1/* 2 * Read-Copy Update mechanism for mutual exclusion 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright IBM Corporation, 2001 19 * 20 * Author: Dipankar Sarma <dipankar@in.ibm.com> 21 * 22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com> 23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 24 * Papers: 25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf 26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) 27 * 28 * For detailed explanation of Read-Copy Update mechanism see - 29 * http://lse.sourceforge.net/locking/rcupdate.html 30 * 31 */ 32 33#ifndef __LINUX_RCUPDATE_H 34#define __LINUX_RCUPDATE_H 35 36#include <linux/types.h> 37#include <linux/cache.h> 38#include <linux/spinlock.h> 39#include <linux/threads.h> 40#include <linux/cpumask.h> 41#include <linux/seqlock.h> 42#include <linux/lockdep.h> 43#include <linux/completion.h> 44#include <linux/debugobjects.h> 45#include <linux/bug.h> 46#include <linux/compiler.h> 47 48#ifdef CONFIG_RCU_TORTURE_TEST 49extern int rcutorture_runnable; /* for sysctl */ 50#endif /* #ifdef CONFIG_RCU_TORTURE_TEST */ 51 52#if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU) 53extern void rcutorture_record_test_transition(void); 54extern void rcutorture_record_progress(unsigned long vernum); 55extern void do_trace_rcu_torture_read(char *rcutorturename, 56 struct rcu_head *rhp); 57#else 58static inline void rcutorture_record_test_transition(void) 59{ 60} 61static inline void rcutorture_record_progress(unsigned long vernum) 62{ 63} 64#ifdef CONFIG_RCU_TRACE 65extern void do_trace_rcu_torture_read(char *rcutorturename, 66 struct rcu_head *rhp); 67#else 68#define do_trace_rcu_torture_read(rcutorturename, rhp) do { } while (0) 69#endif 70#endif 71 72#define UINT_CMP_GE(a, b) (UINT_MAX / 2 >= (a) - (b)) 73#define UINT_CMP_LT(a, b) (UINT_MAX / 2 < (a) - (b)) 74#define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b)) 75#define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b)) 76 77/* Exported common interfaces */ 78 79#ifdef CONFIG_PREEMPT_RCU 80 81/** 82 * call_rcu() - Queue an RCU callback for invocation after a grace period. 83 * @head: structure to be used for queueing the RCU updates. 84 * @func: actual callback function to be invoked after the grace period 85 * 86 * The callback function will be invoked some time after a full grace 87 * period elapses, in other words after all pre-existing RCU read-side 88 * critical sections have completed. However, the callback function 89 * might well execute concurrently with RCU read-side critical sections 90 * that started after call_rcu() was invoked. RCU read-side critical 91 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), 92 * and may be nested. 93 */ 94extern void call_rcu(struct rcu_head *head, 95 void (*func)(struct rcu_head *head)); 96 97#else /* #ifdef CONFIG_PREEMPT_RCU */ 98 99/* In classic RCU, call_rcu() is just call_rcu_sched(). */ 100#define call_rcu call_rcu_sched 101 102#endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 103 104/** 105 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period. 106 * @head: structure to be used for queueing the RCU updates. 107 * @func: actual callback function to be invoked after the grace period 108 * 109 * The callback function will be invoked some time after a full grace 110 * period elapses, in other words after all currently executing RCU 111 * read-side critical sections have completed. call_rcu_bh() assumes 112 * that the read-side critical sections end on completion of a softirq 113 * handler. This means that read-side critical sections in process 114 * context must not be interrupted by softirqs. This interface is to be 115 * used when most of the read-side critical sections are in softirq context. 116 * RCU read-side critical sections are delimited by : 117 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context. 118 * OR 119 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context. 120 * These may be nested. 121 */ 122extern void call_rcu_bh(struct rcu_head *head, 123 void (*func)(struct rcu_head *head)); 124 125/** 126 * call_rcu_sched() - Queue an RCU for invocation after sched grace period. 127 * @head: structure to be used for queueing the RCU updates. 128 * @func: actual callback function to be invoked after the grace period 129 * 130 * The callback function will be invoked some time after a full grace 131 * period elapses, in other words after all currently executing RCU 132 * read-side critical sections have completed. call_rcu_sched() assumes 133 * that the read-side critical sections end on enabling of preemption 134 * or on voluntary preemption. 135 * RCU read-side critical sections are delimited by : 136 * - rcu_read_lock_sched() and rcu_read_unlock_sched(), 137 * OR 138 * anything that disables preemption. 139 * These may be nested. 140 */ 141extern void call_rcu_sched(struct rcu_head *head, 142 void (*func)(struct rcu_head *rcu)); 143 144extern void synchronize_sched(void); 145 146#ifdef CONFIG_PREEMPT_RCU 147 148extern void __rcu_read_lock(void); 149extern void __rcu_read_unlock(void); 150void synchronize_rcu(void); 151 152/* 153 * Defined as a macro as it is a very low level header included from 154 * areas that don't even know about current. This gives the rcu_read_lock() 155 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other 156 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable. 157 */ 158#define rcu_preempt_depth() (current->rcu_read_lock_nesting) 159 160#else /* #ifdef CONFIG_PREEMPT_RCU */ 161 162static inline void __rcu_read_lock(void) 163{ 164 preempt_disable(); 165} 166 167static inline void __rcu_read_unlock(void) 168{ 169 preempt_enable(); 170} 171 172static inline void synchronize_rcu(void) 173{ 174 synchronize_sched(); 175} 176 177static inline int rcu_preempt_depth(void) 178{ 179 return 0; 180} 181 182#endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 183 184/* Internal to kernel */ 185extern void rcu_sched_qs(int cpu); 186extern void rcu_bh_qs(int cpu); 187extern void rcu_check_callbacks(int cpu, int user); 188struct notifier_block; 189extern void rcu_idle_enter(void); 190extern void rcu_idle_exit(void); 191extern void rcu_irq_enter(void); 192extern void rcu_irq_exit(void); 193 194/** 195 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers 196 * @a: Code that RCU needs to pay attention to. 197 * 198 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden 199 * in the inner idle loop, that is, between the rcu_idle_enter() and 200 * the rcu_idle_exit() -- RCU will happily ignore any such read-side 201 * critical sections. However, things like powertop need tracepoints 202 * in the inner idle loop. 203 * 204 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU()) 205 * will tell RCU that it needs to pay attending, invoke its argument 206 * (in this example, a call to the do_something_with_RCU() function), 207 * and then tell RCU to go back to ignoring this CPU. It is permissible 208 * to nest RCU_NONIDLE() wrappers, but the nesting level is currently 209 * quite limited. If deeper nesting is required, it will be necessary 210 * to adjust DYNTICK_TASK_NESTING_VALUE accordingly. 211 * 212 * This macro may be used from process-level code only. 213 */ 214#define RCU_NONIDLE(a) \ 215 do { \ 216 rcu_idle_exit(); \ 217 do { a; } while (0); \ 218 rcu_idle_enter(); \ 219 } while (0) 220 221/* 222 * Infrastructure to implement the synchronize_() primitives in 223 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU. 224 */ 225 226typedef void call_rcu_func_t(struct rcu_head *head, 227 void (*func)(struct rcu_head *head)); 228void wait_rcu_gp(call_rcu_func_t crf); 229 230#if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU) 231#include <linux/rcutree.h> 232#elif defined(CONFIG_TINY_RCU) || defined(CONFIG_TINY_PREEMPT_RCU) 233#include <linux/rcutiny.h> 234#else 235#error "Unknown RCU implementation specified to kernel configuration" 236#endif 237 238/* 239 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic 240 * initialization and destruction of rcu_head on the stack. rcu_head structures 241 * allocated dynamically in the heap or defined statically don't need any 242 * initialization. 243 */ 244#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 245extern void init_rcu_head_on_stack(struct rcu_head *head); 246extern void destroy_rcu_head_on_stack(struct rcu_head *head); 247#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 248static inline void init_rcu_head_on_stack(struct rcu_head *head) 249{ 250} 251 252static inline void destroy_rcu_head_on_stack(struct rcu_head *head) 253{ 254} 255#endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 256 257#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) 258bool rcu_lockdep_current_cpu_online(void); 259#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 260static inline bool rcu_lockdep_current_cpu_online(void) 261{ 262 return 1; 263} 264#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 265 266#ifdef CONFIG_DEBUG_LOCK_ALLOC 267 268#ifdef CONFIG_PROVE_RCU 269extern int rcu_is_cpu_idle(void); 270#else /* !CONFIG_PROVE_RCU */ 271static inline int rcu_is_cpu_idle(void) 272{ 273 return 0; 274} 275#endif /* else !CONFIG_PROVE_RCU */ 276 277static inline void rcu_lock_acquire(struct lockdep_map *map) 278{ 279 lock_acquire(map, 0, 0, 2, 1, NULL, _THIS_IP_); 280} 281 282static inline void rcu_lock_release(struct lockdep_map *map) 283{ 284 lock_release(map, 1, _THIS_IP_); 285} 286 287extern struct lockdep_map rcu_lock_map; 288extern struct lockdep_map rcu_bh_lock_map; 289extern struct lockdep_map rcu_sched_lock_map; 290extern int debug_lockdep_rcu_enabled(void); 291 292/** 293 * rcu_read_lock_held() - might we be in RCU read-side critical section? 294 * 295 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU 296 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC, 297 * this assumes we are in an RCU read-side critical section unless it can 298 * prove otherwise. This is useful for debug checks in functions that 299 * require that they be called within an RCU read-side critical section. 300 * 301 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot 302 * and while lockdep is disabled. 303 * 304 * Note that rcu_read_lock() and the matching rcu_read_unlock() must 305 * occur in the same context, for example, it is illegal to invoke 306 * rcu_read_unlock() in process context if the matching rcu_read_lock() 307 * was invoked from within an irq handler. 308 * 309 * Note that rcu_read_lock() is disallowed if the CPU is either idle or 310 * offline from an RCU perspective, so check for those as well. 311 */ 312static inline int rcu_read_lock_held(void) 313{ 314 if (!debug_lockdep_rcu_enabled()) 315 return 1; 316 if (rcu_is_cpu_idle()) 317 return 0; 318 if (!rcu_lockdep_current_cpu_online()) 319 return 0; 320 return lock_is_held(&rcu_lock_map); 321} 322 323/* 324 * rcu_read_lock_bh_held() is defined out of line to avoid #include-file 325 * hell. 326 */ 327extern int rcu_read_lock_bh_held(void); 328 329/** 330 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section? 331 * 332 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an 333 * RCU-sched read-side critical section. In absence of 334 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side 335 * critical section unless it can prove otherwise. Note that disabling 336 * of preemption (including disabling irqs) counts as an RCU-sched 337 * read-side critical section. This is useful for debug checks in functions 338 * that required that they be called within an RCU-sched read-side 339 * critical section. 340 * 341 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot 342 * and while lockdep is disabled. 343 * 344 * Note that if the CPU is in the idle loop from an RCU point of 345 * view (ie: that we are in the section between rcu_idle_enter() and 346 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU 347 * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs 348 * that are in such a section, considering these as in extended quiescent 349 * state, so such a CPU is effectively never in an RCU read-side critical 350 * section regardless of what RCU primitives it invokes. This state of 351 * affairs is required --- we need to keep an RCU-free window in idle 352 * where the CPU may possibly enter into low power mode. This way we can 353 * notice an extended quiescent state to other CPUs that started a grace 354 * period. Otherwise we would delay any grace period as long as we run in 355 * the idle task. 356 * 357 * Similarly, we avoid claiming an SRCU read lock held if the current 358 * CPU is offline. 359 */ 360#ifdef CONFIG_PREEMPT_COUNT 361static inline int rcu_read_lock_sched_held(void) 362{ 363 int lockdep_opinion = 0; 364 365 if (!debug_lockdep_rcu_enabled()) 366 return 1; 367 if (rcu_is_cpu_idle()) 368 return 0; 369 if (!rcu_lockdep_current_cpu_online()) 370 return 0; 371 if (debug_locks) 372 lockdep_opinion = lock_is_held(&rcu_sched_lock_map); 373 return lockdep_opinion || preempt_count() != 0 || irqs_disabled(); 374} 375#else /* #ifdef CONFIG_PREEMPT_COUNT */ 376static inline int rcu_read_lock_sched_held(void) 377{ 378 return 1; 379} 380#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */ 381 382#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 383 384# define rcu_lock_acquire(a) do { } while (0) 385# define rcu_lock_release(a) do { } while (0) 386 387static inline int rcu_read_lock_held(void) 388{ 389 return 1; 390} 391 392static inline int rcu_read_lock_bh_held(void) 393{ 394 return 1; 395} 396 397#ifdef CONFIG_PREEMPT_COUNT 398static inline int rcu_read_lock_sched_held(void) 399{ 400 return preempt_count() != 0 || irqs_disabled(); 401} 402#else /* #ifdef CONFIG_PREEMPT_COUNT */ 403static inline int rcu_read_lock_sched_held(void) 404{ 405 return 1; 406} 407#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */ 408 409#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 410 411#ifdef CONFIG_PROVE_RCU 412 413extern int rcu_my_thread_group_empty(void); 414 415/** 416 * rcu_lockdep_assert - emit lockdep splat if specified condition not met 417 * @c: condition to check 418 * @s: informative message 419 */ 420#define rcu_lockdep_assert(c, s) \ 421 do { \ 422 static bool __section(.data.unlikely) __warned; \ 423 if (debug_lockdep_rcu_enabled() && !__warned && !(c)) { \ 424 __warned = true; \ 425 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \ 426 } \ 427 } while (0) 428 429#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU) 430static inline void rcu_preempt_sleep_check(void) 431{ 432 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map), 433 "Illegal context switch in RCU read-side " 434 "critical section"); 435} 436#else /* #ifdef CONFIG_PROVE_RCU */ 437static inline void rcu_preempt_sleep_check(void) 438{ 439} 440#endif /* #else #ifdef CONFIG_PROVE_RCU */ 441 442#define rcu_sleep_check() \ 443 do { \ 444 rcu_preempt_sleep_check(); \ 445 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map), \ 446 "Illegal context switch in RCU-bh" \ 447 " read-side critical section"); \ 448 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map), \ 449 "Illegal context switch in RCU-sched"\ 450 " read-side critical section"); \ 451 } while (0) 452 453#else /* #ifdef CONFIG_PROVE_RCU */ 454 455#define rcu_lockdep_assert(c, s) do { } while (0) 456#define rcu_sleep_check() do { } while (0) 457 458#endif /* #else #ifdef CONFIG_PROVE_RCU */ 459 460/* 461 * Helper functions for rcu_dereference_check(), rcu_dereference_protected() 462 * and rcu_assign_pointer(). Some of these could be folded into their 463 * callers, but they are left separate in order to ease introduction of 464 * multiple flavors of pointers to match the multiple flavors of RCU 465 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in 466 * the future. 467 */ 468 469#ifdef __CHECKER__ 470#define rcu_dereference_sparse(p, space) \ 471 ((void)(((typeof(*p) space *)p) == p)) 472#else /* #ifdef __CHECKER__ */ 473#define rcu_dereference_sparse(p, space) 474#endif /* #else #ifdef __CHECKER__ */ 475 476#define __rcu_access_pointer(p, space) \ 477 ({ \ 478 typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \ 479 rcu_dereference_sparse(p, space); \ 480 ((typeof(*p) __force __kernel *)(_________p1)); \ 481 }) 482#define __rcu_dereference_check(p, c, space) \ 483 ({ \ 484 typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \ 485 rcu_lockdep_assert(c, "suspicious rcu_dereference_check()" \ 486 " usage"); \ 487 rcu_dereference_sparse(p, space); \ 488 smp_read_barrier_depends(); \ 489 ((typeof(*p) __force __kernel *)(_________p1)); \ 490 }) 491#define __rcu_dereference_protected(p, c, space) \ 492 ({ \ 493 rcu_lockdep_assert(c, "suspicious rcu_dereference_protected()" \ 494 " usage"); \ 495 rcu_dereference_sparse(p, space); \ 496 ((typeof(*p) __force __kernel *)(p)); \ 497 }) 498 499#define __rcu_access_index(p, space) \ 500 ({ \ 501 typeof(p) _________p1 = ACCESS_ONCE(p); \ 502 rcu_dereference_sparse(p, space); \ 503 (_________p1); \ 504 }) 505#define __rcu_dereference_index_check(p, c) \ 506 ({ \ 507 typeof(p) _________p1 = ACCESS_ONCE(p); \ 508 rcu_lockdep_assert(c, \ 509 "suspicious rcu_dereference_index_check()" \ 510 " usage"); \ 511 smp_read_barrier_depends(); \ 512 (_________p1); \ 513 }) 514#define __rcu_assign_pointer(p, v, space) \ 515 ({ \ 516 smp_wmb(); \ 517 (p) = (typeof(*v) __force space *)(v); \ 518 }) 519 520 521/** 522 * rcu_access_pointer() - fetch RCU pointer with no dereferencing 523 * @p: The pointer to read 524 * 525 * Return the value of the specified RCU-protected pointer, but omit the 526 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful 527 * when the value of this pointer is accessed, but the pointer is not 528 * dereferenced, for example, when testing an RCU-protected pointer against 529 * NULL. Although rcu_access_pointer() may also be used in cases where 530 * update-side locks prevent the value of the pointer from changing, you 531 * should instead use rcu_dereference_protected() for this use case. 532 * 533 * It is also permissible to use rcu_access_pointer() when read-side 534 * access to the pointer was removed at least one grace period ago, as 535 * is the case in the context of the RCU callback that is freeing up 536 * the data, or after a synchronize_rcu() returns. This can be useful 537 * when tearing down multi-linked structures after a grace period 538 * has elapsed. 539 */ 540#define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu) 541 542/** 543 * rcu_dereference_check() - rcu_dereference with debug checking 544 * @p: The pointer to read, prior to dereferencing 545 * @c: The conditions under which the dereference will take place 546 * 547 * Do an rcu_dereference(), but check that the conditions under which the 548 * dereference will take place are correct. Typically the conditions 549 * indicate the various locking conditions that should be held at that 550 * point. The check should return true if the conditions are satisfied. 551 * An implicit check for being in an RCU read-side critical section 552 * (rcu_read_lock()) is included. 553 * 554 * For example: 555 * 556 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock)); 557 * 558 * could be used to indicate to lockdep that foo->bar may only be dereferenced 559 * if either rcu_read_lock() is held, or that the lock required to replace 560 * the bar struct at foo->bar is held. 561 * 562 * Note that the list of conditions may also include indications of when a lock 563 * need not be held, for example during initialisation or destruction of the 564 * target struct: 565 * 566 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) || 567 * atomic_read(&foo->usage) == 0); 568 * 569 * Inserts memory barriers on architectures that require them 570 * (currently only the Alpha), prevents the compiler from refetching 571 * (and from merging fetches), and, more importantly, documents exactly 572 * which pointers are protected by RCU and checks that the pointer is 573 * annotated as __rcu. 574 */ 575#define rcu_dereference_check(p, c) \ 576 __rcu_dereference_check((p), rcu_read_lock_held() || (c), __rcu) 577 578/** 579 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking 580 * @p: The pointer to read, prior to dereferencing 581 * @c: The conditions under which the dereference will take place 582 * 583 * This is the RCU-bh counterpart to rcu_dereference_check(). 584 */ 585#define rcu_dereference_bh_check(p, c) \ 586 __rcu_dereference_check((p), rcu_read_lock_bh_held() || (c), __rcu) 587 588/** 589 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking 590 * @p: The pointer to read, prior to dereferencing 591 * @c: The conditions under which the dereference will take place 592 * 593 * This is the RCU-sched counterpart to rcu_dereference_check(). 594 */ 595#define rcu_dereference_sched_check(p, c) \ 596 __rcu_dereference_check((p), rcu_read_lock_sched_held() || (c), \ 597 __rcu) 598 599#define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/ 600 601/** 602 * rcu_access_index() - fetch RCU index with no dereferencing 603 * @p: The index to read 604 * 605 * Return the value of the specified RCU-protected index, but omit the 606 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful 607 * when the value of this index is accessed, but the index is not 608 * dereferenced, for example, when testing an RCU-protected index against 609 * -1. Although rcu_access_index() may also be used in cases where 610 * update-side locks prevent the value of the index from changing, you 611 * should instead use rcu_dereference_index_protected() for this use case. 612 */ 613#define rcu_access_index(p) __rcu_access_index((p), __rcu) 614 615/** 616 * rcu_dereference_index_check() - rcu_dereference for indices with debug checking 617 * @p: The pointer to read, prior to dereferencing 618 * @c: The conditions under which the dereference will take place 619 * 620 * Similar to rcu_dereference_check(), but omits the sparse checking. 621 * This allows rcu_dereference_index_check() to be used on integers, 622 * which can then be used as array indices. Attempting to use 623 * rcu_dereference_check() on an integer will give compiler warnings 624 * because the sparse address-space mechanism relies on dereferencing 625 * the RCU-protected pointer. Dereferencing integers is not something 626 * that even gcc will put up with. 627 * 628 * Note that this function does not implicitly check for RCU read-side 629 * critical sections. If this function gains lots of uses, it might 630 * make sense to provide versions for each flavor of RCU, but it does 631 * not make sense as of early 2010. 632 */ 633#define rcu_dereference_index_check(p, c) \ 634 __rcu_dereference_index_check((p), (c)) 635 636/** 637 * rcu_dereference_protected() - fetch RCU pointer when updates prevented 638 * @p: The pointer to read, prior to dereferencing 639 * @c: The conditions under which the dereference will take place 640 * 641 * Return the value of the specified RCU-protected pointer, but omit 642 * both the smp_read_barrier_depends() and the ACCESS_ONCE(). This 643 * is useful in cases where update-side locks prevent the value of the 644 * pointer from changing. Please note that this primitive does -not- 645 * prevent the compiler from repeating this reference or combining it 646 * with other references, so it should not be used without protection 647 * of appropriate locks. 648 * 649 * This function is only for update-side use. Using this function 650 * when protected only by rcu_read_lock() will result in infrequent 651 * but very ugly failures. 652 */ 653#define rcu_dereference_protected(p, c) \ 654 __rcu_dereference_protected((p), (c), __rcu) 655 656 657/** 658 * rcu_dereference() - fetch RCU-protected pointer for dereferencing 659 * @p: The pointer to read, prior to dereferencing 660 * 661 * This is a simple wrapper around rcu_dereference_check(). 662 */ 663#define rcu_dereference(p) rcu_dereference_check(p, 0) 664 665/** 666 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing 667 * @p: The pointer to read, prior to dereferencing 668 * 669 * Makes rcu_dereference_check() do the dirty work. 670 */ 671#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0) 672 673/** 674 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing 675 * @p: The pointer to read, prior to dereferencing 676 * 677 * Makes rcu_dereference_check() do the dirty work. 678 */ 679#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0) 680 681/** 682 * rcu_read_lock() - mark the beginning of an RCU read-side critical section 683 * 684 * When synchronize_rcu() is invoked on one CPU while other CPUs 685 * are within RCU read-side critical sections, then the 686 * synchronize_rcu() is guaranteed to block until after all the other 687 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked 688 * on one CPU while other CPUs are within RCU read-side critical 689 * sections, invocation of the corresponding RCU callback is deferred 690 * until after the all the other CPUs exit their critical sections. 691 * 692 * Note, however, that RCU callbacks are permitted to run concurrently 693 * with new RCU read-side critical sections. One way that this can happen 694 * is via the following sequence of events: (1) CPU 0 enters an RCU 695 * read-side critical section, (2) CPU 1 invokes call_rcu() to register 696 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section, 697 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU 698 * callback is invoked. This is legal, because the RCU read-side critical 699 * section that was running concurrently with the call_rcu() (and which 700 * therefore might be referencing something that the corresponding RCU 701 * callback would free up) has completed before the corresponding 702 * RCU callback is invoked. 703 * 704 * RCU read-side critical sections may be nested. Any deferred actions 705 * will be deferred until the outermost RCU read-side critical section 706 * completes. 707 * 708 * You can avoid reading and understanding the next paragraph by 709 * following this rule: don't put anything in an rcu_read_lock() RCU 710 * read-side critical section that would block in a !PREEMPT kernel. 711 * But if you want the full story, read on! 712 * 713 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU), it 714 * is illegal to block while in an RCU read-side critical section. In 715 * preemptible RCU implementations (TREE_PREEMPT_RCU and TINY_PREEMPT_RCU) 716 * in CONFIG_PREEMPT kernel builds, RCU read-side critical sections may 717 * be preempted, but explicit blocking is illegal. Finally, in preemptible 718 * RCU implementations in real-time (CONFIG_PREEMPT_RT) kernel builds, 719 * RCU read-side critical sections may be preempted and they may also 720 * block, but only when acquiring spinlocks that are subject to priority 721 * inheritance. 722 */ 723static inline void rcu_read_lock(void) 724{ 725 __rcu_read_lock(); 726 __acquire(RCU); 727 rcu_lock_acquire(&rcu_lock_map); 728 rcu_lockdep_assert(!rcu_is_cpu_idle(), 729 "rcu_read_lock() used illegally while idle"); 730} 731 732/* 733 * So where is rcu_write_lock()? It does not exist, as there is no 734 * way for writers to lock out RCU readers. This is a feature, not 735 * a bug -- this property is what provides RCU's performance benefits. 736 * Of course, writers must coordinate with each other. The normal 737 * spinlock primitives work well for this, but any other technique may be 738 * used as well. RCU does not care how the writers keep out of each 739 * others' way, as long as they do so. 740 */ 741 742/** 743 * rcu_read_unlock() - marks the end of an RCU read-side critical section. 744 * 745 * See rcu_read_lock() for more information. 746 */ 747static inline void rcu_read_unlock(void) 748{ 749 rcu_lockdep_assert(!rcu_is_cpu_idle(), 750 "rcu_read_unlock() used illegally while idle"); 751 rcu_lock_release(&rcu_lock_map); 752 __release(RCU); 753 __rcu_read_unlock(); 754} 755 756/** 757 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section 758 * 759 * This is equivalent of rcu_read_lock(), but to be used when updates 760 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since 761 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a 762 * softirq handler to be a quiescent state, a process in RCU read-side 763 * critical section must be protected by disabling softirqs. Read-side 764 * critical sections in interrupt context can use just rcu_read_lock(), 765 * though this should at least be commented to avoid confusing people 766 * reading the code. 767 * 768 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh() 769 * must occur in the same context, for example, it is illegal to invoke 770 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh() 771 * was invoked from some other task. 772 */ 773static inline void rcu_read_lock_bh(void) 774{ 775 local_bh_disable(); 776 __acquire(RCU_BH); 777 rcu_lock_acquire(&rcu_bh_lock_map); 778 rcu_lockdep_assert(!rcu_is_cpu_idle(), 779 "rcu_read_lock_bh() used illegally while idle"); 780} 781 782/* 783 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section 784 * 785 * See rcu_read_lock_bh() for more information. 786 */ 787static inline void rcu_read_unlock_bh(void) 788{ 789 rcu_lockdep_assert(!rcu_is_cpu_idle(), 790 "rcu_read_unlock_bh() used illegally while idle"); 791 rcu_lock_release(&rcu_bh_lock_map); 792 __release(RCU_BH); 793 local_bh_enable(); 794} 795 796/** 797 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section 798 * 799 * This is equivalent of rcu_read_lock(), but to be used when updates 800 * are being done using call_rcu_sched() or synchronize_rcu_sched(). 801 * Read-side critical sections can also be introduced by anything that 802 * disables preemption, including local_irq_disable() and friends. 803 * 804 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched() 805 * must occur in the same context, for example, it is illegal to invoke 806 * rcu_read_unlock_sched() from process context if the matching 807 * rcu_read_lock_sched() was invoked from an NMI handler. 808 */ 809static inline void rcu_read_lock_sched(void) 810{ 811 preempt_disable(); 812 __acquire(RCU_SCHED); 813 rcu_lock_acquire(&rcu_sched_lock_map); 814 rcu_lockdep_assert(!rcu_is_cpu_idle(), 815 "rcu_read_lock_sched() used illegally while idle"); 816} 817 818/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 819static inline notrace void rcu_read_lock_sched_notrace(void) 820{ 821 preempt_disable_notrace(); 822 __acquire(RCU_SCHED); 823} 824 825/* 826 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section 827 * 828 * See rcu_read_lock_sched for more information. 829 */ 830static inline void rcu_read_unlock_sched(void) 831{ 832 rcu_lockdep_assert(!rcu_is_cpu_idle(), 833 "rcu_read_unlock_sched() used illegally while idle"); 834 rcu_lock_release(&rcu_sched_lock_map); 835 __release(RCU_SCHED); 836 preempt_enable(); 837} 838 839/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 840static inline notrace void rcu_read_unlock_sched_notrace(void) 841{ 842 __release(RCU_SCHED); 843 preempt_enable_notrace(); 844} 845 846/** 847 * rcu_assign_pointer() - assign to RCU-protected pointer 848 * @p: pointer to assign to 849 * @v: value to assign (publish) 850 * 851 * Assigns the specified value to the specified RCU-protected 852 * pointer, ensuring that any concurrent RCU readers will see 853 * any prior initialization. Returns the value assigned. 854 * 855 * Inserts memory barriers on architectures that require them 856 * (which is most of them), and also prevents the compiler from 857 * reordering the code that initializes the structure after the pointer 858 * assignment. More importantly, this call documents which pointers 859 * will be dereferenced by RCU read-side code. 860 * 861 * In some special cases, you may use RCU_INIT_POINTER() instead 862 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due 863 * to the fact that it does not constrain either the CPU or the compiler. 864 * That said, using RCU_INIT_POINTER() when you should have used 865 * rcu_assign_pointer() is a very bad thing that results in 866 * impossible-to-diagnose memory corruption. So please be careful. 867 * See the RCU_INIT_POINTER() comment header for details. 868 */ 869#define rcu_assign_pointer(p, v) \ 870 __rcu_assign_pointer((p), (v), __rcu) 871 872/** 873 * RCU_INIT_POINTER() - initialize an RCU protected pointer 874 * 875 * Initialize an RCU-protected pointer in special cases where readers 876 * do not need ordering constraints on the CPU or the compiler. These 877 * special cases are: 878 * 879 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer -or- 880 * 2. The caller has taken whatever steps are required to prevent 881 * RCU readers from concurrently accessing this pointer -or- 882 * 3. The referenced data structure has already been exposed to 883 * readers either at compile time or via rcu_assign_pointer() -and- 884 * a. You have not made -any- reader-visible changes to 885 * this structure since then -or- 886 * b. It is OK for readers accessing this structure from its 887 * new location to see the old state of the structure. (For 888 * example, the changes were to statistical counters or to 889 * other state where exact synchronization is not required.) 890 * 891 * Failure to follow these rules governing use of RCU_INIT_POINTER() will 892 * result in impossible-to-diagnose memory corruption. As in the structures 893 * will look OK in crash dumps, but any concurrent RCU readers might 894 * see pre-initialized values of the referenced data structure. So 895 * please be very careful how you use RCU_INIT_POINTER()!!! 896 * 897 * If you are creating an RCU-protected linked structure that is accessed 898 * by a single external-to-structure RCU-protected pointer, then you may 899 * use RCU_INIT_POINTER() to initialize the internal RCU-protected 900 * pointers, but you must use rcu_assign_pointer() to initialize the 901 * external-to-structure pointer -after- you have completely initialized 902 * the reader-accessible portions of the linked structure. 903 */ 904#define RCU_INIT_POINTER(p, v) \ 905 p = (typeof(*v) __force __rcu *)(v) 906 907static __always_inline bool __is_kfree_rcu_offset(unsigned long offset) 908{ 909 return offset < 4096; 910} 911 912static __always_inline 913void __kfree_rcu(struct rcu_head *head, unsigned long offset) 914{ 915 typedef void (*rcu_callback)(struct rcu_head *); 916 917 BUILD_BUG_ON(!__builtin_constant_p(offset)); 918 919 /* See the kfree_rcu() header comment. */ 920 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); 921 922 kfree_call_rcu(head, (rcu_callback)offset); 923} 924 925/** 926 * kfree_rcu() - kfree an object after a grace period. 927 * @ptr: pointer to kfree 928 * @rcu_head: the name of the struct rcu_head within the type of @ptr. 929 * 930 * Many rcu callbacks functions just call kfree() on the base structure. 931 * These functions are trivial, but their size adds up, and furthermore 932 * when they are used in a kernel module, that module must invoke the 933 * high-latency rcu_barrier() function at module-unload time. 934 * 935 * The kfree_rcu() function handles this issue. Rather than encoding a 936 * function address in the embedded rcu_head structure, kfree_rcu() instead 937 * encodes the offset of the rcu_head structure within the base structure. 938 * Because the functions are not allowed in the low-order 4096 bytes of 939 * kernel virtual memory, offsets up to 4095 bytes can be accommodated. 940 * If the offset is larger than 4095 bytes, a compile-time error will 941 * be generated in __kfree_rcu(). If this error is triggered, you can 942 * either fall back to use of call_rcu() or rearrange the structure to 943 * position the rcu_head structure into the first 4096 bytes. 944 * 945 * Note that the allowable offset might decrease in the future, for example, 946 * to allow something like kmem_cache_free_rcu(). 947 */ 948#define kfree_rcu(ptr, rcu_head) \ 949 __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head)) 950 951#endif /* __LINUX_RCUPDATE_H */ 952