linux/fs/direct-io.c
<<
>>
Prefs
   1/*
   2 * fs/direct-io.c
   3 *
   4 * Copyright (C) 2002, Linus Torvalds.
   5 *
   6 * O_DIRECT
   7 *
   8 * 04Jul2002    Andrew Morton
   9 *              Initial version
  10 * 11Sep2002    janetinc@us.ibm.com
  11 *              added readv/writev support.
  12 * 29Oct2002    Andrew Morton
  13 *              rewrote bio_add_page() support.
  14 * 30Oct2002    pbadari@us.ibm.com
  15 *              added support for non-aligned IO.
  16 * 06Nov2002    pbadari@us.ibm.com
  17 *              added asynchronous IO support.
  18 * 21Jul2003    nathans@sgi.com
  19 *              added IO completion notifier.
  20 */
  21
  22#include <linux/kernel.h>
  23#include <linux/module.h>
  24#include <linux/types.h>
  25#include <linux/fs.h>
  26#include <linux/mm.h>
  27#include <linux/slab.h>
  28#include <linux/highmem.h>
  29#include <linux/pagemap.h>
  30#include <linux/task_io_accounting_ops.h>
  31#include <linux/bio.h>
  32#include <linux/wait.h>
  33#include <linux/err.h>
  34#include <linux/blkdev.h>
  35#include <linux/buffer_head.h>
  36#include <linux/rwsem.h>
  37#include <linux/uio.h>
  38#include <linux/atomic.h>
  39#include <linux/prefetch.h>
  40
  41/*
  42 * How many user pages to map in one call to get_user_pages().  This determines
  43 * the size of a structure in the slab cache
  44 */
  45#define DIO_PAGES       64
  46
  47/*
  48 * This code generally works in units of "dio_blocks".  A dio_block is
  49 * somewhere between the hard sector size and the filesystem block size.  it
  50 * is determined on a per-invocation basis.   When talking to the filesystem
  51 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
  52 * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
  53 * to bio_block quantities by shifting left by blkfactor.
  54 *
  55 * If blkfactor is zero then the user's request was aligned to the filesystem's
  56 * blocksize.
  57 */
  58
  59/* dio_state only used in the submission path */
  60
  61struct dio_submit {
  62        struct bio *bio;                /* bio under assembly */
  63        unsigned blkbits;               /* doesn't change */
  64        unsigned blkfactor;             /* When we're using an alignment which
  65                                           is finer than the filesystem's soft
  66                                           blocksize, this specifies how much
  67                                           finer.  blkfactor=2 means 1/4-block
  68                                           alignment.  Does not change */
  69        unsigned start_zero_done;       /* flag: sub-blocksize zeroing has
  70                                           been performed at the start of a
  71                                           write */
  72        int pages_in_io;                /* approximate total IO pages */
  73        size_t  size;                   /* total request size (doesn't change)*/
  74        sector_t block_in_file;         /* Current offset into the underlying
  75                                           file in dio_block units. */
  76        unsigned blocks_available;      /* At block_in_file.  changes */
  77        int reap_counter;               /* rate limit reaping */
  78        sector_t final_block_in_request;/* doesn't change */
  79        unsigned first_block_in_page;   /* doesn't change, Used only once */
  80        int boundary;                   /* prev block is at a boundary */
  81        get_block_t *get_block;         /* block mapping function */
  82        dio_submit_t *submit_io;        /* IO submition function */
  83
  84        loff_t logical_offset_in_bio;   /* current first logical block in bio */
  85        sector_t final_block_in_bio;    /* current final block in bio + 1 */
  86        sector_t next_block_for_io;     /* next block to be put under IO,
  87                                           in dio_blocks units */
  88
  89        /*
  90         * Deferred addition of a page to the dio.  These variables are
  91         * private to dio_send_cur_page(), submit_page_section() and
  92         * dio_bio_add_page().
  93         */
  94        struct page *cur_page;          /* The page */
  95        unsigned cur_page_offset;       /* Offset into it, in bytes */
  96        unsigned cur_page_len;          /* Nr of bytes at cur_page_offset */
  97        sector_t cur_page_block;        /* Where it starts */
  98        loff_t cur_page_fs_offset;      /* Offset in file */
  99
 100        /*
 101         * Page fetching state. These variables belong to dio_refill_pages().
 102         */
 103        int curr_page;                  /* changes */
 104        int total_pages;                /* doesn't change */
 105        unsigned long curr_user_address;/* changes */
 106
 107        /*
 108         * Page queue.  These variables belong to dio_refill_pages() and
 109         * dio_get_page().
 110         */
 111        unsigned head;                  /* next page to process */
 112        unsigned tail;                  /* last valid page + 1 */
 113};
 114
 115/* dio_state communicated between submission path and end_io */
 116struct dio {
 117        int flags;                      /* doesn't change */
 118        int rw;
 119        struct inode *inode;
 120        loff_t i_size;                  /* i_size when submitted */
 121        dio_iodone_t *end_io;           /* IO completion function */
 122
 123        void *private;                  /* copy from map_bh.b_private */
 124
 125        /* BIO completion state */
 126        spinlock_t bio_lock;            /* protects BIO fields below */
 127        int page_errors;                /* errno from get_user_pages() */
 128        int is_async;                   /* is IO async ? */
 129        int io_error;                   /* IO error in completion path */
 130        unsigned long refcount;         /* direct_io_worker() and bios */
 131        struct bio *bio_list;           /* singly linked via bi_private */
 132        struct task_struct *waiter;     /* waiting task (NULL if none) */
 133
 134        /* AIO related stuff */
 135        struct kiocb *iocb;             /* kiocb */
 136        ssize_t result;                 /* IO result */
 137
 138        /*
 139         * pages[] (and any fields placed after it) are not zeroed out at
 140         * allocation time.  Don't add new fields after pages[] unless you
 141         * wish that they not be zeroed.
 142         */
 143        struct page *pages[DIO_PAGES];  /* page buffer */
 144} ____cacheline_aligned_in_smp;
 145
 146static struct kmem_cache *dio_cache __read_mostly;
 147
 148static void __inode_dio_wait(struct inode *inode)
 149{
 150        wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
 151        DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
 152
 153        do {
 154                prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
 155                if (atomic_read(&inode->i_dio_count))
 156                        schedule();
 157        } while (atomic_read(&inode->i_dio_count));
 158        finish_wait(wq, &q.wait);
 159}
 160
 161/**
 162 * inode_dio_wait - wait for outstanding DIO requests to finish
 163 * @inode: inode to wait for
 164 *
 165 * Waits for all pending direct I/O requests to finish so that we can
 166 * proceed with a truncate or equivalent operation.
 167 *
 168 * Must be called under a lock that serializes taking new references
 169 * to i_dio_count, usually by inode->i_mutex.
 170 */
 171void inode_dio_wait(struct inode *inode)
 172{
 173        if (atomic_read(&inode->i_dio_count))
 174                __inode_dio_wait(inode);
 175}
 176EXPORT_SYMBOL(inode_dio_wait);
 177
 178/*
 179 * inode_dio_done - signal finish of a direct I/O requests
 180 * @inode: inode the direct I/O happens on
 181 *
 182 * This is called once we've finished processing a direct I/O request,
 183 * and is used to wake up callers waiting for direct I/O to be quiesced.
 184 */
 185void inode_dio_done(struct inode *inode)
 186{
 187        if (atomic_dec_and_test(&inode->i_dio_count))
 188                wake_up_bit(&inode->i_state, __I_DIO_WAKEUP);
 189}
 190EXPORT_SYMBOL(inode_dio_done);
 191
 192/*
 193 * How many pages are in the queue?
 194 */
 195static inline unsigned dio_pages_present(struct dio_submit *sdio)
 196{
 197        return sdio->tail - sdio->head;
 198}
 199
 200/*
 201 * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
 202 */
 203static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
 204{
 205        int ret;
 206        int nr_pages;
 207
 208        nr_pages = min(sdio->total_pages - sdio->curr_page, DIO_PAGES);
 209        ret = get_user_pages_fast(
 210                sdio->curr_user_address,                /* Where from? */
 211                nr_pages,                       /* How many pages? */
 212                dio->rw == READ,                /* Write to memory? */
 213                &dio->pages[0]);                /* Put results here */
 214
 215        if (ret < 0 && sdio->blocks_available && (dio->rw & WRITE)) {
 216                struct page *page = ZERO_PAGE(0);
 217                /*
 218                 * A memory fault, but the filesystem has some outstanding
 219                 * mapped blocks.  We need to use those blocks up to avoid
 220                 * leaking stale data in the file.
 221                 */
 222                if (dio->page_errors == 0)
 223                        dio->page_errors = ret;
 224                page_cache_get(page);
 225                dio->pages[0] = page;
 226                sdio->head = 0;
 227                sdio->tail = 1;
 228                ret = 0;
 229                goto out;
 230        }
 231
 232        if (ret >= 0) {
 233                sdio->curr_user_address += ret * PAGE_SIZE;
 234                sdio->curr_page += ret;
 235                sdio->head = 0;
 236                sdio->tail = ret;
 237                ret = 0;
 238        }
 239out:
 240        return ret;     
 241}
 242
 243/*
 244 * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
 245 * buffered inside the dio so that we can call get_user_pages() against a
 246 * decent number of pages, less frequently.  To provide nicer use of the
 247 * L1 cache.
 248 */
 249static inline struct page *dio_get_page(struct dio *dio,
 250                struct dio_submit *sdio)
 251{
 252        if (dio_pages_present(sdio) == 0) {
 253                int ret;
 254
 255                ret = dio_refill_pages(dio, sdio);
 256                if (ret)
 257                        return ERR_PTR(ret);
 258                BUG_ON(dio_pages_present(sdio) == 0);
 259        }
 260        return dio->pages[sdio->head++];
 261}
 262
 263/**
 264 * dio_complete() - called when all DIO BIO I/O has been completed
 265 * @offset: the byte offset in the file of the completed operation
 266 *
 267 * This releases locks as dictated by the locking type, lets interested parties
 268 * know that a DIO operation has completed, and calculates the resulting return
 269 * code for the operation.
 270 *
 271 * It lets the filesystem know if it registered an interest earlier via
 272 * get_block.  Pass the private field of the map buffer_head so that
 273 * filesystems can use it to hold additional state between get_block calls and
 274 * dio_complete.
 275 */
 276static ssize_t dio_complete(struct dio *dio, loff_t offset, ssize_t ret, bool is_async)
 277{
 278        ssize_t transferred = 0;
 279
 280        /*
 281         * AIO submission can race with bio completion to get here while
 282         * expecting to have the last io completed by bio completion.
 283         * In that case -EIOCBQUEUED is in fact not an error we want
 284         * to preserve through this call.
 285         */
 286        if (ret == -EIOCBQUEUED)
 287                ret = 0;
 288
 289        if (dio->result) {
 290                transferred = dio->result;
 291
 292                /* Check for short read case */
 293                if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
 294                        transferred = dio->i_size - offset;
 295        }
 296
 297        if (ret == 0)
 298                ret = dio->page_errors;
 299        if (ret == 0)
 300                ret = dio->io_error;
 301        if (ret == 0)
 302                ret = transferred;
 303
 304        if (dio->end_io && dio->result) {
 305                dio->end_io(dio->iocb, offset, transferred,
 306                            dio->private, ret, is_async);
 307        } else {
 308                if (is_async)
 309                        aio_complete(dio->iocb, ret, 0);
 310                inode_dio_done(dio->inode);
 311        }
 312
 313        return ret;
 314}
 315
 316static int dio_bio_complete(struct dio *dio, struct bio *bio);
 317/*
 318 * Asynchronous IO callback. 
 319 */
 320static void dio_bio_end_aio(struct bio *bio, int error)
 321{
 322        struct dio *dio = bio->bi_private;
 323        unsigned long remaining;
 324        unsigned long flags;
 325
 326        /* cleanup the bio */
 327        dio_bio_complete(dio, bio);
 328
 329        spin_lock_irqsave(&dio->bio_lock, flags);
 330        remaining = --dio->refcount;
 331        if (remaining == 1 && dio->waiter)
 332                wake_up_process(dio->waiter);
 333        spin_unlock_irqrestore(&dio->bio_lock, flags);
 334
 335        if (remaining == 0) {
 336                dio_complete(dio, dio->iocb->ki_pos, 0, true);
 337                kmem_cache_free(dio_cache, dio);
 338        }
 339}
 340
 341/*
 342 * The BIO completion handler simply queues the BIO up for the process-context
 343 * handler.
 344 *
 345 * During I/O bi_private points at the dio.  After I/O, bi_private is used to
 346 * implement a singly-linked list of completed BIOs, at dio->bio_list.
 347 */
 348static void dio_bio_end_io(struct bio *bio, int error)
 349{
 350        struct dio *dio = bio->bi_private;
 351        unsigned long flags;
 352
 353        spin_lock_irqsave(&dio->bio_lock, flags);
 354        bio->bi_private = dio->bio_list;
 355        dio->bio_list = bio;
 356        if (--dio->refcount == 1 && dio->waiter)
 357                wake_up_process(dio->waiter);
 358        spin_unlock_irqrestore(&dio->bio_lock, flags);
 359}
 360
 361/**
 362 * dio_end_io - handle the end io action for the given bio
 363 * @bio: The direct io bio thats being completed
 364 * @error: Error if there was one
 365 *
 366 * This is meant to be called by any filesystem that uses their own dio_submit_t
 367 * so that the DIO specific endio actions are dealt with after the filesystem
 368 * has done it's completion work.
 369 */
 370void dio_end_io(struct bio *bio, int error)
 371{
 372        struct dio *dio = bio->bi_private;
 373
 374        if (dio->is_async)
 375                dio_bio_end_aio(bio, error);
 376        else
 377                dio_bio_end_io(bio, error);
 378}
 379EXPORT_SYMBOL_GPL(dio_end_io);
 380
 381static inline void
 382dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
 383              struct block_device *bdev,
 384              sector_t first_sector, int nr_vecs)
 385{
 386        struct bio *bio;
 387
 388        /*
 389         * bio_alloc() is guaranteed to return a bio when called with
 390         * __GFP_WAIT and we request a valid number of vectors.
 391         */
 392        bio = bio_alloc(GFP_KERNEL, nr_vecs);
 393
 394        bio->bi_bdev = bdev;
 395        bio->bi_sector = first_sector;
 396        if (dio->is_async)
 397                bio->bi_end_io = dio_bio_end_aio;
 398        else
 399                bio->bi_end_io = dio_bio_end_io;
 400
 401        sdio->bio = bio;
 402        sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
 403}
 404
 405/*
 406 * In the AIO read case we speculatively dirty the pages before starting IO.
 407 * During IO completion, any of these pages which happen to have been written
 408 * back will be redirtied by bio_check_pages_dirty().
 409 *
 410 * bios hold a dio reference between submit_bio and ->end_io.
 411 */
 412static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
 413{
 414        struct bio *bio = sdio->bio;
 415        unsigned long flags;
 416
 417        bio->bi_private = dio;
 418
 419        spin_lock_irqsave(&dio->bio_lock, flags);
 420        dio->refcount++;
 421        spin_unlock_irqrestore(&dio->bio_lock, flags);
 422
 423        if (dio->is_async && dio->rw == READ)
 424                bio_set_pages_dirty(bio);
 425
 426        if (sdio->submit_io)
 427                sdio->submit_io(dio->rw, bio, dio->inode,
 428                               sdio->logical_offset_in_bio);
 429        else
 430                submit_bio(dio->rw, bio);
 431
 432        sdio->bio = NULL;
 433        sdio->boundary = 0;
 434        sdio->logical_offset_in_bio = 0;
 435}
 436
 437/*
 438 * Release any resources in case of a failure
 439 */
 440static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
 441{
 442        while (dio_pages_present(sdio))
 443                page_cache_release(dio_get_page(dio, sdio));
 444}
 445
 446/*
 447 * Wait for the next BIO to complete.  Remove it and return it.  NULL is
 448 * returned once all BIOs have been completed.  This must only be called once
 449 * all bios have been issued so that dio->refcount can only decrease.  This
 450 * requires that that the caller hold a reference on the dio.
 451 */
 452static struct bio *dio_await_one(struct dio *dio)
 453{
 454        unsigned long flags;
 455        struct bio *bio = NULL;
 456
 457        spin_lock_irqsave(&dio->bio_lock, flags);
 458
 459        /*
 460         * Wait as long as the list is empty and there are bios in flight.  bio
 461         * completion drops the count, maybe adds to the list, and wakes while
 462         * holding the bio_lock so we don't need set_current_state()'s barrier
 463         * and can call it after testing our condition.
 464         */
 465        while (dio->refcount > 1 && dio->bio_list == NULL) {
 466                __set_current_state(TASK_UNINTERRUPTIBLE);
 467                dio->waiter = current;
 468                spin_unlock_irqrestore(&dio->bio_lock, flags);
 469                io_schedule();
 470                /* wake up sets us TASK_RUNNING */
 471                spin_lock_irqsave(&dio->bio_lock, flags);
 472                dio->waiter = NULL;
 473        }
 474        if (dio->bio_list) {
 475                bio = dio->bio_list;
 476                dio->bio_list = bio->bi_private;
 477        }
 478        spin_unlock_irqrestore(&dio->bio_lock, flags);
 479        return bio;
 480}
 481
 482/*
 483 * Process one completed BIO.  No locks are held.
 484 */
 485static int dio_bio_complete(struct dio *dio, struct bio *bio)
 486{
 487        const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 488        struct bio_vec *bvec = bio->bi_io_vec;
 489        int page_no;
 490
 491        if (!uptodate)
 492                dio->io_error = -EIO;
 493
 494        if (dio->is_async && dio->rw == READ) {
 495                bio_check_pages_dirty(bio);     /* transfers ownership */
 496        } else {
 497                for (page_no = 0; page_no < bio->bi_vcnt; page_no++) {
 498                        struct page *page = bvec[page_no].bv_page;
 499
 500                        if (dio->rw == READ && !PageCompound(page))
 501                                set_page_dirty_lock(page);
 502                        page_cache_release(page);
 503                }
 504                bio_put(bio);
 505        }
 506        return uptodate ? 0 : -EIO;
 507}
 508
 509/*
 510 * Wait on and process all in-flight BIOs.  This must only be called once
 511 * all bios have been issued so that the refcount can only decrease.
 512 * This just waits for all bios to make it through dio_bio_complete.  IO
 513 * errors are propagated through dio->io_error and should be propagated via
 514 * dio_complete().
 515 */
 516static void dio_await_completion(struct dio *dio)
 517{
 518        struct bio *bio;
 519        do {
 520                bio = dio_await_one(dio);
 521                if (bio)
 522                        dio_bio_complete(dio, bio);
 523        } while (bio);
 524}
 525
 526/*
 527 * A really large O_DIRECT read or write can generate a lot of BIOs.  So
 528 * to keep the memory consumption sane we periodically reap any completed BIOs
 529 * during the BIO generation phase.
 530 *
 531 * This also helps to limit the peak amount of pinned userspace memory.
 532 */
 533static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
 534{
 535        int ret = 0;
 536
 537        if (sdio->reap_counter++ >= 64) {
 538                while (dio->bio_list) {
 539                        unsigned long flags;
 540                        struct bio *bio;
 541                        int ret2;
 542
 543                        spin_lock_irqsave(&dio->bio_lock, flags);
 544                        bio = dio->bio_list;
 545                        dio->bio_list = bio->bi_private;
 546                        spin_unlock_irqrestore(&dio->bio_lock, flags);
 547                        ret2 = dio_bio_complete(dio, bio);
 548                        if (ret == 0)
 549                                ret = ret2;
 550                }
 551                sdio->reap_counter = 0;
 552        }
 553        return ret;
 554}
 555
 556/*
 557 * Call into the fs to map some more disk blocks.  We record the current number
 558 * of available blocks at sdio->blocks_available.  These are in units of the
 559 * fs blocksize, (1 << inode->i_blkbits).
 560 *
 561 * The fs is allowed to map lots of blocks at once.  If it wants to do that,
 562 * it uses the passed inode-relative block number as the file offset, as usual.
 563 *
 564 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
 565 * has remaining to do.  The fs should not map more than this number of blocks.
 566 *
 567 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
 568 * indicate how much contiguous disk space has been made available at
 569 * bh->b_blocknr.
 570 *
 571 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
 572 * This isn't very efficient...
 573 *
 574 * In the case of filesystem holes: the fs may return an arbitrarily-large
 575 * hole by returning an appropriate value in b_size and by clearing
 576 * buffer_mapped().  However the direct-io code will only process holes one
 577 * block at a time - it will repeatedly call get_block() as it walks the hole.
 578 */
 579static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
 580                           struct buffer_head *map_bh)
 581{
 582        int ret;
 583        sector_t fs_startblk;   /* Into file, in filesystem-sized blocks */
 584        sector_t fs_endblk;     /* Into file, in filesystem-sized blocks */
 585        unsigned long fs_count; /* Number of filesystem-sized blocks */
 586        int create;
 587
 588        /*
 589         * If there was a memory error and we've overwritten all the
 590         * mapped blocks then we can now return that memory error
 591         */
 592        ret = dio->page_errors;
 593        if (ret == 0) {
 594                BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
 595                fs_startblk = sdio->block_in_file >> sdio->blkfactor;
 596                fs_endblk = (sdio->final_block_in_request - 1) >>
 597                                        sdio->blkfactor;
 598                fs_count = fs_endblk - fs_startblk + 1;
 599
 600                map_bh->b_state = 0;
 601                map_bh->b_size = fs_count << dio->inode->i_blkbits;
 602
 603                /*
 604                 * For writes inside i_size on a DIO_SKIP_HOLES filesystem we
 605                 * forbid block creations: only overwrites are permitted.
 606                 * We will return early to the caller once we see an
 607                 * unmapped buffer head returned, and the caller will fall
 608                 * back to buffered I/O.
 609                 *
 610                 * Otherwise the decision is left to the get_blocks method,
 611                 * which may decide to handle it or also return an unmapped
 612                 * buffer head.
 613                 */
 614                create = dio->rw & WRITE;
 615                if (dio->flags & DIO_SKIP_HOLES) {
 616                        if (sdio->block_in_file < (i_size_read(dio->inode) >>
 617                                                        sdio->blkbits))
 618                                create = 0;
 619                }
 620
 621                ret = (*sdio->get_block)(dio->inode, fs_startblk,
 622                                                map_bh, create);
 623
 624                /* Store for completion */
 625                dio->private = map_bh->b_private;
 626        }
 627        return ret;
 628}
 629
 630/*
 631 * There is no bio.  Make one now.
 632 */
 633static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
 634                sector_t start_sector, struct buffer_head *map_bh)
 635{
 636        sector_t sector;
 637        int ret, nr_pages;
 638
 639        ret = dio_bio_reap(dio, sdio);
 640        if (ret)
 641                goto out;
 642        sector = start_sector << (sdio->blkbits - 9);
 643        nr_pages = min(sdio->pages_in_io, bio_get_nr_vecs(map_bh->b_bdev));
 644        nr_pages = min(nr_pages, BIO_MAX_PAGES);
 645        BUG_ON(nr_pages <= 0);
 646        dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
 647        sdio->boundary = 0;
 648out:
 649        return ret;
 650}
 651
 652/*
 653 * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
 654 * that was successful then update final_block_in_bio and take a ref against
 655 * the just-added page.
 656 *
 657 * Return zero on success.  Non-zero means the caller needs to start a new BIO.
 658 */
 659static inline int dio_bio_add_page(struct dio_submit *sdio)
 660{
 661        int ret;
 662
 663        ret = bio_add_page(sdio->bio, sdio->cur_page,
 664                        sdio->cur_page_len, sdio->cur_page_offset);
 665        if (ret == sdio->cur_page_len) {
 666                /*
 667                 * Decrement count only, if we are done with this page
 668                 */
 669                if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
 670                        sdio->pages_in_io--;
 671                page_cache_get(sdio->cur_page);
 672                sdio->final_block_in_bio = sdio->cur_page_block +
 673                        (sdio->cur_page_len >> sdio->blkbits);
 674                ret = 0;
 675        } else {
 676                ret = 1;
 677        }
 678        return ret;
 679}
 680                
 681/*
 682 * Put cur_page under IO.  The section of cur_page which is described by
 683 * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
 684 * starts on-disk at cur_page_block.
 685 *
 686 * We take a ref against the page here (on behalf of its presence in the bio).
 687 *
 688 * The caller of this function is responsible for removing cur_page from the
 689 * dio, and for dropping the refcount which came from that presence.
 690 */
 691static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
 692                struct buffer_head *map_bh)
 693{
 694        int ret = 0;
 695
 696        if (sdio->bio) {
 697                loff_t cur_offset = sdio->cur_page_fs_offset;
 698                loff_t bio_next_offset = sdio->logical_offset_in_bio +
 699                        sdio->bio->bi_size;
 700
 701                /*
 702                 * See whether this new request is contiguous with the old.
 703                 *
 704                 * Btrfs cannot handle having logically non-contiguous requests
 705                 * submitted.  For example if you have
 706                 *
 707                 * Logical:  [0-4095][HOLE][8192-12287]
 708                 * Physical: [0-4095]      [4096-8191]
 709                 *
 710                 * We cannot submit those pages together as one BIO.  So if our
 711                 * current logical offset in the file does not equal what would
 712                 * be the next logical offset in the bio, submit the bio we
 713                 * have.
 714                 */
 715                if (sdio->final_block_in_bio != sdio->cur_page_block ||
 716                    cur_offset != bio_next_offset)
 717                        dio_bio_submit(dio, sdio);
 718                /*
 719                 * Submit now if the underlying fs is about to perform a
 720                 * metadata read
 721                 */
 722                else if (sdio->boundary)
 723                        dio_bio_submit(dio, sdio);
 724        }
 725
 726        if (sdio->bio == NULL) {
 727                ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
 728                if (ret)
 729                        goto out;
 730        }
 731
 732        if (dio_bio_add_page(sdio) != 0) {
 733                dio_bio_submit(dio, sdio);
 734                ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
 735                if (ret == 0) {
 736                        ret = dio_bio_add_page(sdio);
 737                        BUG_ON(ret != 0);
 738                }
 739        }
 740out:
 741        return ret;
 742}
 743
 744/*
 745 * An autonomous function to put a chunk of a page under deferred IO.
 746 *
 747 * The caller doesn't actually know (or care) whether this piece of page is in
 748 * a BIO, or is under IO or whatever.  We just take care of all possible 
 749 * situations here.  The separation between the logic of do_direct_IO() and
 750 * that of submit_page_section() is important for clarity.  Please don't break.
 751 *
 752 * The chunk of page starts on-disk at blocknr.
 753 *
 754 * We perform deferred IO, by recording the last-submitted page inside our
 755 * private part of the dio structure.  If possible, we just expand the IO
 756 * across that page here.
 757 *
 758 * If that doesn't work out then we put the old page into the bio and add this
 759 * page to the dio instead.
 760 */
 761static inline int
 762submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
 763                    unsigned offset, unsigned len, sector_t blocknr,
 764                    struct buffer_head *map_bh)
 765{
 766        int ret = 0;
 767
 768        if (dio->rw & WRITE) {
 769                /*
 770                 * Read accounting is performed in submit_bio()
 771                 */
 772                task_io_account_write(len);
 773        }
 774
 775        /*
 776         * Can we just grow the current page's presence in the dio?
 777         */
 778        if (sdio->cur_page == page &&
 779            sdio->cur_page_offset + sdio->cur_page_len == offset &&
 780            sdio->cur_page_block +
 781            (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
 782                sdio->cur_page_len += len;
 783
 784                /*
 785                 * If sdio->boundary then we want to schedule the IO now to
 786                 * avoid metadata seeks.
 787                 */
 788                if (sdio->boundary) {
 789                        ret = dio_send_cur_page(dio, sdio, map_bh);
 790                        page_cache_release(sdio->cur_page);
 791                        sdio->cur_page = NULL;
 792                }
 793                goto out;
 794        }
 795
 796        /*
 797         * If there's a deferred page already there then send it.
 798         */
 799        if (sdio->cur_page) {
 800                ret = dio_send_cur_page(dio, sdio, map_bh);
 801                page_cache_release(sdio->cur_page);
 802                sdio->cur_page = NULL;
 803                if (ret)
 804                        goto out;
 805        }
 806
 807        page_cache_get(page);           /* It is in dio */
 808        sdio->cur_page = page;
 809        sdio->cur_page_offset = offset;
 810        sdio->cur_page_len = len;
 811        sdio->cur_page_block = blocknr;
 812        sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
 813out:
 814        return ret;
 815}
 816
 817/*
 818 * Clean any dirty buffers in the blockdev mapping which alias newly-created
 819 * file blocks.  Only called for S_ISREG files - blockdevs do not set
 820 * buffer_new
 821 */
 822static void clean_blockdev_aliases(struct dio *dio, struct buffer_head *map_bh)
 823{
 824        unsigned i;
 825        unsigned nblocks;
 826
 827        nblocks = map_bh->b_size >> dio->inode->i_blkbits;
 828
 829        for (i = 0; i < nblocks; i++) {
 830                unmap_underlying_metadata(map_bh->b_bdev,
 831                                          map_bh->b_blocknr + i);
 832        }
 833}
 834
 835/*
 836 * If we are not writing the entire block and get_block() allocated
 837 * the block for us, we need to fill-in the unused portion of the
 838 * block with zeros. This happens only if user-buffer, fileoffset or
 839 * io length is not filesystem block-size multiple.
 840 *
 841 * `end' is zero if we're doing the start of the IO, 1 at the end of the
 842 * IO.
 843 */
 844static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
 845                int end, struct buffer_head *map_bh)
 846{
 847        unsigned dio_blocks_per_fs_block;
 848        unsigned this_chunk_blocks;     /* In dio_blocks */
 849        unsigned this_chunk_bytes;
 850        struct page *page;
 851
 852        sdio->start_zero_done = 1;
 853        if (!sdio->blkfactor || !buffer_new(map_bh))
 854                return;
 855
 856        dio_blocks_per_fs_block = 1 << sdio->blkfactor;
 857        this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
 858
 859        if (!this_chunk_blocks)
 860                return;
 861
 862        /*
 863         * We need to zero out part of an fs block.  It is either at the
 864         * beginning or the end of the fs block.
 865         */
 866        if (end) 
 867                this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
 868
 869        this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
 870
 871        page = ZERO_PAGE(0);
 872        if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
 873                                sdio->next_block_for_io, map_bh))
 874                return;
 875
 876        sdio->next_block_for_io += this_chunk_blocks;
 877}
 878
 879/*
 880 * Walk the user pages, and the file, mapping blocks to disk and generating
 881 * a sequence of (page,offset,len,block) mappings.  These mappings are injected
 882 * into submit_page_section(), which takes care of the next stage of submission
 883 *
 884 * Direct IO against a blockdev is different from a file.  Because we can
 885 * happily perform page-sized but 512-byte aligned IOs.  It is important that
 886 * blockdev IO be able to have fine alignment and large sizes.
 887 *
 888 * So what we do is to permit the ->get_block function to populate bh.b_size
 889 * with the size of IO which is permitted at this offset and this i_blkbits.
 890 *
 891 * For best results, the blockdev should be set up with 512-byte i_blkbits and
 892 * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
 893 * fine alignment but still allows this function to work in PAGE_SIZE units.
 894 */
 895static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
 896                        struct buffer_head *map_bh)
 897{
 898        const unsigned blkbits = sdio->blkbits;
 899        const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
 900        struct page *page;
 901        unsigned block_in_page;
 902        int ret = 0;
 903
 904        /* The I/O can start at any block offset within the first page */
 905        block_in_page = sdio->first_block_in_page;
 906
 907        while (sdio->block_in_file < sdio->final_block_in_request) {
 908                page = dio_get_page(dio, sdio);
 909                if (IS_ERR(page)) {
 910                        ret = PTR_ERR(page);
 911                        goto out;
 912                }
 913
 914                while (block_in_page < blocks_per_page) {
 915                        unsigned offset_in_page = block_in_page << blkbits;
 916                        unsigned this_chunk_bytes;      /* # of bytes mapped */
 917                        unsigned this_chunk_blocks;     /* # of blocks */
 918                        unsigned u;
 919
 920                        if (sdio->blocks_available == 0) {
 921                                /*
 922                                 * Need to go and map some more disk
 923                                 */
 924                                unsigned long blkmask;
 925                                unsigned long dio_remainder;
 926
 927                                ret = get_more_blocks(dio, sdio, map_bh);
 928                                if (ret) {
 929                                        page_cache_release(page);
 930                                        goto out;
 931                                }
 932                                if (!buffer_mapped(map_bh))
 933                                        goto do_holes;
 934
 935                                sdio->blocks_available =
 936                                                map_bh->b_size >> sdio->blkbits;
 937                                sdio->next_block_for_io =
 938                                        map_bh->b_blocknr << sdio->blkfactor;
 939                                if (buffer_new(map_bh))
 940                                        clean_blockdev_aliases(dio, map_bh);
 941
 942                                if (!sdio->blkfactor)
 943                                        goto do_holes;
 944
 945                                blkmask = (1 << sdio->blkfactor) - 1;
 946                                dio_remainder = (sdio->block_in_file & blkmask);
 947
 948                                /*
 949                                 * If we are at the start of IO and that IO
 950                                 * starts partway into a fs-block,
 951                                 * dio_remainder will be non-zero.  If the IO
 952                                 * is a read then we can simply advance the IO
 953                                 * cursor to the first block which is to be
 954                                 * read.  But if the IO is a write and the
 955                                 * block was newly allocated we cannot do that;
 956                                 * the start of the fs block must be zeroed out
 957                                 * on-disk
 958                                 */
 959                                if (!buffer_new(map_bh))
 960                                        sdio->next_block_for_io += dio_remainder;
 961                                sdio->blocks_available -= dio_remainder;
 962                        }
 963do_holes:
 964                        /* Handle holes */
 965                        if (!buffer_mapped(map_bh)) {
 966                                loff_t i_size_aligned;
 967
 968                                /* AKPM: eargh, -ENOTBLK is a hack */
 969                                if (dio->rw & WRITE) {
 970                                        page_cache_release(page);
 971                                        return -ENOTBLK;
 972                                }
 973
 974                                /*
 975                                 * Be sure to account for a partial block as the
 976                                 * last block in the file
 977                                 */
 978                                i_size_aligned = ALIGN(i_size_read(dio->inode),
 979                                                        1 << blkbits);
 980                                if (sdio->block_in_file >=
 981                                                i_size_aligned >> blkbits) {
 982                                        /* We hit eof */
 983                                        page_cache_release(page);
 984                                        goto out;
 985                                }
 986                                zero_user(page, block_in_page << blkbits,
 987                                                1 << blkbits);
 988                                sdio->block_in_file++;
 989                                block_in_page++;
 990                                goto next_block;
 991                        }
 992
 993                        /*
 994                         * If we're performing IO which has an alignment which
 995                         * is finer than the underlying fs, go check to see if
 996                         * we must zero out the start of this block.
 997                         */
 998                        if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
 999                                dio_zero_block(dio, sdio, 0, map_bh);
1000
1001                        /*
1002                         * Work out, in this_chunk_blocks, how much disk we
1003                         * can add to this page
1004                         */
1005                        this_chunk_blocks = sdio->blocks_available;
1006                        u = (PAGE_SIZE - offset_in_page) >> blkbits;
1007                        if (this_chunk_blocks > u)
1008                                this_chunk_blocks = u;
1009                        u = sdio->final_block_in_request - sdio->block_in_file;
1010                        if (this_chunk_blocks > u)
1011                                this_chunk_blocks = u;
1012                        this_chunk_bytes = this_chunk_blocks << blkbits;
1013                        BUG_ON(this_chunk_bytes == 0);
1014
1015                        sdio->boundary = buffer_boundary(map_bh);
1016                        ret = submit_page_section(dio, sdio, page,
1017                                                  offset_in_page,
1018                                                  this_chunk_bytes,
1019                                                  sdio->next_block_for_io,
1020                                                  map_bh);
1021                        if (ret) {
1022                                page_cache_release(page);
1023                                goto out;
1024                        }
1025                        sdio->next_block_for_io += this_chunk_blocks;
1026
1027                        sdio->block_in_file += this_chunk_blocks;
1028                        block_in_page += this_chunk_blocks;
1029                        sdio->blocks_available -= this_chunk_blocks;
1030next_block:
1031                        BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1032                        if (sdio->block_in_file == sdio->final_block_in_request)
1033                                break;
1034                }
1035
1036                /* Drop the ref which was taken in get_user_pages() */
1037                page_cache_release(page);
1038                block_in_page = 0;
1039        }
1040out:
1041        return ret;
1042}
1043
1044static inline int drop_refcount(struct dio *dio)
1045{
1046        int ret2;
1047        unsigned long flags;
1048
1049        /*
1050         * Sync will always be dropping the final ref and completing the
1051         * operation.  AIO can if it was a broken operation described above or
1052         * in fact if all the bios race to complete before we get here.  In
1053         * that case dio_complete() translates the EIOCBQUEUED into the proper
1054         * return code that the caller will hand to aio_complete().
1055         *
1056         * This is managed by the bio_lock instead of being an atomic_t so that
1057         * completion paths can drop their ref and use the remaining count to
1058         * decide to wake the submission path atomically.
1059         */
1060        spin_lock_irqsave(&dio->bio_lock, flags);
1061        ret2 = --dio->refcount;
1062        spin_unlock_irqrestore(&dio->bio_lock, flags);
1063        return ret2;
1064}
1065
1066/*
1067 * This is a library function for use by filesystem drivers.
1068 *
1069 * The locking rules are governed by the flags parameter:
1070 *  - if the flags value contains DIO_LOCKING we use a fancy locking
1071 *    scheme for dumb filesystems.
1072 *    For writes this function is called under i_mutex and returns with
1073 *    i_mutex held, for reads, i_mutex is not held on entry, but it is
1074 *    taken and dropped again before returning.
1075 *  - if the flags value does NOT contain DIO_LOCKING we don't use any
1076 *    internal locking but rather rely on the filesystem to synchronize
1077 *    direct I/O reads/writes versus each other and truncate.
1078 *
1079 * To help with locking against truncate we incremented the i_dio_count
1080 * counter before starting direct I/O, and decrement it once we are done.
1081 * Truncate can wait for it to reach zero to provide exclusion.  It is
1082 * expected that filesystem provide exclusion between new direct I/O
1083 * and truncates.  For DIO_LOCKING filesystems this is done by i_mutex,
1084 * but other filesystems need to take care of this on their own.
1085 *
1086 * NOTE: if you pass "sdio" to anything by pointer make sure that function
1087 * is always inlined. Otherwise gcc is unable to split the structure into
1088 * individual fields and will generate much worse code. This is important
1089 * for the whole file.
1090 */
1091static inline ssize_t
1092do_blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
1093        struct block_device *bdev, const struct iovec *iov, loff_t offset, 
1094        unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io,
1095        dio_submit_t submit_io, int flags)
1096{
1097        int seg;
1098        size_t size;
1099        unsigned long addr;
1100        unsigned blkbits = inode->i_blkbits;
1101        unsigned blocksize_mask = (1 << blkbits) - 1;
1102        ssize_t retval = -EINVAL;
1103        loff_t end = offset;
1104        struct dio *dio;
1105        struct dio_submit sdio = { 0, };
1106        unsigned long user_addr;
1107        size_t bytes;
1108        struct buffer_head map_bh = { 0, };
1109
1110        if (rw & WRITE)
1111                rw = WRITE_ODIRECT;
1112
1113        /*
1114         * Avoid references to bdev if not absolutely needed to give
1115         * the early prefetch in the caller enough time.
1116         */
1117
1118        if (offset & blocksize_mask) {
1119                if (bdev)
1120                        blkbits = blksize_bits(bdev_logical_block_size(bdev));
1121                blocksize_mask = (1 << blkbits) - 1;
1122                if (offset & blocksize_mask)
1123                        goto out;
1124        }
1125
1126        /* Check the memory alignment.  Blocks cannot straddle pages */
1127        for (seg = 0; seg < nr_segs; seg++) {
1128                addr = (unsigned long)iov[seg].iov_base;
1129                size = iov[seg].iov_len;
1130                end += size;
1131                if (unlikely((addr & blocksize_mask) ||
1132                             (size & blocksize_mask))) {
1133                        if (bdev)
1134                                blkbits = blksize_bits(
1135                                         bdev_logical_block_size(bdev));
1136                        blocksize_mask = (1 << blkbits) - 1;
1137                        if ((addr & blocksize_mask) || (size & blocksize_mask))
1138                                goto out;
1139                }
1140        }
1141
1142        /* watch out for a 0 len io from a tricksy fs */
1143        if (rw == READ && end == offset)
1144                return 0;
1145
1146        dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1147        retval = -ENOMEM;
1148        if (!dio)
1149                goto out;
1150        /*
1151         * Believe it or not, zeroing out the page array caused a .5%
1152         * performance regression in a database benchmark.  So, we take
1153         * care to only zero out what's needed.
1154         */
1155        memset(dio, 0, offsetof(struct dio, pages));
1156
1157        dio->flags = flags;
1158        if (dio->flags & DIO_LOCKING) {
1159                if (rw == READ) {
1160                        struct address_space *mapping =
1161                                        iocb->ki_filp->f_mapping;
1162
1163                        /* will be released by direct_io_worker */
1164                        mutex_lock(&inode->i_mutex);
1165
1166                        retval = filemap_write_and_wait_range(mapping, offset,
1167                                                              end - 1);
1168                        if (retval) {
1169                                mutex_unlock(&inode->i_mutex);
1170                                kmem_cache_free(dio_cache, dio);
1171                                goto out;
1172                        }
1173                }
1174        }
1175
1176        /*
1177         * Will be decremented at I/O completion time.
1178         */
1179        atomic_inc(&inode->i_dio_count);
1180
1181        /*
1182         * For file extending writes updating i_size before data
1183         * writeouts complete can expose uninitialized blocks. So
1184         * even for AIO, we need to wait for i/o to complete before
1185         * returning in this case.
1186         */
1187        dio->is_async = !is_sync_kiocb(iocb) && !((rw & WRITE) &&
1188                (end > i_size_read(inode)));
1189
1190        retval = 0;
1191
1192        dio->inode = inode;
1193        dio->rw = rw;
1194        sdio.blkbits = blkbits;
1195        sdio.blkfactor = inode->i_blkbits - blkbits;
1196        sdio.block_in_file = offset >> blkbits;
1197
1198        sdio.get_block = get_block;
1199        dio->end_io = end_io;
1200        sdio.submit_io = submit_io;
1201        sdio.final_block_in_bio = -1;
1202        sdio.next_block_for_io = -1;
1203
1204        dio->iocb = iocb;
1205        dio->i_size = i_size_read(inode);
1206
1207        spin_lock_init(&dio->bio_lock);
1208        dio->refcount = 1;
1209
1210        /*
1211         * In case of non-aligned buffers, we may need 2 more
1212         * pages since we need to zero out first and last block.
1213         */
1214        if (unlikely(sdio.blkfactor))
1215                sdio.pages_in_io = 2;
1216
1217        for (seg = 0; seg < nr_segs; seg++) {
1218                user_addr = (unsigned long)iov[seg].iov_base;
1219                sdio.pages_in_io +=
1220                        ((user_addr + iov[seg].iov_len + PAGE_SIZE-1) /
1221                                PAGE_SIZE - user_addr / PAGE_SIZE);
1222        }
1223
1224        for (seg = 0; seg < nr_segs; seg++) {
1225                user_addr = (unsigned long)iov[seg].iov_base;
1226                sdio.size += bytes = iov[seg].iov_len;
1227
1228                /* Index into the first page of the first block */
1229                sdio.first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits;
1230                sdio.final_block_in_request = sdio.block_in_file +
1231                                                (bytes >> blkbits);
1232                /* Page fetching state */
1233                sdio.head = 0;
1234                sdio.tail = 0;
1235                sdio.curr_page = 0;
1236
1237                sdio.total_pages = 0;
1238                if (user_addr & (PAGE_SIZE-1)) {
1239                        sdio.total_pages++;
1240                        bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1));
1241                }
1242                sdio.total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE;
1243                sdio.curr_user_address = user_addr;
1244
1245                retval = do_direct_IO(dio, &sdio, &map_bh);
1246
1247                dio->result += iov[seg].iov_len -
1248                        ((sdio.final_block_in_request - sdio.block_in_file) <<
1249                                        blkbits);
1250
1251                if (retval) {
1252                        dio_cleanup(dio, &sdio);
1253                        break;
1254                }
1255        } /* end iovec loop */
1256
1257        if (retval == -ENOTBLK) {
1258                /*
1259                 * The remaining part of the request will be
1260                 * be handled by buffered I/O when we return
1261                 */
1262                retval = 0;
1263        }
1264        /*
1265         * There may be some unwritten disk at the end of a part-written
1266         * fs-block-sized block.  Go zero that now.
1267         */
1268        dio_zero_block(dio, &sdio, 1, &map_bh);
1269
1270        if (sdio.cur_page) {
1271                ssize_t ret2;
1272
1273                ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1274                if (retval == 0)
1275                        retval = ret2;
1276                page_cache_release(sdio.cur_page);
1277                sdio.cur_page = NULL;
1278        }
1279        if (sdio.bio)
1280                dio_bio_submit(dio, &sdio);
1281
1282        /*
1283         * It is possible that, we return short IO due to end of file.
1284         * In that case, we need to release all the pages we got hold on.
1285         */
1286        dio_cleanup(dio, &sdio);
1287
1288        /*
1289         * All block lookups have been performed. For READ requests
1290         * we can let i_mutex go now that its achieved its purpose
1291         * of protecting us from looking up uninitialized blocks.
1292         */
1293        if (rw == READ && (dio->flags & DIO_LOCKING))
1294                mutex_unlock(&dio->inode->i_mutex);
1295
1296        /*
1297         * The only time we want to leave bios in flight is when a successful
1298         * partial aio read or full aio write have been setup.  In that case
1299         * bio completion will call aio_complete.  The only time it's safe to
1300         * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1301         * This had *better* be the only place that raises -EIOCBQUEUED.
1302         */
1303        BUG_ON(retval == -EIOCBQUEUED);
1304        if (dio->is_async && retval == 0 && dio->result &&
1305            ((rw & READ) || (dio->result == sdio.size)))
1306                retval = -EIOCBQUEUED;
1307
1308        if (retval != -EIOCBQUEUED)
1309                dio_await_completion(dio);
1310
1311        if (drop_refcount(dio) == 0) {
1312                retval = dio_complete(dio, offset, retval, false);
1313                kmem_cache_free(dio_cache, dio);
1314        } else
1315                BUG_ON(retval != -EIOCBQUEUED);
1316
1317out:
1318        return retval;
1319}
1320
1321ssize_t
1322__blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
1323        struct block_device *bdev, const struct iovec *iov, loff_t offset,
1324        unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io,
1325        dio_submit_t submit_io, int flags)
1326{
1327        /*
1328         * The block device state is needed in the end to finally
1329         * submit everything.  Since it's likely to be cache cold
1330         * prefetch it here as first thing to hide some of the
1331         * latency.
1332         *
1333         * Attempt to prefetch the pieces we likely need later.
1334         */
1335        prefetch(&bdev->bd_disk->part_tbl);
1336        prefetch(bdev->bd_queue);
1337        prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1338
1339        return do_blockdev_direct_IO(rw, iocb, inode, bdev, iov, offset,
1340                                     nr_segs, get_block, end_io,
1341                                     submit_io, flags);
1342}
1343
1344EXPORT_SYMBOL(__blockdev_direct_IO);
1345
1346static __init int dio_init(void)
1347{
1348        dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1349        return 0;
1350}
1351module_init(dio_init)
1352