linux/include/linux/mm.h
<<
>>
Prefs
   1#ifndef _LINUX_MM_H
   2#define _LINUX_MM_H
   3
   4#include <linux/errno.h>
   5
   6#ifdef __KERNEL__
   7
   8#include <linux/gfp.h>
   9#include <linux/bug.h>
  10#include <linux/list.h>
  11#include <linux/mmzone.h>
  12#include <linux/rbtree.h>
  13#include <linux/prio_tree.h>
  14#include <linux/atomic.h>
  15#include <linux/debug_locks.h>
  16#include <linux/mm_types.h>
  17#include <linux/range.h>
  18#include <linux/pfn.h>
  19#include <linux/bit_spinlock.h>
  20#include <linux/shrinker.h>
  21
  22struct mempolicy;
  23struct anon_vma;
  24struct file_ra_state;
  25struct user_struct;
  26struct writeback_control;
  27
  28#ifndef CONFIG_DISCONTIGMEM          /* Don't use mapnrs, do it properly */
  29extern unsigned long max_mapnr;
  30#endif
  31
  32extern unsigned long num_physpages;
  33extern unsigned long totalram_pages;
  34extern void * high_memory;
  35extern int page_cluster;
  36
  37#ifdef CONFIG_SYSCTL
  38extern int sysctl_legacy_va_layout;
  39#else
  40#define sysctl_legacy_va_layout 0
  41#endif
  42
  43#include <asm/page.h>
  44#include <asm/pgtable.h>
  45#include <asm/processor.h>
  46
  47#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  48
  49/* to align the pointer to the (next) page boundary */
  50#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
  51
  52/*
  53 * Linux kernel virtual memory manager primitives.
  54 * The idea being to have a "virtual" mm in the same way
  55 * we have a virtual fs - giving a cleaner interface to the
  56 * mm details, and allowing different kinds of memory mappings
  57 * (from shared memory to executable loading to arbitrary
  58 * mmap() functions).
  59 */
  60
  61extern struct kmem_cache *vm_area_cachep;
  62
  63#ifndef CONFIG_MMU
  64extern struct rb_root nommu_region_tree;
  65extern struct rw_semaphore nommu_region_sem;
  66
  67extern unsigned int kobjsize(const void *objp);
  68#endif
  69
  70/*
  71 * vm_flags in vm_area_struct, see mm_types.h.
  72 */
  73#define VM_READ         0x00000001      /* currently active flags */
  74#define VM_WRITE        0x00000002
  75#define VM_EXEC         0x00000004
  76#define VM_SHARED       0x00000008
  77
  78/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
  79#define VM_MAYREAD      0x00000010      /* limits for mprotect() etc */
  80#define VM_MAYWRITE     0x00000020
  81#define VM_MAYEXEC      0x00000040
  82#define VM_MAYSHARE     0x00000080
  83
  84#define VM_GROWSDOWN    0x00000100      /* general info on the segment */
  85#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
  86#define VM_GROWSUP      0x00000200
  87#else
  88#define VM_GROWSUP      0x00000000
  89#define VM_NOHUGEPAGE   0x00000200      /* MADV_NOHUGEPAGE marked this vma */
  90#endif
  91#define VM_PFNMAP       0x00000400      /* Page-ranges managed without "struct page", just pure PFN */
  92#define VM_DENYWRITE    0x00000800      /* ETXTBSY on write attempts.. */
  93
  94#define VM_EXECUTABLE   0x00001000
  95#define VM_LOCKED       0x00002000
  96#define VM_IO           0x00004000      /* Memory mapped I/O or similar */
  97
  98                                        /* Used by sys_madvise() */
  99#define VM_SEQ_READ     0x00008000      /* App will access data sequentially */
 100#define VM_RAND_READ    0x00010000      /* App will not benefit from clustered reads */
 101
 102#define VM_DONTCOPY     0x00020000      /* Do not copy this vma on fork */
 103#define VM_DONTEXPAND   0x00040000      /* Cannot expand with mremap() */
 104#define VM_RESERVED     0x00080000      /* Count as reserved_vm like IO */
 105#define VM_ACCOUNT      0x00100000      /* Is a VM accounted object */
 106#define VM_NORESERVE    0x00200000      /* should the VM suppress accounting */
 107#define VM_HUGETLB      0x00400000      /* Huge TLB Page VM */
 108#define VM_NONLINEAR    0x00800000      /* Is non-linear (remap_file_pages) */
 109#ifndef CONFIG_TRANSPARENT_HUGEPAGE
 110#define VM_MAPPED_COPY  0x01000000      /* T if mapped copy of data (nommu mmap) */
 111#else
 112#define VM_HUGEPAGE     0x01000000      /* MADV_HUGEPAGE marked this vma */
 113#endif
 114#define VM_INSERTPAGE   0x02000000      /* The vma has had "vm_insert_page()" done on it */
 115#define VM_NODUMP       0x04000000      /* Do not include in the core dump */
 116
 117#define VM_CAN_NONLINEAR 0x08000000     /* Has ->fault & does nonlinear pages */
 118#define VM_MIXEDMAP     0x10000000      /* Can contain "struct page" and pure PFN pages */
 119#define VM_SAO          0x20000000      /* Strong Access Ordering (powerpc) */
 120#define VM_PFN_AT_MMAP  0x40000000      /* PFNMAP vma that is fully mapped at mmap time */
 121#define VM_MERGEABLE    0x80000000      /* KSM may merge identical pages */
 122
 123/* Bits set in the VMA until the stack is in its final location */
 124#define VM_STACK_INCOMPLETE_SETUP       (VM_RAND_READ | VM_SEQ_READ)
 125
 126#ifndef VM_STACK_DEFAULT_FLAGS          /* arch can override this */
 127#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
 128#endif
 129
 130#ifdef CONFIG_STACK_GROWSUP
 131#define VM_STACK_FLAGS  (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
 132#else
 133#define VM_STACK_FLAGS  (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
 134#endif
 135
 136#define VM_READHINTMASK                 (VM_SEQ_READ | VM_RAND_READ)
 137#define VM_ClearReadHint(v)             (v)->vm_flags &= ~VM_READHINTMASK
 138#define VM_NormalReadHint(v)            (!((v)->vm_flags & VM_READHINTMASK))
 139#define VM_SequentialReadHint(v)        ((v)->vm_flags & VM_SEQ_READ)
 140#define VM_RandomReadHint(v)            ((v)->vm_flags & VM_RAND_READ)
 141
 142/*
 143 * Special vmas that are non-mergable, non-mlock()able.
 144 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
 145 */
 146#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
 147
 148/*
 149 * mapping from the currently active vm_flags protection bits (the
 150 * low four bits) to a page protection mask..
 151 */
 152extern pgprot_t protection_map[16];
 153
 154#define FAULT_FLAG_WRITE        0x01    /* Fault was a write access */
 155#define FAULT_FLAG_NONLINEAR    0x02    /* Fault was via a nonlinear mapping */
 156#define FAULT_FLAG_MKWRITE      0x04    /* Fault was mkwrite of existing pte */
 157#define FAULT_FLAG_ALLOW_RETRY  0x08    /* Retry fault if blocking */
 158#define FAULT_FLAG_RETRY_NOWAIT 0x10    /* Don't drop mmap_sem and wait when retrying */
 159#define FAULT_FLAG_KILLABLE     0x20    /* The fault task is in SIGKILL killable region */
 160
 161/*
 162 * This interface is used by x86 PAT code to identify a pfn mapping that is
 163 * linear over entire vma. This is to optimize PAT code that deals with
 164 * marking the physical region with a particular prot. This is not for generic
 165 * mm use. Note also that this check will not work if the pfn mapping is
 166 * linear for a vma starting at physical address 0. In which case PAT code
 167 * falls back to slow path of reserving physical range page by page.
 168 */
 169static inline int is_linear_pfn_mapping(struct vm_area_struct *vma)
 170{
 171        return !!(vma->vm_flags & VM_PFN_AT_MMAP);
 172}
 173
 174static inline int is_pfn_mapping(struct vm_area_struct *vma)
 175{
 176        return !!(vma->vm_flags & VM_PFNMAP);
 177}
 178
 179/*
 180 * vm_fault is filled by the the pagefault handler and passed to the vma's
 181 * ->fault function. The vma's ->fault is responsible for returning a bitmask
 182 * of VM_FAULT_xxx flags that give details about how the fault was handled.
 183 *
 184 * pgoff should be used in favour of virtual_address, if possible. If pgoff
 185 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
 186 * mapping support.
 187 */
 188struct vm_fault {
 189        unsigned int flags;             /* FAULT_FLAG_xxx flags */
 190        pgoff_t pgoff;                  /* Logical page offset based on vma */
 191        void __user *virtual_address;   /* Faulting virtual address */
 192
 193        struct page *page;              /* ->fault handlers should return a
 194                                         * page here, unless VM_FAULT_NOPAGE
 195                                         * is set (which is also implied by
 196                                         * VM_FAULT_ERROR).
 197                                         */
 198};
 199
 200/*
 201 * These are the virtual MM functions - opening of an area, closing and
 202 * unmapping it (needed to keep files on disk up-to-date etc), pointer
 203 * to the functions called when a no-page or a wp-page exception occurs. 
 204 */
 205struct vm_operations_struct {
 206        void (*open)(struct vm_area_struct * area);
 207        void (*close)(struct vm_area_struct * area);
 208        int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
 209
 210        /* notification that a previously read-only page is about to become
 211         * writable, if an error is returned it will cause a SIGBUS */
 212        int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
 213
 214        /* called by access_process_vm when get_user_pages() fails, typically
 215         * for use by special VMAs that can switch between memory and hardware
 216         */
 217        int (*access)(struct vm_area_struct *vma, unsigned long addr,
 218                      void *buf, int len, int write);
 219#ifdef CONFIG_NUMA
 220        /*
 221         * set_policy() op must add a reference to any non-NULL @new mempolicy
 222         * to hold the policy upon return.  Caller should pass NULL @new to
 223         * remove a policy and fall back to surrounding context--i.e. do not
 224         * install a MPOL_DEFAULT policy, nor the task or system default
 225         * mempolicy.
 226         */
 227        int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
 228
 229        /*
 230         * get_policy() op must add reference [mpol_get()] to any policy at
 231         * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
 232         * in mm/mempolicy.c will do this automatically.
 233         * get_policy() must NOT add a ref if the policy at (vma,addr) is not
 234         * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
 235         * If no [shared/vma] mempolicy exists at the addr, get_policy() op
 236         * must return NULL--i.e., do not "fallback" to task or system default
 237         * policy.
 238         */
 239        struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
 240                                        unsigned long addr);
 241        int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
 242                const nodemask_t *to, unsigned long flags);
 243#endif
 244};
 245
 246struct mmu_gather;
 247struct inode;
 248
 249#define page_private(page)              ((page)->private)
 250#define set_page_private(page, v)       ((page)->private = (v))
 251
 252/*
 253 * FIXME: take this include out, include page-flags.h in
 254 * files which need it (119 of them)
 255 */
 256#include <linux/page-flags.h>
 257#include <linux/huge_mm.h>
 258
 259/*
 260 * Methods to modify the page usage count.
 261 *
 262 * What counts for a page usage:
 263 * - cache mapping   (page->mapping)
 264 * - private data    (page->private)
 265 * - page mapped in a task's page tables, each mapping
 266 *   is counted separately
 267 *
 268 * Also, many kernel routines increase the page count before a critical
 269 * routine so they can be sure the page doesn't go away from under them.
 270 */
 271
 272/*
 273 * Drop a ref, return true if the refcount fell to zero (the page has no users)
 274 */
 275static inline int put_page_testzero(struct page *page)
 276{
 277        VM_BUG_ON(atomic_read(&page->_count) == 0);
 278        return atomic_dec_and_test(&page->_count);
 279}
 280
 281/*
 282 * Try to grab a ref unless the page has a refcount of zero, return false if
 283 * that is the case.
 284 */
 285static inline int get_page_unless_zero(struct page *page)
 286{
 287        return atomic_inc_not_zero(&page->_count);
 288}
 289
 290extern int page_is_ram(unsigned long pfn);
 291
 292/* Support for virtually mapped pages */
 293struct page *vmalloc_to_page(const void *addr);
 294unsigned long vmalloc_to_pfn(const void *addr);
 295
 296/*
 297 * Determine if an address is within the vmalloc range
 298 *
 299 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
 300 * is no special casing required.
 301 */
 302static inline int is_vmalloc_addr(const void *x)
 303{
 304#ifdef CONFIG_MMU
 305        unsigned long addr = (unsigned long)x;
 306
 307        return addr >= VMALLOC_START && addr < VMALLOC_END;
 308#else
 309        return 0;
 310#endif
 311}
 312#ifdef CONFIG_MMU
 313extern int is_vmalloc_or_module_addr(const void *x);
 314#else
 315static inline int is_vmalloc_or_module_addr(const void *x)
 316{
 317        return 0;
 318}
 319#endif
 320
 321static inline void compound_lock(struct page *page)
 322{
 323#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 324        bit_spin_lock(PG_compound_lock, &page->flags);
 325#endif
 326}
 327
 328static inline void compound_unlock(struct page *page)
 329{
 330#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 331        bit_spin_unlock(PG_compound_lock, &page->flags);
 332#endif
 333}
 334
 335static inline unsigned long compound_lock_irqsave(struct page *page)
 336{
 337        unsigned long uninitialized_var(flags);
 338#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 339        local_irq_save(flags);
 340        compound_lock(page);
 341#endif
 342        return flags;
 343}
 344
 345static inline void compound_unlock_irqrestore(struct page *page,
 346                                              unsigned long flags)
 347{
 348#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 349        compound_unlock(page);
 350        local_irq_restore(flags);
 351#endif
 352}
 353
 354static inline struct page *compound_head(struct page *page)
 355{
 356        if (unlikely(PageTail(page)))
 357                return page->first_page;
 358        return page;
 359}
 360
 361/*
 362 * The atomic page->_mapcount, starts from -1: so that transitions
 363 * both from it and to it can be tracked, using atomic_inc_and_test
 364 * and atomic_add_negative(-1).
 365 */
 366static inline void reset_page_mapcount(struct page *page)
 367{
 368        atomic_set(&(page)->_mapcount, -1);
 369}
 370
 371static inline int page_mapcount(struct page *page)
 372{
 373        return atomic_read(&(page)->_mapcount) + 1;
 374}
 375
 376static inline int page_count(struct page *page)
 377{
 378        return atomic_read(&compound_head(page)->_count);
 379}
 380
 381static inline void get_huge_page_tail(struct page *page)
 382{
 383        /*
 384         * __split_huge_page_refcount() cannot run
 385         * from under us.
 386         */
 387        VM_BUG_ON(page_mapcount(page) < 0);
 388        VM_BUG_ON(atomic_read(&page->_count) != 0);
 389        atomic_inc(&page->_mapcount);
 390}
 391
 392extern bool __get_page_tail(struct page *page);
 393
 394static inline void get_page(struct page *page)
 395{
 396        if (unlikely(PageTail(page)))
 397                if (likely(__get_page_tail(page)))
 398                        return;
 399        /*
 400         * Getting a normal page or the head of a compound page
 401         * requires to already have an elevated page->_count.
 402         */
 403        VM_BUG_ON(atomic_read(&page->_count) <= 0);
 404        atomic_inc(&page->_count);
 405}
 406
 407static inline struct page *virt_to_head_page(const void *x)
 408{
 409        struct page *page = virt_to_page(x);
 410        return compound_head(page);
 411}
 412
 413/*
 414 * Setup the page count before being freed into the page allocator for
 415 * the first time (boot or memory hotplug)
 416 */
 417static inline void init_page_count(struct page *page)
 418{
 419        atomic_set(&page->_count, 1);
 420}
 421
 422/*
 423 * PageBuddy() indicate that the page is free and in the buddy system
 424 * (see mm/page_alloc.c).
 425 *
 426 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
 427 * -2 so that an underflow of the page_mapcount() won't be mistaken
 428 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
 429 * efficiently by most CPU architectures.
 430 */
 431#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
 432
 433static inline int PageBuddy(struct page *page)
 434{
 435        return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
 436}
 437
 438static inline void __SetPageBuddy(struct page *page)
 439{
 440        VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
 441        atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
 442}
 443
 444static inline void __ClearPageBuddy(struct page *page)
 445{
 446        VM_BUG_ON(!PageBuddy(page));
 447        atomic_set(&page->_mapcount, -1);
 448}
 449
 450void put_page(struct page *page);
 451void put_pages_list(struct list_head *pages);
 452
 453void split_page(struct page *page, unsigned int order);
 454int split_free_page(struct page *page);
 455
 456/*
 457 * Compound pages have a destructor function.  Provide a
 458 * prototype for that function and accessor functions.
 459 * These are _only_ valid on the head of a PG_compound page.
 460 */
 461typedef void compound_page_dtor(struct page *);
 462
 463static inline void set_compound_page_dtor(struct page *page,
 464                                                compound_page_dtor *dtor)
 465{
 466        page[1].lru.next = (void *)dtor;
 467}
 468
 469static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
 470{
 471        return (compound_page_dtor *)page[1].lru.next;
 472}
 473
 474static inline int compound_order(struct page *page)
 475{
 476        if (!PageHead(page))
 477                return 0;
 478        return (unsigned long)page[1].lru.prev;
 479}
 480
 481static inline int compound_trans_order(struct page *page)
 482{
 483        int order;
 484        unsigned long flags;
 485
 486        if (!PageHead(page))
 487                return 0;
 488
 489        flags = compound_lock_irqsave(page);
 490        order = compound_order(page);
 491        compound_unlock_irqrestore(page, flags);
 492        return order;
 493}
 494
 495static inline void set_compound_order(struct page *page, unsigned long order)
 496{
 497        page[1].lru.prev = (void *)order;
 498}
 499
 500#ifdef CONFIG_MMU
 501/*
 502 * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
 503 * servicing faults for write access.  In the normal case, do always want
 504 * pte_mkwrite.  But get_user_pages can cause write faults for mappings
 505 * that do not have writing enabled, when used by access_process_vm.
 506 */
 507static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
 508{
 509        if (likely(vma->vm_flags & VM_WRITE))
 510                pte = pte_mkwrite(pte);
 511        return pte;
 512}
 513#endif
 514
 515/*
 516 * Multiple processes may "see" the same page. E.g. for untouched
 517 * mappings of /dev/null, all processes see the same page full of
 518 * zeroes, and text pages of executables and shared libraries have
 519 * only one copy in memory, at most, normally.
 520 *
 521 * For the non-reserved pages, page_count(page) denotes a reference count.
 522 *   page_count() == 0 means the page is free. page->lru is then used for
 523 *   freelist management in the buddy allocator.
 524 *   page_count() > 0  means the page has been allocated.
 525 *
 526 * Pages are allocated by the slab allocator in order to provide memory
 527 * to kmalloc and kmem_cache_alloc. In this case, the management of the
 528 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
 529 * unless a particular usage is carefully commented. (the responsibility of
 530 * freeing the kmalloc memory is the caller's, of course).
 531 *
 532 * A page may be used by anyone else who does a __get_free_page().
 533 * In this case, page_count still tracks the references, and should only
 534 * be used through the normal accessor functions. The top bits of page->flags
 535 * and page->virtual store page management information, but all other fields
 536 * are unused and could be used privately, carefully. The management of this
 537 * page is the responsibility of the one who allocated it, and those who have
 538 * subsequently been given references to it.
 539 *
 540 * The other pages (we may call them "pagecache pages") are completely
 541 * managed by the Linux memory manager: I/O, buffers, swapping etc.
 542 * The following discussion applies only to them.
 543 *
 544 * A pagecache page contains an opaque `private' member, which belongs to the
 545 * page's address_space. Usually, this is the address of a circular list of
 546 * the page's disk buffers. PG_private must be set to tell the VM to call
 547 * into the filesystem to release these pages.
 548 *
 549 * A page may belong to an inode's memory mapping. In this case, page->mapping
 550 * is the pointer to the inode, and page->index is the file offset of the page,
 551 * in units of PAGE_CACHE_SIZE.
 552 *
 553 * If pagecache pages are not associated with an inode, they are said to be
 554 * anonymous pages. These may become associated with the swapcache, and in that
 555 * case PG_swapcache is set, and page->private is an offset into the swapcache.
 556 *
 557 * In either case (swapcache or inode backed), the pagecache itself holds one
 558 * reference to the page. Setting PG_private should also increment the
 559 * refcount. The each user mapping also has a reference to the page.
 560 *
 561 * The pagecache pages are stored in a per-mapping radix tree, which is
 562 * rooted at mapping->page_tree, and indexed by offset.
 563 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
 564 * lists, we instead now tag pages as dirty/writeback in the radix tree.
 565 *
 566 * All pagecache pages may be subject to I/O:
 567 * - inode pages may need to be read from disk,
 568 * - inode pages which have been modified and are MAP_SHARED may need
 569 *   to be written back to the inode on disk,
 570 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
 571 *   modified may need to be swapped out to swap space and (later) to be read
 572 *   back into memory.
 573 */
 574
 575/*
 576 * The zone field is never updated after free_area_init_core()
 577 * sets it, so none of the operations on it need to be atomic.
 578 */
 579
 580
 581/*
 582 * page->flags layout:
 583 *
 584 * There are three possibilities for how page->flags get
 585 * laid out.  The first is for the normal case, without
 586 * sparsemem.  The second is for sparsemem when there is
 587 * plenty of space for node and section.  The last is when
 588 * we have run out of space and have to fall back to an
 589 * alternate (slower) way of determining the node.
 590 *
 591 * No sparsemem or sparsemem vmemmap: |       NODE     | ZONE | ... | FLAGS |
 592 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
 593 * classic sparse no space for node:  | SECTION |     ZONE    | ... | FLAGS |
 594 */
 595#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
 596#define SECTIONS_WIDTH          SECTIONS_SHIFT
 597#else
 598#define SECTIONS_WIDTH          0
 599#endif
 600
 601#define ZONES_WIDTH             ZONES_SHIFT
 602
 603#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
 604#define NODES_WIDTH             NODES_SHIFT
 605#else
 606#ifdef CONFIG_SPARSEMEM_VMEMMAP
 607#error "Vmemmap: No space for nodes field in page flags"
 608#endif
 609#define NODES_WIDTH             0
 610#endif
 611
 612/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
 613#define SECTIONS_PGOFF          ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
 614#define NODES_PGOFF             (SECTIONS_PGOFF - NODES_WIDTH)
 615#define ZONES_PGOFF             (NODES_PGOFF - ZONES_WIDTH)
 616
 617/*
 618 * We are going to use the flags for the page to node mapping if its in
 619 * there.  This includes the case where there is no node, so it is implicit.
 620 */
 621#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
 622#define NODE_NOT_IN_PAGE_FLAGS
 623#endif
 624
 625/*
 626 * Define the bit shifts to access each section.  For non-existent
 627 * sections we define the shift as 0; that plus a 0 mask ensures
 628 * the compiler will optimise away reference to them.
 629 */
 630#define SECTIONS_PGSHIFT        (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
 631#define NODES_PGSHIFT           (NODES_PGOFF * (NODES_WIDTH != 0))
 632#define ZONES_PGSHIFT           (ZONES_PGOFF * (ZONES_WIDTH != 0))
 633
 634/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
 635#ifdef NODE_NOT_IN_PAGE_FLAGS
 636#define ZONEID_SHIFT            (SECTIONS_SHIFT + ZONES_SHIFT)
 637#define ZONEID_PGOFF            ((SECTIONS_PGOFF < ZONES_PGOFF)? \
 638                                                SECTIONS_PGOFF : ZONES_PGOFF)
 639#else
 640#define ZONEID_SHIFT            (NODES_SHIFT + ZONES_SHIFT)
 641#define ZONEID_PGOFF            ((NODES_PGOFF < ZONES_PGOFF)? \
 642                                                NODES_PGOFF : ZONES_PGOFF)
 643#endif
 644
 645#define ZONEID_PGSHIFT          (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
 646
 647#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
 648#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
 649#endif
 650
 651#define ZONES_MASK              ((1UL << ZONES_WIDTH) - 1)
 652#define NODES_MASK              ((1UL << NODES_WIDTH) - 1)
 653#define SECTIONS_MASK           ((1UL << SECTIONS_WIDTH) - 1)
 654#define ZONEID_MASK             ((1UL << ZONEID_SHIFT) - 1)
 655
 656static inline enum zone_type page_zonenum(const struct page *page)
 657{
 658        return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
 659}
 660
 661/*
 662 * The identification function is only used by the buddy allocator for
 663 * determining if two pages could be buddies. We are not really
 664 * identifying a zone since we could be using a the section number
 665 * id if we have not node id available in page flags.
 666 * We guarantee only that it will return the same value for two
 667 * combinable pages in a zone.
 668 */
 669static inline int page_zone_id(struct page *page)
 670{
 671        return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
 672}
 673
 674static inline int zone_to_nid(struct zone *zone)
 675{
 676#ifdef CONFIG_NUMA
 677        return zone->node;
 678#else
 679        return 0;
 680#endif
 681}
 682
 683#ifdef NODE_NOT_IN_PAGE_FLAGS
 684extern int page_to_nid(const struct page *page);
 685#else
 686static inline int page_to_nid(const struct page *page)
 687{
 688        return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
 689}
 690#endif
 691
 692static inline struct zone *page_zone(const struct page *page)
 693{
 694        return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
 695}
 696
 697#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
 698static inline void set_page_section(struct page *page, unsigned long section)
 699{
 700        page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
 701        page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
 702}
 703
 704static inline unsigned long page_to_section(const struct page *page)
 705{
 706        return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
 707}
 708#endif
 709
 710static inline void set_page_zone(struct page *page, enum zone_type zone)
 711{
 712        page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
 713        page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
 714}
 715
 716static inline void set_page_node(struct page *page, unsigned long node)
 717{
 718        page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
 719        page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
 720}
 721
 722static inline void set_page_links(struct page *page, enum zone_type zone,
 723        unsigned long node, unsigned long pfn)
 724{
 725        set_page_zone(page, zone);
 726        set_page_node(page, node);
 727#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
 728        set_page_section(page, pfn_to_section_nr(pfn));
 729#endif
 730}
 731
 732/*
 733 * Some inline functions in vmstat.h depend on page_zone()
 734 */
 735#include <linux/vmstat.h>
 736
 737static __always_inline void *lowmem_page_address(const struct page *page)
 738{
 739        return __va(PFN_PHYS(page_to_pfn(page)));
 740}
 741
 742#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
 743#define HASHED_PAGE_VIRTUAL
 744#endif
 745
 746#if defined(WANT_PAGE_VIRTUAL)
 747#define page_address(page) ((page)->virtual)
 748#define set_page_address(page, address)                 \
 749        do {                                            \
 750                (page)->virtual = (address);            \
 751        } while(0)
 752#define page_address_init()  do { } while(0)
 753#endif
 754
 755#if defined(HASHED_PAGE_VIRTUAL)
 756void *page_address(const struct page *page);
 757void set_page_address(struct page *page, void *virtual);
 758void page_address_init(void);
 759#endif
 760
 761#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
 762#define page_address(page) lowmem_page_address(page)
 763#define set_page_address(page, address)  do { } while(0)
 764#define page_address_init()  do { } while(0)
 765#endif
 766
 767/*
 768 * On an anonymous page mapped into a user virtual memory area,
 769 * page->mapping points to its anon_vma, not to a struct address_space;
 770 * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
 771 *
 772 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
 773 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
 774 * and then page->mapping points, not to an anon_vma, but to a private
 775 * structure which KSM associates with that merged page.  See ksm.h.
 776 *
 777 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
 778 *
 779 * Please note that, confusingly, "page_mapping" refers to the inode
 780 * address_space which maps the page from disk; whereas "page_mapped"
 781 * refers to user virtual address space into which the page is mapped.
 782 */
 783#define PAGE_MAPPING_ANON       1
 784#define PAGE_MAPPING_KSM        2
 785#define PAGE_MAPPING_FLAGS      (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
 786
 787extern struct address_space swapper_space;
 788static inline struct address_space *page_mapping(struct page *page)
 789{
 790        struct address_space *mapping = page->mapping;
 791
 792        VM_BUG_ON(PageSlab(page));
 793        if (unlikely(PageSwapCache(page)))
 794                mapping = &swapper_space;
 795        else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
 796                mapping = NULL;
 797        return mapping;
 798}
 799
 800/* Neutral page->mapping pointer to address_space or anon_vma or other */
 801static inline void *page_rmapping(struct page *page)
 802{
 803        return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
 804}
 805
 806static inline int PageAnon(struct page *page)
 807{
 808        return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
 809}
 810
 811/*
 812 * Return the pagecache index of the passed page.  Regular pagecache pages
 813 * use ->index whereas swapcache pages use ->private
 814 */
 815static inline pgoff_t page_index(struct page *page)
 816{
 817        if (unlikely(PageSwapCache(page)))
 818                return page_private(page);
 819        return page->index;
 820}
 821
 822/*
 823 * Return true if this page is mapped into pagetables.
 824 */
 825static inline int page_mapped(struct page *page)
 826{
 827        return atomic_read(&(page)->_mapcount) >= 0;
 828}
 829
 830/*
 831 * Different kinds of faults, as returned by handle_mm_fault().
 832 * Used to decide whether a process gets delivered SIGBUS or
 833 * just gets major/minor fault counters bumped up.
 834 */
 835
 836#define VM_FAULT_MINOR  0 /* For backwards compat. Remove me quickly. */
 837
 838#define VM_FAULT_OOM    0x0001
 839#define VM_FAULT_SIGBUS 0x0002
 840#define VM_FAULT_MAJOR  0x0004
 841#define VM_FAULT_WRITE  0x0008  /* Special case for get_user_pages */
 842#define VM_FAULT_HWPOISON 0x0010        /* Hit poisoned small page */
 843#define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */
 844
 845#define VM_FAULT_NOPAGE 0x0100  /* ->fault installed the pte, not return page */
 846#define VM_FAULT_LOCKED 0x0200  /* ->fault locked the returned page */
 847#define VM_FAULT_RETRY  0x0400  /* ->fault blocked, must retry */
 848
 849#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
 850
 851#define VM_FAULT_ERROR  (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
 852                         VM_FAULT_HWPOISON_LARGE)
 853
 854/* Encode hstate index for a hwpoisoned large page */
 855#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
 856#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
 857
 858/*
 859 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
 860 */
 861extern void pagefault_out_of_memory(void);
 862
 863#define offset_in_page(p)       ((unsigned long)(p) & ~PAGE_MASK)
 864
 865/*
 866 * Flags passed to show_mem() and show_free_areas() to suppress output in
 867 * various contexts.
 868 */
 869#define SHOW_MEM_FILTER_NODES   (0x0001u)       /* filter disallowed nodes */
 870
 871extern void show_free_areas(unsigned int flags);
 872extern bool skip_free_areas_node(unsigned int flags, int nid);
 873
 874int shmem_lock(struct file *file, int lock, struct user_struct *user);
 875struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags);
 876int shmem_zero_setup(struct vm_area_struct *);
 877
 878extern int can_do_mlock(void);
 879extern int user_shm_lock(size_t, struct user_struct *);
 880extern void user_shm_unlock(size_t, struct user_struct *);
 881
 882/*
 883 * Parameter block passed down to zap_pte_range in exceptional cases.
 884 */
 885struct zap_details {
 886        struct vm_area_struct *nonlinear_vma;   /* Check page->index if set */
 887        struct address_space *check_mapping;    /* Check page->mapping if set */
 888        pgoff_t first_index;                    /* Lowest page->index to unmap */
 889        pgoff_t last_index;                     /* Highest page->index to unmap */
 890};
 891
 892struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
 893                pte_t pte);
 894
 895int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
 896                unsigned long size);
 897void zap_page_range(struct vm_area_struct *vma, unsigned long address,
 898                unsigned long size, struct zap_details *);
 899void unmap_vmas(struct mmu_gather *tlb,
 900                struct vm_area_struct *start_vma, unsigned long start_addr,
 901                unsigned long end_addr, unsigned long *nr_accounted,
 902                struct zap_details *);
 903
 904/**
 905 * mm_walk - callbacks for walk_page_range
 906 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
 907 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
 908 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
 909 *             this handler is required to be able to handle
 910 *             pmd_trans_huge() pmds.  They may simply choose to
 911 *             split_huge_page() instead of handling it explicitly.
 912 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
 913 * @pte_hole: if set, called for each hole at all levels
 914 * @hugetlb_entry: if set, called for each hugetlb entry
 915 *                 *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
 916 *                            is used.
 917 *
 918 * (see walk_page_range for more details)
 919 */
 920struct mm_walk {
 921        int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
 922        int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
 923        int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
 924        int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
 925        int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
 926        int (*hugetlb_entry)(pte_t *, unsigned long,
 927                             unsigned long, unsigned long, struct mm_walk *);
 928        struct mm_struct *mm;
 929        void *private;
 930};
 931
 932int walk_page_range(unsigned long addr, unsigned long end,
 933                struct mm_walk *walk);
 934void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
 935                unsigned long end, unsigned long floor, unsigned long ceiling);
 936int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
 937                        struct vm_area_struct *vma);
 938void unmap_mapping_range(struct address_space *mapping,
 939                loff_t const holebegin, loff_t const holelen, int even_cows);
 940int follow_pfn(struct vm_area_struct *vma, unsigned long address,
 941        unsigned long *pfn);
 942int follow_phys(struct vm_area_struct *vma, unsigned long address,
 943                unsigned int flags, unsigned long *prot, resource_size_t *phys);
 944int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
 945                        void *buf, int len, int write);
 946
 947static inline void unmap_shared_mapping_range(struct address_space *mapping,
 948                loff_t const holebegin, loff_t const holelen)
 949{
 950        unmap_mapping_range(mapping, holebegin, holelen, 0);
 951}
 952
 953extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
 954extern void truncate_setsize(struct inode *inode, loff_t newsize);
 955extern int vmtruncate(struct inode *inode, loff_t offset);
 956extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end);
 957void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
 958int truncate_inode_page(struct address_space *mapping, struct page *page);
 959int generic_error_remove_page(struct address_space *mapping, struct page *page);
 960
 961int invalidate_inode_page(struct page *page);
 962
 963#ifdef CONFIG_MMU
 964extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
 965                        unsigned long address, unsigned int flags);
 966extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
 967                            unsigned long address, unsigned int fault_flags);
 968#else
 969static inline int handle_mm_fault(struct mm_struct *mm,
 970                        struct vm_area_struct *vma, unsigned long address,
 971                        unsigned int flags)
 972{
 973        /* should never happen if there's no MMU */
 974        BUG();
 975        return VM_FAULT_SIGBUS;
 976}
 977static inline int fixup_user_fault(struct task_struct *tsk,
 978                struct mm_struct *mm, unsigned long address,
 979                unsigned int fault_flags)
 980{
 981        /* should never happen if there's no MMU */
 982        BUG();
 983        return -EFAULT;
 984}
 985#endif
 986
 987extern int make_pages_present(unsigned long addr, unsigned long end);
 988extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
 989extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
 990                void *buf, int len, int write);
 991
 992int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
 993                     unsigned long start, int len, unsigned int foll_flags,
 994                     struct page **pages, struct vm_area_struct **vmas,
 995                     int *nonblocking);
 996int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
 997                        unsigned long start, int nr_pages, int write, int force,
 998                        struct page **pages, struct vm_area_struct **vmas);
 999int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1000                        struct page **pages);
1001struct page *get_dump_page(unsigned long addr);
1002
1003extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1004extern void do_invalidatepage(struct page *page, unsigned long offset);
1005
1006int __set_page_dirty_nobuffers(struct page *page);
1007int __set_page_dirty_no_writeback(struct page *page);
1008int redirty_page_for_writepage(struct writeback_control *wbc,
1009                                struct page *page);
1010void account_page_dirtied(struct page *page, struct address_space *mapping);
1011void account_page_writeback(struct page *page);
1012int set_page_dirty(struct page *page);
1013int set_page_dirty_lock(struct page *page);
1014int clear_page_dirty_for_io(struct page *page);
1015
1016/* Is the vma a continuation of the stack vma above it? */
1017static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1018{
1019        return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1020}
1021
1022static inline int stack_guard_page_start(struct vm_area_struct *vma,
1023                                             unsigned long addr)
1024{
1025        return (vma->vm_flags & VM_GROWSDOWN) &&
1026                (vma->vm_start == addr) &&
1027                !vma_growsdown(vma->vm_prev, addr);
1028}
1029
1030/* Is the vma a continuation of the stack vma below it? */
1031static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1032{
1033        return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1034}
1035
1036static inline int stack_guard_page_end(struct vm_area_struct *vma,
1037                                           unsigned long addr)
1038{
1039        return (vma->vm_flags & VM_GROWSUP) &&
1040                (vma->vm_end == addr) &&
1041                !vma_growsup(vma->vm_next, addr);
1042}
1043
1044extern pid_t
1045vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1046
1047extern unsigned long move_page_tables(struct vm_area_struct *vma,
1048                unsigned long old_addr, struct vm_area_struct *new_vma,
1049                unsigned long new_addr, unsigned long len);
1050extern unsigned long do_mremap(unsigned long addr,
1051                               unsigned long old_len, unsigned long new_len,
1052                               unsigned long flags, unsigned long new_addr);
1053extern int mprotect_fixup(struct vm_area_struct *vma,
1054                          struct vm_area_struct **pprev, unsigned long start,
1055                          unsigned long end, unsigned long newflags);
1056
1057/*
1058 * doesn't attempt to fault and will return short.
1059 */
1060int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1061                          struct page **pages);
1062/*
1063 * per-process(per-mm_struct) statistics.
1064 */
1065static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1066{
1067        long val = atomic_long_read(&mm->rss_stat.count[member]);
1068
1069#ifdef SPLIT_RSS_COUNTING
1070        /*
1071         * counter is updated in asynchronous manner and may go to minus.
1072         * But it's never be expected number for users.
1073         */
1074        if (val < 0)
1075                val = 0;
1076#endif
1077        return (unsigned long)val;
1078}
1079
1080static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1081{
1082        atomic_long_add(value, &mm->rss_stat.count[member]);
1083}
1084
1085static inline void inc_mm_counter(struct mm_struct *mm, int member)
1086{
1087        atomic_long_inc(&mm->rss_stat.count[member]);
1088}
1089
1090static inline void dec_mm_counter(struct mm_struct *mm, int member)
1091{
1092        atomic_long_dec(&mm->rss_stat.count[member]);
1093}
1094
1095static inline unsigned long get_mm_rss(struct mm_struct *mm)
1096{
1097        return get_mm_counter(mm, MM_FILEPAGES) +
1098                get_mm_counter(mm, MM_ANONPAGES);
1099}
1100
1101static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1102{
1103        return max(mm->hiwater_rss, get_mm_rss(mm));
1104}
1105
1106static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1107{
1108        return max(mm->hiwater_vm, mm->total_vm);
1109}
1110
1111static inline void update_hiwater_rss(struct mm_struct *mm)
1112{
1113        unsigned long _rss = get_mm_rss(mm);
1114
1115        if ((mm)->hiwater_rss < _rss)
1116                (mm)->hiwater_rss = _rss;
1117}
1118
1119static inline void update_hiwater_vm(struct mm_struct *mm)
1120{
1121        if (mm->hiwater_vm < mm->total_vm)
1122                mm->hiwater_vm = mm->total_vm;
1123}
1124
1125static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1126                                         struct mm_struct *mm)
1127{
1128        unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1129
1130        if (*maxrss < hiwater_rss)
1131                *maxrss = hiwater_rss;
1132}
1133
1134#if defined(SPLIT_RSS_COUNTING)
1135void sync_mm_rss(struct mm_struct *mm);
1136#else
1137static inline void sync_mm_rss(struct mm_struct *mm)
1138{
1139}
1140#endif
1141
1142int vma_wants_writenotify(struct vm_area_struct *vma);
1143
1144extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1145                               spinlock_t **ptl);
1146static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1147                                    spinlock_t **ptl)
1148{
1149        pte_t *ptep;
1150        __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1151        return ptep;
1152}
1153
1154#ifdef __PAGETABLE_PUD_FOLDED
1155static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1156                                                unsigned long address)
1157{
1158        return 0;
1159}
1160#else
1161int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1162#endif
1163
1164#ifdef __PAGETABLE_PMD_FOLDED
1165static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1166                                                unsigned long address)
1167{
1168        return 0;
1169}
1170#else
1171int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1172#endif
1173
1174int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1175                pmd_t *pmd, unsigned long address);
1176int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1177
1178/*
1179 * The following ifdef needed to get the 4level-fixup.h header to work.
1180 * Remove it when 4level-fixup.h has been removed.
1181 */
1182#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1183static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1184{
1185        return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1186                NULL: pud_offset(pgd, address);
1187}
1188
1189static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1190{
1191        return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1192                NULL: pmd_offset(pud, address);
1193}
1194#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1195
1196#if USE_SPLIT_PTLOCKS
1197/*
1198 * We tuck a spinlock to guard each pagetable page into its struct page,
1199 * at page->private, with BUILD_BUG_ON to make sure that this will not
1200 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1201 * When freeing, reset page->mapping so free_pages_check won't complain.
1202 */
1203#define __pte_lockptr(page)     &((page)->ptl)
1204#define pte_lock_init(_page)    do {                                    \
1205        spin_lock_init(__pte_lockptr(_page));                           \
1206} while (0)
1207#define pte_lock_deinit(page)   ((page)->mapping = NULL)
1208#define pte_lockptr(mm, pmd)    ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
1209#else   /* !USE_SPLIT_PTLOCKS */
1210/*
1211 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1212 */
1213#define pte_lock_init(page)     do {} while (0)
1214#define pte_lock_deinit(page)   do {} while (0)
1215#define pte_lockptr(mm, pmd)    ({(void)(pmd); &(mm)->page_table_lock;})
1216#endif /* USE_SPLIT_PTLOCKS */
1217
1218static inline void pgtable_page_ctor(struct page *page)
1219{
1220        pte_lock_init(page);
1221        inc_zone_page_state(page, NR_PAGETABLE);
1222}
1223
1224static inline void pgtable_page_dtor(struct page *page)
1225{
1226        pte_lock_deinit(page);
1227        dec_zone_page_state(page, NR_PAGETABLE);
1228}
1229
1230#define pte_offset_map_lock(mm, pmd, address, ptlp)     \
1231({                                                      \
1232        spinlock_t *__ptl = pte_lockptr(mm, pmd);       \
1233        pte_t *__pte = pte_offset_map(pmd, address);    \
1234        *(ptlp) = __ptl;                                \
1235        spin_lock(__ptl);                               \
1236        __pte;                                          \
1237})
1238
1239#define pte_unmap_unlock(pte, ptl)      do {            \
1240        spin_unlock(ptl);                               \
1241        pte_unmap(pte);                                 \
1242} while (0)
1243
1244#define pte_alloc_map(mm, vma, pmd, address)                            \
1245        ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma,    \
1246                                                        pmd, address))? \
1247         NULL: pte_offset_map(pmd, address))
1248
1249#define pte_alloc_map_lock(mm, pmd, address, ptlp)      \
1250        ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL,   \
1251                                                        pmd, address))? \
1252                NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1253
1254#define pte_alloc_kernel(pmd, address)                  \
1255        ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1256                NULL: pte_offset_kernel(pmd, address))
1257
1258extern void free_area_init(unsigned long * zones_size);
1259extern void free_area_init_node(int nid, unsigned long * zones_size,
1260                unsigned long zone_start_pfn, unsigned long *zholes_size);
1261extern void free_initmem(void);
1262
1263#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1264/*
1265 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1266 * zones, allocate the backing mem_map and account for memory holes in a more
1267 * architecture independent manner. This is a substitute for creating the
1268 * zone_sizes[] and zholes_size[] arrays and passing them to
1269 * free_area_init_node()
1270 *
1271 * An architecture is expected to register range of page frames backed by
1272 * physical memory with memblock_add[_node]() before calling
1273 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1274 * usage, an architecture is expected to do something like
1275 *
1276 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1277 *                                                       max_highmem_pfn};
1278 * for_each_valid_physical_page_range()
1279 *      memblock_add_node(base, size, nid)
1280 * free_area_init_nodes(max_zone_pfns);
1281 *
1282 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1283 * registered physical page range.  Similarly
1284 * sparse_memory_present_with_active_regions() calls memory_present() for
1285 * each range when SPARSEMEM is enabled.
1286 *
1287 * See mm/page_alloc.c for more information on each function exposed by
1288 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1289 */
1290extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1291unsigned long node_map_pfn_alignment(void);
1292unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1293                                                unsigned long end_pfn);
1294extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1295                                                unsigned long end_pfn);
1296extern void get_pfn_range_for_nid(unsigned int nid,
1297                        unsigned long *start_pfn, unsigned long *end_pfn);
1298extern unsigned long find_min_pfn_with_active_regions(void);
1299extern void free_bootmem_with_active_regions(int nid,
1300                                                unsigned long max_low_pfn);
1301extern void sparse_memory_present_with_active_regions(int nid);
1302
1303#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1304
1305#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1306    !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1307static inline int __early_pfn_to_nid(unsigned long pfn)
1308{
1309        return 0;
1310}
1311#else
1312/* please see mm/page_alloc.c */
1313extern int __meminit early_pfn_to_nid(unsigned long pfn);
1314#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1315/* there is a per-arch backend function. */
1316extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1317#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1318#endif
1319
1320extern void set_dma_reserve(unsigned long new_dma_reserve);
1321extern void memmap_init_zone(unsigned long, int, unsigned long,
1322                                unsigned long, enum memmap_context);
1323extern void setup_per_zone_wmarks(void);
1324extern int __meminit init_per_zone_wmark_min(void);
1325extern void mem_init(void);
1326extern void __init mmap_init(void);
1327extern void show_mem(unsigned int flags);
1328extern void si_meminfo(struct sysinfo * val);
1329extern void si_meminfo_node(struct sysinfo *val, int nid);
1330extern int after_bootmem;
1331
1332extern __printf(3, 4)
1333void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1334
1335extern void setup_per_cpu_pageset(void);
1336
1337extern void zone_pcp_update(struct zone *zone);
1338
1339/* nommu.c */
1340extern atomic_long_t mmap_pages_allocated;
1341extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1342
1343/* prio_tree.c */
1344void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1345void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1346void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1347struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1348        struct prio_tree_iter *iter);
1349
1350#define vma_prio_tree_foreach(vma, iter, root, begin, end)      \
1351        for (prio_tree_iter_init(iter, root, begin, end), vma = NULL;   \
1352                (vma = vma_prio_tree_next(vma, iter)); )
1353
1354static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1355                                        struct list_head *list)
1356{
1357        vma->shared.vm_set.parent = NULL;
1358        list_add_tail(&vma->shared.vm_set.list, list);
1359}
1360
1361/* mmap.c */
1362extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1363extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1364        unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1365extern struct vm_area_struct *vma_merge(struct mm_struct *,
1366        struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1367        unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1368        struct mempolicy *);
1369extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1370extern int split_vma(struct mm_struct *,
1371        struct vm_area_struct *, unsigned long addr, int new_below);
1372extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1373extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1374        struct rb_node **, struct rb_node *);
1375extern void unlink_file_vma(struct vm_area_struct *);
1376extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1377        unsigned long addr, unsigned long len, pgoff_t pgoff);
1378extern void exit_mmap(struct mm_struct *);
1379
1380extern int mm_take_all_locks(struct mm_struct *mm);
1381extern void mm_drop_all_locks(struct mm_struct *mm);
1382
1383/* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
1384extern void added_exe_file_vma(struct mm_struct *mm);
1385extern void removed_exe_file_vma(struct mm_struct *mm);
1386extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1387extern struct file *get_mm_exe_file(struct mm_struct *mm);
1388
1389extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1390extern int install_special_mapping(struct mm_struct *mm,
1391                                   unsigned long addr, unsigned long len,
1392                                   unsigned long flags, struct page **pages);
1393
1394extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1395
1396extern unsigned long mmap_region(struct file *file, unsigned long addr,
1397        unsigned long len, unsigned long flags,
1398        vm_flags_t vm_flags, unsigned long pgoff);
1399extern unsigned long do_mmap(struct file *, unsigned long,
1400        unsigned long, unsigned long,
1401        unsigned long, unsigned long);
1402extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1403
1404/* These take the mm semaphore themselves */
1405extern unsigned long vm_brk(unsigned long, unsigned long);
1406extern int vm_munmap(unsigned long, size_t);
1407extern unsigned long vm_mmap(struct file *, unsigned long,
1408        unsigned long, unsigned long,
1409        unsigned long, unsigned long);
1410
1411/* truncate.c */
1412extern void truncate_inode_pages(struct address_space *, loff_t);
1413extern void truncate_inode_pages_range(struct address_space *,
1414                                       loff_t lstart, loff_t lend);
1415
1416/* generic vm_area_ops exported for stackable file systems */
1417extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1418
1419/* mm/page-writeback.c */
1420int write_one_page(struct page *page, int wait);
1421void task_dirty_inc(struct task_struct *tsk);
1422
1423/* readahead.c */
1424#define VM_MAX_READAHEAD        128     /* kbytes */
1425#define VM_MIN_READAHEAD        16      /* kbytes (includes current page) */
1426
1427int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1428                        pgoff_t offset, unsigned long nr_to_read);
1429
1430void page_cache_sync_readahead(struct address_space *mapping,
1431                               struct file_ra_state *ra,
1432                               struct file *filp,
1433                               pgoff_t offset,
1434                               unsigned long size);
1435
1436void page_cache_async_readahead(struct address_space *mapping,
1437                                struct file_ra_state *ra,
1438                                struct file *filp,
1439                                struct page *pg,
1440                                pgoff_t offset,
1441                                unsigned long size);
1442
1443unsigned long max_sane_readahead(unsigned long nr);
1444unsigned long ra_submit(struct file_ra_state *ra,
1445                        struct address_space *mapping,
1446                        struct file *filp);
1447
1448/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1449extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1450
1451/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1452extern int expand_downwards(struct vm_area_struct *vma,
1453                unsigned long address);
1454#if VM_GROWSUP
1455extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1456#else
1457  #define expand_upwards(vma, address) do { } while (0)
1458#endif
1459
1460/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1461extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1462extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1463                                             struct vm_area_struct **pprev);
1464
1465/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1466   NULL if none.  Assume start_addr < end_addr. */
1467static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1468{
1469        struct vm_area_struct * vma = find_vma(mm,start_addr);
1470
1471        if (vma && end_addr <= vma->vm_start)
1472                vma = NULL;
1473        return vma;
1474}
1475
1476static inline unsigned long vma_pages(struct vm_area_struct *vma)
1477{
1478        return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1479}
1480
1481/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1482static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1483                                unsigned long vm_start, unsigned long vm_end)
1484{
1485        struct vm_area_struct *vma = find_vma(mm, vm_start);
1486
1487        if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1488                vma = NULL;
1489
1490        return vma;
1491}
1492
1493#ifdef CONFIG_MMU
1494pgprot_t vm_get_page_prot(unsigned long vm_flags);
1495#else
1496static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1497{
1498        return __pgprot(0);
1499}
1500#endif
1501
1502struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1503int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1504                        unsigned long pfn, unsigned long size, pgprot_t);
1505int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1506int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1507                        unsigned long pfn);
1508int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1509                        unsigned long pfn);
1510
1511struct page *follow_page(struct vm_area_struct *, unsigned long address,
1512                        unsigned int foll_flags);
1513#define FOLL_WRITE      0x01    /* check pte is writable */
1514#define FOLL_TOUCH      0x02    /* mark page accessed */
1515#define FOLL_GET        0x04    /* do get_page on page */
1516#define FOLL_DUMP       0x08    /* give error on hole if it would be zero */
1517#define FOLL_FORCE      0x10    /* get_user_pages read/write w/o permission */
1518#define FOLL_NOWAIT     0x20    /* if a disk transfer is needed, start the IO
1519                                 * and return without waiting upon it */
1520#define FOLL_MLOCK      0x40    /* mark page as mlocked */
1521#define FOLL_SPLIT      0x80    /* don't return transhuge pages, split them */
1522#define FOLL_HWPOISON   0x100   /* check page is hwpoisoned */
1523
1524typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1525                        void *data);
1526extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1527                               unsigned long size, pte_fn_t fn, void *data);
1528
1529#ifdef CONFIG_PROC_FS
1530void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1531#else
1532static inline void vm_stat_account(struct mm_struct *mm,
1533                        unsigned long flags, struct file *file, long pages)
1534{
1535}
1536#endif /* CONFIG_PROC_FS */
1537
1538#ifdef CONFIG_DEBUG_PAGEALLOC
1539extern void kernel_map_pages(struct page *page, int numpages, int enable);
1540#ifdef CONFIG_HIBERNATION
1541extern bool kernel_page_present(struct page *page);
1542#endif /* CONFIG_HIBERNATION */
1543#else
1544static inline void
1545kernel_map_pages(struct page *page, int numpages, int enable) {}
1546#ifdef CONFIG_HIBERNATION
1547static inline bool kernel_page_present(struct page *page) { return true; }
1548#endif /* CONFIG_HIBERNATION */
1549#endif
1550
1551extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1552#ifdef  __HAVE_ARCH_GATE_AREA
1553int in_gate_area_no_mm(unsigned long addr);
1554int in_gate_area(struct mm_struct *mm, unsigned long addr);
1555#else
1556int in_gate_area_no_mm(unsigned long addr);
1557#define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1558#endif  /* __HAVE_ARCH_GATE_AREA */
1559
1560int drop_caches_sysctl_handler(struct ctl_table *, int,
1561                                        void __user *, size_t *, loff_t *);
1562unsigned long shrink_slab(struct shrink_control *shrink,
1563                          unsigned long nr_pages_scanned,
1564                          unsigned long lru_pages);
1565
1566#ifndef CONFIG_MMU
1567#define randomize_va_space 0
1568#else
1569extern int randomize_va_space;
1570#endif
1571
1572const char * arch_vma_name(struct vm_area_struct *vma);
1573void print_vma_addr(char *prefix, unsigned long rip);
1574
1575void sparse_mem_maps_populate_node(struct page **map_map,
1576                                   unsigned long pnum_begin,
1577                                   unsigned long pnum_end,
1578                                   unsigned long map_count,
1579                                   int nodeid);
1580
1581struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1582pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1583pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1584pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1585pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1586void *vmemmap_alloc_block(unsigned long size, int node);
1587void *vmemmap_alloc_block_buf(unsigned long size, int node);
1588void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1589int vmemmap_populate_basepages(struct page *start_page,
1590                                                unsigned long pages, int node);
1591int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
1592void vmemmap_populate_print_last(void);
1593
1594
1595enum mf_flags {
1596        MF_COUNT_INCREASED = 1 << 0,
1597        MF_ACTION_REQUIRED = 1 << 1,
1598};
1599extern int memory_failure(unsigned long pfn, int trapno, int flags);
1600extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
1601extern int unpoison_memory(unsigned long pfn);
1602extern int sysctl_memory_failure_early_kill;
1603extern int sysctl_memory_failure_recovery;
1604extern void shake_page(struct page *p, int access);
1605extern atomic_long_t mce_bad_pages;
1606extern int soft_offline_page(struct page *page, int flags);
1607
1608extern void dump_page(struct page *page);
1609
1610#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1611extern void clear_huge_page(struct page *page,
1612                            unsigned long addr,
1613                            unsigned int pages_per_huge_page);
1614extern void copy_user_huge_page(struct page *dst, struct page *src,
1615                                unsigned long addr, struct vm_area_struct *vma,
1616                                unsigned int pages_per_huge_page);
1617#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1618
1619#ifdef CONFIG_DEBUG_PAGEALLOC
1620extern unsigned int _debug_guardpage_minorder;
1621
1622static inline unsigned int debug_guardpage_minorder(void)
1623{
1624        return _debug_guardpage_minorder;
1625}
1626
1627static inline bool page_is_guard(struct page *page)
1628{
1629        return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
1630}
1631#else
1632static inline unsigned int debug_guardpage_minorder(void) { return 0; }
1633static inline bool page_is_guard(struct page *page) { return false; }
1634#endif /* CONFIG_DEBUG_PAGEALLOC */
1635
1636#endif /* __KERNEL__ */
1637#endif /* _LINUX_MM_H */
1638