linux/fs/exec.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/exec.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7/*
   8 * #!-checking implemented by tytso.
   9 */
  10/*
  11 * Demand-loading implemented 01.12.91 - no need to read anything but
  12 * the header into memory. The inode of the executable is put into
  13 * "current->executable", and page faults do the actual loading. Clean.
  14 *
  15 * Once more I can proudly say that linux stood up to being changed: it
  16 * was less than 2 hours work to get demand-loading completely implemented.
  17 *
  18 * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
  19 * current->executable is only used by the procfs.  This allows a dispatch
  20 * table to check for several different types  of binary formats.  We keep
  21 * trying until we recognize the file or we run out of supported binary
  22 * formats. 
  23 */
  24
  25#include <linux/slab.h>
  26#include <linux/file.h>
  27#include <linux/fdtable.h>
  28#include <linux/mm.h>
  29#include <linux/stat.h>
  30#include <linux/fcntl.h>
  31#include <linux/swap.h>
  32#include <linux/string.h>
  33#include <linux/init.h>
  34#include <linux/pagemap.h>
  35#include <linux/perf_event.h>
  36#include <linux/highmem.h>
  37#include <linux/spinlock.h>
  38#include <linux/key.h>
  39#include <linux/personality.h>
  40#include <linux/binfmts.h>
  41#include <linux/utsname.h>
  42#include <linux/pid_namespace.h>
  43#include <linux/module.h>
  44#include <linux/namei.h>
  45#include <linux/mount.h>
  46#include <linux/security.h>
  47#include <linux/syscalls.h>
  48#include <linux/tsacct_kern.h>
  49#include <linux/cn_proc.h>
  50#include <linux/audit.h>
  51#include <linux/tracehook.h>
  52#include <linux/kmod.h>
  53#include <linux/fsnotify.h>
  54#include <linux/fs_struct.h>
  55#include <linux/pipe_fs_i.h>
  56#include <linux/oom.h>
  57#include <linux/compat.h>
  58
  59#include <asm/uaccess.h>
  60#include <asm/mmu_context.h>
  61#include <asm/tlb.h>
  62#include <asm/exec.h>
  63
  64#include <trace/events/task.h>
  65#include "internal.h"
  66
  67#include <trace/events/sched.h>
  68
  69int core_uses_pid;
  70char core_pattern[CORENAME_MAX_SIZE] = "core";
  71unsigned int core_pipe_limit;
  72int suid_dumpable = 0;
  73
  74struct core_name {
  75        char *corename;
  76        int used, size;
  77};
  78static atomic_t call_count = ATOMIC_INIT(1);
  79
  80/* The maximal length of core_pattern is also specified in sysctl.c */
  81
  82static LIST_HEAD(formats);
  83static DEFINE_RWLOCK(binfmt_lock);
  84
  85void __register_binfmt(struct linux_binfmt * fmt, int insert)
  86{
  87        BUG_ON(!fmt);
  88        write_lock(&binfmt_lock);
  89        insert ? list_add(&fmt->lh, &formats) :
  90                 list_add_tail(&fmt->lh, &formats);
  91        write_unlock(&binfmt_lock);
  92}
  93
  94EXPORT_SYMBOL(__register_binfmt);
  95
  96void unregister_binfmt(struct linux_binfmt * fmt)
  97{
  98        write_lock(&binfmt_lock);
  99        list_del(&fmt->lh);
 100        write_unlock(&binfmt_lock);
 101}
 102
 103EXPORT_SYMBOL(unregister_binfmt);
 104
 105static inline void put_binfmt(struct linux_binfmt * fmt)
 106{
 107        module_put(fmt->module);
 108}
 109
 110/*
 111 * Note that a shared library must be both readable and executable due to
 112 * security reasons.
 113 *
 114 * Also note that we take the address to load from from the file itself.
 115 */
 116SYSCALL_DEFINE1(uselib, const char __user *, library)
 117{
 118        struct file *file;
 119        char *tmp = getname(library);
 120        int error = PTR_ERR(tmp);
 121        static const struct open_flags uselib_flags = {
 122                .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
 123                .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
 124                .intent = LOOKUP_OPEN
 125        };
 126
 127        if (IS_ERR(tmp))
 128                goto out;
 129
 130        file = do_filp_open(AT_FDCWD, tmp, &uselib_flags, LOOKUP_FOLLOW);
 131        putname(tmp);
 132        error = PTR_ERR(file);
 133        if (IS_ERR(file))
 134                goto out;
 135
 136        error = -EINVAL;
 137        if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
 138                goto exit;
 139
 140        error = -EACCES;
 141        if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
 142                goto exit;
 143
 144        fsnotify_open(file);
 145
 146        error = -ENOEXEC;
 147        if(file->f_op) {
 148                struct linux_binfmt * fmt;
 149
 150                read_lock(&binfmt_lock);
 151                list_for_each_entry(fmt, &formats, lh) {
 152                        if (!fmt->load_shlib)
 153                                continue;
 154                        if (!try_module_get(fmt->module))
 155                                continue;
 156                        read_unlock(&binfmt_lock);
 157                        error = fmt->load_shlib(file);
 158                        read_lock(&binfmt_lock);
 159                        put_binfmt(fmt);
 160                        if (error != -ENOEXEC)
 161                                break;
 162                }
 163                read_unlock(&binfmt_lock);
 164        }
 165exit:
 166        fput(file);
 167out:
 168        return error;
 169}
 170
 171#ifdef CONFIG_MMU
 172/*
 173 * The nascent bprm->mm is not visible until exec_mmap() but it can
 174 * use a lot of memory, account these pages in current->mm temporary
 175 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
 176 * change the counter back via acct_arg_size(0).
 177 */
 178static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
 179{
 180        struct mm_struct *mm = current->mm;
 181        long diff = (long)(pages - bprm->vma_pages);
 182
 183        if (!mm || !diff)
 184                return;
 185
 186        bprm->vma_pages = pages;
 187        add_mm_counter(mm, MM_ANONPAGES, diff);
 188}
 189
 190static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
 191                int write)
 192{
 193        struct page *page;
 194        int ret;
 195
 196#ifdef CONFIG_STACK_GROWSUP
 197        if (write) {
 198                ret = expand_downwards(bprm->vma, pos);
 199                if (ret < 0)
 200                        return NULL;
 201        }
 202#endif
 203        ret = get_user_pages(current, bprm->mm, pos,
 204                        1, write, 1, &page, NULL);
 205        if (ret <= 0)
 206                return NULL;
 207
 208        if (write) {
 209                unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
 210                struct rlimit *rlim;
 211
 212                acct_arg_size(bprm, size / PAGE_SIZE);
 213
 214                /*
 215                 * We've historically supported up to 32 pages (ARG_MAX)
 216                 * of argument strings even with small stacks
 217                 */
 218                if (size <= ARG_MAX)
 219                        return page;
 220
 221                /*
 222                 * Limit to 1/4-th the stack size for the argv+env strings.
 223                 * This ensures that:
 224                 *  - the remaining binfmt code will not run out of stack space,
 225                 *  - the program will have a reasonable amount of stack left
 226                 *    to work from.
 227                 */
 228                rlim = current->signal->rlim;
 229                if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
 230                        put_page(page);
 231                        return NULL;
 232                }
 233        }
 234
 235        return page;
 236}
 237
 238static void put_arg_page(struct page *page)
 239{
 240        put_page(page);
 241}
 242
 243static void free_arg_page(struct linux_binprm *bprm, int i)
 244{
 245}
 246
 247static void free_arg_pages(struct linux_binprm *bprm)
 248{
 249}
 250
 251static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
 252                struct page *page)
 253{
 254        flush_cache_page(bprm->vma, pos, page_to_pfn(page));
 255}
 256
 257static int __bprm_mm_init(struct linux_binprm *bprm)
 258{
 259        int err;
 260        struct vm_area_struct *vma = NULL;
 261        struct mm_struct *mm = bprm->mm;
 262
 263        bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
 264        if (!vma)
 265                return -ENOMEM;
 266
 267        down_write(&mm->mmap_sem);
 268        vma->vm_mm = mm;
 269
 270        /*
 271         * Place the stack at the largest stack address the architecture
 272         * supports. Later, we'll move this to an appropriate place. We don't
 273         * use STACK_TOP because that can depend on attributes which aren't
 274         * configured yet.
 275         */
 276        BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
 277        vma->vm_end = STACK_TOP_MAX;
 278        vma->vm_start = vma->vm_end - PAGE_SIZE;
 279        vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
 280        vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
 281        INIT_LIST_HEAD(&vma->anon_vma_chain);
 282
 283        err = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
 284        if (err)
 285                goto err;
 286
 287        err = insert_vm_struct(mm, vma);
 288        if (err)
 289                goto err;
 290
 291        mm->stack_vm = mm->total_vm = 1;
 292        up_write(&mm->mmap_sem);
 293        bprm->p = vma->vm_end - sizeof(void *);
 294        return 0;
 295err:
 296        up_write(&mm->mmap_sem);
 297        bprm->vma = NULL;
 298        kmem_cache_free(vm_area_cachep, vma);
 299        return err;
 300}
 301
 302static bool valid_arg_len(struct linux_binprm *bprm, long len)
 303{
 304        return len <= MAX_ARG_STRLEN;
 305}
 306
 307#else
 308
 309static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
 310{
 311}
 312
 313static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
 314                int write)
 315{
 316        struct page *page;
 317
 318        page = bprm->page[pos / PAGE_SIZE];
 319        if (!page && write) {
 320                page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
 321                if (!page)
 322                        return NULL;
 323                bprm->page[pos / PAGE_SIZE] = page;
 324        }
 325
 326        return page;
 327}
 328
 329static void put_arg_page(struct page *page)
 330{
 331}
 332
 333static void free_arg_page(struct linux_binprm *bprm, int i)
 334{
 335        if (bprm->page[i]) {
 336                __free_page(bprm->page[i]);
 337                bprm->page[i] = NULL;
 338        }
 339}
 340
 341static void free_arg_pages(struct linux_binprm *bprm)
 342{
 343        int i;
 344
 345        for (i = 0; i < MAX_ARG_PAGES; i++)
 346                free_arg_page(bprm, i);
 347}
 348
 349static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
 350                struct page *page)
 351{
 352}
 353
 354static int __bprm_mm_init(struct linux_binprm *bprm)
 355{
 356        bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
 357        return 0;
 358}
 359
 360static bool valid_arg_len(struct linux_binprm *bprm, long len)
 361{
 362        return len <= bprm->p;
 363}
 364
 365#endif /* CONFIG_MMU */
 366
 367/*
 368 * Create a new mm_struct and populate it with a temporary stack
 369 * vm_area_struct.  We don't have enough context at this point to set the stack
 370 * flags, permissions, and offset, so we use temporary values.  We'll update
 371 * them later in setup_arg_pages().
 372 */
 373int bprm_mm_init(struct linux_binprm *bprm)
 374{
 375        int err;
 376        struct mm_struct *mm = NULL;
 377
 378        bprm->mm = mm = mm_alloc();
 379        err = -ENOMEM;
 380        if (!mm)
 381                goto err;
 382
 383        err = init_new_context(current, mm);
 384        if (err)
 385                goto err;
 386
 387        err = __bprm_mm_init(bprm);
 388        if (err)
 389                goto err;
 390
 391        return 0;
 392
 393err:
 394        if (mm) {
 395                bprm->mm = NULL;
 396                mmdrop(mm);
 397        }
 398
 399        return err;
 400}
 401
 402struct user_arg_ptr {
 403#ifdef CONFIG_COMPAT
 404        bool is_compat;
 405#endif
 406        union {
 407                const char __user *const __user *native;
 408#ifdef CONFIG_COMPAT
 409                compat_uptr_t __user *compat;
 410#endif
 411        } ptr;
 412};
 413
 414static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
 415{
 416        const char __user *native;
 417
 418#ifdef CONFIG_COMPAT
 419        if (unlikely(argv.is_compat)) {
 420                compat_uptr_t compat;
 421
 422                if (get_user(compat, argv.ptr.compat + nr))
 423                        return ERR_PTR(-EFAULT);
 424
 425                return compat_ptr(compat);
 426        }
 427#endif
 428
 429        if (get_user(native, argv.ptr.native + nr))
 430                return ERR_PTR(-EFAULT);
 431
 432        return native;
 433}
 434
 435/*
 436 * count() counts the number of strings in array ARGV.
 437 */
 438static int count(struct user_arg_ptr argv, int max)
 439{
 440        int i = 0;
 441
 442        if (argv.ptr.native != NULL) {
 443                for (;;) {
 444                        const char __user *p = get_user_arg_ptr(argv, i);
 445
 446                        if (!p)
 447                                break;
 448
 449                        if (IS_ERR(p))
 450                                return -EFAULT;
 451
 452                        if (i++ >= max)
 453                                return -E2BIG;
 454
 455                        if (fatal_signal_pending(current))
 456                                return -ERESTARTNOHAND;
 457                        cond_resched();
 458                }
 459        }
 460        return i;
 461}
 462
 463/*
 464 * 'copy_strings()' copies argument/environment strings from the old
 465 * processes's memory to the new process's stack.  The call to get_user_pages()
 466 * ensures the destination page is created and not swapped out.
 467 */
 468static int copy_strings(int argc, struct user_arg_ptr argv,
 469                        struct linux_binprm *bprm)
 470{
 471        struct page *kmapped_page = NULL;
 472        char *kaddr = NULL;
 473        unsigned long kpos = 0;
 474        int ret;
 475
 476        while (argc-- > 0) {
 477                const char __user *str;
 478                int len;
 479                unsigned long pos;
 480
 481                ret = -EFAULT;
 482                str = get_user_arg_ptr(argv, argc);
 483                if (IS_ERR(str))
 484                        goto out;
 485
 486                len = strnlen_user(str, MAX_ARG_STRLEN);
 487                if (!len)
 488                        goto out;
 489
 490                ret = -E2BIG;
 491                if (!valid_arg_len(bprm, len))
 492                        goto out;
 493
 494                /* We're going to work our way backwords. */
 495                pos = bprm->p;
 496                str += len;
 497                bprm->p -= len;
 498
 499                while (len > 0) {
 500                        int offset, bytes_to_copy;
 501
 502                        if (fatal_signal_pending(current)) {
 503                                ret = -ERESTARTNOHAND;
 504                                goto out;
 505                        }
 506                        cond_resched();
 507
 508                        offset = pos % PAGE_SIZE;
 509                        if (offset == 0)
 510                                offset = PAGE_SIZE;
 511
 512                        bytes_to_copy = offset;
 513                        if (bytes_to_copy > len)
 514                                bytes_to_copy = len;
 515
 516                        offset -= bytes_to_copy;
 517                        pos -= bytes_to_copy;
 518                        str -= bytes_to_copy;
 519                        len -= bytes_to_copy;
 520
 521                        if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
 522                                struct page *page;
 523
 524                                page = get_arg_page(bprm, pos, 1);
 525                                if (!page) {
 526                                        ret = -E2BIG;
 527                                        goto out;
 528                                }
 529
 530                                if (kmapped_page) {
 531                                        flush_kernel_dcache_page(kmapped_page);
 532                                        kunmap(kmapped_page);
 533                                        put_arg_page(kmapped_page);
 534                                }
 535                                kmapped_page = page;
 536                                kaddr = kmap(kmapped_page);
 537                                kpos = pos & PAGE_MASK;
 538                                flush_arg_page(bprm, kpos, kmapped_page);
 539                        }
 540                        if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
 541                                ret = -EFAULT;
 542                                goto out;
 543                        }
 544                }
 545        }
 546        ret = 0;
 547out:
 548        if (kmapped_page) {
 549                flush_kernel_dcache_page(kmapped_page);
 550                kunmap(kmapped_page);
 551                put_arg_page(kmapped_page);
 552        }
 553        return ret;
 554}
 555
 556/*
 557 * Like copy_strings, but get argv and its values from kernel memory.
 558 */
 559int copy_strings_kernel(int argc, const char *const *__argv,
 560                        struct linux_binprm *bprm)
 561{
 562        int r;
 563        mm_segment_t oldfs = get_fs();
 564        struct user_arg_ptr argv = {
 565                .ptr.native = (const char __user *const  __user *)__argv,
 566        };
 567
 568        set_fs(KERNEL_DS);
 569        r = copy_strings(argc, argv, bprm);
 570        set_fs(oldfs);
 571
 572        return r;
 573}
 574EXPORT_SYMBOL(copy_strings_kernel);
 575
 576#ifdef CONFIG_MMU
 577
 578/*
 579 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
 580 * the binfmt code determines where the new stack should reside, we shift it to
 581 * its final location.  The process proceeds as follows:
 582 *
 583 * 1) Use shift to calculate the new vma endpoints.
 584 * 2) Extend vma to cover both the old and new ranges.  This ensures the
 585 *    arguments passed to subsequent functions are consistent.
 586 * 3) Move vma's page tables to the new range.
 587 * 4) Free up any cleared pgd range.
 588 * 5) Shrink the vma to cover only the new range.
 589 */
 590static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
 591{
 592        struct mm_struct *mm = vma->vm_mm;
 593        unsigned long old_start = vma->vm_start;
 594        unsigned long old_end = vma->vm_end;
 595        unsigned long length = old_end - old_start;
 596        unsigned long new_start = old_start - shift;
 597        unsigned long new_end = old_end - shift;
 598        struct mmu_gather tlb;
 599
 600        BUG_ON(new_start > new_end);
 601
 602        /*
 603         * ensure there are no vmas between where we want to go
 604         * and where we are
 605         */
 606        if (vma != find_vma(mm, new_start))
 607                return -EFAULT;
 608
 609        /*
 610         * cover the whole range: [new_start, old_end)
 611         */
 612        if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
 613                return -ENOMEM;
 614
 615        /*
 616         * move the page tables downwards, on failure we rely on
 617         * process cleanup to remove whatever mess we made.
 618         */
 619        if (length != move_page_tables(vma, old_start,
 620                                       vma, new_start, length))
 621                return -ENOMEM;
 622
 623        lru_add_drain();
 624        tlb_gather_mmu(&tlb, mm, 0);
 625        if (new_end > old_start) {
 626                /*
 627                 * when the old and new regions overlap clear from new_end.
 628                 */
 629                free_pgd_range(&tlb, new_end, old_end, new_end,
 630                        vma->vm_next ? vma->vm_next->vm_start : 0);
 631        } else {
 632                /*
 633                 * otherwise, clean from old_start; this is done to not touch
 634                 * the address space in [new_end, old_start) some architectures
 635                 * have constraints on va-space that make this illegal (IA64) -
 636                 * for the others its just a little faster.
 637                 */
 638                free_pgd_range(&tlb, old_start, old_end, new_end,
 639                        vma->vm_next ? vma->vm_next->vm_start : 0);
 640        }
 641        tlb_finish_mmu(&tlb, new_end, old_end);
 642
 643        /*
 644         * Shrink the vma to just the new range.  Always succeeds.
 645         */
 646        vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
 647
 648        return 0;
 649}
 650
 651/*
 652 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
 653 * the stack is optionally relocated, and some extra space is added.
 654 */
 655int setup_arg_pages(struct linux_binprm *bprm,
 656                    unsigned long stack_top,
 657                    int executable_stack)
 658{
 659        unsigned long ret;
 660        unsigned long stack_shift;
 661        struct mm_struct *mm = current->mm;
 662        struct vm_area_struct *vma = bprm->vma;
 663        struct vm_area_struct *prev = NULL;
 664        unsigned long vm_flags;
 665        unsigned long stack_base;
 666        unsigned long stack_size;
 667        unsigned long stack_expand;
 668        unsigned long rlim_stack;
 669
 670#ifdef CONFIG_STACK_GROWSUP
 671        /* Limit stack size to 1GB */
 672        stack_base = rlimit_max(RLIMIT_STACK);
 673        if (stack_base > (1 << 30))
 674                stack_base = 1 << 30;
 675
 676        /* Make sure we didn't let the argument array grow too large. */
 677        if (vma->vm_end - vma->vm_start > stack_base)
 678                return -ENOMEM;
 679
 680        stack_base = PAGE_ALIGN(stack_top - stack_base);
 681
 682        stack_shift = vma->vm_start - stack_base;
 683        mm->arg_start = bprm->p - stack_shift;
 684        bprm->p = vma->vm_end - stack_shift;
 685#else
 686        stack_top = arch_align_stack(stack_top);
 687        stack_top = PAGE_ALIGN(stack_top);
 688
 689        if (unlikely(stack_top < mmap_min_addr) ||
 690            unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
 691                return -ENOMEM;
 692
 693        stack_shift = vma->vm_end - stack_top;
 694
 695        bprm->p -= stack_shift;
 696        mm->arg_start = bprm->p;
 697#endif
 698
 699        if (bprm->loader)
 700                bprm->loader -= stack_shift;
 701        bprm->exec -= stack_shift;
 702
 703        down_write(&mm->mmap_sem);
 704        vm_flags = VM_STACK_FLAGS;
 705
 706        /*
 707         * Adjust stack execute permissions; explicitly enable for
 708         * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
 709         * (arch default) otherwise.
 710         */
 711        if (unlikely(executable_stack == EXSTACK_ENABLE_X))
 712                vm_flags |= VM_EXEC;
 713        else if (executable_stack == EXSTACK_DISABLE_X)
 714                vm_flags &= ~VM_EXEC;
 715        vm_flags |= mm->def_flags;
 716        vm_flags |= VM_STACK_INCOMPLETE_SETUP;
 717
 718        ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
 719                        vm_flags);
 720        if (ret)
 721                goto out_unlock;
 722        BUG_ON(prev != vma);
 723
 724        /* Move stack pages down in memory. */
 725        if (stack_shift) {
 726                ret = shift_arg_pages(vma, stack_shift);
 727                if (ret)
 728                        goto out_unlock;
 729        }
 730
 731        /* mprotect_fixup is overkill to remove the temporary stack flags */
 732        vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
 733
 734        stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
 735        stack_size = vma->vm_end - vma->vm_start;
 736        /*
 737         * Align this down to a page boundary as expand_stack
 738         * will align it up.
 739         */
 740        rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
 741#ifdef CONFIG_STACK_GROWSUP
 742        if (stack_size + stack_expand > rlim_stack)
 743                stack_base = vma->vm_start + rlim_stack;
 744        else
 745                stack_base = vma->vm_end + stack_expand;
 746#else
 747        if (stack_size + stack_expand > rlim_stack)
 748                stack_base = vma->vm_end - rlim_stack;
 749        else
 750                stack_base = vma->vm_start - stack_expand;
 751#endif
 752        current->mm->start_stack = bprm->p;
 753        ret = expand_stack(vma, stack_base);
 754        if (ret)
 755                ret = -EFAULT;
 756
 757out_unlock:
 758        up_write(&mm->mmap_sem);
 759        return ret;
 760}
 761EXPORT_SYMBOL(setup_arg_pages);
 762
 763#endif /* CONFIG_MMU */
 764
 765struct file *open_exec(const char *name)
 766{
 767        struct file *file;
 768        int err;
 769        static const struct open_flags open_exec_flags = {
 770                .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
 771                .acc_mode = MAY_EXEC | MAY_OPEN,
 772                .intent = LOOKUP_OPEN
 773        };
 774
 775        file = do_filp_open(AT_FDCWD, name, &open_exec_flags, LOOKUP_FOLLOW);
 776        if (IS_ERR(file))
 777                goto out;
 778
 779        err = -EACCES;
 780        if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
 781                goto exit;
 782
 783        if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
 784                goto exit;
 785
 786        fsnotify_open(file);
 787
 788        err = deny_write_access(file);
 789        if (err)
 790                goto exit;
 791
 792out:
 793        return file;
 794
 795exit:
 796        fput(file);
 797        return ERR_PTR(err);
 798}
 799EXPORT_SYMBOL(open_exec);
 800
 801int kernel_read(struct file *file, loff_t offset,
 802                char *addr, unsigned long count)
 803{
 804        mm_segment_t old_fs;
 805        loff_t pos = offset;
 806        int result;
 807
 808        old_fs = get_fs();
 809        set_fs(get_ds());
 810        /* The cast to a user pointer is valid due to the set_fs() */
 811        result = vfs_read(file, (void __user *)addr, count, &pos);
 812        set_fs(old_fs);
 813        return result;
 814}
 815
 816EXPORT_SYMBOL(kernel_read);
 817
 818static int exec_mmap(struct mm_struct *mm)
 819{
 820        struct task_struct *tsk;
 821        struct mm_struct * old_mm, *active_mm;
 822
 823        /* Notify parent that we're no longer interested in the old VM */
 824        tsk = current;
 825        old_mm = current->mm;
 826        sync_mm_rss(old_mm);
 827        mm_release(tsk, old_mm);
 828
 829        if (old_mm) {
 830                /*
 831                 * Make sure that if there is a core dump in progress
 832                 * for the old mm, we get out and die instead of going
 833                 * through with the exec.  We must hold mmap_sem around
 834                 * checking core_state and changing tsk->mm.
 835                 */
 836                down_read(&old_mm->mmap_sem);
 837                if (unlikely(old_mm->core_state)) {
 838                        up_read(&old_mm->mmap_sem);
 839                        return -EINTR;
 840                }
 841        }
 842        task_lock(tsk);
 843        active_mm = tsk->active_mm;
 844        tsk->mm = mm;
 845        tsk->active_mm = mm;
 846        activate_mm(active_mm, mm);
 847        task_unlock(tsk);
 848        arch_pick_mmap_layout(mm);
 849        if (old_mm) {
 850                up_read(&old_mm->mmap_sem);
 851                BUG_ON(active_mm != old_mm);
 852                setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
 853                mm_update_next_owner(old_mm);
 854                mmput(old_mm);
 855                return 0;
 856        }
 857        mmdrop(active_mm);
 858        return 0;
 859}
 860
 861/*
 862 * This function makes sure the current process has its own signal table,
 863 * so that flush_signal_handlers can later reset the handlers without
 864 * disturbing other processes.  (Other processes might share the signal
 865 * table via the CLONE_SIGHAND option to clone().)
 866 */
 867static int de_thread(struct task_struct *tsk)
 868{
 869        struct signal_struct *sig = tsk->signal;
 870        struct sighand_struct *oldsighand = tsk->sighand;
 871        spinlock_t *lock = &oldsighand->siglock;
 872
 873        if (thread_group_empty(tsk))
 874                goto no_thread_group;
 875
 876        /*
 877         * Kill all other threads in the thread group.
 878         */
 879        spin_lock_irq(lock);
 880        if (signal_group_exit(sig)) {
 881                /*
 882                 * Another group action in progress, just
 883                 * return so that the signal is processed.
 884                 */
 885                spin_unlock_irq(lock);
 886                return -EAGAIN;
 887        }
 888
 889        sig->group_exit_task = tsk;
 890        sig->notify_count = zap_other_threads(tsk);
 891        if (!thread_group_leader(tsk))
 892                sig->notify_count--;
 893
 894        while (sig->notify_count) {
 895                __set_current_state(TASK_UNINTERRUPTIBLE);
 896                spin_unlock_irq(lock);
 897                schedule();
 898                spin_lock_irq(lock);
 899        }
 900        spin_unlock_irq(lock);
 901
 902        /*
 903         * At this point all other threads have exited, all we have to
 904         * do is to wait for the thread group leader to become inactive,
 905         * and to assume its PID:
 906         */
 907        if (!thread_group_leader(tsk)) {
 908                struct task_struct *leader = tsk->group_leader;
 909
 910                sig->notify_count = -1; /* for exit_notify() */
 911                for (;;) {
 912                        write_lock_irq(&tasklist_lock);
 913                        if (likely(leader->exit_state))
 914                                break;
 915                        __set_current_state(TASK_UNINTERRUPTIBLE);
 916                        write_unlock_irq(&tasklist_lock);
 917                        schedule();
 918                }
 919
 920                /*
 921                 * The only record we have of the real-time age of a
 922                 * process, regardless of execs it's done, is start_time.
 923                 * All the past CPU time is accumulated in signal_struct
 924                 * from sister threads now dead.  But in this non-leader
 925                 * exec, nothing survives from the original leader thread,
 926                 * whose birth marks the true age of this process now.
 927                 * When we take on its identity by switching to its PID, we
 928                 * also take its birthdate (always earlier than our own).
 929                 */
 930                tsk->start_time = leader->start_time;
 931
 932                BUG_ON(!same_thread_group(leader, tsk));
 933                BUG_ON(has_group_leader_pid(tsk));
 934                /*
 935                 * An exec() starts a new thread group with the
 936                 * TGID of the previous thread group. Rehash the
 937                 * two threads with a switched PID, and release
 938                 * the former thread group leader:
 939                 */
 940
 941                /* Become a process group leader with the old leader's pid.
 942                 * The old leader becomes a thread of the this thread group.
 943                 * Note: The old leader also uses this pid until release_task
 944                 *       is called.  Odd but simple and correct.
 945                 */
 946                detach_pid(tsk, PIDTYPE_PID);
 947                tsk->pid = leader->pid;
 948                attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
 949                transfer_pid(leader, tsk, PIDTYPE_PGID);
 950                transfer_pid(leader, tsk, PIDTYPE_SID);
 951
 952                list_replace_rcu(&leader->tasks, &tsk->tasks);
 953                list_replace_init(&leader->sibling, &tsk->sibling);
 954
 955                tsk->group_leader = tsk;
 956                leader->group_leader = tsk;
 957
 958                tsk->exit_signal = SIGCHLD;
 959                leader->exit_signal = -1;
 960
 961                BUG_ON(leader->exit_state != EXIT_ZOMBIE);
 962                leader->exit_state = EXIT_DEAD;
 963
 964                /*
 965                 * We are going to release_task()->ptrace_unlink() silently,
 966                 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
 967                 * the tracer wont't block again waiting for this thread.
 968                 */
 969                if (unlikely(leader->ptrace))
 970                        __wake_up_parent(leader, leader->parent);
 971                write_unlock_irq(&tasklist_lock);
 972
 973                release_task(leader);
 974        }
 975
 976        sig->group_exit_task = NULL;
 977        sig->notify_count = 0;
 978
 979no_thread_group:
 980        /* we have changed execution domain */
 981        tsk->exit_signal = SIGCHLD;
 982
 983        exit_itimers(sig);
 984        flush_itimer_signals();
 985
 986        if (atomic_read(&oldsighand->count) != 1) {
 987                struct sighand_struct *newsighand;
 988                /*
 989                 * This ->sighand is shared with the CLONE_SIGHAND
 990                 * but not CLONE_THREAD task, switch to the new one.
 991                 */
 992                newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
 993                if (!newsighand)
 994                        return -ENOMEM;
 995
 996                atomic_set(&newsighand->count, 1);
 997                memcpy(newsighand->action, oldsighand->action,
 998                       sizeof(newsighand->action));
 999
1000                write_lock_irq(&tasklist_lock);
1001                spin_lock(&oldsighand->siglock);
1002                rcu_assign_pointer(tsk->sighand, newsighand);
1003                spin_unlock(&oldsighand->siglock);
1004                write_unlock_irq(&tasklist_lock);
1005
1006                __cleanup_sighand(oldsighand);
1007        }
1008
1009        BUG_ON(!thread_group_leader(tsk));
1010        return 0;
1011}
1012
1013/*
1014 * These functions flushes out all traces of the currently running executable
1015 * so that a new one can be started
1016 */
1017static void flush_old_files(struct files_struct * files)
1018{
1019        long j = -1;
1020        struct fdtable *fdt;
1021
1022        spin_lock(&files->file_lock);
1023        for (;;) {
1024                unsigned long set, i;
1025
1026                j++;
1027                i = j * __NFDBITS;
1028                fdt = files_fdtable(files);
1029                if (i >= fdt->max_fds)
1030                        break;
1031                set = fdt->close_on_exec[j];
1032                if (!set)
1033                        continue;
1034                fdt->close_on_exec[j] = 0;
1035                spin_unlock(&files->file_lock);
1036                for ( ; set ; i++,set >>= 1) {
1037                        if (set & 1) {
1038                                sys_close(i);
1039                        }
1040                }
1041                spin_lock(&files->file_lock);
1042
1043        }
1044        spin_unlock(&files->file_lock);
1045}
1046
1047char *get_task_comm(char *buf, struct task_struct *tsk)
1048{
1049        /* buf must be at least sizeof(tsk->comm) in size */
1050        task_lock(tsk);
1051        strncpy(buf, tsk->comm, sizeof(tsk->comm));
1052        task_unlock(tsk);
1053        return buf;
1054}
1055EXPORT_SYMBOL_GPL(get_task_comm);
1056
1057void set_task_comm(struct task_struct *tsk, char *buf)
1058{
1059        task_lock(tsk);
1060
1061        trace_task_rename(tsk, buf);
1062
1063        /*
1064         * Threads may access current->comm without holding
1065         * the task lock, so write the string carefully.
1066         * Readers without a lock may see incomplete new
1067         * names but are safe from non-terminating string reads.
1068         */
1069        memset(tsk->comm, 0, TASK_COMM_LEN);
1070        wmb();
1071        strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1072        task_unlock(tsk);
1073        perf_event_comm(tsk);
1074}
1075
1076static void filename_to_taskname(char *tcomm, const char *fn, unsigned int len)
1077{
1078        int i, ch;
1079
1080        /* Copies the binary name from after last slash */
1081        for (i = 0; (ch = *(fn++)) != '\0';) {
1082                if (ch == '/')
1083                        i = 0; /* overwrite what we wrote */
1084                else
1085                        if (i < len - 1)
1086                                tcomm[i++] = ch;
1087        }
1088        tcomm[i] = '\0';
1089}
1090
1091int flush_old_exec(struct linux_binprm * bprm)
1092{
1093        int retval;
1094
1095        /*
1096         * Make sure we have a private signal table and that
1097         * we are unassociated from the previous thread group.
1098         */
1099        retval = de_thread(current);
1100        if (retval)
1101                goto out;
1102
1103        set_mm_exe_file(bprm->mm, bprm->file);
1104
1105        filename_to_taskname(bprm->tcomm, bprm->filename, sizeof(bprm->tcomm));
1106        /*
1107         * Release all of the old mmap stuff
1108         */
1109        acct_arg_size(bprm, 0);
1110        retval = exec_mmap(bprm->mm);
1111        if (retval)
1112                goto out;
1113
1114        bprm->mm = NULL;                /* We're using it now */
1115
1116        set_fs(USER_DS);
1117        current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD);
1118        flush_thread();
1119        current->personality &= ~bprm->per_clear;
1120
1121        return 0;
1122
1123out:
1124        return retval;
1125}
1126EXPORT_SYMBOL(flush_old_exec);
1127
1128void would_dump(struct linux_binprm *bprm, struct file *file)
1129{
1130        if (inode_permission(file->f_path.dentry->d_inode, MAY_READ) < 0)
1131                bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1132}
1133EXPORT_SYMBOL(would_dump);
1134
1135void setup_new_exec(struct linux_binprm * bprm)
1136{
1137        arch_pick_mmap_layout(current->mm);
1138
1139        /* This is the point of no return */
1140        current->sas_ss_sp = current->sas_ss_size = 0;
1141
1142        if (current_euid() == current_uid() && current_egid() == current_gid())
1143                set_dumpable(current->mm, 1);
1144        else
1145                set_dumpable(current->mm, suid_dumpable);
1146
1147        set_task_comm(current, bprm->tcomm);
1148
1149        /* Set the new mm task size. We have to do that late because it may
1150         * depend on TIF_32BIT which is only updated in flush_thread() on
1151         * some architectures like powerpc
1152         */
1153        current->mm->task_size = TASK_SIZE;
1154
1155        /* install the new credentials */
1156        if (bprm->cred->uid != current_euid() ||
1157            bprm->cred->gid != current_egid()) {
1158                current->pdeath_signal = 0;
1159        } else {
1160                would_dump(bprm, bprm->file);
1161                if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1162                        set_dumpable(current->mm, suid_dumpable);
1163        }
1164
1165        /*
1166         * Flush performance counters when crossing a
1167         * security domain:
1168         */
1169        if (!get_dumpable(current->mm))
1170                perf_event_exit_task(current);
1171
1172        /* An exec changes our domain. We are no longer part of the thread
1173           group */
1174
1175        current->self_exec_id++;
1176                        
1177        flush_signal_handlers(current, 0);
1178        flush_old_files(current->files);
1179}
1180EXPORT_SYMBOL(setup_new_exec);
1181
1182/*
1183 * Prepare credentials and lock ->cred_guard_mutex.
1184 * install_exec_creds() commits the new creds and drops the lock.
1185 * Or, if exec fails before, free_bprm() should release ->cred and
1186 * and unlock.
1187 */
1188int prepare_bprm_creds(struct linux_binprm *bprm)
1189{
1190        if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1191                return -ERESTARTNOINTR;
1192
1193        bprm->cred = prepare_exec_creds();
1194        if (likely(bprm->cred))
1195                return 0;
1196
1197        mutex_unlock(&current->signal->cred_guard_mutex);
1198        return -ENOMEM;
1199}
1200
1201void free_bprm(struct linux_binprm *bprm)
1202{
1203        free_arg_pages(bprm);
1204        if (bprm->cred) {
1205                mutex_unlock(&current->signal->cred_guard_mutex);
1206                abort_creds(bprm->cred);
1207        }
1208        kfree(bprm);
1209}
1210
1211/*
1212 * install the new credentials for this executable
1213 */
1214void install_exec_creds(struct linux_binprm *bprm)
1215{
1216        security_bprm_committing_creds(bprm);
1217
1218        commit_creds(bprm->cred);
1219        bprm->cred = NULL;
1220        /*
1221         * cred_guard_mutex must be held at least to this point to prevent
1222         * ptrace_attach() from altering our determination of the task's
1223         * credentials; any time after this it may be unlocked.
1224         */
1225        security_bprm_committed_creds(bprm);
1226        mutex_unlock(&current->signal->cred_guard_mutex);
1227}
1228EXPORT_SYMBOL(install_exec_creds);
1229
1230/*
1231 * determine how safe it is to execute the proposed program
1232 * - the caller must hold ->cred_guard_mutex to protect against
1233 *   PTRACE_ATTACH
1234 */
1235static int check_unsafe_exec(struct linux_binprm *bprm)
1236{
1237        struct task_struct *p = current, *t;
1238        unsigned n_fs;
1239        int res = 0;
1240
1241        if (p->ptrace) {
1242                if (p->ptrace & PT_PTRACE_CAP)
1243                        bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1244                else
1245                        bprm->unsafe |= LSM_UNSAFE_PTRACE;
1246        }
1247
1248        n_fs = 1;
1249        spin_lock(&p->fs->lock);
1250        rcu_read_lock();
1251        for (t = next_thread(p); t != p; t = next_thread(t)) {
1252                if (t->fs == p->fs)
1253                        n_fs++;
1254        }
1255        rcu_read_unlock();
1256
1257        if (p->fs->users > n_fs) {
1258                bprm->unsafe |= LSM_UNSAFE_SHARE;
1259        } else {
1260                res = -EAGAIN;
1261                if (!p->fs->in_exec) {
1262                        p->fs->in_exec = 1;
1263                        res = 1;
1264                }
1265        }
1266        spin_unlock(&p->fs->lock);
1267
1268        return res;
1269}
1270
1271/* 
1272 * Fill the binprm structure from the inode. 
1273 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1274 *
1275 * This may be called multiple times for binary chains (scripts for example).
1276 */
1277int prepare_binprm(struct linux_binprm *bprm)
1278{
1279        umode_t mode;
1280        struct inode * inode = bprm->file->f_path.dentry->d_inode;
1281        int retval;
1282
1283        mode = inode->i_mode;
1284        if (bprm->file->f_op == NULL)
1285                return -EACCES;
1286
1287        /* clear any previous set[ug]id data from a previous binary */
1288        bprm->cred->euid = current_euid();
1289        bprm->cred->egid = current_egid();
1290
1291        if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1292                /* Set-uid? */
1293                if (mode & S_ISUID) {
1294                        bprm->per_clear |= PER_CLEAR_ON_SETID;
1295                        bprm->cred->euid = inode->i_uid;
1296                }
1297
1298                /* Set-gid? */
1299                /*
1300                 * If setgid is set but no group execute bit then this
1301                 * is a candidate for mandatory locking, not a setgid
1302                 * executable.
1303                 */
1304                if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1305                        bprm->per_clear |= PER_CLEAR_ON_SETID;
1306                        bprm->cred->egid = inode->i_gid;
1307                }
1308        }
1309
1310        /* fill in binprm security blob */
1311        retval = security_bprm_set_creds(bprm);
1312        if (retval)
1313                return retval;
1314        bprm->cred_prepared = 1;
1315
1316        memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1317        return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1318}
1319
1320EXPORT_SYMBOL(prepare_binprm);
1321
1322/*
1323 * Arguments are '\0' separated strings found at the location bprm->p
1324 * points to; chop off the first by relocating brpm->p to right after
1325 * the first '\0' encountered.
1326 */
1327int remove_arg_zero(struct linux_binprm *bprm)
1328{
1329        int ret = 0;
1330        unsigned long offset;
1331        char *kaddr;
1332        struct page *page;
1333
1334        if (!bprm->argc)
1335                return 0;
1336
1337        do {
1338                offset = bprm->p & ~PAGE_MASK;
1339                page = get_arg_page(bprm, bprm->p, 0);
1340                if (!page) {
1341                        ret = -EFAULT;
1342                        goto out;
1343                }
1344                kaddr = kmap_atomic(page);
1345
1346                for (; offset < PAGE_SIZE && kaddr[offset];
1347                                offset++, bprm->p++)
1348                        ;
1349
1350                kunmap_atomic(kaddr);
1351                put_arg_page(page);
1352
1353                if (offset == PAGE_SIZE)
1354                        free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1355        } while (offset == PAGE_SIZE);
1356
1357        bprm->p++;
1358        bprm->argc--;
1359        ret = 0;
1360
1361out:
1362        return ret;
1363}
1364EXPORT_SYMBOL(remove_arg_zero);
1365
1366/*
1367 * cycle the list of binary formats handler, until one recognizes the image
1368 */
1369int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1370{
1371        unsigned int depth = bprm->recursion_depth;
1372        int try,retval;
1373        struct linux_binfmt *fmt;
1374        pid_t old_pid, old_vpid;
1375
1376        retval = security_bprm_check(bprm);
1377        if (retval)
1378                return retval;
1379
1380        retval = audit_bprm(bprm);
1381        if (retval)
1382                return retval;
1383
1384        /* Need to fetch pid before load_binary changes it */
1385        old_pid = current->pid;
1386        rcu_read_lock();
1387        old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1388        rcu_read_unlock();
1389
1390        retval = -ENOENT;
1391        for (try=0; try<2; try++) {
1392                read_lock(&binfmt_lock);
1393                list_for_each_entry(fmt, &formats, lh) {
1394                        int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1395                        if (!fn)
1396                                continue;
1397                        if (!try_module_get(fmt->module))
1398                                continue;
1399                        read_unlock(&binfmt_lock);
1400                        retval = fn(bprm, regs);
1401                        /*
1402                         * Restore the depth counter to its starting value
1403                         * in this call, so we don't have to rely on every
1404                         * load_binary function to restore it on return.
1405                         */
1406                        bprm->recursion_depth = depth;
1407                        if (retval >= 0) {
1408                                if (depth == 0) {
1409                                        trace_sched_process_exec(current, old_pid, bprm);
1410                                        ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1411                                }
1412                                put_binfmt(fmt);
1413                                allow_write_access(bprm->file);
1414                                if (bprm->file)
1415                                        fput(bprm->file);
1416                                bprm->file = NULL;
1417                                current->did_exec = 1;
1418                                proc_exec_connector(current);
1419                                return retval;
1420                        }
1421                        read_lock(&binfmt_lock);
1422                        put_binfmt(fmt);
1423                        if (retval != -ENOEXEC || bprm->mm == NULL)
1424                                break;
1425                        if (!bprm->file) {
1426                                read_unlock(&binfmt_lock);
1427                                return retval;
1428                        }
1429                }
1430                read_unlock(&binfmt_lock);
1431#ifdef CONFIG_MODULES
1432                if (retval != -ENOEXEC || bprm->mm == NULL) {
1433                        break;
1434                } else {
1435#define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1436                        if (printable(bprm->buf[0]) &&
1437                            printable(bprm->buf[1]) &&
1438                            printable(bprm->buf[2]) &&
1439                            printable(bprm->buf[3]))
1440                                break; /* -ENOEXEC */
1441                        if (try)
1442                                break; /* -ENOEXEC */
1443                        request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1444                }
1445#else
1446                break;
1447#endif
1448        }
1449        return retval;
1450}
1451
1452EXPORT_SYMBOL(search_binary_handler);
1453
1454/*
1455 * sys_execve() executes a new program.
1456 */
1457static int do_execve_common(const char *filename,
1458                                struct user_arg_ptr argv,
1459                                struct user_arg_ptr envp,
1460                                struct pt_regs *regs)
1461{
1462        struct linux_binprm *bprm;
1463        struct file *file;
1464        struct files_struct *displaced;
1465        bool clear_in_exec;
1466        int retval;
1467        const struct cred *cred = current_cred();
1468
1469        /*
1470         * We move the actual failure in case of RLIMIT_NPROC excess from
1471         * set*uid() to execve() because too many poorly written programs
1472         * don't check setuid() return code.  Here we additionally recheck
1473         * whether NPROC limit is still exceeded.
1474         */
1475        if ((current->flags & PF_NPROC_EXCEEDED) &&
1476            atomic_read(&cred->user->processes) > rlimit(RLIMIT_NPROC)) {
1477                retval = -EAGAIN;
1478                goto out_ret;
1479        }
1480
1481        /* We're below the limit (still or again), so we don't want to make
1482         * further execve() calls fail. */
1483        current->flags &= ~PF_NPROC_EXCEEDED;
1484
1485        retval = unshare_files(&displaced);
1486        if (retval)
1487                goto out_ret;
1488
1489        retval = -ENOMEM;
1490        bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1491        if (!bprm)
1492                goto out_files;
1493
1494        retval = prepare_bprm_creds(bprm);
1495        if (retval)
1496                goto out_free;
1497
1498        retval = check_unsafe_exec(bprm);
1499        if (retval < 0)
1500                goto out_free;
1501        clear_in_exec = retval;
1502        current->in_execve = 1;
1503
1504        file = open_exec(filename);
1505        retval = PTR_ERR(file);
1506        if (IS_ERR(file))
1507                goto out_unmark;
1508
1509        sched_exec();
1510
1511        bprm->file = file;
1512        bprm->filename = filename;
1513        bprm->interp = filename;
1514
1515        retval = bprm_mm_init(bprm);
1516        if (retval)
1517                goto out_file;
1518
1519        bprm->argc = count(argv, MAX_ARG_STRINGS);
1520        if ((retval = bprm->argc) < 0)
1521                goto out;
1522
1523        bprm->envc = count(envp, MAX_ARG_STRINGS);
1524        if ((retval = bprm->envc) < 0)
1525                goto out;
1526
1527        retval = prepare_binprm(bprm);
1528        if (retval < 0)
1529                goto out;
1530
1531        retval = copy_strings_kernel(1, &bprm->filename, bprm);
1532        if (retval < 0)
1533                goto out;
1534
1535        bprm->exec = bprm->p;
1536        retval = copy_strings(bprm->envc, envp, bprm);
1537        if (retval < 0)
1538                goto out;
1539
1540        retval = copy_strings(bprm->argc, argv, bprm);
1541        if (retval < 0)
1542                goto out;
1543
1544        retval = search_binary_handler(bprm,regs);
1545        if (retval < 0)
1546                goto out;
1547
1548        /* execve succeeded */
1549        current->fs->in_exec = 0;
1550        current->in_execve = 0;
1551        acct_update_integrals(current);
1552        free_bprm(bprm);
1553        if (displaced)
1554                put_files_struct(displaced);
1555        return retval;
1556
1557out:
1558        if (bprm->mm) {
1559                acct_arg_size(bprm, 0);
1560                mmput(bprm->mm);
1561        }
1562
1563out_file:
1564        if (bprm->file) {
1565                allow_write_access(bprm->file);
1566                fput(bprm->file);
1567        }
1568
1569out_unmark:
1570        if (clear_in_exec)
1571                current->fs->in_exec = 0;
1572        current->in_execve = 0;
1573
1574out_free:
1575        free_bprm(bprm);
1576
1577out_files:
1578        if (displaced)
1579                reset_files_struct(displaced);
1580out_ret:
1581        return retval;
1582}
1583
1584int do_execve(const char *filename,
1585        const char __user *const __user *__argv,
1586        const char __user *const __user *__envp,
1587        struct pt_regs *regs)
1588{
1589        struct user_arg_ptr argv = { .ptr.native = __argv };
1590        struct user_arg_ptr envp = { .ptr.native = __envp };
1591        return do_execve_common(filename, argv, envp, regs);
1592}
1593
1594#ifdef CONFIG_COMPAT
1595int compat_do_execve(char *filename,
1596        compat_uptr_t __user *__argv,
1597        compat_uptr_t __user *__envp,
1598        struct pt_regs *regs)
1599{
1600        struct user_arg_ptr argv = {
1601                .is_compat = true,
1602                .ptr.compat = __argv,
1603        };
1604        struct user_arg_ptr envp = {
1605                .is_compat = true,
1606                .ptr.compat = __envp,
1607        };
1608        return do_execve_common(filename, argv, envp, regs);
1609}
1610#endif
1611
1612void set_binfmt(struct linux_binfmt *new)
1613{
1614        struct mm_struct *mm = current->mm;
1615
1616        if (mm->binfmt)
1617                module_put(mm->binfmt->module);
1618
1619        mm->binfmt = new;
1620        if (new)
1621                __module_get(new->module);
1622}
1623
1624EXPORT_SYMBOL(set_binfmt);
1625
1626static int expand_corename(struct core_name *cn)
1627{
1628        char *old_corename = cn->corename;
1629
1630        cn->size = CORENAME_MAX_SIZE * atomic_inc_return(&call_count);
1631        cn->corename = krealloc(old_corename, cn->size, GFP_KERNEL);
1632
1633        if (!cn->corename) {
1634                kfree(old_corename);
1635                return -ENOMEM;
1636        }
1637
1638        return 0;
1639}
1640
1641static int cn_printf(struct core_name *cn, const char *fmt, ...)
1642{
1643        char *cur;
1644        int need;
1645        int ret;
1646        va_list arg;
1647
1648        va_start(arg, fmt);
1649        need = vsnprintf(NULL, 0, fmt, arg);
1650        va_end(arg);
1651
1652        if (likely(need < cn->size - cn->used - 1))
1653                goto out_printf;
1654
1655        ret = expand_corename(cn);
1656        if (ret)
1657                goto expand_fail;
1658
1659out_printf:
1660        cur = cn->corename + cn->used;
1661        va_start(arg, fmt);
1662        vsnprintf(cur, need + 1, fmt, arg);
1663        va_end(arg);
1664        cn->used += need;
1665        return 0;
1666
1667expand_fail:
1668        return ret;
1669}
1670
1671static void cn_escape(char *str)
1672{
1673        for (; *str; str++)
1674                if (*str == '/')
1675                        *str = '!';
1676}
1677
1678static int cn_print_exe_file(struct core_name *cn)
1679{
1680        struct file *exe_file;
1681        char *pathbuf, *path;
1682        int ret;
1683
1684        exe_file = get_mm_exe_file(current->mm);
1685        if (!exe_file) {
1686                char *commstart = cn->corename + cn->used;
1687                ret = cn_printf(cn, "%s (path unknown)", current->comm);
1688                cn_escape(commstart);
1689                return ret;
1690        }
1691
1692        pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY);
1693        if (!pathbuf) {
1694                ret = -ENOMEM;
1695                goto put_exe_file;
1696        }
1697
1698        path = d_path(&exe_file->f_path, pathbuf, PATH_MAX);
1699        if (IS_ERR(path)) {
1700                ret = PTR_ERR(path);
1701                goto free_buf;
1702        }
1703
1704        cn_escape(path);
1705
1706        ret = cn_printf(cn, "%s", path);
1707
1708free_buf:
1709        kfree(pathbuf);
1710put_exe_file:
1711        fput(exe_file);
1712        return ret;
1713}
1714
1715/* format_corename will inspect the pattern parameter, and output a
1716 * name into corename, which must have space for at least
1717 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1718 */
1719static int format_corename(struct core_name *cn, long signr)
1720{
1721        const struct cred *cred = current_cred();
1722        const char *pat_ptr = core_pattern;
1723        int ispipe = (*pat_ptr == '|');
1724        int pid_in_pattern = 0;
1725        int err = 0;
1726
1727        cn->size = CORENAME_MAX_SIZE * atomic_read(&call_count);
1728        cn->corename = kmalloc(cn->size, GFP_KERNEL);
1729        cn->used = 0;
1730
1731        if (!cn->corename)
1732                return -ENOMEM;
1733
1734        /* Repeat as long as we have more pattern to process and more output
1735           space */
1736        while (*pat_ptr) {
1737                if (*pat_ptr != '%') {
1738                        if (*pat_ptr == 0)
1739                                goto out;
1740                        err = cn_printf(cn, "%c", *pat_ptr++);
1741                } else {
1742                        switch (*++pat_ptr) {
1743                        /* single % at the end, drop that */
1744                        case 0:
1745                                goto out;
1746                        /* Double percent, output one percent */
1747                        case '%':
1748                                err = cn_printf(cn, "%c", '%');
1749                                break;
1750                        /* pid */
1751                        case 'p':
1752                                pid_in_pattern = 1;
1753                                err = cn_printf(cn, "%d",
1754                                              task_tgid_vnr(current));
1755                                break;
1756                        /* uid */
1757                        case 'u':
1758                                err = cn_printf(cn, "%d", cred->uid);
1759                                break;
1760                        /* gid */
1761                        case 'g':
1762                                err = cn_printf(cn, "%d", cred->gid);
1763                                break;
1764                        /* signal that caused the coredump */
1765                        case 's':
1766                                err = cn_printf(cn, "%ld", signr);
1767                                break;
1768                        /* UNIX time of coredump */
1769                        case 't': {
1770                                struct timeval tv;
1771                                do_gettimeofday(&tv);
1772                                err = cn_printf(cn, "%lu", tv.tv_sec);
1773                                break;
1774                        }
1775                        /* hostname */
1776                        case 'h': {
1777                                char *namestart = cn->corename + cn->used;
1778                                down_read(&uts_sem);
1779                                err = cn_printf(cn, "%s",
1780                                              utsname()->nodename);
1781                                up_read(&uts_sem);
1782                                cn_escape(namestart);
1783                                break;
1784                        }
1785                        /* executable */
1786                        case 'e': {
1787                                char *commstart = cn->corename + cn->used;
1788                                err = cn_printf(cn, "%s", current->comm);
1789                                cn_escape(commstart);
1790                                break;
1791                        }
1792                        case 'E':
1793                                err = cn_print_exe_file(cn);
1794                                break;
1795                        /* core limit size */
1796                        case 'c':
1797                                err = cn_printf(cn, "%lu",
1798                                              rlimit(RLIMIT_CORE));
1799                                break;
1800                        default:
1801                                break;
1802                        }
1803                        ++pat_ptr;
1804                }
1805
1806                if (err)
1807                        return err;
1808        }
1809
1810        /* Backward compatibility with core_uses_pid:
1811         *
1812         * If core_pattern does not include a %p (as is the default)
1813         * and core_uses_pid is set, then .%pid will be appended to
1814         * the filename. Do not do this for piped commands. */
1815        if (!ispipe && !pid_in_pattern && core_uses_pid) {
1816                err = cn_printf(cn, ".%d", task_tgid_vnr(current));
1817                if (err)
1818                        return err;
1819        }
1820out:
1821        return ispipe;
1822}
1823
1824static int zap_process(struct task_struct *start, int exit_code)
1825{
1826        struct task_struct *t;
1827        int nr = 0;
1828
1829        start->signal->flags = SIGNAL_GROUP_EXIT;
1830        start->signal->group_exit_code = exit_code;
1831        start->signal->group_stop_count = 0;
1832
1833        t = start;
1834        do {
1835                task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1836                if (t != current && t->mm) {
1837                        sigaddset(&t->pending.signal, SIGKILL);
1838                        signal_wake_up(t, 1);
1839                        nr++;
1840                }
1841        } while_each_thread(start, t);
1842
1843        return nr;
1844}
1845
1846static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1847                                struct core_state *core_state, int exit_code)
1848{
1849        struct task_struct *g, *p;
1850        unsigned long flags;
1851        int nr = -EAGAIN;
1852
1853        spin_lock_irq(&tsk->sighand->siglock);
1854        if (!signal_group_exit(tsk->signal)) {
1855                mm->core_state = core_state;
1856                nr = zap_process(tsk, exit_code);
1857        }
1858        spin_unlock_irq(&tsk->sighand->siglock);
1859        if (unlikely(nr < 0))
1860                return nr;
1861
1862        if (atomic_read(&mm->mm_users) == nr + 1)
1863                goto done;
1864        /*
1865         * We should find and kill all tasks which use this mm, and we should
1866         * count them correctly into ->nr_threads. We don't take tasklist
1867         * lock, but this is safe wrt:
1868         *
1869         * fork:
1870         *      None of sub-threads can fork after zap_process(leader). All
1871         *      processes which were created before this point should be
1872         *      visible to zap_threads() because copy_process() adds the new
1873         *      process to the tail of init_task.tasks list, and lock/unlock
1874         *      of ->siglock provides a memory barrier.
1875         *
1876         * do_exit:
1877         *      The caller holds mm->mmap_sem. This means that the task which
1878         *      uses this mm can't pass exit_mm(), so it can't exit or clear
1879         *      its ->mm.
1880         *
1881         * de_thread:
1882         *      It does list_replace_rcu(&leader->tasks, &current->tasks),
1883         *      we must see either old or new leader, this does not matter.
1884         *      However, it can change p->sighand, so lock_task_sighand(p)
1885         *      must be used. Since p->mm != NULL and we hold ->mmap_sem
1886         *      it can't fail.
1887         *
1888         *      Note also that "g" can be the old leader with ->mm == NULL
1889         *      and already unhashed and thus removed from ->thread_group.
1890         *      This is OK, __unhash_process()->list_del_rcu() does not
1891         *      clear the ->next pointer, we will find the new leader via
1892         *      next_thread().
1893         */
1894        rcu_read_lock();
1895        for_each_process(g) {
1896                if (g == tsk->group_leader)
1897                        continue;
1898                if (g->flags & PF_KTHREAD)
1899                        continue;
1900                p = g;
1901                do {
1902                        if (p->mm) {
1903                                if (unlikely(p->mm == mm)) {
1904                                        lock_task_sighand(p, &flags);
1905                                        nr += zap_process(p, exit_code);
1906                                        unlock_task_sighand(p, &flags);
1907                                }
1908                                break;
1909                        }
1910                } while_each_thread(g, p);
1911        }
1912        rcu_read_unlock();
1913done:
1914        atomic_set(&core_state->nr_threads, nr);
1915        return nr;
1916}
1917
1918static int coredump_wait(int exit_code, struct core_state *core_state)
1919{
1920        struct task_struct *tsk = current;
1921        struct mm_struct *mm = tsk->mm;
1922        int core_waiters = -EBUSY;
1923
1924        init_completion(&core_state->startup);
1925        core_state->dumper.task = tsk;
1926        core_state->dumper.next = NULL;
1927
1928        down_write(&mm->mmap_sem);
1929        if (!mm->core_state)
1930                core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1931        up_write(&mm->mmap_sem);
1932
1933        if (core_waiters > 0)
1934                wait_for_completion(&core_state->startup);
1935
1936        return core_waiters;
1937}
1938
1939static void coredump_finish(struct mm_struct *mm)
1940{
1941        struct core_thread *curr, *next;
1942        struct task_struct *task;
1943
1944        next = mm->core_state->dumper.next;
1945        while ((curr = next) != NULL) {
1946                next = curr->next;
1947                task = curr->task;
1948                /*
1949                 * see exit_mm(), curr->task must not see
1950                 * ->task == NULL before we read ->next.
1951                 */
1952                smp_mb();
1953                curr->task = NULL;
1954                wake_up_process(task);
1955        }
1956
1957        mm->core_state = NULL;
1958}
1959
1960/*
1961 * set_dumpable converts traditional three-value dumpable to two flags and
1962 * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1963 * these bits are not changed atomically.  So get_dumpable can observe the
1964 * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1965 * return either old dumpable or new one by paying attention to the order of
1966 * modifying the bits.
1967 *
1968 * dumpable |   mm->flags (binary)
1969 * old  new | initial interim  final
1970 * ---------+-----------------------
1971 *  0    1  |   00      01      01
1972 *  0    2  |   00      10(*)   11
1973 *  1    0  |   01      00      00
1974 *  1    2  |   01      11      11
1975 *  2    0  |   11      10(*)   00
1976 *  2    1  |   11      11      01
1977 *
1978 * (*) get_dumpable regards interim value of 10 as 11.
1979 */
1980void set_dumpable(struct mm_struct *mm, int value)
1981{
1982        switch (value) {
1983        case 0:
1984                clear_bit(MMF_DUMPABLE, &mm->flags);
1985                smp_wmb();
1986                clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1987                break;
1988        case 1:
1989                set_bit(MMF_DUMPABLE, &mm->flags);
1990                smp_wmb();
1991                clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1992                break;
1993        case 2:
1994                set_bit(MMF_DUMP_SECURELY, &mm->flags);
1995                smp_wmb();
1996                set_bit(MMF_DUMPABLE, &mm->flags);
1997                break;
1998        }
1999}
2000
2001static int __get_dumpable(unsigned long mm_flags)
2002{
2003        int ret;
2004
2005        ret = mm_flags & MMF_DUMPABLE_MASK;
2006        return (ret >= 2) ? 2 : ret;
2007}
2008
2009int get_dumpable(struct mm_struct *mm)
2010{
2011        return __get_dumpable(mm->flags);
2012}
2013
2014static void wait_for_dump_helpers(struct file *file)
2015{
2016        struct pipe_inode_info *pipe;
2017
2018        pipe = file->f_path.dentry->d_inode->i_pipe;
2019
2020        pipe_lock(pipe);
2021        pipe->readers++;
2022        pipe->writers--;
2023
2024        while ((pipe->readers > 1) && (!signal_pending(current))) {
2025                wake_up_interruptible_sync(&pipe->wait);
2026                kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
2027                pipe_wait(pipe);
2028        }
2029
2030        pipe->readers--;
2031        pipe->writers++;
2032        pipe_unlock(pipe);
2033
2034}
2035
2036
2037/*
2038 * umh_pipe_setup
2039 * helper function to customize the process used
2040 * to collect the core in userspace.  Specifically
2041 * it sets up a pipe and installs it as fd 0 (stdin)
2042 * for the process.  Returns 0 on success, or
2043 * PTR_ERR on failure.
2044 * Note that it also sets the core limit to 1.  This
2045 * is a special value that we use to trap recursive
2046 * core dumps
2047 */
2048static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
2049{
2050        struct file *rp, *wp;
2051        struct fdtable *fdt;
2052        struct coredump_params *cp = (struct coredump_params *)info->data;
2053        struct files_struct *cf = current->files;
2054
2055        wp = create_write_pipe(0);
2056        if (IS_ERR(wp))
2057                return PTR_ERR(wp);
2058
2059        rp = create_read_pipe(wp, 0);
2060        if (IS_ERR(rp)) {
2061                free_write_pipe(wp);
2062                return PTR_ERR(rp);
2063        }
2064
2065        cp->file = wp;
2066
2067        sys_close(0);
2068        fd_install(0, rp);
2069        spin_lock(&cf->file_lock);
2070        fdt = files_fdtable(cf);
2071        __set_open_fd(0, fdt);
2072        __clear_close_on_exec(0, fdt);
2073        spin_unlock(&cf->file_lock);
2074
2075        /* and disallow core files too */
2076        current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
2077
2078        return 0;
2079}
2080
2081void do_coredump(long signr, int exit_code, struct pt_regs *regs)
2082{
2083        struct core_state core_state;
2084        struct core_name cn;
2085        struct mm_struct *mm = current->mm;
2086        struct linux_binfmt * binfmt;
2087        const struct cred *old_cred;
2088        struct cred *cred;
2089        int retval = 0;
2090        int flag = 0;
2091        int ispipe;
2092        static atomic_t core_dump_count = ATOMIC_INIT(0);
2093        struct coredump_params cprm = {
2094                .signr = signr,
2095                .regs = regs,
2096                .limit = rlimit(RLIMIT_CORE),
2097                /*
2098                 * We must use the same mm->flags while dumping core to avoid
2099                 * inconsistency of bit flags, since this flag is not protected
2100                 * by any locks.
2101                 */
2102                .mm_flags = mm->flags,
2103        };
2104
2105        audit_core_dumps(signr);
2106
2107        binfmt = mm->binfmt;
2108        if (!binfmt || !binfmt->core_dump)
2109                goto fail;
2110        if (!__get_dumpable(cprm.mm_flags))
2111                goto fail;
2112
2113        cred = prepare_creds();
2114        if (!cred)
2115                goto fail;
2116        /*
2117         *      We cannot trust fsuid as being the "true" uid of the
2118         *      process nor do we know its entire history. We only know it
2119         *      was tainted so we dump it as root in mode 2.
2120         */
2121        if (__get_dumpable(cprm.mm_flags) == 2) {
2122                /* Setuid core dump mode */
2123                flag = O_EXCL;          /* Stop rewrite attacks */
2124                cred->fsuid = 0;        /* Dump root private */
2125        }
2126
2127        retval = coredump_wait(exit_code, &core_state);
2128        if (retval < 0)
2129                goto fail_creds;
2130
2131        old_cred = override_creds(cred);
2132
2133        /*
2134         * Clear any false indication of pending signals that might
2135         * be seen by the filesystem code called to write the core file.
2136         */
2137        clear_thread_flag(TIF_SIGPENDING);
2138
2139        ispipe = format_corename(&cn, signr);
2140
2141        if (ispipe) {
2142                int dump_count;
2143                char **helper_argv;
2144
2145                if (ispipe < 0) {
2146                        printk(KERN_WARNING "format_corename failed\n");
2147                        printk(KERN_WARNING "Aborting core\n");
2148                        goto fail_corename;
2149                }
2150
2151                if (cprm.limit == 1) {
2152                        /*
2153                         * Normally core limits are irrelevant to pipes, since
2154                         * we're not writing to the file system, but we use
2155                         * cprm.limit of 1 here as a speacial value. Any
2156                         * non-1 limit gets set to RLIM_INFINITY below, but
2157                         * a limit of 0 skips the dump.  This is a consistent
2158                         * way to catch recursive crashes.  We can still crash
2159                         * if the core_pattern binary sets RLIM_CORE =  !1
2160                         * but it runs as root, and can do lots of stupid things
2161                         * Note that we use task_tgid_vnr here to grab the pid
2162                         * of the process group leader.  That way we get the
2163                         * right pid if a thread in a multi-threaded
2164                         * core_pattern process dies.
2165                         */
2166                        printk(KERN_WARNING
2167                                "Process %d(%s) has RLIMIT_CORE set to 1\n",
2168                                task_tgid_vnr(current), current->comm);
2169                        printk(KERN_WARNING "Aborting core\n");
2170                        goto fail_unlock;
2171                }
2172                cprm.limit = RLIM_INFINITY;
2173
2174                dump_count = atomic_inc_return(&core_dump_count);
2175                if (core_pipe_limit && (core_pipe_limit < dump_count)) {
2176                        printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
2177                               task_tgid_vnr(current), current->comm);
2178                        printk(KERN_WARNING "Skipping core dump\n");
2179                        goto fail_dropcount;
2180                }
2181
2182                helper_argv = argv_split(GFP_KERNEL, cn.corename+1, NULL);
2183                if (!helper_argv) {
2184                        printk(KERN_WARNING "%s failed to allocate memory\n",
2185                               __func__);
2186                        goto fail_dropcount;
2187                }
2188
2189                retval = call_usermodehelper_fns(helper_argv[0], helper_argv,
2190                                        NULL, UMH_WAIT_EXEC, umh_pipe_setup,
2191                                        NULL, &cprm);
2192                argv_free(helper_argv);
2193                if (retval) {
2194                        printk(KERN_INFO "Core dump to %s pipe failed\n",
2195                               cn.corename);
2196                        goto close_fail;
2197                }
2198        } else {
2199                struct inode *inode;
2200
2201                if (cprm.limit < binfmt->min_coredump)
2202                        goto fail_unlock;
2203
2204                cprm.file = filp_open(cn.corename,
2205                                 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
2206                                 0600);
2207                if (IS_ERR(cprm.file))
2208                        goto fail_unlock;
2209
2210                inode = cprm.file->f_path.dentry->d_inode;
2211                if (inode->i_nlink > 1)
2212                        goto close_fail;
2213                if (d_unhashed(cprm.file->f_path.dentry))
2214                        goto close_fail;
2215                /*
2216                 * AK: actually i see no reason to not allow this for named
2217                 * pipes etc, but keep the previous behaviour for now.
2218                 */
2219                if (!S_ISREG(inode->i_mode))
2220                        goto close_fail;
2221                /*
2222                 * Dont allow local users get cute and trick others to coredump
2223                 * into their pre-created files.
2224                 */
2225                if (inode->i_uid != current_fsuid())
2226                        goto close_fail;
2227                if (!cprm.file->f_op || !cprm.file->f_op->write)
2228                        goto close_fail;
2229                if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
2230                        goto close_fail;
2231        }
2232
2233        retval = binfmt->core_dump(&cprm);
2234        if (retval)
2235                current->signal->group_exit_code |= 0x80;
2236
2237        if (ispipe && core_pipe_limit)
2238                wait_for_dump_helpers(cprm.file);
2239close_fail:
2240        if (cprm.file)
2241                filp_close(cprm.file, NULL);
2242fail_dropcount:
2243        if (ispipe)
2244                atomic_dec(&core_dump_count);
2245fail_unlock:
2246        kfree(cn.corename);
2247fail_corename:
2248        coredump_finish(mm);
2249        revert_creds(old_cred);
2250fail_creds:
2251        put_cred(cred);
2252fail:
2253        return;
2254}
2255
2256/*
2257 * Core dumping helper functions.  These are the only things you should
2258 * do on a core-file: use only these functions to write out all the
2259 * necessary info.
2260 */
2261int dump_write(struct file *file, const void *addr, int nr)
2262{
2263        return access_ok(VERIFY_READ, addr, nr) && file->f_op->write(file, addr, nr, &file->f_pos) == nr;
2264}
2265EXPORT_SYMBOL(dump_write);
2266
2267int dump_seek(struct file *file, loff_t off)
2268{
2269        int ret = 1;
2270
2271        if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
2272                if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
2273                        return 0;
2274        } else {
2275                char *buf = (char *)get_zeroed_page(GFP_KERNEL);
2276
2277                if (!buf)
2278                        return 0;
2279                while (off > 0) {
2280                        unsigned long n = off;
2281
2282                        if (n > PAGE_SIZE)
2283                                n = PAGE_SIZE;
2284                        if (!dump_write(file, buf, n)) {
2285                                ret = 0;
2286                                break;
2287                        }
2288                        off -= n;
2289                }
2290                free_page((unsigned long)buf);
2291        }
2292        return ret;
2293}
2294EXPORT_SYMBOL(dump_seek);
2295