int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1236{
1237        return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1238                                GFP_NOFS);
1239}
1240
1241/*
1242 * helper function to set both pages and extents in the tree writeback
1243 */
1244static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1245{
1246        unsigned long index = start >> PAGE_CACHE_SHIFT;
1247        unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1248        struct page *page;
1249
1250        while (index <= end_index) {
1251                page = find_get_page(tree->mapping, index);
1252                BUG_ON(!page); /* Pages should be in the extent_io_tree */
1253                set_page_writeback(page);
1254                page_cache_release(page);
1255                index++;
1256        }
1257        return 0;
1258}
1259
1260/* find the first state struct with 'bits' set after 'start', and
1261 * return it.  tree->lock must be held.  NULL will returned if
1262 * nothing was found after 'start'
1263 */
1264struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1265                                                 u64 start, int bits)
1266{
1267        struct rb_node *node;
1268        struct extent_state *state;
1269
1270        /*
1271         * this search will find all the extents that end after
1272         * our range starts.
1273         */
1274        node = tree_search(tree, start);
1275        if (!node)
1276                goto out;
1277
1278        while (1) {
1279                state = rb_entry(node, struct extent_state, rb_node);
1280                if (state->end >= start && (state->state & bits))
1281                        return state;
1282
1283                node = rb_next(node);
1284                if (!node)
1285                        break;
1286        }
1287out:
1288        return NULL;
1289}
1290
1291/*
1292 * find the first offset in the io tree with 'bits' set. zero is
1293 * returned if we find something, and *start_ret and *end_ret are
1294 * set to reflect the state struct that was found.
1295 *
1296 * If nothing was found, 1 is returned, < 0 on error
1297 */
1298int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1299                          u64 *start_ret, u64 *end_ret, int bits)
1300{
1301        struct extent_state *state;
1302        int ret = 1;
1303
1304        spin_lock(&tree->lock);
1305        state = find_first_extent_bit_state(tree, start, bits);
1306        if (state) {
1307                *start_ret = state->start;
1308                *end_ret = state->end;
1309                ret = 0;
1310        }
1311        spin_unlock(&tree->lock);
1312        return ret;
1313}
1314
1315/*
1316 * find a contiguous range of bytes in the file marked as delalloc, not
1317 * more than 'max_bytes'.  start and end are used to return the range,
1318 *
1319 * 1 is returned if we find something, 0 if nothing was in the tree
1320 */
1321static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1322                                        u64 *start, u64 *end, u64 max_bytes,
1323                                        struct extent_state **cached_state)
1324{
1325        struct rb_node *node;
1326        struct extent_state *state;
1327        u64 cur_start = *start;
1328        u64 found = 0;
1329        u64 total_bytes = 0;
1330
1331        spin_lock(&tree->lock);
1332
1333        /*
1334         * this search will find all the extents that end after
1335         * our range starts.
1336         */
1337        node = tree_search(tree, cur_start);
1338        if (!node) {
1339                if (!found)
1340                        *end = (u64)-1;
1341                goto out;
1342        }
1343
1344        while (1) {
1345                state = rb_entry(node, struct extent_state, rb_node);
1346                if (found && (state->start != cur_start ||
1347                              (state->state & EXTENT_BOUNDARY))) {
1348                        goto out;
1349                }
1350                if (!(state->state & EXTENT_DELALLOC)) {
1351                        if (!found)
1352                                *end = state->end;
1353                        goto out;
1354                }
1355                if (!found) {
1356                        *start = state->start;
1357                        *cached_state = state;
1358                        atomic_inc(&state->refs);
1359                }
1360                found++;
1361                *end = state->end;
1362                cur_start = state->end + 1;
1363                node = rb_next(node);
1364                if (!node)
1365                        break;
1366                total_bytes += state->end - state->start + 1;
1367                if (total_bytes >= max_bytes)
1368                        break;
1369        }
1370out:
1371        spin_unlock(&tree->lock);
1372        return found;
1373}
1374
1375static noinline void __unlock_for_delalloc(struct inode *inode,
1376                                           struct page *locked_page,
1377                                           u64 start, u64 end)
1378{
1379        int ret;
1380        struct page *pages[16];
1381        unsigned long index = start >> PAGE_CACHE_SHIFT;
1382        unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1383        unsigned long nr_pages = end_index - index + 1;
1384        int i;
1385
1386        if (index == locked_page->index && end_index == index)
1387                return;
1388
1389        while (nr_pages > 0) {
1390                ret = find_get_pages_contig(inode->i_mapping, index,
1391                                     min_t(unsigned long, nr_pages,
1392                                     ARRAY_SIZE(pages)), pages);
1393                for (i = 0; i < ret; i++) {
1394                        if (pages[i] != locked_page)
1395                                unlock_page(pages[i]);
1396                        page_cache_release(pages[i]);
1397                }
1398                nr_pages -= ret;
1399                index += ret;
1400                cond_resched();
1401        }
1402}
1403
1404static noinline int lock_delalloc_pages(struct inode *inode,
1405                                        struct page *locked_page,
1406                                        u64 delalloc_start,
1407                                        u64 delalloc_end)
1408{
1409        unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1410        unsigned long start_index = index;
1411        unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1412        unsigned long pages_locked = 0;
1413        struct page *pages[16];
1414        unsigned long nrpages;
1415        int ret;
1416        int i;
1417
1418        /* the caller is responsible for locking the start index */
1419        if (index == locked_page->index && index == end_index)
1420                return 0;
1421
1422        /* skip the page at the start index */
1423        nrpages = end_index - index + 1;
1424        while (nrpages > 0) {
1425                ret = find_get_pages_contig(inode->i_mapping, index,
1426                                     min_t(unsigned long,
1427                                     nrpages, ARRAY_SIZE(pages)), pages);
1428                if (ret == 0) {
1429                        ret = -EAGAIN;
1430                        goto done;
1431                }
1432                /* now we have an array of pages, lock them all */
1433                for (i = 0; i < ret; i++) {
1434                        /*
1435                         * the caller is taking responsibility for
1436                         * locked_page
1437                         */
1438                        if (pages[i] != locked_page) {
1439                                lock_page(pages[i]);
1440                                if (!PageDirty(pages[i]) ||
1441                                    pages[i]->mapping != inode->i_mapping) {
1442                                        ret = -EAGAIN;
1443                                        unlock_page(pages[i]);
1444                                        page_cache_release(pages[i]);
1445                                        goto done;
1446                                }
1447                        }
1448                        page_cache_release(pages[i]);
1449                        pages_locked++;
1450                }
1451                nrpages -= ret;
1452                index += ret;
1453                cond_resched();
1454        }
1455        ret = 0;
1456done:
1457        if (ret && pages_locked) {
1458                __unlock_for_delalloc(inode, locked_page,
1459                              delalloc_start,
1460                              ((u64)(start_index + pages_locked - 1)) <<
1461                              PAGE_CACHE_SHIFT);
1462        }
1463        return ret;
1464}
1465
1466/*
1467 * find a contiguous range of bytes in the file marked as delalloc, not
1468 * more than 'max_bytes'.  start and end are used to return the range,
1469 *
1470 * 1 is returned if we find something, 0 if nothing was in the tree
1471 */
1472static noinline u64 find_lock_delalloc_range(struct inode *inode,
1473                                             struct extent_io_tree *tree,
1474                                             struct page *locked_page,
1475                                             u64 *start, u64 *end,
1476                                             u64 max_bytes)
1477{
1478        u64 delalloc_start;
1479        u64 delalloc_end;
1480        u64 found;
1481        struct extent_state *cached_state = NULL;
1482        int ret;
1483        int loops = 0;
1484
1485again:
1486        /* step one, find a bunch of delalloc bytes starting at start */
1487        delalloc_start = *start;
1488        delalloc_end = 0;
1489        found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1490                                    max_bytes, &cached_state);
1491        if (!found || delalloc_end <= *start) {
1492                *start = delalloc_start;
1493                *end = delalloc_end;
1494                free_extent_state(cached_state);
1495                return found;
1496        }
1497
1498        /*
1499         * start comes from the offset of locked_page.  We have to lock
1500         * pages in order, so we can't process delalloc bytes before
1501         * locked_page
1502         */
1503        if (delalloc_start < *start)
1504                delalloc_start = *start;
1505
1506        /*
1507         * make sure to limit the number of pages we try to lock down
1508         * if we're looping.
1509         */
1510        if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1511                delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1512
1513        /* step two, lock all the pages after the page that has start */
1514        ret = lock_delalloc_pages(inode, locked_page,
1515                                  delalloc_start, delalloc_end);
1516        if (ret == -EAGAIN) {
1517                /* some of the pages are gone, lets avoid looping by
1518                 * shortening the size of the delalloc range we're searching
1519                 */
1520                free_extent_state(cached_state);
1521                if (!loops) {
1522                        unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1523                        max_bytes = PAGE_CACHE_SIZE - offset;
1524                        loops = 1;
1525                        goto again;
1526                } else {
1527                        found = 0;
1528                        goto out_failed;
1529                }
1530        }
1531        BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1532
1533        /* step three, lock the state bits for the whole range */
1534        lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1535
1536        /* then test to make sure it is all still delalloc */
1537        ret = test_range_bit(tree, delalloc_start, delalloc_end,
1538                             EXTENT_DELALLOC, 1, cached_state);
1539        if (!ret) {
1540                unlock_extent_cached(tree, delalloc_start, delalloc_end,
1541                                     &cached_state, GFP_NOFS);
1542                __unlock_for_delalloc(inode, locked_page,
1543                              delalloc_start, delalloc_end);
1544                cond_resched();
1545                goto again;
1546        }
1547        free_extent_state(cached_state);
1548        *start = delalloc_start;
1549        *end = delalloc_end;
1550out_failed:
1551        return found;
1552}
1553
1554int extent_clear_unlock_delalloc(struct inode *inode,
1555                                struct extent_io_tree *tree,
1556                                u64 start, u64 end, struct page *locked_page,
1557                                unsigned long op)
1558{
1559        int ret;
1560        struct page *pages[16];
1561        unsigned long index = start >> PAGE_CACHE_SHIFT;
1562        unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1563        unsigned long nr_pages = end_index - index + 1;
1564        int i;
1565        int clear_bits = 0;
1566
1567        if (op & EXTENT_CLEAR_UNLOCK)
1568                clear_bits |= EXTENT_LOCKED;
1569        if (op & EXTENT_CLEAR_DIRTY)
1570                clear_bits |= EXTENT_DIRTY;
1571
1572        if (op & EXTENT_CLEAR_DELALLOC)
1573                clear_bits |= EXTENT_DELALLOC;
1574
1575        clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1576        if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1577                    EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1578                    EXTENT_SET_PRIVATE2)))
1579                return 0;
1580
1581        while (nr_pages > 0) {
1582                ret = find_get_pages_contig(inode->i_mapping, index,
1583                                     min_t(unsigned long,
1584                                     nr_pages, ARRAY_SIZE(pages)), pages);
1585                for (i = 0; i < ret; i++) {
1586
1587                        if (op & EXTENT_SET_PRIVATE2)
1588                                SetPagePrivate2(pages[i]);
1589
1590                        if (pages[i] == locked_page) {
1591                                page_cache_release(pages[i]);
1592                                continue;
1593                        }
1594                        if (op & EXTENT_CLEAR_DIRTY)
1595                                clear_page_dirty_for_io(pages[i]);
1596                        if (op & EXTENT_SET_WRITEBACK)
1597                                set_page_writeback(pages[i]);
1598                        if (op & EXTENT_END_WRITEBACK)
1599                                end_page_writeback(pages[i]);
1600                        if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1601                                unlock_page(pages[i]);
1602                        page_cache_release(pages[i]);
1603                }
1604                nr_pages -= ret;
1605                index += ret;
1606                cond_resched();
1607        }
1608        return 0;
1609}
1610
1611/*
1612 * count the number of bytes in the tree that have a given bit(s)
1613 * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1614 * cached.  The total number found is returned.
1615 */
1616u64 count_range_bits(struct extent_io_tree *tree,
1617                     u64 *start, u64 search_end, u64 max_bytes,
1618                     unsigned long bits, int contig)
1619{
1620        struct rb_node *node;
1621        struct extent_state *state;
1622        u64 cur_start = *start;
1623        u64 total_bytes = 0;
1624        u64 last = 0;
1625        int found = 0;
1626
1627        if (search_end <= cur_start) {
1628                WARN_ON(1);
1629                return 0;
1630        }
1631
1632        spin_lock(&tree->lock);
1633        if (cur_start == 0 && bits == EXTENT_DIRTY) {
1634                total_bytes = tree->dirty_bytes;
1635                goto out;
1636        }
1637        /*
1638         * this search will find all the extents that end after
1639         * our range starts.
1640         */
1641        node = tree_search(tree, cur_start);
1642        if (!node)
1643                goto out;
1644
1645        while (1) {
1646                state = rb_entry(node, struct extent_state, rb_node);
1647                if (state->start > search_end)
1648                        break;
1649                if (contig && found && state->start > last + 1)
1650                        break;
1651                if (state->end >= cur_start && (state->state & bits) == bits) {
1652                        total_bytes += min(search_end, state->end) + 1 -
1653                                       max(cur_start, state->start);
1654                        if (total_bytes >= max_bytes)
1655                                break;
1656                        if (!found) {
1657                                *start = max(cur_start, state->start);
1658                                found = 1;
1659                        }
1660                        last = state->end;
1661                } else if (contig && found) {
1662                        break;
1663                }
1664                node = rb_next(node);
1665                if (!node)
1666                        break;
1667        }
1668out:
1669        spin_unlock(&tree->lock);
1670        return total_bytes;
1671}
1672
1673/*
1674 * set the private field for a given byte offset in the tree.  If there isn't
1675 * an extent_state there already, this does nothing.
1676 */
1677int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1678{
1679        struct rb_node *node;
1680        struct extent_state *state;
1681        int ret = 0;
1682
1683        spin_lock(&tree->lock);
1684        /*
1685         * this search will find all the extents that end after
1686         * our range starts.
1687         */
1688        node = tree_search(tree, start);
1689        if (!node) {
1690                ret = -ENOENT;
1691                goto out;
1692        }
1693        state = rb_entry(node, struct extent_state, rb_node);
1694        if (state->start != start) {
1695                ret = -ENOENT;
1696                goto out;
1697        }
1698        state->private = private;
1699out:
1700        spin_unlock(&tree->lock);
1701        return ret;
1702}
1703
1704int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1705{
1706        struct rb_node *node;
1707        struct extent_state *state;
1708        int ret = 0;
1709
1710        spin_lock(&tree->lock);
1711        /*
1712         * this search will find all the extents that end after
1713         * our range starts.
1714         */
1715        node = tree_search(tree, start);
1716        if (!node) {
1717                ret = -ENOENT;
1718                goto out;
1719        }
1720        state = rb_entry(node, struct extent_state, rb_node);
1721        if (state->start != start) {
1722                ret = -ENOENT;
1723                goto out;
1724        }
1725        *private = state->private;
1726out:
1727        spin_unlock(&tree->lock);
1728        return ret;
1729}
1730
1731/*
1732 * searches a range in the state tree for a given mask.
1733 * If 'filled' == 1, this returns 1 only if every extent in the tree
1734 * has the bits set.  Otherwise, 1 is returned if any bit in the
1735 * range is found set.
1736 */
1737int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1738                   int bits, int filled, struct extent_state *cached)
1739{
1740        struct extent_state *state = NULL;
1741        struct rb_node *node;
1742        int bitset = 0;
1743
1744        spin_lock(&tree->lock);
1745        if (cached && cached->tree && cached->start <= start &&
1746            cached->end > start)
1747                node = &cached->rb_node;
1748        else
1749                node = tree_search(tree, start);
1750        while (node && start <= end) {
1751                state = rb_entry(node, struct extent_state, rb_node);
1752
1753                if (filled && state->start > start) {
1754                        bitset = 0;
1755                        break;
1756                }
1757
1758                if (state->start > end)
1759                        break;
1760
1761                if (state->state & bits) {
1762                        bitset = 1;
1763                        if (!filled)
1764                                break;
1765                } else if (filled) {
1766                        bitset = 0;
1767                        break;
1768                }
1769
1770                if (state->end == (u64)-1)
1771                        break;
1772
1773                start = state->end + 1;
1774                if (start > end)
1775                        break;
1776                node = rb_next(node);
1777                if (!node) {
1778                        if (filled)
1779                                bitset = 0;
1780                        break;
1781                }
1782        }
1783        spin_unlock(&tree->lock);
1784        return bitset;
1785}
1786
1787/*
1788 * helper function to set a given page up to date if all the
1789 * extents in the tree for that page are up to date
1790 */
1791static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1792{
1793        u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1794        u64 end = start + PAGE_CACHE_SIZE - 1;
1795        if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1796                SetPageUptodate(page);
1797}
1798
1799/*
1800 * helper function to unlock a page if all the extents in the tree
1801 * for that page are unlocked
1802 */
1803static void check_page_locked(struct extent_io_tree *tree, struct page *page)
1804{
1805        u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1806        u64 end = start + PAGE_CACHE_SIZE - 1;
1807        if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1808                unlock_page(page);
1809}
1810
1811/*
1812 * helper function to end page writeback if all the extents
1813 * in the tree for that page are done with writeback
1814 */
1815static void check_page_writeback(struct extent_io_tree *tree,
1816                                 struct page *page)
1817{
1818        end_page_writeback(page);
1819}
1820
1821/*
1822 * When IO fails, either with EIO or csum verification fails, we
1823 * try other mirrors that might have a good copy of the data.  This
1824 * io_failure_record is used to record state as we go through all the
1825 * mirrors.  If another mirror has good data, the page is set up to date
1826 * and things continue.  If a good mirror can't be found, the original
1827 * bio end_io callback is called to indicate things have failed.
1828 */
1829struct io_failure_record {
1830        struct page *page;
1831        u64 start;
1832        u64 len;
1833        u64 logical;
1834        unsigned long bio_flags;
1835        int this_mirror;
1836        int failed_mirror;
1837        int in_validation;
1838};
1839
1840static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1841                                int did_repair)
1842{
1843        int ret;
1844        int err = 0;
1845        struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1846
1847        set_state_private(failure_tree, rec->start, 0);
1848        ret = clear_extent_bits(failure_tree, rec->start,
1849                                rec->start + rec->len - 1,
1850                                EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1851        if (ret)
1852                err = ret;
1853
1854        if (did_repair) {
1855                ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1856                                        rec->start + rec->len - 1,
1857                                        EXTENT_DAMAGED, GFP_NOFS);
1858                if (ret && !err)
1859                        err = ret;
1860        }
1861
1862        kfree(rec);
1863        return err;
1864}
1865
1866static void repair_io_failure_callback(struct bio *bio, int err)
1867{
1868        complete(bio->bi_private);
1869}
1870
1871/*
1872 * this bypasses the standard btrfs submit functions deliberately, as
1873 * the standard behavior is to write all copies in a raid setup. here we only
1874 * want to write the one bad copy. so we do the mapping for ourselves and issue
1875 * submit_bio directly.
1876 * to avoid any synchonization issues, wait for the data after writing, which
1877 * actually prevents the read that triggered the error from finishing.
1878 * currently, there can be no more than two copies of every data bit. thus,
1879 * exactly one rewrite is required.
1880 */
1881int repair_io_failure(struct btrfs_mapping_tree *map_tree, u64 start,
1882                        u64 length, u64 logical, struct page *page,
1883                        int mirror_num)
1884{
1885        struct bio *bio;
1886        struct btrfs_device *dev;
1887        DECLARE_COMPLETION_ONSTACK(compl);
1888        u64 map_length = 0;
1889        u64 sector;
1890        struct btrfs_bio *bbio = NULL;
1891        int ret;
1892
1893        BUG_ON(!mirror_num);
1894
1895        bio = bio_alloc(GFP_NOFS, 1);
1896        if (!bio)
1897                return -EIO;
1898        bio->bi_private = &compl;
1899        bio->bi_end_io = repair_io_failure_callback;
1900        bio->bi_size = 0;
1901        map_length = length;
1902
1903        ret = btrfs_map_block(map_tree, WRITE, logical,
1904                              &map_length, &bbio, mirror_num);
1905        if (ret) {
1906                bio_put(bio);
1907                return -EIO;
1908        }
1909        BUG_ON(mirror_num != bbio->mirror_num);
1910        sector = bbio->stripes[mirror_num-1].physical >> 9;
1911        bio->bi_sector = sector;
1912        dev = bbio->stripes[mirror_num-1].dev;
1913        kfree(bbio);
1914        if (!dev || !dev->bdev || !dev->writeable) {
1915                bio_put(bio);
1916                return -EIO;
1917        }
1918        bio->bi_bdev = dev->bdev;
1919        bio_add_page(bio, page, length, start-page_offset(page));
1920        btrfsic_submit_bio(WRITE_SYNC, bio);
1921        wait_for_completion(&compl);
1922
1923        if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
1924                /* try to remap that extent elsewhere? */
1925                bio_put(bio);
1926                return -EIO;
1927        }
1928
1929        printk(KERN_INFO "btrfs read error corrected: ino %lu off %llu (dev %s "
1930                        "sector %llu)\n", page->mapping->host->i_ino, start,
1931                        dev->name, sector);
1932
1933        bio_put(bio);
1934        return 0;
1935}
1936
1937int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
1938                         int mirror_num)
1939{
1940        struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
1941        u64 start = eb->start;
1942        unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
1943        int ret = 0;
1944
1945        for (i = 0; i < num_pages; i++) {
1946                struct page *p = extent_buffer_page(eb, i);
1947                ret = repair_io_failure(map_tree, start, PAGE_CACHE_SIZE,
1948                                        start, p, mirror_num);
1949                if (ret)
1950                        break;
1951                start += PAGE_CACHE_SIZE;
1952        }
1953
1954        return ret;
1955}
1956
1957/*
1958 * each time an IO finishes, we do a fast check in the IO failure tree
1959 * to see if we need to process or clean up an io_failure_record
1960 */
1961static int clean_io_failure(u64 start, struct page *page)
1962{
1963        u64 private;
1964        u64 private_failure;
1965        struct io_failure_record *failrec;
1966        struct btrfs_mapping_tree *map_tree;
1967        struct extent_state *state;
1968        int num_copies;
1969        int did_repair = 0;
1970        int ret;
1971        struct inode *inode = page->mapping->host;
1972
1973        private = 0;
1974        ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1975                                (u64)-1, 1, EXTENT_DIRTY, 0);
1976        if (!ret)
1977                return 0;
1978
1979        ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
1980                                &private_failure);
1981        if (ret)
1982                return 0;
1983
1984        failrec = (struct io_failure_record *)(unsigned long) private_failure;
1985        BUG_ON(!failrec->this_mirror);
1986
1987        if (failrec->in_validation) {
1988                /* there was no real error, just free the record */
1989                pr_debug("clean_io_failure: freeing dummy error at %llu\n",
1990                         failrec->start);
1991                did_repair = 1;
1992                goto out;
1993        }
1994
1995        spin_lock(&BTRFS_I(inode)->io_tree.lock);
1996        state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1997                                            failrec->start,
1998                                            EXTENT_LOCKED);
1999        spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2000
2001        if (state && state->start == failrec->start) {
2002                map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
2003                num_copies = btrfs_num_copies(map_tree, failrec->logical,
2004                                                failrec->len);
2005                if (num_copies > 1)  {
2006                        ret = repair_io_failure(map_tree, start, failrec->len,
2007                                                failrec->logical, page,
2008                                                failrec->failed_mirror);
2009                        did_repair = !ret;
2010                }
2011        }
2012
2013out:
2014        if (!ret)
2015                ret = free_io_failure(inode, failrec, did_repair);
2016
2017        return ret;
2018}
2019
2020/*
2021 * this is a generic handler for readpage errors (default
2022 * readpage_io_failed_hook). if other copies exist, read those and write back
2023 * good data to the failed position. does not investigate in remapping the
2024 * failed extent elsewhere, hoping the device will be smart enough to do this as
2025 * needed
2026 */
2027
2028static int bio_readpage_error(struct bio *failed_bio, struct page *page,
2029                                u64 start, u64 end, int failed_mirror,
2030                                struct extent_state *state)
2031{
2032        struct io_failure_record *failrec = NULL;
2033        u64 private;
2034        struct extent_map *em;
2035        struct inode *inode = page->mapping->host;
2036        struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2037        struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2038        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2039        struct bio *bio;
2040        int num_copies;
2041        int ret;
2042        int read_mode;
2043        u64 logical;
2044
2045        BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2046
2047        ret = get_state_private(failure_tree, start, &private);
2048        if (ret) {
2049                failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2050                if (!failrec)
2051                        return -ENOMEM;
2052                failrec->start = start;
2053                failrec->len = end - start + 1;
2054                failrec->this_mirror = 0;
2055                failrec->bio_flags = 0;
2056                failrec->in_validation = 0;
2057
2058                read_lock(&em_tree->lock);
2059                em = lookup_extent_mapping(em_tree, start, failrec->len);
2060                if (!em) {
2061                        read_unlock(&em_tree->lock);
2062                        kfree(failrec);
2063                        return -EIO;
2064                }
2065
2066                if (em->start > start || em->start + em->len < start) {
2067                        free_extent_map(em);
2068                        em = NULL;
2069                }
2070                read_unlock(&em_tree->lock);
2071
2072                if (!em || IS_ERR(em)) {
2073                        kfree(failrec);
2074                        return -EIO;
2075                }
2076                logical = start - em->start;
2077                logical = em->block_start + logical;
2078                if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2079                        logical = em->block_start;
2080                        failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2081                        extent_set_compress_type(&failrec->bio_flags,
2082                                                 em->compress_type);
2083                }
2084                pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2085                         "len=%llu\n", logical, start, failrec->len);
2086                failrec->logical = logical;
2087                free_extent_map(em);
2088
2089                /* set the bits in the private failure tree */
2090                ret = set_extent_bits(failure_tree, start, end,
2091                                        EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2092                if (ret >= 0)
2093                        ret = set_state_private(failure_tree, start,
2094                                                (u64)(unsigned long)failrec);
2095                /* set the bits in the inode's tree */
2096                if (ret >= 0)
2097                        ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2098                                                GFP_NOFS);
2099                if (ret < 0) {
2100                        kfree(failrec);
2101                        return ret;
2102                }
2103        } else {
2104                failrec = (struct io_failure_record *)(unsigned long)private;
2105                pr_debug("bio_readpage_error: (found) logical=%llu, "
2106                         "start=%llu, len=%llu, validation=%d\n",
2107                         failrec->logical, failrec->start, failrec->len,
2108                         failrec->in_validation);
2109                /*
2110                 * when data can be on disk more than twice, add to failrec here
2111                 * (e.g. with a list for failed_mirror) to make
2112                 * clean_io_failure() clean all those errors at once.
2113                 */
2114        }
2115        num_copies = btrfs_num_copies(
2116                              &BTRFS_I(inode)->root->fs_info->mapping_tree,
2117                              failrec->logical, failrec->len);
2118        if (num_copies == 1) {
2119                /*
2120                 * we only have a single copy of the data, so don't bother with
2121                 * all the retry and error correction code that follows. no
2122                 * matter what the error is, it is very likely to persist.
2123                 */
2124                pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2125                         "state=%p, num_copies=%d, next_mirror %d, "
2126                         "failed_mirror %d\n", state, num_copies,
2127                         failrec->this_mirror, failed_mirror);
2128                free_io_failure(inode, failrec, 0);
2129                return -EIO;
2130        }
2131
2132        if (!state) {
2133                spin_lock(&tree->lock);
2134                state = find_first_extent_bit_state(tree, failrec->start,
2135                                                    EXTENT_LOCKED);
2136                if (state && state->start != failrec->start)
2137                        state = NULL;
2138                spin_unlock(&tree->lock);
2139        }
2140
2141        /*
2142         * there are two premises:
2143         *      a) deliver good data to the caller
2144         *      b) correct the bad sectors on disk
2145         */
2146        if (failed_bio->bi_vcnt > 1) {
2147                /*
2148                 * to fulfill b), we need to know the exact failing sectors, as
2149                 * we don't want to rewrite any more than the failed ones. thus,
2150                 * we need separate read requests for the failed bio
2151                 *
2152                 * if the following BUG_ON triggers, our validation request got
2153                 * merged. we need separate requests for our algorithm to work.
2154                 */
2155                BUG_ON(failrec->in_validation);
2156                failrec->in_validation = 1;
2157                failrec->this_mirror = failed_mirror;
2158                read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2159        } else {
2160                /*
2161                 * we're ready to fulfill a) and b) alongside. get a good copy
2162                 * of the failed sector and if we succeed, we have setup
2163                 * everything for repair_io_failure to do the rest for us.
2164                 */
2165                if (failrec->in_validation) {
2166                        BUG_ON(failrec->this_mirror != failed_mirror);
2167                        failrec->in_validation = 0;
2168                        failrec->this_mirror = 0;
2169                }
2170                failrec->failed_mirror = failed_mirror;
2171                failrec->this_mirror++;
2172                if (failrec->this_mirror == failed_mirror)
2173                        failrec->this_mirror++;
2174                read_mode = READ_SYNC;
2175        }
2176
2177        if (!state || failrec->this_mirror > num_copies) {
2178                pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2179                         "next_mirror %d, failed_mirror %d\n", state,
2180                         num_copies, failrec->this_mirror, failed_mirror);
2181                free_io_failure(inode, failrec, 0);
2182                return -EIO;
2183        }
2184
2185        bio = bio_alloc(GFP_NOFS, 1);
2186        if (!bio) {
2187                free_io_failure(inode, failrec, 0);
2188                return -EIO;
2189        }
2190        bio->bi_private = state;
2191        bio->bi_end_io = failed_bio->bi_end_io;
2192        bio->bi_sector = failrec->logical >> 9;
2193        bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2194        bio->bi_size = 0;
2195
2196        bio_add_page(bio, page, failrec->len, start - page_offset(page));
2197
2198        pr_debug("bio_readpage_error: submitting new read[%#x] to "
2199                 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2200                 failrec->this_mirror, num_copies, failrec->in_validation);
2201
2202        ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2203                                         failrec->this_mirror,
2204                                         failrec->bio_flags, 0);
2205        return ret;
2206}
2207
2208/* lots and lots of room for performance fixes in the end_bio funcs */
2209
2210int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2211{
2212        int uptodate = (err == 0);
2213        struct extent_io_tree *tree;
2214        int ret;
2215
2216        tree = &BTRFS_I(page->mapping->host)->io_tree;
2217
2218        if (tree->ops && tree->ops->writepage_end_io_hook) {
2219                ret = tree->ops->writepage_end_io_hook(page, start,
2220                                               end, NULL, uptodate);
2221                if (ret)
2222                        uptodate = 0;
2223        }
2224
2225        if (!uptodate && tree->ops &&
2226            tree->ops->writepage_io_failed_hook) {
2227                ret = tree->ops->writepage_io_failed_hook(NULL, page,
2228                                                 start, end, NULL);
2229                /* Writeback already completed */
2230                if (ret == 0)
2231                        return 1;
2232        }
2233
2234        if (!uptodate) {
2235                clear_extent_uptodate(tree, start, end, NULL, GFP_NOFS);
2236                ClearPageUptodate(page);
2237                SetPageError(page);
2238        }
2239        return 0;
2240}
2241
2242/*
2243 * after a writepage IO is done, we need to:
2244 * clear the uptodate bits on error
2245 * clear the writeback bits in the extent tree for this IO
2246 * end_page_writeback if the page has no more pending IO
2247 *
2248 * Scheduling is not allowed, so the extent state tree is expected
2249 * to have one and only one object corresponding to this IO.
2250 */
2251static void end_bio_extent_writepage(struct bio *bio, int err)
2252{
2253        struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2254        struct extent_io_tree *tree;
2255        u64 start;
2256        u64 end;
2257        int whole_page;
2258
2259        do {
2260                struct page *page = bvec->bv_page;
2261                tree = &BTRFS_I(page->mapping->host)->io_tree;
2262
2263                start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2264                         bvec->bv_offset;
2265                end = start + bvec->bv_len - 1;
2266
2267                if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2268                        whole_page = 1;
2269                else
2270                        whole_page = 0;
2271
2272                if (--bvec >= bio->bi_io_vec)
2273                        prefetchw(&bvec->bv_page->flags);
2274
2275                if (end_extent_writepage(page, err, start, end))
2276                        continue;
2277
2278                if (whole_page)
2279                        end_page_writeback(page);
2280                else
2281                        check_page_writeback(tree, page);
2282        } while (bvec >= bio->bi_io_vec);
2283
2284        bio_put(bio);
2285}
2286
2287/*
2288 * after a readpage IO is done, we need to:
2289 * clear the uptodate bits on error
2290 * set the uptodate bits if things worked
2291 * set the page up to date if all extents in the tree are uptodate
2292 * clear the lock bit in the extent tree
2293 * unlock the page if there are no other extents locked for it
2294 *
2295 * Scheduling is not allowed, so the extent state tree is expected
2296 * to have one and only one object corresponding to this IO.
2297 */
2298static void end_bio_extent_readpage(struct bio *bio, int err)
2299{
2300        int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2301        struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2302        struct bio_vec *bvec = bio->bi_io_vec;
2303        struct extent_io_tree *tree;
2304        u64 start;
2305        u64 end;
2306        int whole_page;
2307        int mirror;
2308        int ret;
2309
2310        if (err)
2311                uptodate = 0;
2312
2313        do {
2314                struct page *page = bvec->bv_page;
2315                struct extent_state *cached = NULL;
2316                struct extent_state *state;
2317
2318                pr_debug("end_bio_extent_readpage: bi_vcnt=%d, idx=%d, err=%d, "
2319                         "mirror=%ld\n", bio->bi_vcnt, bio->bi_idx, err,
2320                         (long int)bio->bi_bdev);
2321                tree = &BTRFS_I(page->mapping->host)->io_tree;
2322
2323                start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2324                        bvec->bv_offset;
2325                end = start + bvec->bv_len - 1;
2326
2327                if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2328                        whole_page = 1;
2329                else
2330                        whole_page = 0;
2331
2332                if (++bvec <= bvec_end)
2333                        prefetchw(&bvec->bv_page->flags);
2334
2335                spin_lock(&tree->lock);
2336                state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
2337                if (state && state->start == start) {
2338                        /*
2339                         * take a reference on the state, unlock will drop
2340                         * the ref
2341                         */
2342                        cache_state(state, &cached);
2343                }
2344                spin_unlock(&tree->lock);
2345
2346                mirror = (int)(unsigned long)bio->bi_bdev;
2347                if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
2348                        ret = tree->ops->readpage_end_io_hook(page, start, end,
2349                                                              state, mirror);
2350                        if (ret)
2351                                uptodate = 0;
2352                        else
2353                                clean_io_failure(start, page);
2354                }
2355
2356                if (!uptodate && tree->ops && tree->ops->readpage_io_failed_hook) {
2357                        ret = tree->ops->readpage_io_failed_hook(page, mirror);
2358                        if (!ret && !err &&
2359                            test_bit(BIO_UPTODATE, &bio->bi_flags))
2360                                uptodate = 1;
2361                } else if (!uptodate) {
2362                        /*
2363                         * The generic bio_readpage_error handles errors the
2364                         * following way: If possible, new read requests are
2365                         * created and submitted and will end up in
2366                         * end_bio_extent_readpage as well (if we're lucky, not
2367                         * in the !uptodate case). In that case it returns 0 and
2368                         * we just go on with the next page in our bio. If it
2369                         * can't handle the error it will return -EIO and we
2370                         * remain responsible for that page.
2371                         */
2372                        ret = bio_readpage_error(bio, page, start, end, mirror, NULL);
2373                        if (ret == 0) {
2374                                uptodate =
2375                                        test_bit(BIO_UPTODATE, &bio->bi_flags);
2376                                if (err)
2377                                        uptodate = 0;
2378                                uncache_state(&cached);
2379                                continue;
2380                        }
2381                }
2382
2383                if (uptodate && tree->track_uptodate) {
2384                        set_extent_uptodate(tree, start, end, &cached,
2385                                            GFP_ATOMIC);
2386                }
2387                unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2388
2389                if (whole_page) {
2390                        if (uptodate) {
2391                                SetPageUptodate(page);
2392                        } else {
2393                                ClearPageUptodate(page);
2394                                SetPageError(page);
2395                        }
2396                        unlock_page(page);
2397                } else {
2398                        if (uptodate) {
2399                                check_page_uptodate(tree, page);
2400                        } else {
2401                                ClearPageUptodate(page);
2402                                SetPageError(page);
2403                        }
2404                        check_page_locked(tree, page);
2405                }
2406        } while (bvec <= bvec_end);
2407
2408        bio_put(bio);
2409}
2410
2411struct bio *
2412btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2413                gfp_t gfp_flags)
2414{
2415        struct bio *bio;
2416
2417        bio = bio_alloc(gfp_flags, nr_vecs);
2418
2419        if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2420                while (!bio && (nr_vecs /= 2))
2421                        bio = bio_alloc(gfp_flags, nr_vecs);
2422        }
2423
2424        if (bio) {
2425                bio->bi_size = 0;
2426                bio->bi_bdev = bdev;
2427                bio->bi_sector = first_sector;
2428        }
2429        return bio;
2430}
2431
2432/*
2433 * Since writes are async, they will only return -ENOMEM.
2434 * Reads can return the full range of I/O error conditions.
2435 */
2436static int __must_check submit_one_bio(int rw, struct bio *bio,
2437                                       int mirror_num, unsigned long bio_flags)
2438{
2439        int ret = 0;
2440        struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2441        struct page *page = bvec->bv_page;
2442        struct extent_io_tree *tree = bio->bi_private;
2443        u64 start;
2444
2445        start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
2446
2447        bio->bi_private = NULL;
2448
2449        bio_get(bio);
2450
2451        if (tree->ops && tree->ops->submit_bio_hook)
2452                ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2453                                           mirror_num, bio_flags, start);
2454        else
2455                btrfsic_submit_bio(rw, bio);
2456
2457        if (bio_flagged(bio, BIO_EOPNOTSUPP))
2458                ret = -EOPNOTSUPP;
2459        bio_put(bio);
2460        return ret;
2461}
2462
2463static int merge_bio(struct extent_io_tree *tree, struct page *page,
2464                     unsigned long offset, size_t size, struct bio *bio,
2465                     unsigned long bio_flags)
2466{
2467        int ret = 0;
2468        if (tree->ops && tree->ops->merge_bio_hook)
2469                ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2470                                                bio_flags);
2471        BUG_ON(ret < 0);
2472        return ret;
2473
2474}
2475
2476static int submit_extent_page(int rw, struct extent_io_tree *tree,
2477                              struct page *page, sector_t sector,
2478                              size_t size, unsigned long offset,
2479                              struct block_device *bdev,
2480                              struct bio **bio_ret,
2481                              unsigned long max_pages,
2482                              bio_end_io_t end_io_func,
2483                              int mirror_num,
2484                              unsigned long prev_bio_flags,
2485                              unsigned long bio_flags)
2486{
2487        int ret = 0;
2488        struct bio *bio;
2489        int nr;
2490        int contig = 0;
2491        int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2492        int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2493        size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2494
2495        if (bio_ret && *bio_ret) {
2496                bio = *bio_ret;
2497                if (old_compressed)
2498                        contig = bio->bi_sector == sector;
2499                else
2500                        contig = bio->bi_sector + (bio->bi_size >> 9) ==
2501                                sector;
2502
2503                if (prev_bio_flags != bio_flags || !contig ||
2504                    merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
2505                    bio_add_page(bio, page, page_size, offset) < page_size) {
2506                        ret = submit_one_bio(rw, bio, mirror_num,
2507                                             prev_bio_flags);
2508                        if (ret < 0)
2509                                return ret;
2510                        bio = NULL;
2511                } else {
2512                        return 0;
2513                }
2514        }
2515        if (this_compressed)
2516                nr = BIO_MAX_PAGES;
2517        else
2518                nr = bio_get_nr_vecs(bdev);
2519
2520        bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2521        if (!bio)
2522                return -ENOMEM;
2523
2524        bio_add_page(bio, page, page_size, offset);
2525        bio->bi_end_io = end_io_func;
2526        bio->bi_private = tree;
2527
2528        if (bio_ret)
2529                *bio_ret = bio;
2530        else
2531                ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2532
2533        return ret;
2534}
2535
2536void attach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
2537{
2538        if (!PagePrivate(page)) {
2539                SetPagePrivate(page);
2540                page_cache_get(page);
2541                set_page_private(page, (unsigned long)eb);
2542        } else {
2543                WARN_ON(page->private != (unsigned long)eb);
2544        }
2545}
2546
2547void set_page_extent_mapped(struct page *page)
2548{
2549        if (!PagePrivate(page)) {
2550                SetPagePrivate(page);
2551                page_cache_get(page);
2552                set_page_private(page, EXTENT_PAGE_PRIVATE);
2553        }
2554}
2555
2556/*
2557 * basic readpage implementation.  Locked extent state structs are inserted
2558 * into the tree that are removed when the IO is done (by the end_io
2559 * handlers)
2560 * XXX JDM: This needs looking at to ensure proper page locking
2561 */
2562static int __extent_read_full_page(struct extent_io_tree *tree,
2563                                   struct page *page,
2564                                   get_extent_t *get_extent,
2565                                   struct bio **bio, int mirror_num,
2566                                   unsigned long *bio_flags)
2567{
2568        struct inode *inode = page->mapping->host;
2569        u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2570        u64 page_end = start + PAGE_CACHE_SIZE - 1;
2571        u64 end;
2572        u64 cur = start;
2573        u64 extent_offset;
2574        u64 last_byte = i_size_read(inode);
2575        u64 block_start;
2576        u64 cur_end;
2577        sector_t sector;
2578        struct extent_map *em;
2579        struct block_device *bdev;
2580        struct btrfs_ordered_extent *ordered;
2581        int ret;
2582        int nr = 0;
2583        size_t pg_offset = 0;
2584        size_t iosize;
2585        size_t disk_io_size;
2586        size_t blocksize = inode->i_sb->s_blocksize;
2587        unsigned long this_bio_flag = 0;
2588
2589        set_page_extent_mapped(page);
2590
2591        if (!PageUptodate(page)) {
2592                if (cleancache_get_page(page) == 0) {
2593                        BUG_ON(blocksize != PAGE_SIZE);
2594                        goto out;
2595                }
2596        }
2597
2598        end = page_end;
2599        while (1) {
2600                lock_extent(tree, start, end);
2601                ordered = btrfs_lookup_ordered_extent(inode, start);
2602                if (!ordered)
2603                        break;
2604                unlock_extent(tree, start, end);
2605                btrfs_start_ordered_extent(inode, ordered, 1);
2606                btrfs_put_ordered_extent(ordered);
2607        }
2608
2609        if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2610                char *userpage;
2611                size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2612
2613                if (zero_offset) {
2614                        iosize = PAGE_CACHE_SIZE - zero_offset;
2615                        userpage = kmap_atomic(page);
2616                        memset(userpage + zero_offset, 0, iosize);
2617                        flush_dcache_page(page);
2618                        kunmap_atomic(userpage);
2619                }
2620        }
2621        while (cur <= end) {
2622                if (cur >= last_byte) {
2623                        char *userpage;
2624                        struct extent_state *cached = NULL;
2625
2626                        iosize = PAGE_CACHE_SIZE - pg_offset;
2627                        userpage = kmap_atomic(page);
2628                        memset(userpage + pg_offset, 0, iosize);
2629                        flush_dcache_page(page);
2630                        kunmap_atomic(userpage);
2631                        set_extent_uptodate(tree, cur, cur + iosize - 1,
2632                                            &cached, GFP_NOFS);
2633                        unlock_extent_cached(tree, cur, cur + iosize - 1,
2634                                             &cached, GFP_NOFS);
2635                        break;
2636                }
2637                em = get_extent(inode, page, pg_offset, cur,
2638                                end - cur + 1, 0);
2639                if (IS_ERR_OR_NULL(em)) {
2640                        SetPageError(page);
2641                        unlock_extent(tree, cur, end);
2642                        break;
2643                }
2644                extent_offset = cur - em->start;
2645                BUG_ON(extent_map_end(em) <= cur);
2646                BUG_ON(end < cur);
2647
2648                if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2649                        this_bio_flag = EXTENT_BIO_COMPRESSED;
2650                        extent_set_compress_type(&this_bio_flag,
2651                                                 em->compress_type);
2652                }
2653
2654                iosize = min(extent_map_end(em) - cur, end - cur + 1);
2655                cur_end = min(extent_map_end(em) - 1, end);
2656                iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2657                if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2658                        disk_io_size = em->block_len;
2659                        sector = em->block_start >> 9;
2660                } else {
2661                        sector = (em->block_start + extent_offset) >> 9;
2662                        disk_io_size = iosize;
2663                }
2664                bdev = em->bdev;
2665                block_start = em->block_start;
2666                if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2667                        block_start = EXTENT_MAP_HOLE;
2668                free_extent_map(em);
2669                em = NULL;
2670
2671                /* we've found a hole, just zero and go on */
2672                if (block_start == EXTENT_MAP_HOLE) {
2673                        char *userpage;
2674                        struct extent_state *cached = NULL;
2675
2676                        userpage = kmap_atomic(page);
2677                        memset(userpage + pg_offset, 0, iosize);
2678                        flush_dcache_page(page);
2679                        kunmap_atomic(userpage);
2680
2681                        set_extent_uptodate(tree, cur, cur + iosize - 1,
2682                                            &cached, GFP_NOFS);
2683                        unlock_extent_cached(tree, cur, cur + iosize - 1,
2684                                             &cached, GFP_NOFS);
2685                        cur = cur + iosize;
2686                        pg_offset += iosize;
2687                        continue;
2688                }
2689                /* the get_extent function already copied into the page */
2690                if (test_range_bit(tree, cur, cur_end,
2691                                   EXTENT_UPTODATE, 1, NULL)) {
2692                        check_page_uptodate(tree, page);
2693                        unlock_extent(tree, cur, cur + iosize - 1);
2694                        cur = cur + iosize;
2695                        pg_offset += iosize;
2696                        continue;
2697                }
2698                /* we have an inline extent but it didn't get marked up
2699                 * to date.  Error out
2700                 */
2701                if (block_start == EXTENT_MAP_INLINE) {
2702                        SetPageError(page);
2703                        unlock_extent(tree, cur, cur + iosize - 1);
2704                        cur = cur + iosize;
2705                        pg_offset += iosize;
2706                        continue;
2707                }
2708
2709                ret = 0;
2710                if (tree->ops && tree->ops->readpage_io_hook) {
2711                        ret = tree->ops->readpage_io_hook(page, cur,
2712                                                          cur + iosize - 1);
2713                }
2714                if (!ret) {
2715                        unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2716                        pnr -= page->index;
2717                        ret = submit_extent_page(READ, tree, page,
2718                                         sector, disk_io_size, pg_offset,
2719                                         bdev, bio, pnr,
2720                                         end_bio_extent_readpage, mirror_num,
2721                                         *bio_flags,
2722                                         this_bio_flag);
2723                        BUG_ON(ret == -ENOMEM);
2724                        nr++;
2725                        *bio_flags = this_bio_flag;
2726                }
2727                if (ret)
2728                        SetPageError(page);
2729                cur = cur + iosize;
2730                pg_offset += iosize;
2731        }
2732out:
2733        if (!nr) {
2734                if (!PageError(page))
2735                        SetPageUptodate(page);
2736                unlock_page(page);
2737        }
2738        return 0;
2739}
2740
2741int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2742                            get_extent_t *get_extent, int mirror_num)
2743{
2744        struct bio *bio = NULL;
2745        unsigned long bio_flags = 0;
2746        int ret;
2747
2748        ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
2749                                      &bio_flags);
2750        if (bio)
2751                ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
2752        return ret;
2753}
2754
2755static noinline void update_nr_written(struct page *page,
2756                                      struct writeback_control *wbc,
2757                                      unsigned long nr_written)
2758{
2759        wbc->nr_to_write -= nr_written;
2760        if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2761            wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2762                page->mapping->writeback_index = page->index + nr_written;
2763}
2764
2765/*
2766 * the writepage semantics are similar to regular writepage.  extent
2767 * records are inserted to lock ranges in the tree, and as dirty areas
2768 * are found, they are marked writeback.  Then the lock bits are removed
2769 * and the end_io handler clears the writeback ranges
2770 */
2771static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2772                              void *data)
2773{
2774        struct inode *inode = page->mapping->host;
2775        struct extent_page_data *epd = data;
2776        struct extent_io_tree *tree = epd->tree;
2777        u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2778        u64 delalloc_start;
2779        u64 page_end = start + PAGE_CACHE_SIZE - 1;
2780        u64 end;
2781        u64 cur = start;
2782        u64 extent_offset;
2783        u64 last_byte = i_size_read(inode);
2784        u64 block_start;
2785        u64 iosize;
2786        sector_t sector;
2787        struct extent_state *cached_state = NULL;
2788        struct extent_map *em;
2789        struct block_device *bdev;
2790        int ret;
2791        int nr = 0;
2792        size_t pg_offset = 0;
2793        size_t blocksize;
2794        loff_t i_size = i_size_read(inode);
2795        unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2796        u64 nr_delalloc;
2797        u64 delalloc_end;
2798        int page_started;
2799        int compressed;
2800        int write_flags;
2801        unsigned long nr_written = 0;
2802        bool fill_delalloc = true;
2803
2804        if (wbc->sync_mode == WB_SYNC_ALL)
2805                write_flags = WRITE_SYNC;
2806        else
2807                write_flags = WRITE;
2808
2809        trace___extent_writepage(page, inode, wbc);
2810
2811        WARN_ON(!PageLocked(page));
2812
2813        ClearPageError(page);
2814
2815        pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2816        if (page->index > end_index ||
2817           (page->index == end_index && !pg_offset)) {
2818                page->mapping->a_ops->invalidatepage(page, 0);
2819                unlock_page(page);
2820                return 0;
2821        }
2822
2823        if (page->index == end_index) {
2824                char *userpage;
2825
2826                userpage = kmap_atomic(page);
2827                memset(userpage + pg_offset, 0,
2828                       PAGE_CACHE_SIZE - pg_offset);
2829                kunmap_atomic(userpage);
2830                flush_dcache_page(page);
2831        }
2832        pg_offset = 0;
2833
2834        set_page_extent_mapped(page);
2835
2836        if (!tree->ops || !tree->ops->fill_delalloc)
2837                fill_delalloc = false;
2838
2839        delalloc_start = start;
2840        delalloc_end = 0;
2841        page_started = 0;
2842        if (!epd->extent_locked && fill_delalloc) {
2843                u64 delalloc_to_write = 0;
2844                /*
2845                 * make sure the wbc mapping index is at least updated
2846                 * to this page.
2847                 */
2848                update_nr_written(page, wbc, 0);
2849
2850                while (delalloc_end < page_end) {
2851                        nr_delalloc = find_lock_delalloc_range(inode, tree,
2852                                                       page,
2853                                                       &delalloc_start,
2854                                                       &delalloc_end,
2855                                                       128 * 1024 * 1024);
2856                        if (nr_delalloc == 0) {
2857                                delalloc_start = delalloc_end + 1;
2858                                continue;
2859                        }
2860                        ret = tree->ops->fill_delalloc(inode, page,
2861                                                       delalloc_start,
2862                                                       delalloc_end,
2863                                                       &page_started,
2864                                                       &nr_written);
2865                        /* File system has been set read-only */
2866                        if (ret) {
2867                                SetPageError(page);
2868                                goto done;
2869                        }
2870                        /*
2871                         * delalloc_end is already one less than the total
2872                         * length, so we don't subtract one from
2873                         * PAGE_CACHE_SIZE
2874                         */
2875                        delalloc_to_write += (delalloc_end - delalloc_start +
2876                                              PAGE_CACHE_SIZE) >>
2877                                              PAGE_CACHE_SHIFT;
2878                        delalloc_start = delalloc_end + 1;
2879                }
2880                if (wbc->nr_to_write < delalloc_to_write) {
2881                        int thresh = 8192;
2882
2883                        if (delalloc_to_write < thresh * 2)
2884                                thresh = delalloc_to_write;
2885                        wbc->nr_to_write = min_t(u64, delalloc_to_write,
2886                                                 thresh);
2887                }
2888
2889                /* did the fill delalloc function already unlock and start
2890                 * the IO?
2891                 */
2892                if (page_started) {
2893                        ret = 0;
2894                        /*
2895                         * we've unlocked the page, so we can't update
2896                         * the mapping's writeback index, just update
2897                         * nr_to_write.
2898                         */
2899                        wbc->nr_to_write -= nr_written;
2900                        goto done_unlocked;
2901                }
2902        }
2903        if (tree->ops && tree->ops->writepage_start_hook) {
2904                ret = tree->ops->writepage_start_hook(page, start,
2905                                                      page_end);
2906                if (ret) {
2907                        /* Fixup worker will requeue */
2908                        if (ret == -EBUSY)
2909                                wbc->pages_skipped++;
2910                        else
2911                                redirty_page_for_writepage(wbc, page);
2912                        update_nr_written(page, wbc, nr_written);
2913                        unlock_page(page);
2914                        ret = 0;
2915                        goto done_unlocked;
2916                }
2917        }
2918
2919        /*
2920         * we don't want to touch the inode after unlocking the page,
2921         * so we update the mapping writeback index now
2922         */
2923        update_nr_written(page, wbc, nr_written + 1);
2924
2925        end = page_end;
2926        if (last_byte <= start) {
2927                if (tree->ops && tree->ops->writepage_end_io_hook)
2928                        tree->ops->writepage_end_io_hook(page, start,
2929                                                         page_end, NULL, 1);
2930                goto done;
2931        }
2932
2933        blocksize = inode->i_sb->s_blocksize;
2934
2935        while (cur <= end) {
2936                if (cur >= last_byte) {
2937                        if (tree->ops && tree->ops->writepage_end_io_hook)
2938                                tree->ops->writepage_end_io_hook(page, cur,
2939                                                         page_end, NULL, 1);
2940                        break;
2941                }
2942                em = epd->get_extent(inode, page, pg_offset, cur,
2943                                     end - cur + 1, 1);
2944                if (IS_ERR_OR_NULL(em)) {
2945                        SetPageError(page);
2946                        break;
2947                }
2948
2949                extent_offset = cur - em->start;
2950                BUG_ON(extent_map_end(em) <= cur);
2951                BUG_ON(end < cur);
2952                iosize = min(extent_map_end(em) - cur, end - cur + 1);
2953                iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2954                sector = (em->block_start + extent_offset) >> 9;
2955                bdev = em->bdev;
2956                block_start = em->block_start;
2957                compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2958                free_extent_map(em);
2959                em = NULL;
2960
2961                /*
2962                 * compressed and inline extents are written through other
2963                 * paths in the FS
2964                 */
2965                if (compressed || block_start == EXTENT_MAP_HOLE ||
2966                    block_start == EXTENT_MAP_INLINE) {
2967                        /*
2968                         * end_io notification does not happen here for
2969                         * compressed extents
2970                         */
2971                        if (!compressed && tree->ops &&
2972                            tree->ops->writepage_end_io_hook)
2973                                tree->ops->writepage_end_io_hook(page, cur,
2974                                                         cur + iosize - 1,
2975                                                         NULL, 1);
2976                        else if (compressed) {
2977                                /* we don't want to end_page_writeback on
2978                                 * a compressed extent.  this happens
2979                                 * elsewhere
2980                                 */
2981                                nr++;
2982                        }
2983
2984                        cur += iosize;
2985                        pg_offset += iosize;
2986                        continue;
2987                }
2988                /* leave this out until we have a page_mkwrite call */
2989                if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2990                                   EXTENT_DIRTY, 0, NULL)) {
2991                        cur = cur + iosize;
2992                        pg_offset += iosize;
2993                        continue;
2994                }
2995
2996                if (tree->ops && tree->ops->writepage_io_hook) {
2997                        ret = tree->ops->writepage_io_hook(page, cur,
2998                                                cur + iosize - 1);
2999                } else {
3000                        ret = 0;
3001                }
3002                if (ret) {
3003                        SetPageError(page);
3004                } else {
3005                        unsigned long max_nr = end_index + 1;
3006
3007                        set_range_writeback(tree, cur, cur + iosize - 1);
3008                        if (!PageWriteback(page)) {
3009                                printk(KERN_ERR "btrfs warning page %lu not "
3010                                       "writeback, cur %llu end %llu\n",
3011                                       page->index, (unsigned long long)cur,
3012                                       (unsigned long long)end);
3013                        }
3014
3015                        ret = submit_extent_page(write_flags, tree, page,
3016                                                 sector, iosize, pg_offset,
3017                                                 bdev, &epd->bio, max_nr,
3018                                                 end_bio_extent_writepage,
3019                                                 0, 0, 0);
3020                        if (ret)
3021                                SetPageError(page);
3022                }
3023                cur = cur + iosize;
3024                pg_offset += iosize;
3025                nr++;
3026        }
3027done:
3028        if (nr == 0) {
3029                /* make sure the mapping tag for page dirty gets cleared */
3030                set_page_writeback(page);
3031                end_page_writeback(page);
3032        }
3033        unlock_page(page);
3034
3035done_unlocked:
3036
3037        /* drop our reference on any cached states */
3038        free_extent_state(cached_state);
3039        return 0;
3040}
3041
3042static int eb_wait(void *word)
3043{
3044        io_schedule();
3045        return 0;
3046}
3047
3048static void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3049{
3050        wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3051                    TASK_UNINTERRUPTIBLE);
3052}
3053
3054static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3055                                     struct btrfs_fs_info *fs_info,
3056                                     struct extent_page_data *epd)
3057{
3058        unsigned long i, num_pages;
3059        int flush = 0;
3060        int ret = 0;
3061
3062        if (!btrfs_try_tree_write_lock(eb)) {
3063                flush = 1;
3064                flush_write_bio(epd);
3065                btrfs_tree_lock(eb);
3066        }
3067
3068        if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3069                btrfs_tree_unlock(eb);
3070                if (!epd->sync_io)
3071                        return 0;
3072                if (!flush) {
3073                        flush_write_bio(epd);
3074                        flush = 1;
3075                }
3076                while (1) {
3077                        wait_on_extent_buffer_writeback(eb);
3078                        btrfs_tree_lock(eb);
3079                        if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3080                                break;
3081                        btrfs_tree_unlock(eb);
3082                }
3083        }
3084
3085        if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3086                set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3087                btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3088                spin_lock(&fs_info->delalloc_lock);
3089                if (fs_info->dirty_metadata_bytes >= eb->len)
3090                        fs_info->dirty_metadata_bytes -= eb->len;
3091                else
3092                        WARN_ON(1);
3093                spin_unlock(&fs_info->delalloc_lock);
3094                ret = 1;
3095        }
3096
3097        btrfs_tree_unlock(eb);
3098
3099        if (!ret)
3100                return ret;
3101
3102        num_pages = num_extent_pages(eb->start, eb->len);
3103        for (i = 0; i < num_pages; i++) {
3104                struct page *p = extent_buffer_page(eb, i);
3105
3106                if (!trylock_page(p)) {
3107                        if (!flush) {
3108                                flush_write_bio(epd);
3109                                flush = 1;
3110                        }
3111                        lock_page(p);
3112                }
3113        }
3114
3115        return ret;
3116}
3117
3118static void end_extent_buffer_writeback(struct extent_buffer *eb)
3119{
3120        clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3121        smp_mb__after_clear_bit();
3122        wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3123}
3124
3125static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3126{
3127        int uptodate = err == 0;
3128        struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3129        struct extent_buffer *eb;
3130        int done;
3131
3132        do {
3133                struct page *page = bvec->bv_page;
3134
3135                bvec--;
3136                eb = (struct extent_buffer *)page->private;
3137                BUG_ON(!eb);
3138                done = atomic_dec_and_test(&eb->io_pages);
3139
3140                if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3141                        set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3142                        ClearPageUptodate(page);
3143                        SetPageError(page);
3144                }
3145
3146                end_page_writeback(page);
3147
3148                if (!done)
3149                        continue;
3150
3151                end_extent_buffer_writeback(eb);
3152        } while (bvec >= bio->bi_io_vec);
3153
3154        bio_put(bio);
3155
3156}
3157
3158static int write_one_eb(struct extent_buffer *eb,
3159                        struct btrfs_fs_info *fs_info,
3160                        struct writeback_control *wbc,
3161                        struct extent_page_data *epd)
3162{
3163        struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3164        u64 offset = eb->start;
3165        unsigned long i, num_pages;
3166        int rw = (epd->sync_io ? WRITE_SYNC : WRITE);
3167        int ret;
3168
3169        clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3170        num_pages = num_extent_pages(eb->start, eb->len);
3171        atomic_set(&eb->io_pages, num_pages);
3172        for (i = 0; i < num_pages; i++) {
3173                struct page *p = extent_buffer_page(eb, i);
3174
3175                clear_page_dirty_for_io(p);
3176                set_page_writeback(p);
3177                ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3178                                         PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3179                                         -1, end_bio_extent_buffer_writepage,
3180                                         0, 0, 0);
3181                if (ret) {
3182                        set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3183                        SetPageError(p);
3184                        if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3185                                end_extent_buffer_writeback(eb);
3186                        ret = -EIO;
3187                        break;
3188                }
3189                offset += PAGE_CACHE_SIZE;
3190                update_nr_written(p, wbc, 1);
3191                unlock_page(p);
3192        }
3193
3194        if (unlikely(ret)) {
3195                for (; i < num_pages; i++) {
3196                        struct page *p = extent_buffer_page(eb, i);
3197                        unlock_page(p);
3198                }
3199        }
3200
3201        return ret;
3202}
3203
3204int btree_write_cache_pages(struct address_space *mapping,
3205                                   struct writeback_control *wbc)
3206{
3207        struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3208        struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3209        struct extent_buffer *eb, *prev_eb = NULL;
3210        struct extent_page_data epd = {
3211                .bio = NULL,
3212                .tree = tree,
3213                .extent_locked = 0,
3214                .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3215        };
3216        int ret = 0;
3217        int done = 0;
3218        int nr_to_write_done = 0;
3219        struct pagevec pvec;
3220        int nr_pages;
3221        pgoff_t index;
3222        pgoff_t end;            /* Inclusive */
3223        int scanned = 0;
3224        int tag;
3225
3226        pagevec_init(&pvec, 0);
3227        if (wbc->range_cyclic) {
3228                index = mapping->writeback_index; /* Start from prev offset */
3229                end = -1;
3230        } else {
3231                index = wbc->range_start >> PAGE_CACHE_SHIFT;
3232                end = wbc->range_end >> PAGE_CACHE_SHIFT;
3233                scanned = 1;
3234        }
3235        if (wbc->sync_mode == WB_SYNC_ALL)
3236                tag = PAGECACHE_TAG_TOWRITE;
3237        else
3238                tag = PAGECACHE_TAG_DIRTY;
3239retry:
3240        if (wbc->sync_mode == WB_SYNC_ALL)
3241                tag_pages_for_writeback(mapping, index, end);
3242        while (!done && !nr_to_write_done && (index <= end) &&
3243               (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3244                        min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3245                unsigned i;
3246
3247                scanned = 1;
3248                for (i = 0; i < nr_pages; i++) {
3249                        struct page *page = pvec.pages[i];
3250
3251                        if (!PagePrivate(page))
3252                                continue;
3253
3254                        if (!wbc->range_cyclic && page->index > end) {
3255                                done = 1;
3256                                break;
3257                        }
3258
3259                        eb = (struct extent_buffer *)page->private;
3260                        if (!eb) {
3261                                WARN_ON(1);
3262                                continue;
3263                        }
3264
3265                        if (eb == prev_eb)
3266                                continue;
3267
3268                        if (!atomic_inc_not_zero(&eb->refs)) {
3269                                WARN_ON(1);
3270                                continue;
3271                        }
3272
3273                        prev_eb = eb;
3274                        ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3275                        if (!ret) {
3276                                free_extent_buffer(eb);
3277                                continue;
3278                        }
3279
3280                        ret = write_one_eb(eb, fs_info, wbc, &epd);
3281                        if (ret) {
3282                                done = 1;
3283                                free_extent_buffer(eb);
3284                                break;
3285                        }
3286                        free_extent_buffer(eb);
3287
3288                        /*
3289                         * the filesystem may choose to bump up nr_to_write.
3290                         * We have to make sure to honor the new nr_to_write
3291                         * at any time
3292                         */
3293                        nr_to_write_done = wbc->nr_to_write <= 0;
3294                }
3295                pagevec_release(&pvec);
3296                cond_resched();
3297        }
3298        if (!scanned && !done) {
3299                /*
3300                 * We hit the last page and there is more work to be done: wrap
3301                 * back to the start of the file
3302                 */
3303                scanned = 1;
3304                index = 0;
3305                goto retry;
3306        }
3307        flush_write_bio(&epd);
3308        return ret;
3309}
3310
3311/**
3312 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3313 * @mapping: address space structure to write
3314 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3315 * @writepage: function called for each page
3316 * @data: data passed to writepage function
3317 *
3318 * If a page is already under I/O, write_cache_pages() skips it, even
3319 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3320 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3321 * and msync() need to guarantee that all the data which was dirty at the time
3322 * the call was made get new I/O started against them.  If wbc->sync_mode is
3323 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3324 * existing IO to complete.
3325 */
3326static int extent_write_cache_pages(struct extent_io_tree *tree,
3327                             struct address_space *mapping,
3328                             struct writeback_control *wbc,
3329                             writepage_t writepage, void *data,
3330                             void (*flush_fn)(void *))
3331{
3332        int ret = 0;
3333        int done = 0;
3334        int nr_to_write_done = 0;
3335        struct pagevec pvec;
3336        int nr_pages;
3337        pgoff_t index;
3338        pgoff_t end;            /* Inclusive */
3339        int scanned = 0;
3340        int tag;
3341
3342        pagevec_init(&pvec, 0);
3343        if (wbc->range_cyclic) {
3344                index = mapping->writeback_index; /* Start from prev offset */
3345                end = -1;
3346        } else {
3347                index = wbc->range_start >> PAGE_CACHE_SHIFT;
3348                end = wbc->range_end >> PAGE_CACHE_SHIFT;
3349                scanned = 1;
3350        }
3351        if (wbc->sync_mode == WB_SYNC_ALL)
3352                tag = PAGECACHE_TAG_TOWRITE;
3353        else
3354                tag = PAGECACHE_TAG_DIRTY;
3355retry:
3356        if (wbc->sync_mode == WB_SYNC_ALL)
3357                tag_pages_for_writeback(mapping, index, end);
3358        while (!done && !nr_to_write_done && (index <= end) &&
3359               (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3360                        min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3361                unsigned i;
3362
3363                scanned = 1;
3364                for (i = 0; i < nr_pages; i++) {
3365                        struct page *page = pvec.pages[i];
3366
3367                        /*
3368                         * At this point we hold neither mapping->tree_lock nor
3369                         * lock on the page itself: the page may be truncated or
3370                         * invalidated (changing page->mapping to NULL), or even
3371                         * swizzled back from swapper_space to tmpfs file
3372                         * mapping
3373                         */
3374                        if (tree->ops &&
3375                            tree->ops->write_cache_pages_lock_hook) {
3376                                tree->ops->write_cache_pages_lock_hook(page,
3377                                                               data, flush_fn);
3378                        } else {
3379                                if (!trylock_page(page)) {
3380                                        flush_fn(data);
3381                                        lock_page(page);
3382                                }
3383                        }
3384
3385                        if (unlikely(page->mapping != mapping)) {
3386                                unlock_page(page);
3387                                continue;
3388                        }
3389
3390                        if (!wbc->range_cyclic && page->index > end) {
3391                                done = 1;
3392                                unlock_page(page);
3393                                continue;
3394                        }
3395
3396                        if (wbc->sync_mode != WB_SYNC_NONE) {
3397                                if (PageWriteback(page))
3398                                        flush_fn(data);
3399                                wait_on_page_writeback(page);
3400                        }
3401
3402                        if (PageWriteback(page) ||
3403                            !clear_page_dirty_for_io(page)) {
3404                                unlock_page(page);
3405                                continue;
3406                        }
3407
3408                        ret = (*writepage)(page, wbc, data);
3409
3410                        if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3411                                unlock_page(page);
3412                                ret = 0;
3413                        }
3414                        if (ret)
3415                                done = 1;
3416
3417                        /*
3418                         * the filesystem may choose to bump up nr_to_write.
3419                         * We have to make sure to honor the new nr_to_write
3420                         * at any time
3421                         */
3422                        nr_to_write_done = wbc->nr_to_write <= 0;
3423                }
3424                pagevec_release(&pvec);
3425                cond_resched();
3426        }
3427        if (!scanned && !done) {
3428                /*
3429                 * We hit the last page and there is more work to be done: wrap
3430                 * back to the start of the file
3431                 */
3432                scanned = 1;
3433                index = 0;
3434                goto retry;
3435        }
3436        return ret;
3437}
3438
3439static void flush_epd_write_bio(struct extent_page_data *epd)
3440{
3441        if (epd->bio) {
3442                int rw = WRITE;
3443                int ret;
3444
3445                if (epd->sync_io)
3446                        rw = WRITE_SYNC;
3447
3448                ret = submit_one_bio(rw, epd->bio, 0, 0);
3449                BUG_ON(ret < 0); /* -ENOMEM */
3450                epd->bio = NULL;
3451        }
3452}
3453
3454static noinline void flush_write_bio(void *data)
3455{
3456        struct extent_page_data *epd = data;
3457        flush_epd_write_bio(epd);
3458}
3459
3460int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3461                          get_extent_t *get_extent,
3462                          struct writeback_control *wbc)
3463{
3464        int ret;
3465        struct extent_page_data epd = {
3466                .bio = NULL,
3467                .tree = tree,
3468                .get_extent = get_extent,
3469                .extent_locked = 0,
3470                .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3471        };
3472
3473        ret = __extent_writepage(page, wbc, &epd);
3474
3475        flush_epd_write_bio(&epd);
3476        return ret;
3477}
3478
3479int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3480                              u64 start, u64 end, get_extent_t *get_extent,
3481                              int mode)
3482{
3483        int ret = 0;
3484        struct address_space *mapping = inode->i_mapping;
3485        struct page *page;
3486        unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3487                PAGE_CACHE_SHIFT;
3488
3489        struct extent_page_data epd = {
3490                .bio = NULL,
3491                .tree = tree,
3492                .get_extent = get_extent,
3493                .extent_locked = 1,
3494                .sync_io = mode == WB_SYNC_ALL,
3495        };
3496        struct writeback_control wbc_writepages = {
3497                .sync_mode      = mode,
3498                .nr_to_write    = nr_pages * 2,
3499                .range_start    = start,
3500                .range_end      = end + 1,
3501        };
3502
3503        while (start <= end) {
3504                page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3505                if (clear_page_dirty_for_io(page))
3506                        ret = __extent_writepage(page, &wbc_writepages, &epd);
3507                else {
3508                        if (tree->ops && tree->ops->writepage_end_io_hook)
3509                                tree->ops->writepage_end_io_hook(page, start,
3510                                                 start + PAGE_CACHE_SIZE - 1,
3511                                                 NULL, 1);
3512                        unlock_page(page);
3513                }
3514                page_cache_release(page);
3515                start += PAGE_CACHE_SIZE;
3516        }
3517
3518        flush_epd_write_bio(&epd);
3519        return ret;
3520}
3521
3522int extent_writepages(struct extent_io_tree *tree,
3523                      struct address_space *mapping,
3524                      get_extent_t *get_extent,
3525                      struct writeback_control *wbc)
3526{
3527        int ret = 0;
3528        struct extent_page_data epd = {
3529                .bio = NULL,
3530                .tree = tree,
3531                .get_extent = get_extent,
3532                .extent_locked = 0,
3533                .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3534        };
3535
3536        ret = extent_write_cache_pages(tree, mapping, wbc,
3537                                       __extent_writepage, &epd,
3538                                       flush_write_bio);
3539        flush_epd_write_bio(&epd);
3540        return ret;
3541}
3542
3543int extent_readpages(struct extent_io_tree *tree,
3544                     struct address_space *mapping,
3545                     struct list_head *pages, unsigned nr_pages,
3546                     get_extent_t get_extent)
3547{
3548        struct bio *bio = NULL;
3549        unsigned page_idx;
3550        unsigned long bio_flags = 0;
3551
3552        for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3553                struct page *page = list_entry(pages->prev, struct page, lru);
3554
3555                prefetchw(&page->flags);
3556                list_del(&page->lru);
3557                if (!add_to_page_cache_lru(page, mapping,
3558                                        page->index, GFP_NOFS)) {
3559                        __extent_read_full_page(tree, page, get_extent,
3560                                                &bio, 0, &bio_flags);
3561                }
3562                page_cache_release(page);
3563        }
3564        BUG_ON(!list_empty(pages));
3565        if (bio)
3566                return submit_one_bio(READ, bio, 0, bio_flags);
3567        return 0;
3568}
3569
3570/*
3571 * basic invalidatepage code, this waits on any locked or writeback
3572 * ranges corresponding to the page, and then deletes any extent state
3573 * records from the tree
3574 */
3575int extent_invalidatepage(struct extent_io_tree *tree,
3576                          struct page *page, unsigned long offset)
3577{
3578        struct extent_state *cached_state = NULL;
3579        u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
3580        u64 end = start + PAGE_CACHE_SIZE - 1;
3581        size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3582
3583        start += (offset + blocksize - 1) & ~(blocksize - 1);
3584        if (start > end)
3585                return 0;
3586
3587        lock_extent_bits(tree, start, end, 0, &cached_state);
3588        wait_on_page_writeback(page);
3589        clear_extent_bit(tree, start, end,
3590                         EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3591                         EXTENT_DO_ACCOUNTING,
3592                         1, 1, &cached_state, GFP_NOFS);
3593        return 0;
3594}
3595
3596/*
3597 * a helper for releasepage, this tests for areas of the page that
3598 * are locked or under IO and drops the related state bits if it is safe
3599 * to drop the page.
3600 */
3601int try_release_extent_state(struct extent_map_tree *map,
3602                             struct extent_io_tree *tree, struct page *page,
3603                             gfp_t mask)
3604{
3605        u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3606        u64 end = start + PAGE_CACHE_SIZE - 1;
3607        int ret = 1;
3608
3609        if (test_range_bit(tree, start, end,
3610                           EXTENT_IOBITS, 0, NULL))
3611                ret = 0;
3612        else {
3613                if ((mask & GFP_NOFS) == GFP_NOFS)
3614                        mask = GFP_NOFS;
3615                /*
3616                 * at this point we can safely clear everything except the
3617                 * locked bit and the nodatasum bit
3618                 */
3619                ret = clear_extent_bit(tree, start, end,
3620                                 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3621                                 0, 0, NULL, mask);
3622
3623                /* if clear_extent_bit failed for enomem reasons,
3624                 * we can't allow the release to continue.
3625                 */
3626                if (ret < 0)
3627                        ret = 0;
3628                else
3629                        ret = 1;
3630        }
3631        return ret;
3632}
3633
3634/*
3635 * a helper for releasepage.  As long as there are no locked extents
3636 * in the range corresponding to the page, both state records and extent
3637 * map records are removed
3638 */
3639int try_release_extent_mapping(struct extent_map_tree *map,
3640                               struct extent_io_tree *tree, struct page *page,
3641                               gfp_t mask)
3642{
3643        struct extent_map *em;
3644        u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3645        u64 end = start + PAGE_CACHE_SIZE - 1;
3646
3647        if ((mask & __GFP_WAIT) &&
3648            page->mapping->host->i_size > 16 * 1024 * 1024) {
3649                u64 len;
3650                while (start <= end) {
3651                        len = end - start + 1;
3652                        write_lock(&map->lock);
3653                        em = lookup_extent_mapping(map, start, len);
3654                        if (!em) {
3655                                write_unlock(&map->lock);
3656                                break;
3657                        }
3658                        if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3659                            em->start != start) {
3660                                write_unlock(&map->lock);
3661                                free_extent_map(em);
3662                                break;
3663                        }
3664                        if (!test_range_bit(tree, em->start,
3665                                            extent_map_end(em) - 1,
3666                                            EXTENT_LOCKED | EXTENT_WRITEBACK,
3667                                            0, NULL)) {
3668                                remove_extent_mapping(map, em);
3669                                /* once for the rb tree */
3670                                free_extent_map(em);
3671                        }
3672                        start = extent_map_end(em);
3673                        write_unlock(&map->lock);
3674
3675                        /* once for us */
3676                        free_extent_map(em);
3677                }
3678        }
3679        return try_release_extent_state(map, tree, page, mask);
3680}
3681
3682/*
3683 * helper function for fiemap, which doesn't want to see any holes.
3684 * This maps until we find something past 'last'
3685 */
3686static struct extent_map *get_extent_skip_holes(struct inode *inode,
3687                                                u64 offset,
3688                                                u64 last,
3689                                                get_extent_t *get_extent)
3690{
3691        u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3692        struct extent_map *em;
3693        u64 len;
3694
3695        if (offset >= last)
3696                return NULL;
3697
3698        while(1) {
3699                len = last - offset;
3700                if (len == 0)
3701                        break;
3702                len = (len + sectorsize - 1) & ~(sectorsize - 1);
3703                em = get_extent(inode, NULL, 0, offset, len, 0);
3704                if (IS_ERR_OR_NULL(em))
3705                        return em;
3706
3707                /* if this isn't a hole return it */
3708                if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3709                    em->block_start != EXTENT_MAP_HOLE) {
3710                        return em;
3711                }
3712
3713                /* this is a hole, advance to the next extent */
3714                offset = extent_map_end(em);
3715                free_extent_map(em);
3716                if (offset >= last)
3717                        break;
3718        }
3719        return NULL;
3720}
3721
3722int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3723                __u64 start, __u64 len, get_extent_t *get_extent)
3724{
3725        int ret = 0;
3726        u64 off = start;
3727        u64 max = start + len;
3728        u32 flags = 0;
3729        u32 found_type;
3730        u64 last;
3731        u64 last_for_get_extent = 0;
3732        u64 disko = 0;
3733        u64 isize = i_size_read(inode);
3734        struct btrfs_key found_key;
3735        struct extent_map *em = NULL;
3736        struct extent_state *cached_state = NULL;
3737        struct btrfs_path *path;
3738        struct btrfs_file_extent_item *item;
3739        int end = 0;
3740        u64 em_start = 0;
3741        u64 em_len = 0;
3742        u64 em_end = 0;
3743        unsigned long emflags;
3744
3745        if (len == 0)
3746                return -EINVAL;
3747
3748        path = btrfs_alloc_path();
3749        if (!path)
3750                return -ENOMEM;
3751        path->leave_spinning = 1;
3752
3753        start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3754        len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
3755
3756        /*
3757         * lookup the last file extent.  We're not using i_size here
3758         * because there might be preallocation past i_size
3759         */
3760        ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
3761                                       path, btrfs_ino(inode), -1, 0);
3762        if (ret < 0) {
3763                btrfs_free_path(path);
3764                return ret;
3765        }
3766        WARN_ON(!ret);
3767        path->slots[0]--;
3768        item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3769                              struct btrfs_file_extent_item);
3770        btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3771        found_type = btrfs_key_type(&found_key);
3772
3773        /* No extents, but there might be delalloc bits */
3774        if (found_key.objectid != btrfs_ino(inode) ||
3775            found_type != BTRFS_EXTENT_DATA_KEY) {
3776                /* have to trust i_size as the end */
3777                last = (u64)-1;
3778                last_for_get_extent = isize;
3779        } else {
3780                /*
3781                 * remember the start of the last extent.  There are a
3782                 * bunch of different factors that go into the length of the
3783                 * extent, so its much less complex to remember where it started
3784                 */
3785                last = found_key.offset;
3786                last_for_get_extent = last + 1;
3787        }
3788        btrfs_free_path(path);
3789
3790        /*
3791         * we might have some extents allocated but more delalloc past those
3792         * extents.  so, we trust isize unless the start of the last extent is
3793         * beyond isize
3794         */
3795        if (last < isize) {
3796                last = (u64)-1;
3797                last_for_get_extent = isize;
3798        }
3799
3800        lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
3801                         &cached_state);
3802
3803        em = get_extent_skip_holes(inode, start, last_for_get_extent,
3804                                   get_extent);
3805        if (!em)
3806                goto out;
3807        if (IS_ERR(em)) {
3808                ret = PTR_ERR(em);
3809                goto out;
3810        }
3811
3812        while (!end) {
3813                u64 offset_in_extent;
3814
3815                /* break if the extent we found is outside the range */
3816                if (em->start >= max || extent_map_end(em) < off)
3817                        break;
3818
3819                /*
3820                 * get_extent may return an extent that starts before our
3821                 * requested range.  We have to make sure the ranges
3822                 * we return to fiemap always move forward and don't
3823                 * overlap, so adjust the offsets here
3824                 */
3825                em_start = max(em->start, off);
3826
3827                /*
3828                 * record the offset from the start of the extent
3829                 * for adjusting the disk offset below
3830                 */
3831                offset_in_extent = em_start - em->start;
3832                em_end = extent_map_end(em);
3833                em_len = em_end - em_start;
3834                emflags = em->flags;
3835                disko = 0;
3836                flags = 0;
3837
3838                /*
3839                 * bump off for our next call to get_extent
3840                 */
3841                off = extent_map_end(em);
3842                if (off >= max)
3843                        end = 1;
3844
3845                if (em->block_start == EXTENT_MAP_LAST_BYTE) {
3846                        end = 1;
3847                        flags |= FIEMAP_EXTENT_LAST;
3848                } else if (em->block_start == EXTENT_MAP_INLINE) {
3849                        flags |= (FIEMAP_EXTENT_DATA_INLINE |
3850                                  FIEMAP_EXTENT_NOT_ALIGNED);
3851                } else if (em->block_start == EXTENT_MAP_DELALLOC) {
3852                        flags |= (FIEMAP_EXTENT_DELALLOC |
3853                                  FIEMAP_EXTENT_UNKNOWN);
3854                } else {
3855                        disko = em->block_start + offset_in_extent;
3856                }
3857                if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
3858                        flags |= FIEMAP_EXTENT_ENCODED;
3859
3860                free_extent_map(em);
3861                em = NULL;
3862                if ((em_start >= last) || em_len == (u64)-1 ||
3863                   (last == (u64)-1 && isize <= em_end)) {
3864                        flags |= FIEMAP_EXTENT_LAST;
3865                        end = 1;
3866                }
3867
3868                /* now scan forward to see if this is really the last extent. */
3869                em = get_extent_skip_holes(inode, off, last_for_get_extent,
3870                                           get_extent);
3871                if (IS_ERR(em)) {
3872                        ret = PTR_ERR(em);
3873                        goto out;
3874                }
3875                if (!em) {
3876                        flags |= FIEMAP_EXTENT_LAST;
3877                        end = 1;
3878                }
3879                ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3880                                              em_len, flags);
3881                if (ret)
3882                        goto out_free;
3883        }
3884out_free:
3885        free_extent_map(em);
3886out:
3887        unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
3888                             &cached_state, GFP_NOFS);
3889        return ret;
3890}
3891
3892inline struct page *extent_buffer_page(struct extent_buffer *eb,
3893                                              unsigned long i)
3894{
3895        return eb->pages[i];
3896}
3897
3898inline unsigned long num_extent_pages(u64 start, u64 len)
3899{
3900        return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
3901                (start >> PAGE_CACHE_SHIFT);
3902}
3903
3904static void __free_extent_buffer(struct extent_buffer *eb)
3905{
3906#if LEAK_DEBUG
3907        unsigned long flags;
3908        spin_lock_irqsave(&leak_lock, flags);
3909        list_del(&eb->leak_list);
3910        spin_unlock_irqrestore(&leak_lock, flags);
3911#endif
3912        if (eb->pages && eb->pages != eb->inline_pages)
3913                kfree(eb->pages);
3914        kmem_cache_free(extent_buffer_cache, eb);
3915}
3916
3917static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
3918                                                   u64 start,
3919                                                   unsigned long len,
3920                                                   gfp_t mask)
3921{
3922        struct extent_buffer *eb = NULL;
3923#if LEAK_DEBUG
3924        unsigned long flags;
3925#endif
3926
3927        eb = kmem_cache_zalloc(extent_buffer_cache, mask);
3928        if (eb == NULL)
3929                return NULL;
3930        eb->start = start;
3931        eb->len = len;
3932        eb->tree = tree;
3933        rwlock_init(&eb->lock);
3934        atomic_set(&eb->write_locks, 0);
3935        atomic_set(&eb->read_locks, 0);
3936        atomic_set(&eb->blocking_readers, 0);
3937        atomic_set(&eb->blocking_writers, 0);
3938        atomic_set(&eb->spinning_readers, 0);
3939        atomic_set(&eb->spinning_writers, 0);
3940        eb->lock_nested = 0;
3941        init_waitqueue_head(&eb->write_lock_wq);
3942        init_waitqueue_head(&eb->read_lock_wq);
3943
3944#if LEAK_DEBUG
3945        spin_lock_irqsave(&leak_lock, flags);
3946        list_add(&eb->leak_list, &buffers);
3947        spin_unlock_irqrestore(&leak_lock, flags);
3948#endif
3949        spin_lock_init(&eb->refs_lock);
3950        atomic_set(&eb->refs, 1);
3951        atomic_set(&eb->io_pages, 0);
3952
3953        if (len > MAX_INLINE_EXTENT_BUFFER_SIZE) {
3954                struct page **pages;
3955                int num_pages = (len + PAGE_CACHE_SIZE - 1) >>
3956                        PAGE_CACHE_SHIFT;
3957                pages = kzalloc(num_pages, mask);
3958                if (!pages) {
3959                        __free_extent_buffer(eb);
3960                        return NULL;
3961                }
3962                eb->pages = pages;
3963        } else {
3964                eb->pages = eb->inline_pages;
3965        }
3966
3967        return eb;
3968}
3969
3970static int extent_buffer_under_io(struct extent_buffer *eb)
3971{
3972        return (atomic_read(&eb->io_pages) ||
3973                test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
3974                test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3975}
3976
3977/*
3978 * Helper for releasing extent buffer page.
3979 */
3980static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
3981                                                unsigned long start_idx)
3982{
3983        unsigned long index;
3984        struct page *page;
3985
3986        BUG_ON(extent_buffer_under_io(eb));
3987
3988        index = num_extent_pages(eb->start, eb->len);
3989        if (start_idx >= index)
3990                return;
3991
3992        do {
3993                index--;
3994                page = extent_buffer_page(eb, index);
3995                if (page) {
3996                        spin_lock(&page->mapping->private_lock);
3997                        /*
3998                         * We do this since we'll remove the pages after we've
3999                         * removed the eb from the radix tree, so we could race
4000                         * and have this page now attached to the new eb.  So
4001                         * only clear page_private if it's still connected to
4002                         * this eb.
4003                         */
4004                        if (PagePrivate(page) &&
4005                            page->private == (unsigned long)eb) {
4006                                BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4007                                BUG_ON(PageDirty(page));
4008                                BUG_ON(PageWriteback(page));
4009                                /*
4010                                 * We need to make sure we haven't be attached
4011                                 * to a new eb.
4012                                 */
4013                                ClearPagePrivate(page);
4014                                set_page_private(page, 0);
4015                                /* One for the page private */
4016                                page_cache_release(page);
4017                        }
4018                        spin_unlock(&page->mapping->private_lock);
4019
4020                        /* One for when we alloced the page */
4021                        page_cache_release(page);
4022                }
4023        } while (index != start_idx);
4024}
4025
4026/*
4027 * Helper for releasing the extent buffer.
4028 */
4029static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4030{
4031        btrfs_release_extent_buffer_page(eb, 0);
4032        __free_extent_buffer(eb);
4033}
4034
4035static void check_buffer_tree_ref(struct extent_buffer *eb)
4036{
4037        /* the ref bit is tricky.  We have to make sure it is set
4038         * if we have the buffer dirty.   Otherwise the
4039         * code to free a buffer can end up dropping a dirty
4040         * page
4041         *
4042         * Once the ref bit is set, it won't go away while the
4043         * buffer is dirty or in writeback, and it also won't
4044         * go away while we have the reference count on the
4045         * eb bumped.
4046         *
4047         * We can't just set the ref bit without bumping the
4048         * ref on the eb because free_extent_buffer might
4049         * see the ref bit and try to clear it.  If this happens
4050         * free_extent_buffer might end up dropping our original
4051         * ref by mistake and freeing the page before we are able
4052         * to add one more ref.
4053         *
4054         * So bump the ref count first, then set the bit.  If someone
4055         * beat us to it, drop the ref we added.
4056         */
4057        if (!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4058                atomic_inc(&eb->refs);
4059                if (test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4060                        atomic_dec(&eb->refs);
4061        }
4062}
4063
4064static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4065{
4066        unsigned long num_pages, i;
4067
4068        check_buffer_tree_ref(eb);
4069
4070        num_pages = num_extent_pages(eb->start, eb->len);
4071        for (i = 0; i < num_pages; i++) {
4072                struct page *p = extent_buffer_page(eb, i);
4073                mark_page_accessed(p);
4074        }
4075}
4076
4077struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
4078                                          u64 start, unsigned long len)
4079{
4080        unsigned long num_pages = num_extent_pages(start, len);
4081        unsigned long i;
4082        unsigned long index = start >> PAGE_CACHE_SHIFT;
4083        struct extent_buffer *eb;
4084        struct extent_buffer *exists = NULL;
4085        struct page *p;
4086        struct address_space *mapping = tree->mapping;
4087        int uptodate = 1;
4088        int ret;
4089
4090        rcu_read_lock();
4091        eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4092        if (eb && atomic_inc_not_zero(&eb->refs)) {
4093                rcu_read_unlock();
4094                mark_extent_buffer_accessed(eb);
4095                return eb;
4096        }
4097        rcu_read_unlock();
4098
4099        eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
4100        if (!eb)
4101                return NULL;
4102
4103        for (i = 0; i < num_pages; i++, index++) {
4104                p = find_or_create_page(mapping, index, GFP_NOFS);
4105                if (!p) {
4106                        WARN_ON(1);
4107                        goto free_eb;
4108                }
4109
4110                spin_lock(&mapping->private_lock);
4111                if (PagePrivate(p)) {
4112                        /*
4113                         * We could have already allocated an eb for this page
4114                         * and attached one so lets see if we can get a ref on
4115                         * the existing eb, and if we can we know it's good and
4116                         * we can just return that one, else we know we can just
4117                         * overwrite page->private.
4118                         */
4119                        exists = (struct extent_buffer *)p->private;
4120                        if (atomic_inc_not_zero(&exists->refs)) {
4121                                spin_unlock(&mapping->private_lock);
4122                                unlock_page(p);
4123                                page_cache_release(p);
4124                                mark_extent_buffer_accessed(exists);
4125                                goto free_eb;
4126                        }
4127
4128                        /*
4129                         * Do this so attach doesn't complain and we need to
4130                         * drop the ref the old guy had.
4131                         */
4132                        ClearPagePrivate(p);
4133                        WARN_ON(PageDirty(p));
4134                        page_cache_release(p);
4135                }
4136                attach_extent_buffer_page(eb, p);
4137                spin_unlock(&mapping->private_lock);
4138                WARN_ON(PageDirty(p));
4139                mark_page_accessed(p);
4140                eb->pages[i] = p;
4141                if (!PageUptodate(p))
4142                        uptodate = 0;
4143
4144                /*
4145                 * see below about how we avoid a nasty race with release page
4146                 * and why we unlock later
4147                 */
4148        }
4149        if (uptodate)
4150                set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4151again:
4152        ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4153        if (ret)
4154                goto free_eb;
4155
4156        spin_lock(&tree->buffer_lock);
4157        ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4158        if (ret == -EEXIST) {
4159                exists = radix_tree_lookup(&tree->buffer,
4160                                                start >> PAGE_CACHE_SHIFT);
4161                if (!atomic_inc_not_zero(&exists->refs)) {
4162                        spin_unlock(&tree->buffer_lock);
4163                        radix_tree_preload_end();
4164                        exists = NULL;
4165                        goto again;
4166                }
4167                spin_unlock(&tree->buffer_lock);
4168                radix_tree_preload_end();
4169                mark_extent_buffer_accessed(exists);
4170                goto free_eb;
4171        }
4172        /* add one reference for the tree */
4173        spin_lock(&eb->refs_lock);
4174        check_buffer_tree_ref(eb);
4175        spin_unlock(&eb->refs_lock);
4176        spin_unlock(&tree->buffer_lock);
4177        radix_tree_preload_end();
4178
4179        /*
4180         * there is a race where release page may have
4181         * tried to find this extent buffer in the radix
4182         * but failed.  It will tell the VM it is safe to
4183         * reclaim the, and it will clear the page private bit.
4184         * We must make sure to set the page private bit properly
4185         * after the extent buffer is in the radix tree so
4186         * it doesn't get lost
4187         */
4188        SetPageChecked(eb->pages[0]);
4189        for (i = 1; i < num_pages; i++) {
4190                p = extent_buffer_page(eb, i);
4191                ClearPageChecked(p);
4192                unlock_page(p);
4193        }
4194        unlock_page(eb->pages[0]);
4195        return eb;
4196
4197free_eb:
4198        for (i = 0; i < num_pages; i++) {
4199                if (eb->pages[i])
4200                        unlock_page(eb->pages[i]);
4201        }
4202
4203        WARN_ON(!atomic_dec_and_test(&eb->refs));
4204        btrfs_release_extent_buffer(eb);
4205        return exists;
4206}
4207
4208struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
4209                                         u64 start, unsigned long len)
4210{
4211        struct extent_buffer *eb;
4212
4213        rcu_read_lock();
4214        eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4215        if (eb && atomic_inc_not_zero(&eb->refs)) {
4216                rcu_read_unlock();
4217                mark_extent_buffer_accessed(eb);
4218                return eb;
4219        }
4220        rcu_read_unlock();
4221
4222        return NULL;
4223}
4224
4225static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4226{
4227        struct extent_buffer *eb =
4228                        container_of(head, struct extent_buffer, rcu_head);
4229
4230        __free_extent_buffer(eb);
4231}
4232
4233/* Expects to have eb->eb_lock already held */
4234static void release_extent_buffer(struct extent_buffer *eb, gfp_t mask)
4235{
4236        WARN_ON(atomic_read(&eb->refs) == 0);
4237        if (atomic_dec_and_test(&eb->refs)) {
4238                struct extent_io_tree *tree = eb->tree;
4239
4240                spin_unlock(&eb->refs_lock);
4241
4242                spin_lock(&tree->buffer_lock);
4243                radix_tree_delete(&tree->buffer,
4244                                  eb->start >> PAGE_CACHE_SHIFT);
4245                spin_unlock(&tree->buffer_lock);
4246
4247                /* Should be safe to release our pages at this point */
4248                btrfs_release_extent_buffer_page(eb, 0);
4249
4250                call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4251                return;
4252        }
4253        spin_unlock(&eb->refs_lock);
4254}
4255
4256void free_extent_buffer(struct extent_buffer *eb)
4257{
4258        if (!eb)
4259                return;
4260
4261        spin_lock(&eb->refs_lock);
4262        if (atomic_read(&eb->refs) == 2 &&
4263            test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4264            !extent_buffer_under_io(eb) &&
4265            test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4266                atomic_dec(&eb->refs);
4267
4268        /*
4269         * I know this is terrible, but it's temporary until we stop tracking
4270         * the uptodate bits and such for the extent buffers.
4271         */
4272        release_extent_buffer(eb, GFP_ATOMIC);
4273}
4274
4275void free_extent_buffer_stale(struct extent_buffer *eb)
4276{
4277        if (!eb)
4278                return;
4279
4280        spin_lock(&eb->refs_lock);
4281        set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4282
4283        if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4284            test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4285                atomic_dec(&eb->refs);
4286        release_extent_buffer(eb, GFP_NOFS);
4287}
4288
4289void clear_extent_buffer_dirty(struct extent_buffer *eb)
4290{
4291        unsigned long i;
4292        unsigned long num_pages;
4293        struct page *page;
4294
4295        num_pages = num_extent_pages(eb->start, eb->len);
4296
4297        for (i = 0; i < num_pages; i++) {
4298                page = extent_buffer_page(eb, i);
4299                if (!PageDirty(page))
4300                        continue;
4301
4302                lock_page(page);
4303                WARN_ON(!PagePrivate(page));
4304
4305                clear_page_dirty_for_io(page);
4306                spin_lock_irq(&page->mapping->tree_lock);
4307                if (!PageDirty(page)) {
4308                        radix_tree_tag_clear(&page->mapping->page_tree,
4309                                                page_index(page),
4310                                                PAGECACHE_TAG_DIRTY);
4311                }
4312                spin_unlock_irq(&page->mapping->tree_lock);
4313                ClearPageError(page);
4314                unlock_page(page);
4315        }
4316        WARN_ON(atomic_read(&eb->refs) == 0);
4317}
4318
4319int set_extent_buffer_dirty(struct extent_buffer *eb)
4320{
4321        unsigned long i;
4322        unsigned long num_pages;
4323        int was_dirty = 0;
4324
4325        check_buffer_tree_ref(eb);
4326
4327        was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4328
4329        num_pages = num_extent_pages(eb->start, eb->len);
4330        WARN_ON(atomic_read(&eb->refs) == 0);
4331        WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4332
4333        for (i = 0; i < num_pages; i++)
4334                set_page_dirty(extent_buffer_page(eb, i));
4335        return was_dirty;
4336}
4337
4338static int range_straddles_pages(u64 start, u64 len)
4339{
4340        if (len < PAGE_CACHE_SIZE)
4341                return 1;
4342        if (start & (PAGE_CACHE_SIZE - 1))
4343                return 1;
4344        if ((start + len) & (PAGE_CACHE_SIZE - 1))
4345                return 1;
4346        return 0;
4347}
4348
4349int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4350{
4351        unsigned long i;
4352        struct page *page;
4353        unsigned long num_pages;
4354
4355        clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4356        num_pages = num_extent_pages(eb->start, eb->len);
4357        for (i = 0; i < num_pages; i++) {
4358                page = extent_buffer_page(eb, i);
4359                if (page)
4360                        ClearPageUptodate(page);
4361        }
4362        return 0;
4363}
4364
4365int set_extent_buffer_uptodate(struct extent_buffer *eb)
4366{
4367        unsigned long i;
4368        struct page *page;
4369        unsigned long num_pages;
4370
4371        set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4372        num_pages = num_extent_pages(eb->start, eb->len);
4373        for (i = 0; i < num_pages; i++) {
4374                page = extent_buffer_page(eb, i);
4375                SetPageUptodate(page);
4376        }
4377        return 0;
4378}
4379
4380int extent_range_uptodate(struct extent_io_tree *tree,
4381                          u64 start, u64 end)
4382{
4383        struct page *page;
4384        int ret;
4385        int pg_uptodate = 1;
4386        int uptodate;
4387        unsigned long index;
4388
4389        if (range_straddles_pages(start, end - start + 1)) {
4390                ret = test_range_bit(tree, start, end,
4391                                     EXTENT_UPTODATE, 1, NULL);
4392                if (ret)
4393                        return 1;
4394        }
4395        while (start <= end) {
4396                index = start >> PAGE_CACHE_SHIFT;
4397                page = find_get_page(tree->mapping, index);
4398                if (!page)
4399                        return 1;
4400                uptodate = PageUptodate(page);
4401                page_cache_release(page);
4402                if (!uptodate) {
4403                        pg_uptodate = 0;
4404                        break;
4405                }
4406                start += PAGE_CACHE_SIZE;
4407        }
4408        return pg_uptodate;
4409}
4410
4411int extent_buffer_uptodate(struct extent_buffer *eb)
4412{
4413        return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4414}
4415
4416int read_extent_buffer_pages(struct extent_io_tree *tree,
4417                             struct extent_buffer *eb, u64 start, int wait,
4418                             get_extent_t *get_extent, int mirror_num)
4419{
4420        unsigned long i;
4421        unsigned long start_i;
4422        struct page *page;
4423        int err;
4424        int ret = 0;
4425        int locked_pages = 0;
4426        int all_uptodate = 1;
4427        unsigned long num_pages;
4428        unsigned long num_reads = 0;
4429        struct bio *bio = NULL;
4430        unsigned long bio_flags = 0;
4431
4432        if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4433                return 0;
4434
4435        if (start) {
4436                WARN_ON(start < eb->start);
4437                start_i = (start >> PAGE_CACHE_SHIFT) -
4438                        (eb->start >> PAGE_CACHE_SHIFT);
4439        } else {
4440                start_i = 0;
4441        }
4442
4443        num_pages = num_extent_pages(eb->start, eb->len);
4444        for (i = start_i; i < num_pages; i++) {
4445                page = extent_buffer_page(eb, i);
4446                if (wait == WAIT_NONE) {
4447                        if (!trylock_page(page))
4448                                goto unlock_exit;
4449                } else {
4450                        lock_page(page);
4451                }
4452                locked_pages++;
4453                if (!PageUptodate(page)) {
4454                        num_reads++;
4455                        all_uptodate = 0;
4456                }
4457        }
4458        if (all_uptodate) {
4459                if (start_i == 0)
4460                        set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4461                goto unlock_exit;
4462        }
4463
4464        clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4465        eb->read_mirror = 0;
4466        atomic_set(&eb->io_pages, num_reads);
4467        for (i = start_i; i < num_pages; i++) {
4468                page = extent_buffer_page(eb, i);
4469                if (!PageUptodate(page)) {
4470                        ClearPageError(page);
4471                        err = __extent_read_full_page(tree, page,
4472                                                      get_extent, &bio,
4473                                                      mirror_num, &bio_flags);
4474                        if (err)
4475                                ret = err;
4476                } else {
4477                        unlock_page(page);
4478                }
4479        }
4480
4481        if (bio) {
4482                err = submit_one_bio(READ, bio, mirror_num, bio_flags);
4483                if (err)
4484                        return err;
4485        }
4486
4487        if (ret || wait != WAIT_COMPLETE)
4488                return ret;
4489
4490        for (i = start_i; i < num_pages; i++) {
4491                page = extent_buffer_page(eb, i);
4492                wait_on_page_locked(page);
4493                if (!PageUptodate(page))
4494                        ret = -EIO;
4495        }
4496
4497        return ret;
4498
4499unlock_exit:
4500        i = start_i;
4501        while (locked_pages > 0) {
4502                page = extent_buffer_page(eb, i);
4503                i++;
4504                unlock_page(page);
4505                locked_pages--;
4506        }
4507        return ret;
4508}
4509
4510void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4511                        unsigned long start,
4512                        unsigned long len)
4513{
4514        size_t cur;
4515        size_t offset;
4516        struct page *page;
4517        char *kaddr;
4518        char *dst = (char *)dstv;
4519        size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4520        unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4521
4522        WARN_ON(start > eb->len);
4523        WARN_ON(start + len > eb->start + eb->len);
4524
4525        offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4526
4527        while (len > 0) {
4528                page = extent_buffer_page(eb, i);
4529
4530                cur = min(len, (PAGE_CACHE_SIZE - offset));
4531                kaddr = page_address(page);
4532                memcpy(dst, kaddr + offset, cur);
4533
4534                dst += cur;
4535                len -= cur;
4536                offset = 0;
4537                i++;
4538        }
4539}
4540
4541int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4542                               unsigned long min_len, char **map,
4543                               unsigned long *map_start,
4544                               unsigned long *map_len)
4545{
4546        size_t offset = start & (PAGE_CACHE_SIZE - 1);
4547        char *kaddr;
4548        struct page *p;
4549        size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4550        unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4551        unsigned long end_i = (start_offset + start + min_len - 1) >>
4552                PAGE_CACHE_SHIFT;
4553
4554        if (i != end_i)
4555                return -EINVAL;
4556
4557        if (i == 0) {
4558                offset = start_offset;
4559                *map_start = 0;
4560        } else {
4561                offset = 0;
4562                *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4563        }
4564
4565        if (start + min_len > eb->len) {
4566                printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4567                       "wanted %lu %lu\n", (unsigned long long)eb->start,
4568                       eb->len, start, min_len);
4569                WARN_ON(1);
4570                return -EINVAL;
4571        }
4572
4573        p = extent_buffer_page(eb, i);
4574        kaddr = page_address(p);
4575        *map = kaddr + offset;
4576        *map_len = PAGE_CACHE_SIZE - offset;
4577        return 0;
4578}
4579
4580int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4581                          unsigned long start,
4582                          unsigned long len)
4583{
4584        size_t cur;
4585        size_t offset;
4586        struct page *page;
4587        char *kaddr;
4588        char *ptr = (char *)ptrv;
4589        size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4590        unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4591        int ret = 0;
4592
4593        WARN_ON(start > eb->len);
4594        WARN_ON(start + len > eb->start + eb->len);
4595
4596        offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4597
4598        while (len > 0) {
4599                page = extent_buffer_page(eb, i);
4600
4601                cur = min(len, (PAGE_CACHE_SIZE - offset));
4602
4603                kaddr = page_address(page);
4604                ret = memcmp(ptr, kaddr + offset, cur);
4605                if (ret)
4606                        break;
4607
4608                ptr += cur;
4609                len -= cur;
4610                offset = 0;
4611                i++;
4612        }
4613        return ret;
4614}
4615
4616void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4617                         unsigned long start, unsigned long len)
4618{
4619        size_t cur;
4620        size_t offset;
4621        struct page *page;
4622        char *kaddr;
4623        char *src = (char *)srcv;
4624        size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4625        unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4626
4627        WARN_ON(start > eb->len);
4628        WARN_ON(start + len > eb->start + eb->len);
4629
4630        offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4631
4632        while (len > 0) {
4633                page = extent_buffer_page(eb, i);
4634                WARN_ON(!PageUptodate(page));
4635
4636                cur = min(len, PAGE_CACHE_SIZE - offset);
4637                kaddr = page_address(page);
4638                memcpy(kaddr + offset, src, cur);
4639
4640                src += cur;
4641                len -= cur;
4642                offset = 0;
4643                i++;
4644        }
4645}
4646
4647void memset_extent_buffer(struct extent_buffer *eb, char c,
4648                          unsigned long start, unsigned long len)
4649{
4650        size_t cur;
4651        size_t offset;
4652        struct page *page;
4653        char *kaddr;
4654        size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4655        unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4656
4657        WARN_ON(start > eb->len);
4658        WARN_ON(start + len > eb->start + eb->len);
4659
4660        offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4661
4662        while (len > 0) {
4663                page = extent_buffer_page(eb, i);
4664                WARN_ON(!PageUptodate(page));
4665
4666                cur = min(len, PAGE_CACHE_SIZE - offset);
4667                kaddr = page_address(page);
4668                memset(kaddr + offset, c, cur);
4669
4670                len -= cur;
4671                offset = 0;
4672                i++;
4673        }
4674}
4675
4676void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4677                        unsigned long dst_offset, unsigned long src_offset,
4678                        unsigned long len)
4679{
4680        u64 dst_len = dst->len;
4681        size_t cur;
4682        size_t offset;
4683        struct page *page;
4684        char *kaddr;
4685        size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4686        unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4687
4688        WARN_ON(src->len != dst_len);
4689
4690        offset = (start_offset + dst_offset) &
4691                ((unsigned long)PAGE_CACHE_SIZE - 1);
4692
4693        while (len > 0) {
4694                page = extent_buffer_page(dst, i);
4695                WARN_ON(!PageUptodate(page));
4696
4697                cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4698
4699                kaddr = page_address(page);
4700                read_extent_buffer(src, kaddr + offset, src_offset, cur);
4701
4702                src_offset += cur;
4703                len -= cur;
4704                offset = 0;
4705                i++;
4706        }
4707}
4708
4709static void move_pages(struct page *dst_page, struct page *src_page,
4710                       unsigned long dst_off, unsigned long src_off,
4711                       unsigned long len)
4712{
4713        char *dst_kaddr = page_address(dst_page);
4714        if (dst_page == src_page) {
4715                memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4716        } else {
4717                char *src_kaddr = page_address(src_page);
4718                char *p = dst_kaddr + dst_off + len;
4719                char *s = src_kaddr + src_off + len;
4720
4721                while (len--)
4722                        *--p = *--s;
4723        }
4724}
4725
4726static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4727{
4728        unsigned long distance = (src > dst) ? src - dst : dst - src;
4729        return distance < len;
4730}
4731
4732static void copy_pages(struct page *dst_page, struct page *src_page,
4733                       unsigned long dst_off, unsigned long src_off,
4734                       unsigned long len)
4735{
4736        char *dst_kaddr = page_address(dst_page);
4737        char *src_kaddr;
4738        int must_memmove = 0;
4739
4740        if (dst_page != src_page) {
4741                src_kaddr = page_address(src_page);
4742        } else {
4743                src_kaddr = dst_kaddr;
4744                if (areas_overlap(src_off, dst_off, len))
4745                        must_memmove = 1;
4746        }
4747
4748        if (must_memmove)
4749                memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
4750        else
4751                memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
4752}
4753
4754void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4755                           unsigned long src_offset, unsigned long len)
4756{
4757        size_t cur;
4758        size_t dst_off_in_page;
4759        size_t src_off_in_page;
4760        size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4761        unsigned long dst_i;
4762        unsigned long src_i;
4763
4764        if (src_offset + len > dst->len) {
4765                printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4766                       "len %lu dst len %lu\n", src_offset, len, dst->len);
4767                BUG_ON(1);
4768        }
4769        if (dst_offset + len > dst->len) {
4770                printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4771                       "len %lu dst len %lu\n", dst_offset, len, dst->len);
4772                BUG_ON(1);
4773        }
4774
4775        while (len > 0) {
4776                dst_off_in_page = (start_offset + dst_offset) &
4777                        ((unsigned long)PAGE_CACHE_SIZE - 1);
4778                src_off_in_page = (start_offset + src_offset) &
4779                        ((unsigned long)PAGE_CACHE_SIZE - 1);
4780
4781                dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4782                src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
4783
4784                cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
4785                                               src_off_in_page));
4786                cur = min_t(unsigned long, cur,
4787                        (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
4788
4789                copy_pages(extent_buffer_page(dst, dst_i),
4790                           extent_buffer_page(dst, src_i),
4791                           dst_off_in_page, src_off_in_page, cur);
4792
4793                src_offset += cur;
4794                dst_offset += cur;
4795                len -= cur;
4796        }
4797}
4798
4799void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4800                           unsigned long src_offset, unsigned long len)
4801{
4802        size_t cur;
4803        size_t dst_off_in_page;
4804        size_t src_off_in_page;
4805        unsigned long dst_end = dst_offset + len - 1;
4806        unsigned long src_end = src_offset + len - 1;
4807        size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4808        unsigned long dst_i;
4809        unsigned long src_i;
4810
4811        if (src_offset + len > dst->len) {
4812                printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4813                       "len %lu len %lu\n", src_offset, len, dst->len);
4814                BUG_ON(1);
4815        }
4816        if (dst_offset + len > dst->len) {
4817                printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4818                       "len %lu len %lu\n", dst_offset, len, dst->len);
4819                BUG_ON(1);
4820        }
4821        if (dst_offset < src_offset) {
4822                memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4823                return;
4824        }
4825        while (len > 0) {
4826                dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
4827                src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
4828
4829                dst_off_in_page = (start_offset + dst_end) &
4830                        ((unsigned long)PAGE_CACHE_SIZE - 1);
4831                src_off_in_page = (start_offset + src_end) &
4832                        ((unsigned long)PAGE_CACHE_SIZE - 1);
4833
4834                cur = min_t(unsigned long, len, src_off_in_page + 1);
4835                cur = min(cur, dst_off_in_page + 1);
4836                move_pages(extent_buffer_page(dst, dst_i),
4837                           extent_buffer_page(dst, src_i),
4838                           dst_off_in_page - cur + 1,
4839                           src_off_in_page - cur + 1, cur);
4840
4841                dst_end -= cur;
4842                src_end -= cur;
4843                len -= cur;
4844        }
4845}
4846
4847int try_release_extent_buffer(struct page *page, gfp_t mask)
4848{
4849        struct extent_buffer *eb;
4850
4851        /*
4852         * We need to make sure noboody is attaching this page to an eb right
4853         * now.
4854         */
4855        spin_lock(&page->mapping->private_lock);
4856        if (!PagePrivate(page)) {
4857                spin_unlock(&page->mapping->private_lock);
4858                return 1;
4859        }
4860
4861        eb = (struct extent_buffer *)page->private;
4862        BUG_ON(!eb);
4863
4864        /*
4865         * This is a little awful but should be ok, we need to make sure that
4866         * the eb doesn't disappear out from under us while we're looking at
4867         * this page.
4868         */
4869        spin_lock(&eb->refs_lock);
4870        if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4871                spin_unlock(&eb->refs_lock);
4872                spin_unlock(&page->mapping->private_lock);
4873                return 0;
4874        }
4875        spin_unlock(&page->mapping->private_lock);
4876
4877        if ((mask & GFP_NOFS) == GFP_NOFS)
4878                mask = GFP_NOFS;
4879
4880        /*
4881         * If tree ref isn't set then we know the ref on this eb is a real ref,
4882         * so just return, this page will likely be freed soon anyway.
4883         */
4884        if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4885                spin_unlock(&eb->refs_lock);
4886                return 0;
4887        }
4888        release_extent_buffer(eb, mask);
4889
4890        return 1;
4891}
4892