linux/include/net/sock.h
<<
>>
Prefs
   1/*
   2 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   3 *              operating system.  INET is implemented using the  BSD Socket
   4 *              interface as the means of communication with the user level.
   5 *
   6 *              Definitions for the AF_INET socket handler.
   7 *
   8 * Version:     @(#)sock.h      1.0.4   05/13/93
   9 *
  10 * Authors:     Ross Biro
  11 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *              Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *              Florian La Roche <flla@stud.uni-sb.de>
  14 *
  15 * Fixes:
  16 *              Alan Cox        :       Volatiles in skbuff pointers. See
  17 *                                      skbuff comments. May be overdone,
  18 *                                      better to prove they can be removed
  19 *                                      than the reverse.
  20 *              Alan Cox        :       Added a zapped field for tcp to note
  21 *                                      a socket is reset and must stay shut up
  22 *              Alan Cox        :       New fields for options
  23 *      Pauline Middelink       :       identd support
  24 *              Alan Cox        :       Eliminate low level recv/recvfrom
  25 *              David S. Miller :       New socket lookup architecture.
  26 *              Steve Whitehouse:       Default routines for sock_ops
  27 *              Arnaldo C. Melo :       removed net_pinfo, tp_pinfo and made
  28 *                                      protinfo be just a void pointer, as the
  29 *                                      protocol specific parts were moved to
  30 *                                      respective headers and ipv4/v6, etc now
  31 *                                      use private slabcaches for its socks
  32 *              Pedro Hortas    :       New flags field for socket options
  33 *
  34 *
  35 *              This program is free software; you can redistribute it and/or
  36 *              modify it under the terms of the GNU General Public License
  37 *              as published by the Free Software Foundation; either version
  38 *              2 of the License, or (at your option) any later version.
  39 */
  40#ifndef _SOCK_H
  41#define _SOCK_H
  42
  43#include <linux/hardirq.h>
  44#include <linux/kernel.h>
  45#include <linux/list.h>
  46#include <linux/list_nulls.h>
  47#include <linux/timer.h>
  48#include <linux/cache.h>
  49#include <linux/lockdep.h>
  50#include <linux/netdevice.h>
  51#include <linux/skbuff.h>       /* struct sk_buff */
  52#include <linux/mm.h>
  53#include <linux/security.h>
  54#include <linux/slab.h>
  55#include <linux/uaccess.h>
  56#include <linux/memcontrol.h>
  57#include <linux/res_counter.h>
  58#include <linux/static_key.h>
  59#include <linux/aio.h>
  60#include <linux/sched.h>
  61
  62#include <linux/filter.h>
  63#include <linux/rculist_nulls.h>
  64#include <linux/poll.h>
  65
  66#include <linux/atomic.h>
  67#include <net/dst.h>
  68#include <net/checksum.h>
  69
  70struct cgroup;
  71struct cgroup_subsys;
  72#ifdef CONFIG_NET
  73int mem_cgroup_sockets_init(struct cgroup *cgrp, struct cgroup_subsys *ss);
  74void mem_cgroup_sockets_destroy(struct cgroup *cgrp);
  75#else
  76static inline
  77int mem_cgroup_sockets_init(struct cgroup *cgrp, struct cgroup_subsys *ss)
  78{
  79        return 0;
  80}
  81static inline
  82void mem_cgroup_sockets_destroy(struct cgroup *cgrp)
  83{
  84}
  85#endif
  86/*
  87 * This structure really needs to be cleaned up.
  88 * Most of it is for TCP, and not used by any of
  89 * the other protocols.
  90 */
  91
  92/* Define this to get the SOCK_DBG debugging facility. */
  93#define SOCK_DEBUGGING
  94#ifdef SOCK_DEBUGGING
  95#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
  96                                        printk(KERN_DEBUG msg); } while (0)
  97#else
  98/* Validate arguments and do nothing */
  99static inline __printf(2, 3)
 100void SOCK_DEBUG(struct sock *sk, const char *msg, ...)
 101{
 102}
 103#endif
 104
 105/* This is the per-socket lock.  The spinlock provides a synchronization
 106 * between user contexts and software interrupt processing, whereas the
 107 * mini-semaphore synchronizes multiple users amongst themselves.
 108 */
 109typedef struct {
 110        spinlock_t              slock;
 111        int                     owned;
 112        wait_queue_head_t       wq;
 113        /*
 114         * We express the mutex-alike socket_lock semantics
 115         * to the lock validator by explicitly managing
 116         * the slock as a lock variant (in addition to
 117         * the slock itself):
 118         */
 119#ifdef CONFIG_DEBUG_LOCK_ALLOC
 120        struct lockdep_map dep_map;
 121#endif
 122} socket_lock_t;
 123
 124struct sock;
 125struct proto;
 126struct net;
 127
 128/**
 129 *      struct sock_common - minimal network layer representation of sockets
 130 *      @skc_daddr: Foreign IPv4 addr
 131 *      @skc_rcv_saddr: Bound local IPv4 addr
 132 *      @skc_hash: hash value used with various protocol lookup tables
 133 *      @skc_u16hashes: two u16 hash values used by UDP lookup tables
 134 *      @skc_family: network address family
 135 *      @skc_state: Connection state
 136 *      @skc_reuse: %SO_REUSEADDR setting
 137 *      @skc_bound_dev_if: bound device index if != 0
 138 *      @skc_bind_node: bind hash linkage for various protocol lookup tables
 139 *      @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
 140 *      @skc_prot: protocol handlers inside a network family
 141 *      @skc_net: reference to the network namespace of this socket
 142 *      @skc_node: main hash linkage for various protocol lookup tables
 143 *      @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
 144 *      @skc_tx_queue_mapping: tx queue number for this connection
 145 *      @skc_refcnt: reference count
 146 *
 147 *      This is the minimal network layer representation of sockets, the header
 148 *      for struct sock and struct inet_timewait_sock.
 149 */
 150struct sock_common {
 151        /* skc_daddr and skc_rcv_saddr must be grouped :
 152         * cf INET_MATCH() and INET_TW_MATCH()
 153         */
 154        __be32                  skc_daddr;
 155        __be32                  skc_rcv_saddr;
 156
 157        union  {
 158                unsigned int    skc_hash;
 159                __u16           skc_u16hashes[2];
 160        };
 161        unsigned short          skc_family;
 162        volatile unsigned char  skc_state;
 163        unsigned char           skc_reuse;
 164        int                     skc_bound_dev_if;
 165        union {
 166                struct hlist_node       skc_bind_node;
 167                struct hlist_nulls_node skc_portaddr_node;
 168        };
 169        struct proto            *skc_prot;
 170#ifdef CONFIG_NET_NS
 171        struct net              *skc_net;
 172#endif
 173        /*
 174         * fields between dontcopy_begin/dontcopy_end
 175         * are not copied in sock_copy()
 176         */
 177        /* private: */
 178        int                     skc_dontcopy_begin[0];
 179        /* public: */
 180        union {
 181                struct hlist_node       skc_node;
 182                struct hlist_nulls_node skc_nulls_node;
 183        };
 184        int                     skc_tx_queue_mapping;
 185        atomic_t                skc_refcnt;
 186        /* private: */
 187        int                     skc_dontcopy_end[0];
 188        /* public: */
 189};
 190
 191struct cg_proto;
 192/**
 193  *     struct sock - network layer representation of sockets
 194  *     @__sk_common: shared layout with inet_timewait_sock
 195  *     @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
 196  *     @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
 197  *     @sk_lock:       synchronizer
 198  *     @sk_rcvbuf: size of receive buffer in bytes
 199  *     @sk_wq: sock wait queue and async head
 200  *     @sk_dst_cache: destination cache
 201  *     @sk_dst_lock: destination cache lock
 202  *     @sk_policy: flow policy
 203  *     @sk_receive_queue: incoming packets
 204  *     @sk_wmem_alloc: transmit queue bytes committed
 205  *     @sk_write_queue: Packet sending queue
 206  *     @sk_async_wait_queue: DMA copied packets
 207  *     @sk_omem_alloc: "o" is "option" or "other"
 208  *     @sk_wmem_queued: persistent queue size
 209  *     @sk_forward_alloc: space allocated forward
 210  *     @sk_allocation: allocation mode
 211  *     @sk_sndbuf: size of send buffer in bytes
 212  *     @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
 213  *                %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
 214  *     @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
 215  *     @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
 216  *     @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
 217  *     @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
 218  *     @sk_gso_max_size: Maximum GSO segment size to build
 219  *     @sk_lingertime: %SO_LINGER l_linger setting
 220  *     @sk_backlog: always used with the per-socket spinlock held
 221  *     @sk_callback_lock: used with the callbacks in the end of this struct
 222  *     @sk_error_queue: rarely used
 223  *     @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
 224  *                       IPV6_ADDRFORM for instance)
 225  *     @sk_err: last error
 226  *     @sk_err_soft: errors that don't cause failure but are the cause of a
 227  *                   persistent failure not just 'timed out'
 228  *     @sk_drops: raw/udp drops counter
 229  *     @sk_ack_backlog: current listen backlog
 230  *     @sk_max_ack_backlog: listen backlog set in listen()
 231  *     @sk_priority: %SO_PRIORITY setting
 232  *     @sk_cgrp_prioidx: socket group's priority map index
 233  *     @sk_type: socket type (%SOCK_STREAM, etc)
 234  *     @sk_protocol: which protocol this socket belongs in this network family
 235  *     @sk_peer_pid: &struct pid for this socket's peer
 236  *     @sk_peer_cred: %SO_PEERCRED setting
 237  *     @sk_rcvlowat: %SO_RCVLOWAT setting
 238  *     @sk_rcvtimeo: %SO_RCVTIMEO setting
 239  *     @sk_sndtimeo: %SO_SNDTIMEO setting
 240  *     @sk_rxhash: flow hash received from netif layer
 241  *     @sk_filter: socket filtering instructions
 242  *     @sk_protinfo: private area, net family specific, when not using slab
 243  *     @sk_timer: sock cleanup timer
 244  *     @sk_stamp: time stamp of last packet received
 245  *     @sk_socket: Identd and reporting IO signals
 246  *     @sk_user_data: RPC layer private data
 247  *     @sk_sndmsg_page: cached page for sendmsg
 248  *     @sk_sndmsg_off: cached offset for sendmsg
 249  *     @sk_peek_off: current peek_offset value
 250  *     @sk_send_head: front of stuff to transmit
 251  *     @sk_security: used by security modules
 252  *     @sk_mark: generic packet mark
 253  *     @sk_classid: this socket's cgroup classid
 254  *     @sk_cgrp: this socket's cgroup-specific proto data
 255  *     @sk_write_pending: a write to stream socket waits to start
 256  *     @sk_state_change: callback to indicate change in the state of the sock
 257  *     @sk_data_ready: callback to indicate there is data to be processed
 258  *     @sk_write_space: callback to indicate there is bf sending space available
 259  *     @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
 260  *     @sk_backlog_rcv: callback to process the backlog
 261  *     @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
 262 */
 263struct sock {
 264        /*
 265         * Now struct inet_timewait_sock also uses sock_common, so please just
 266         * don't add nothing before this first member (__sk_common) --acme
 267         */
 268        struct sock_common      __sk_common;
 269#define sk_node                 __sk_common.skc_node
 270#define sk_nulls_node           __sk_common.skc_nulls_node
 271#define sk_refcnt               __sk_common.skc_refcnt
 272#define sk_tx_queue_mapping     __sk_common.skc_tx_queue_mapping
 273
 274#define sk_dontcopy_begin       __sk_common.skc_dontcopy_begin
 275#define sk_dontcopy_end         __sk_common.skc_dontcopy_end
 276#define sk_hash                 __sk_common.skc_hash
 277#define sk_family               __sk_common.skc_family
 278#define sk_state                __sk_common.skc_state
 279#define sk_reuse                __sk_common.skc_reuse
 280#define sk_bound_dev_if         __sk_common.skc_bound_dev_if
 281#define sk_bind_node            __sk_common.skc_bind_node
 282#define sk_prot                 __sk_common.skc_prot
 283#define sk_net                  __sk_common.skc_net
 284        socket_lock_t           sk_lock;
 285        struct sk_buff_head     sk_receive_queue;
 286        /*
 287         * The backlog queue is special, it is always used with
 288         * the per-socket spinlock held and requires low latency
 289         * access. Therefore we special case it's implementation.
 290         * Note : rmem_alloc is in this structure to fill a hole
 291         * on 64bit arches, not because its logically part of
 292         * backlog.
 293         */
 294        struct {
 295                atomic_t        rmem_alloc;
 296                int             len;
 297                struct sk_buff  *head;
 298                struct sk_buff  *tail;
 299        } sk_backlog;
 300#define sk_rmem_alloc sk_backlog.rmem_alloc
 301        int                     sk_forward_alloc;
 302#ifdef CONFIG_RPS
 303        __u32                   sk_rxhash;
 304#endif
 305        atomic_t                sk_drops;
 306        int                     sk_rcvbuf;
 307
 308        struct sk_filter __rcu  *sk_filter;
 309        struct socket_wq __rcu  *sk_wq;
 310
 311#ifdef CONFIG_NET_DMA
 312        struct sk_buff_head     sk_async_wait_queue;
 313#endif
 314
 315#ifdef CONFIG_XFRM
 316        struct xfrm_policy      *sk_policy[2];
 317#endif
 318        unsigned long           sk_flags;
 319        struct dst_entry        *sk_dst_cache;
 320        spinlock_t              sk_dst_lock;
 321        atomic_t                sk_wmem_alloc;
 322        atomic_t                sk_omem_alloc;
 323        int                     sk_sndbuf;
 324        struct sk_buff_head     sk_write_queue;
 325        kmemcheck_bitfield_begin(flags);
 326        unsigned int            sk_shutdown  : 2,
 327                                sk_no_check  : 2,
 328                                sk_userlocks : 4,
 329                                sk_protocol  : 8,
 330                                sk_type      : 16;
 331        kmemcheck_bitfield_end(flags);
 332        int                     sk_wmem_queued;
 333        gfp_t                   sk_allocation;
 334        netdev_features_t       sk_route_caps;
 335        netdev_features_t       sk_route_nocaps;
 336        int                     sk_gso_type;
 337        unsigned int            sk_gso_max_size;
 338        int                     sk_rcvlowat;
 339        unsigned long           sk_lingertime;
 340        struct sk_buff_head     sk_error_queue;
 341        struct proto            *sk_prot_creator;
 342        rwlock_t                sk_callback_lock;
 343        int                     sk_err,
 344                                sk_err_soft;
 345        unsigned short          sk_ack_backlog;
 346        unsigned short          sk_max_ack_backlog;
 347        __u32                   sk_priority;
 348#ifdef CONFIG_CGROUPS
 349        __u32                   sk_cgrp_prioidx;
 350#endif
 351        struct pid              *sk_peer_pid;
 352        const struct cred       *sk_peer_cred;
 353        long                    sk_rcvtimeo;
 354        long                    sk_sndtimeo;
 355        void                    *sk_protinfo;
 356        struct timer_list       sk_timer;
 357        ktime_t                 sk_stamp;
 358        struct socket           *sk_socket;
 359        void                    *sk_user_data;
 360        struct page             *sk_sndmsg_page;
 361        struct sk_buff          *sk_send_head;
 362        __u32                   sk_sndmsg_off;
 363        __s32                   sk_peek_off;
 364        int                     sk_write_pending;
 365#ifdef CONFIG_SECURITY
 366        void                    *sk_security;
 367#endif
 368        __u32                   sk_mark;
 369        u32                     sk_classid;
 370        struct cg_proto         *sk_cgrp;
 371        void                    (*sk_state_change)(struct sock *sk);
 372        void                    (*sk_data_ready)(struct sock *sk, int bytes);
 373        void                    (*sk_write_space)(struct sock *sk);
 374        void                    (*sk_error_report)(struct sock *sk);
 375        int                     (*sk_backlog_rcv)(struct sock *sk,
 376                                                  struct sk_buff *skb);  
 377        void                    (*sk_destruct)(struct sock *sk);
 378};
 379
 380static inline int sk_peek_offset(struct sock *sk, int flags)
 381{
 382        if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
 383                return sk->sk_peek_off;
 384        else
 385                return 0;
 386}
 387
 388static inline void sk_peek_offset_bwd(struct sock *sk, int val)
 389{
 390        if (sk->sk_peek_off >= 0) {
 391                if (sk->sk_peek_off >= val)
 392                        sk->sk_peek_off -= val;
 393                else
 394                        sk->sk_peek_off = 0;
 395        }
 396}
 397
 398static inline void sk_peek_offset_fwd(struct sock *sk, int val)
 399{
 400        if (sk->sk_peek_off >= 0)
 401                sk->sk_peek_off += val;
 402}
 403
 404/*
 405 * Hashed lists helper routines
 406 */
 407static inline struct sock *sk_entry(const struct hlist_node *node)
 408{
 409        return hlist_entry(node, struct sock, sk_node);
 410}
 411
 412static inline struct sock *__sk_head(const struct hlist_head *head)
 413{
 414        return hlist_entry(head->first, struct sock, sk_node);
 415}
 416
 417static inline struct sock *sk_head(const struct hlist_head *head)
 418{
 419        return hlist_empty(head) ? NULL : __sk_head(head);
 420}
 421
 422static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
 423{
 424        return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
 425}
 426
 427static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
 428{
 429        return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
 430}
 431
 432static inline struct sock *sk_next(const struct sock *sk)
 433{
 434        return sk->sk_node.next ?
 435                hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
 436}
 437
 438static inline struct sock *sk_nulls_next(const struct sock *sk)
 439{
 440        return (!is_a_nulls(sk->sk_nulls_node.next)) ?
 441                hlist_nulls_entry(sk->sk_nulls_node.next,
 442                                  struct sock, sk_nulls_node) :
 443                NULL;
 444}
 445
 446static inline int sk_unhashed(const struct sock *sk)
 447{
 448        return hlist_unhashed(&sk->sk_node);
 449}
 450
 451static inline int sk_hashed(const struct sock *sk)
 452{
 453        return !sk_unhashed(sk);
 454}
 455
 456static __inline__ void sk_node_init(struct hlist_node *node)
 457{
 458        node->pprev = NULL;
 459}
 460
 461static __inline__ void sk_nulls_node_init(struct hlist_nulls_node *node)
 462{
 463        node->pprev = NULL;
 464}
 465
 466static __inline__ void __sk_del_node(struct sock *sk)
 467{
 468        __hlist_del(&sk->sk_node);
 469}
 470
 471/* NB: equivalent to hlist_del_init_rcu */
 472static __inline__ int __sk_del_node_init(struct sock *sk)
 473{
 474        if (sk_hashed(sk)) {
 475                __sk_del_node(sk);
 476                sk_node_init(&sk->sk_node);
 477                return 1;
 478        }
 479        return 0;
 480}
 481
 482/* Grab socket reference count. This operation is valid only
 483   when sk is ALREADY grabbed f.e. it is found in hash table
 484   or a list and the lookup is made under lock preventing hash table
 485   modifications.
 486 */
 487
 488static inline void sock_hold(struct sock *sk)
 489{
 490        atomic_inc(&sk->sk_refcnt);
 491}
 492
 493/* Ungrab socket in the context, which assumes that socket refcnt
 494   cannot hit zero, f.e. it is true in context of any socketcall.
 495 */
 496static inline void __sock_put(struct sock *sk)
 497{
 498        atomic_dec(&sk->sk_refcnt);
 499}
 500
 501static __inline__ int sk_del_node_init(struct sock *sk)
 502{
 503        int rc = __sk_del_node_init(sk);
 504
 505        if (rc) {
 506                /* paranoid for a while -acme */
 507                WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
 508                __sock_put(sk);
 509        }
 510        return rc;
 511}
 512#define sk_del_node_init_rcu(sk)        sk_del_node_init(sk)
 513
 514static __inline__ int __sk_nulls_del_node_init_rcu(struct sock *sk)
 515{
 516        if (sk_hashed(sk)) {
 517                hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
 518                return 1;
 519        }
 520        return 0;
 521}
 522
 523static __inline__ int sk_nulls_del_node_init_rcu(struct sock *sk)
 524{
 525        int rc = __sk_nulls_del_node_init_rcu(sk);
 526
 527        if (rc) {
 528                /* paranoid for a while -acme */
 529                WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
 530                __sock_put(sk);
 531        }
 532        return rc;
 533}
 534
 535static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
 536{
 537        hlist_add_head(&sk->sk_node, list);
 538}
 539
 540static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
 541{
 542        sock_hold(sk);
 543        __sk_add_node(sk, list);
 544}
 545
 546static __inline__ void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
 547{
 548        sock_hold(sk);
 549        hlist_add_head_rcu(&sk->sk_node, list);
 550}
 551
 552static __inline__ void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 553{
 554        hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
 555}
 556
 557static __inline__ void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 558{
 559        sock_hold(sk);
 560        __sk_nulls_add_node_rcu(sk, list);
 561}
 562
 563static __inline__ void __sk_del_bind_node(struct sock *sk)
 564{
 565        __hlist_del(&sk->sk_bind_node);
 566}
 567
 568static __inline__ void sk_add_bind_node(struct sock *sk,
 569                                        struct hlist_head *list)
 570{
 571        hlist_add_head(&sk->sk_bind_node, list);
 572}
 573
 574#define sk_for_each(__sk, node, list) \
 575        hlist_for_each_entry(__sk, node, list, sk_node)
 576#define sk_for_each_rcu(__sk, node, list) \
 577        hlist_for_each_entry_rcu(__sk, node, list, sk_node)
 578#define sk_nulls_for_each(__sk, node, list) \
 579        hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
 580#define sk_nulls_for_each_rcu(__sk, node, list) \
 581        hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
 582#define sk_for_each_from(__sk, node) \
 583        if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
 584                hlist_for_each_entry_from(__sk, node, sk_node)
 585#define sk_nulls_for_each_from(__sk, node) \
 586        if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
 587                hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
 588#define sk_for_each_safe(__sk, node, tmp, list) \
 589        hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
 590#define sk_for_each_bound(__sk, node, list) \
 591        hlist_for_each_entry(__sk, node, list, sk_bind_node)
 592
 593/* Sock flags */
 594enum sock_flags {
 595        SOCK_DEAD,
 596        SOCK_DONE,
 597        SOCK_URGINLINE,
 598        SOCK_KEEPOPEN,
 599        SOCK_LINGER,
 600        SOCK_DESTROY,
 601        SOCK_BROADCAST,
 602        SOCK_TIMESTAMP,
 603        SOCK_ZAPPED,
 604        SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
 605        SOCK_DBG, /* %SO_DEBUG setting */
 606        SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
 607        SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
 608        SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
 609        SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
 610        SOCK_TIMESTAMPING_TX_HARDWARE,  /* %SOF_TIMESTAMPING_TX_HARDWARE */
 611        SOCK_TIMESTAMPING_TX_SOFTWARE,  /* %SOF_TIMESTAMPING_TX_SOFTWARE */
 612        SOCK_TIMESTAMPING_RX_HARDWARE,  /* %SOF_TIMESTAMPING_RX_HARDWARE */
 613        SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
 614        SOCK_TIMESTAMPING_SOFTWARE,     /* %SOF_TIMESTAMPING_SOFTWARE */
 615        SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
 616        SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
 617        SOCK_FASYNC, /* fasync() active */
 618        SOCK_RXQ_OVFL,
 619        SOCK_ZEROCOPY, /* buffers from userspace */
 620        SOCK_WIFI_STATUS, /* push wifi status to userspace */
 621        SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
 622                     * Will use last 4 bytes of packet sent from
 623                     * user-space instead.
 624                     */
 625};
 626
 627static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
 628{
 629        nsk->sk_flags = osk->sk_flags;
 630}
 631
 632static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
 633{
 634        __set_bit(flag, &sk->sk_flags);
 635}
 636
 637static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
 638{
 639        __clear_bit(flag, &sk->sk_flags);
 640}
 641
 642static inline int sock_flag(struct sock *sk, enum sock_flags flag)
 643{
 644        return test_bit(flag, &sk->sk_flags);
 645}
 646
 647static inline void sk_acceptq_removed(struct sock *sk)
 648{
 649        sk->sk_ack_backlog--;
 650}
 651
 652static inline void sk_acceptq_added(struct sock *sk)
 653{
 654        sk->sk_ack_backlog++;
 655}
 656
 657static inline int sk_acceptq_is_full(struct sock *sk)
 658{
 659        return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
 660}
 661
 662/*
 663 * Compute minimal free write space needed to queue new packets.
 664 */
 665static inline int sk_stream_min_wspace(struct sock *sk)
 666{
 667        return sk->sk_wmem_queued >> 1;
 668}
 669
 670static inline int sk_stream_wspace(struct sock *sk)
 671{
 672        return sk->sk_sndbuf - sk->sk_wmem_queued;
 673}
 674
 675extern void sk_stream_write_space(struct sock *sk);
 676
 677static inline int sk_stream_memory_free(struct sock *sk)
 678{
 679        return sk->sk_wmem_queued < sk->sk_sndbuf;
 680}
 681
 682/* OOB backlog add */
 683static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
 684{
 685        /* dont let skb dst not refcounted, we are going to leave rcu lock */
 686        skb_dst_force(skb);
 687
 688        if (!sk->sk_backlog.tail)
 689                sk->sk_backlog.head = skb;
 690        else
 691                sk->sk_backlog.tail->next = skb;
 692
 693        sk->sk_backlog.tail = skb;
 694        skb->next = NULL;
 695}
 696
 697/*
 698 * Take into account size of receive queue and backlog queue
 699 * Do not take into account this skb truesize,
 700 * to allow even a single big packet to come.
 701 */
 702static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb)
 703{
 704        unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
 705
 706        return qsize > sk->sk_rcvbuf;
 707}
 708
 709/* The per-socket spinlock must be held here. */
 710static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb)
 711{
 712        if (sk_rcvqueues_full(sk, skb))
 713                return -ENOBUFS;
 714
 715        __sk_add_backlog(sk, skb);
 716        sk->sk_backlog.len += skb->truesize;
 717        return 0;
 718}
 719
 720static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 721{
 722        return sk->sk_backlog_rcv(sk, skb);
 723}
 724
 725static inline void sock_rps_record_flow(const struct sock *sk)
 726{
 727#ifdef CONFIG_RPS
 728        struct rps_sock_flow_table *sock_flow_table;
 729
 730        rcu_read_lock();
 731        sock_flow_table = rcu_dereference(rps_sock_flow_table);
 732        rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
 733        rcu_read_unlock();
 734#endif
 735}
 736
 737static inline void sock_rps_reset_flow(const struct sock *sk)
 738{
 739#ifdef CONFIG_RPS
 740        struct rps_sock_flow_table *sock_flow_table;
 741
 742        rcu_read_lock();
 743        sock_flow_table = rcu_dereference(rps_sock_flow_table);
 744        rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
 745        rcu_read_unlock();
 746#endif
 747}
 748
 749static inline void sock_rps_save_rxhash(struct sock *sk,
 750                                        const struct sk_buff *skb)
 751{
 752#ifdef CONFIG_RPS
 753        if (unlikely(sk->sk_rxhash != skb->rxhash)) {
 754                sock_rps_reset_flow(sk);
 755                sk->sk_rxhash = skb->rxhash;
 756        }
 757#endif
 758}
 759
 760static inline void sock_rps_reset_rxhash(struct sock *sk)
 761{
 762#ifdef CONFIG_RPS
 763        sock_rps_reset_flow(sk);
 764        sk->sk_rxhash = 0;
 765#endif
 766}
 767
 768#define sk_wait_event(__sk, __timeo, __condition)                       \
 769        ({      int __rc;                                               \
 770                release_sock(__sk);                                     \
 771                __rc = __condition;                                     \
 772                if (!__rc) {                                            \
 773                        *(__timeo) = schedule_timeout(*(__timeo));      \
 774                }                                                       \
 775                lock_sock(__sk);                                        \
 776                __rc = __condition;                                     \
 777                __rc;                                                   \
 778        })
 779
 780extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
 781extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
 782extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
 783extern int sk_stream_error(struct sock *sk, int flags, int err);
 784extern void sk_stream_kill_queues(struct sock *sk);
 785
 786extern int sk_wait_data(struct sock *sk, long *timeo);
 787
 788struct request_sock_ops;
 789struct timewait_sock_ops;
 790struct inet_hashinfo;
 791struct raw_hashinfo;
 792struct module;
 793
 794/* Networking protocol blocks we attach to sockets.
 795 * socket layer -> transport layer interface
 796 * transport -> network interface is defined by struct inet_proto
 797 */
 798struct proto {
 799        void                    (*close)(struct sock *sk, 
 800                                        long timeout);
 801        int                     (*connect)(struct sock *sk,
 802                                        struct sockaddr *uaddr, 
 803                                        int addr_len);
 804        int                     (*disconnect)(struct sock *sk, int flags);
 805
 806        struct sock *           (*accept) (struct sock *sk, int flags, int *err);
 807
 808        int                     (*ioctl)(struct sock *sk, int cmd,
 809                                         unsigned long arg);
 810        int                     (*init)(struct sock *sk);
 811        void                    (*destroy)(struct sock *sk);
 812        void                    (*shutdown)(struct sock *sk, int how);
 813        int                     (*setsockopt)(struct sock *sk, int level, 
 814                                        int optname, char __user *optval,
 815                                        unsigned int optlen);
 816        int                     (*getsockopt)(struct sock *sk, int level, 
 817                                        int optname, char __user *optval, 
 818                                        int __user *option);     
 819#ifdef CONFIG_COMPAT
 820        int                     (*compat_setsockopt)(struct sock *sk,
 821                                        int level,
 822                                        int optname, char __user *optval,
 823                                        unsigned int optlen);
 824        int                     (*compat_getsockopt)(struct sock *sk,
 825                                        int level,
 826                                        int optname, char __user *optval,
 827                                        int __user *option);
 828        int                     (*compat_ioctl)(struct sock *sk,
 829                                        unsigned int cmd, unsigned long arg);
 830#endif
 831        int                     (*sendmsg)(struct kiocb *iocb, struct sock *sk,
 832                                           struct msghdr *msg, size_t len);
 833        int                     (*recvmsg)(struct kiocb *iocb, struct sock *sk,
 834                                           struct msghdr *msg,
 835                                        size_t len, int noblock, int flags, 
 836                                        int *addr_len);
 837        int                     (*sendpage)(struct sock *sk, struct page *page,
 838                                        int offset, size_t size, int flags);
 839        int                     (*bind)(struct sock *sk, 
 840                                        struct sockaddr *uaddr, int addr_len);
 841
 842        int                     (*backlog_rcv) (struct sock *sk, 
 843                                                struct sk_buff *skb);
 844
 845        /* Keeping track of sk's, looking them up, and port selection methods. */
 846        void                    (*hash)(struct sock *sk);
 847        void                    (*unhash)(struct sock *sk);
 848        void                    (*rehash)(struct sock *sk);
 849        int                     (*get_port)(struct sock *sk, unsigned short snum);
 850        void                    (*clear_sk)(struct sock *sk, int size);
 851
 852        /* Keeping track of sockets in use */
 853#ifdef CONFIG_PROC_FS
 854        unsigned int            inuse_idx;
 855#endif
 856
 857        /* Memory pressure */
 858        void                    (*enter_memory_pressure)(struct sock *sk);
 859        atomic_long_t           *memory_allocated;      /* Current allocated memory. */
 860        struct percpu_counter   *sockets_allocated;     /* Current number of sockets. */
 861        /*
 862         * Pressure flag: try to collapse.
 863         * Technical note: it is used by multiple contexts non atomically.
 864         * All the __sk_mem_schedule() is of this nature: accounting
 865         * is strict, actions are advisory and have some latency.
 866         */
 867        int                     *memory_pressure;
 868        long                    *sysctl_mem;
 869        int                     *sysctl_wmem;
 870        int                     *sysctl_rmem;
 871        int                     max_header;
 872        bool                    no_autobind;
 873
 874        struct kmem_cache       *slab;
 875        unsigned int            obj_size;
 876        int                     slab_flags;
 877
 878        struct percpu_counter   *orphan_count;
 879
 880        struct request_sock_ops *rsk_prot;
 881        struct timewait_sock_ops *twsk_prot;
 882
 883        union {
 884                struct inet_hashinfo    *hashinfo;
 885                struct udp_table        *udp_table;
 886                struct raw_hashinfo     *raw_hash;
 887        } h;
 888
 889        struct module           *owner;
 890
 891        char                    name[32];
 892
 893        struct list_head        node;
 894#ifdef SOCK_REFCNT_DEBUG
 895        atomic_t                socks;
 896#endif
 897#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
 898        /*
 899         * cgroup specific init/deinit functions. Called once for all
 900         * protocols that implement it, from cgroups populate function.
 901         * This function has to setup any files the protocol want to
 902         * appear in the kmem cgroup filesystem.
 903         */
 904        int                     (*init_cgroup)(struct cgroup *cgrp,
 905                                               struct cgroup_subsys *ss);
 906        void                    (*destroy_cgroup)(struct cgroup *cgrp);
 907        struct cg_proto         *(*proto_cgroup)(struct mem_cgroup *memcg);
 908#endif
 909};
 910
 911struct cg_proto {
 912        void                    (*enter_memory_pressure)(struct sock *sk);
 913        struct res_counter      *memory_allocated;      /* Current allocated memory. */
 914        struct percpu_counter   *sockets_allocated;     /* Current number of sockets. */
 915        int                     *memory_pressure;
 916        long                    *sysctl_mem;
 917        /*
 918         * memcg field is used to find which memcg we belong directly
 919         * Each memcg struct can hold more than one cg_proto, so container_of
 920         * won't really cut.
 921         *
 922         * The elegant solution would be having an inverse function to
 923         * proto_cgroup in struct proto, but that means polluting the structure
 924         * for everybody, instead of just for memcg users.
 925         */
 926        struct mem_cgroup       *memcg;
 927};
 928
 929extern int proto_register(struct proto *prot, int alloc_slab);
 930extern void proto_unregister(struct proto *prot);
 931
 932#ifdef SOCK_REFCNT_DEBUG
 933static inline void sk_refcnt_debug_inc(struct sock *sk)
 934{
 935        atomic_inc(&sk->sk_prot->socks);
 936}
 937
 938static inline void sk_refcnt_debug_dec(struct sock *sk)
 939{
 940        atomic_dec(&sk->sk_prot->socks);
 941        printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
 942               sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
 943}
 944
 945inline void sk_refcnt_debug_release(const struct sock *sk)
 946{
 947        if (atomic_read(&sk->sk_refcnt) != 1)
 948                printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
 949                       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
 950}
 951#else /* SOCK_REFCNT_DEBUG */
 952#define sk_refcnt_debug_inc(sk) do { } while (0)
 953#define sk_refcnt_debug_dec(sk) do { } while (0)
 954#define sk_refcnt_debug_release(sk) do { } while (0)
 955#endif /* SOCK_REFCNT_DEBUG */
 956
 957#if defined(CONFIG_CGROUP_MEM_RES_CTLR_KMEM) && defined(CONFIG_NET)
 958extern struct static_key memcg_socket_limit_enabled;
 959static inline struct cg_proto *parent_cg_proto(struct proto *proto,
 960                                               struct cg_proto *cg_proto)
 961{
 962        return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
 963}
 964#define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
 965#else
 966#define mem_cgroup_sockets_enabled 0
 967static inline struct cg_proto *parent_cg_proto(struct proto *proto,
 968                                               struct cg_proto *cg_proto)
 969{
 970        return NULL;
 971}
 972#endif
 973
 974
 975static inline bool sk_has_memory_pressure(const struct sock *sk)
 976{
 977        return sk->sk_prot->memory_pressure != NULL;
 978}
 979
 980static inline bool sk_under_memory_pressure(const struct sock *sk)
 981{
 982        if (!sk->sk_prot->memory_pressure)
 983                return false;
 984
 985        if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
 986                return !!*sk->sk_cgrp->memory_pressure;
 987
 988        return !!*sk->sk_prot->memory_pressure;
 989}
 990
 991static inline void sk_leave_memory_pressure(struct sock *sk)
 992{
 993        int *memory_pressure = sk->sk_prot->memory_pressure;
 994
 995        if (!memory_pressure)
 996                return;
 997
 998        if (*memory_pressure)
 999                *memory_pressure = 0;
1000
1001        if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1002                struct cg_proto *cg_proto = sk->sk_cgrp;
1003                struct proto *prot = sk->sk_prot;
1004
1005                for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1006                        if (*cg_proto->memory_pressure)
1007                                *cg_proto->memory_pressure = 0;
1008        }
1009
1010}
1011
1012static inline void sk_enter_memory_pressure(struct sock *sk)
1013{
1014        if (!sk->sk_prot->enter_memory_pressure)
1015                return;
1016
1017        if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1018                struct cg_proto *cg_proto = sk->sk_cgrp;
1019                struct proto *prot = sk->sk_prot;
1020
1021                for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1022                        cg_proto->enter_memory_pressure(sk);
1023        }
1024
1025        sk->sk_prot->enter_memory_pressure(sk);
1026}
1027
1028static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1029{
1030        long *prot = sk->sk_prot->sysctl_mem;
1031        if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1032                prot = sk->sk_cgrp->sysctl_mem;
1033        return prot[index];
1034}
1035
1036static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1037                                              unsigned long amt,
1038                                              int *parent_status)
1039{
1040        struct res_counter *fail;
1041        int ret;
1042
1043        ret = res_counter_charge_nofail(prot->memory_allocated,
1044                                        amt << PAGE_SHIFT, &fail);
1045        if (ret < 0)
1046                *parent_status = OVER_LIMIT;
1047}
1048
1049static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1050                                              unsigned long amt)
1051{
1052        res_counter_uncharge(prot->memory_allocated, amt << PAGE_SHIFT);
1053}
1054
1055static inline u64 memcg_memory_allocated_read(struct cg_proto *prot)
1056{
1057        u64 ret;
1058        ret = res_counter_read_u64(prot->memory_allocated, RES_USAGE);
1059        return ret >> PAGE_SHIFT;
1060}
1061
1062static inline long
1063sk_memory_allocated(const struct sock *sk)
1064{
1065        struct proto *prot = sk->sk_prot;
1066        if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1067                return memcg_memory_allocated_read(sk->sk_cgrp);
1068
1069        return atomic_long_read(prot->memory_allocated);
1070}
1071
1072static inline long
1073sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1074{
1075        struct proto *prot = sk->sk_prot;
1076
1077        if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1078                memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1079                /* update the root cgroup regardless */
1080                atomic_long_add_return(amt, prot->memory_allocated);
1081                return memcg_memory_allocated_read(sk->sk_cgrp);
1082        }
1083
1084        return atomic_long_add_return(amt, prot->memory_allocated);
1085}
1086
1087static inline void
1088sk_memory_allocated_sub(struct sock *sk, int amt)
1089{
1090        struct proto *prot = sk->sk_prot;
1091
1092        if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1093                memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1094
1095        atomic_long_sub(amt, prot->memory_allocated);
1096}
1097
1098static inline void sk_sockets_allocated_dec(struct sock *sk)
1099{
1100        struct proto *prot = sk->sk_prot;
1101
1102        if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1103                struct cg_proto *cg_proto = sk->sk_cgrp;
1104
1105                for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1106                        percpu_counter_dec(cg_proto->sockets_allocated);
1107        }
1108
1109        percpu_counter_dec(prot->sockets_allocated);
1110}
1111
1112static inline void sk_sockets_allocated_inc(struct sock *sk)
1113{
1114        struct proto *prot = sk->sk_prot;
1115
1116        if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1117                struct cg_proto *cg_proto = sk->sk_cgrp;
1118
1119                for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1120                        percpu_counter_inc(cg_proto->sockets_allocated);
1121        }
1122
1123        percpu_counter_inc(prot->sockets_allocated);
1124}
1125
1126static inline int
1127sk_sockets_allocated_read_positive(struct sock *sk)
1128{
1129        struct proto *prot = sk->sk_prot;
1130
1131        if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1132                return percpu_counter_read_positive(sk->sk_cgrp->sockets_allocated);
1133
1134        return percpu_counter_read_positive(prot->sockets_allocated);
1135}
1136
1137static inline int
1138proto_sockets_allocated_sum_positive(struct proto *prot)
1139{
1140        return percpu_counter_sum_positive(prot->sockets_allocated);
1141}
1142
1143static inline long
1144proto_memory_allocated(struct proto *prot)
1145{
1146        return atomic_long_read(prot->memory_allocated);
1147}
1148
1149static inline bool
1150proto_memory_pressure(struct proto *prot)
1151{
1152        if (!prot->memory_pressure)
1153                return false;
1154        return !!*prot->memory_pressure;
1155}
1156
1157
1158#ifdef CONFIG_PROC_FS
1159/* Called with local bh disabled */
1160extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1161extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
1162#else
1163static void inline sock_prot_inuse_add(struct net *net, struct proto *prot,
1164                int inc)
1165{
1166}
1167#endif
1168
1169
1170/* With per-bucket locks this operation is not-atomic, so that
1171 * this version is not worse.
1172 */
1173static inline void __sk_prot_rehash(struct sock *sk)
1174{
1175        sk->sk_prot->unhash(sk);
1176        sk->sk_prot->hash(sk);
1177}
1178
1179void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1180
1181/* About 10 seconds */
1182#define SOCK_DESTROY_TIME (10*HZ)
1183
1184/* Sockets 0-1023 can't be bound to unless you are superuser */
1185#define PROT_SOCK       1024
1186
1187#define SHUTDOWN_MASK   3
1188#define RCV_SHUTDOWN    1
1189#define SEND_SHUTDOWN   2
1190
1191#define SOCK_SNDBUF_LOCK        1
1192#define SOCK_RCVBUF_LOCK        2
1193#define SOCK_BINDADDR_LOCK      4
1194#define SOCK_BINDPORT_LOCK      8
1195
1196/* sock_iocb: used to kick off async processing of socket ios */
1197struct sock_iocb {
1198        struct list_head        list;
1199
1200        int                     flags;
1201        int                     size;
1202        struct socket           *sock;
1203        struct sock             *sk;
1204        struct scm_cookie       *scm;
1205        struct msghdr           *msg, async_msg;
1206        struct kiocb            *kiocb;
1207};
1208
1209static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
1210{
1211        return (struct sock_iocb *)iocb->private;
1212}
1213
1214static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
1215{
1216        return si->kiocb;
1217}
1218
1219struct socket_alloc {
1220        struct socket socket;
1221        struct inode vfs_inode;
1222};
1223
1224static inline struct socket *SOCKET_I(struct inode *inode)
1225{
1226        return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1227}
1228
1229static inline struct inode *SOCK_INODE(struct socket *socket)
1230{
1231        return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1232}
1233
1234/*
1235 * Functions for memory accounting
1236 */
1237extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
1238extern void __sk_mem_reclaim(struct sock *sk);
1239
1240#define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1241#define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1242#define SK_MEM_SEND     0
1243#define SK_MEM_RECV     1
1244
1245static inline int sk_mem_pages(int amt)
1246{
1247        return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1248}
1249
1250static inline int sk_has_account(struct sock *sk)
1251{
1252        /* return true if protocol supports memory accounting */
1253        return !!sk->sk_prot->memory_allocated;
1254}
1255
1256static inline int sk_wmem_schedule(struct sock *sk, int size)
1257{
1258        if (!sk_has_account(sk))
1259                return 1;
1260        return size <= sk->sk_forward_alloc ||
1261                __sk_mem_schedule(sk, size, SK_MEM_SEND);
1262}
1263
1264static inline int sk_rmem_schedule(struct sock *sk, int size)
1265{
1266        if (!sk_has_account(sk))
1267                return 1;
1268        return size <= sk->sk_forward_alloc ||
1269                __sk_mem_schedule(sk, size, SK_MEM_RECV);
1270}
1271
1272static inline void sk_mem_reclaim(struct sock *sk)
1273{
1274        if (!sk_has_account(sk))
1275                return;
1276        if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1277                __sk_mem_reclaim(sk);
1278}
1279
1280static inline void sk_mem_reclaim_partial(struct sock *sk)
1281{
1282        if (!sk_has_account(sk))
1283                return;
1284        if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1285                __sk_mem_reclaim(sk);
1286}
1287
1288static inline void sk_mem_charge(struct sock *sk, int size)
1289{
1290        if (!sk_has_account(sk))
1291                return;
1292        sk->sk_forward_alloc -= size;
1293}
1294
1295static inline void sk_mem_uncharge(struct sock *sk, int size)
1296{
1297        if (!sk_has_account(sk))
1298                return;
1299        sk->sk_forward_alloc += size;
1300}
1301
1302static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1303{
1304        sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1305        sk->sk_wmem_queued -= skb->truesize;
1306        sk_mem_uncharge(sk, skb->truesize);
1307        __kfree_skb(skb);
1308}
1309
1310/* Used by processes to "lock" a socket state, so that
1311 * interrupts and bottom half handlers won't change it
1312 * from under us. It essentially blocks any incoming
1313 * packets, so that we won't get any new data or any
1314 * packets that change the state of the socket.
1315 *
1316 * While locked, BH processing will add new packets to
1317 * the backlog queue.  This queue is processed by the
1318 * owner of the socket lock right before it is released.
1319 *
1320 * Since ~2.3.5 it is also exclusive sleep lock serializing
1321 * accesses from user process context.
1322 */
1323#define sock_owned_by_user(sk)  ((sk)->sk_lock.owned)
1324
1325/*
1326 * Macro so as to not evaluate some arguments when
1327 * lockdep is not enabled.
1328 *
1329 * Mark both the sk_lock and the sk_lock.slock as a
1330 * per-address-family lock class.
1331 */
1332#define sock_lock_init_class_and_name(sk, sname, skey, name, key)       \
1333do {                                                                    \
1334        sk->sk_lock.owned = 0;                                          \
1335        init_waitqueue_head(&sk->sk_lock.wq);                           \
1336        spin_lock_init(&(sk)->sk_lock.slock);                           \
1337        debug_check_no_locks_freed((void *)&(sk)->sk_lock,              \
1338                        sizeof((sk)->sk_lock));                         \
1339        lockdep_set_class_and_name(&(sk)->sk_lock.slock,                \
1340                        (skey), (sname));                               \
1341        lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);     \
1342} while (0)
1343
1344extern void lock_sock_nested(struct sock *sk, int subclass);
1345
1346static inline void lock_sock(struct sock *sk)
1347{
1348        lock_sock_nested(sk, 0);
1349}
1350
1351extern void release_sock(struct sock *sk);
1352
1353/* BH context may only use the following locking interface. */
1354#define bh_lock_sock(__sk)      spin_lock(&((__sk)->sk_lock.slock))
1355#define bh_lock_sock_nested(__sk) \
1356                                spin_lock_nested(&((__sk)->sk_lock.slock), \
1357                                SINGLE_DEPTH_NESTING)
1358#define bh_unlock_sock(__sk)    spin_unlock(&((__sk)->sk_lock.slock))
1359
1360extern bool lock_sock_fast(struct sock *sk);
1361/**
1362 * unlock_sock_fast - complement of lock_sock_fast
1363 * @sk: socket
1364 * @slow: slow mode
1365 *
1366 * fast unlock socket for user context.
1367 * If slow mode is on, we call regular release_sock()
1368 */
1369static inline void unlock_sock_fast(struct sock *sk, bool slow)
1370{
1371        if (slow)
1372                release_sock(sk);
1373        else
1374                spin_unlock_bh(&sk->sk_lock.slock);
1375}
1376
1377
1378extern struct sock              *sk_alloc(struct net *net, int family,
1379                                          gfp_t priority,
1380                                          struct proto *prot);
1381extern void                     sk_free(struct sock *sk);
1382extern void                     sk_release_kernel(struct sock *sk);
1383extern struct sock              *sk_clone_lock(const struct sock *sk,
1384                                               const gfp_t priority);
1385
1386extern struct sk_buff           *sock_wmalloc(struct sock *sk,
1387                                              unsigned long size, int force,
1388                                              gfp_t priority);
1389extern struct sk_buff           *sock_rmalloc(struct sock *sk,
1390                                              unsigned long size, int force,
1391                                              gfp_t priority);
1392extern void                     sock_wfree(struct sk_buff *skb);
1393extern void                     sock_rfree(struct sk_buff *skb);
1394
1395extern int                      sock_setsockopt(struct socket *sock, int level,
1396                                                int op, char __user *optval,
1397                                                unsigned int optlen);
1398
1399extern int                      sock_getsockopt(struct socket *sock, int level,
1400                                                int op, char __user *optval, 
1401                                                int __user *optlen);
1402extern struct sk_buff           *sock_alloc_send_skb(struct sock *sk,
1403                                                     unsigned long size,
1404                                                     int noblock,
1405                                                     int *errcode);
1406extern struct sk_buff           *sock_alloc_send_pskb(struct sock *sk,
1407                                                      unsigned long header_len,
1408                                                      unsigned long data_len,
1409                                                      int noblock,
1410                                                      int *errcode);
1411extern void *sock_kmalloc(struct sock *sk, int size,
1412                          gfp_t priority);
1413extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1414extern void sk_send_sigurg(struct sock *sk);
1415
1416#ifdef CONFIG_CGROUPS
1417extern void sock_update_classid(struct sock *sk);
1418#else
1419static inline void sock_update_classid(struct sock *sk)
1420{
1421}
1422#endif
1423
1424/*
1425 * Functions to fill in entries in struct proto_ops when a protocol
1426 * does not implement a particular function.
1427 */
1428extern int                      sock_no_bind(struct socket *, 
1429                                             struct sockaddr *, int);
1430extern int                      sock_no_connect(struct socket *,
1431                                                struct sockaddr *, int, int);
1432extern int                      sock_no_socketpair(struct socket *,
1433                                                   struct socket *);
1434extern int                      sock_no_accept(struct socket *,
1435                                               struct socket *, int);
1436extern int                      sock_no_getname(struct socket *,
1437                                                struct sockaddr *, int *, int);
1438extern unsigned int             sock_no_poll(struct file *, struct socket *,
1439                                             struct poll_table_struct *);
1440extern int                      sock_no_ioctl(struct socket *, unsigned int,
1441                                              unsigned long);
1442extern int                      sock_no_listen(struct socket *, int);
1443extern int                      sock_no_shutdown(struct socket *, int);
1444extern int                      sock_no_getsockopt(struct socket *, int , int,
1445                                                   char __user *, int __user *);
1446extern int                      sock_no_setsockopt(struct socket *, int, int,
1447                                                   char __user *, unsigned int);
1448extern int                      sock_no_sendmsg(struct kiocb *, struct socket *,
1449                                                struct msghdr *, size_t);
1450extern int                      sock_no_recvmsg(struct kiocb *, struct socket *,
1451                                                struct msghdr *, size_t, int);
1452extern int                      sock_no_mmap(struct file *file,
1453                                             struct socket *sock,
1454                                             struct vm_area_struct *vma);
1455extern ssize_t                  sock_no_sendpage(struct socket *sock,
1456                                                struct page *page,
1457                                                int offset, size_t size, 
1458                                                int flags);
1459
1460/*
1461 * Functions to fill in entries in struct proto_ops when a protocol
1462 * uses the inet style.
1463 */
1464extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1465                                  char __user *optval, int __user *optlen);
1466extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1467                               struct msghdr *msg, size_t size, int flags);
1468extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1469                                  char __user *optval, unsigned int optlen);
1470extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1471                int optname, char __user *optval, int __user *optlen);
1472extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1473                int optname, char __user *optval, unsigned int optlen);
1474
1475extern void sk_common_release(struct sock *sk);
1476
1477/*
1478 *      Default socket callbacks and setup code
1479 */
1480 
1481/* Initialise core socket variables */
1482extern void sock_init_data(struct socket *sock, struct sock *sk);
1483
1484extern void sk_filter_release_rcu(struct rcu_head *rcu);
1485
1486/**
1487 *      sk_filter_release - release a socket filter
1488 *      @fp: filter to remove
1489 *
1490 *      Remove a filter from a socket and release its resources.
1491 */
1492
1493static inline void sk_filter_release(struct sk_filter *fp)
1494{
1495        if (atomic_dec_and_test(&fp->refcnt))
1496                call_rcu(&fp->rcu, sk_filter_release_rcu);
1497}
1498
1499static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1500{
1501        unsigned int size = sk_filter_len(fp);
1502
1503        atomic_sub(size, &sk->sk_omem_alloc);
1504        sk_filter_release(fp);
1505}
1506
1507static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1508{
1509        atomic_inc(&fp->refcnt);
1510        atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1511}
1512
1513/*
1514 * Socket reference counting postulates.
1515 *
1516 * * Each user of socket SHOULD hold a reference count.
1517 * * Each access point to socket (an hash table bucket, reference from a list,
1518 *   running timer, skb in flight MUST hold a reference count.
1519 * * When reference count hits 0, it means it will never increase back.
1520 * * When reference count hits 0, it means that no references from
1521 *   outside exist to this socket and current process on current CPU
1522 *   is last user and may/should destroy this socket.
1523 * * sk_free is called from any context: process, BH, IRQ. When
1524 *   it is called, socket has no references from outside -> sk_free
1525 *   may release descendant resources allocated by the socket, but
1526 *   to the time when it is called, socket is NOT referenced by any
1527 *   hash tables, lists etc.
1528 * * Packets, delivered from outside (from network or from another process)
1529 *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1530 *   when they sit in queue. Otherwise, packets will leak to hole, when
1531 *   socket is looked up by one cpu and unhasing is made by another CPU.
1532 *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1533 *   (leak to backlog). Packet socket does all the processing inside
1534 *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1535 *   use separate SMP lock, so that they are prone too.
1536 */
1537
1538/* Ungrab socket and destroy it, if it was the last reference. */
1539static inline void sock_put(struct sock *sk)
1540{
1541        if (atomic_dec_and_test(&sk->sk_refcnt))
1542                sk_free(sk);
1543}
1544
1545extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1546                          const int nested);
1547
1548static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1549{
1550        sk->sk_tx_queue_mapping = tx_queue;
1551}
1552
1553static inline void sk_tx_queue_clear(struct sock *sk)
1554{
1555        sk->sk_tx_queue_mapping = -1;
1556}
1557
1558static inline int sk_tx_queue_get(const struct sock *sk)
1559{
1560        return sk ? sk->sk_tx_queue_mapping : -1;
1561}
1562
1563static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1564{
1565        sk_tx_queue_clear(sk);
1566        sk->sk_socket = sock;
1567}
1568
1569static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1570{
1571        BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1572        return &rcu_dereference_raw(sk->sk_wq)->wait;
1573}
1574/* Detach socket from process context.
1575 * Announce socket dead, detach it from wait queue and inode.
1576 * Note that parent inode held reference count on this struct sock,
1577 * we do not release it in this function, because protocol
1578 * probably wants some additional cleanups or even continuing
1579 * to work with this socket (TCP).
1580 */
1581static inline void sock_orphan(struct sock *sk)
1582{
1583        write_lock_bh(&sk->sk_callback_lock);
1584        sock_set_flag(sk, SOCK_DEAD);
1585        sk_set_socket(sk, NULL);
1586        sk->sk_wq  = NULL;
1587        write_unlock_bh(&sk->sk_callback_lock);
1588}
1589
1590static inline void sock_graft(struct sock *sk, struct socket *parent)
1591{
1592        write_lock_bh(&sk->sk_callback_lock);
1593        sk->sk_wq = parent->wq;
1594        parent->sk = sk;
1595        sk_set_socket(sk, parent);
1596        security_sock_graft(sk, parent);
1597        write_unlock_bh(&sk->sk_callback_lock);
1598}
1599
1600extern int sock_i_uid(struct sock *sk);
1601extern unsigned long sock_i_ino(struct sock *sk);
1602
1603static inline struct dst_entry *
1604__sk_dst_get(struct sock *sk)
1605{
1606        return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1607                                                       lockdep_is_held(&sk->sk_lock.slock));
1608}
1609
1610static inline struct dst_entry *
1611sk_dst_get(struct sock *sk)
1612{
1613        struct dst_entry *dst;
1614
1615        rcu_read_lock();
1616        dst = rcu_dereference(sk->sk_dst_cache);
1617        if (dst)
1618                dst_hold(dst);
1619        rcu_read_unlock();
1620        return dst;
1621}
1622
1623extern void sk_reset_txq(struct sock *sk);
1624
1625static inline void dst_negative_advice(struct sock *sk)
1626{
1627        struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1628
1629        if (dst && dst->ops->negative_advice) {
1630                ndst = dst->ops->negative_advice(dst);
1631
1632                if (ndst != dst) {
1633                        rcu_assign_pointer(sk->sk_dst_cache, ndst);
1634                        sk_reset_txq(sk);
1635                }
1636        }
1637}
1638
1639static inline void
1640__sk_dst_set(struct sock *sk, struct dst_entry *dst)
1641{
1642        struct dst_entry *old_dst;
1643
1644        sk_tx_queue_clear(sk);
1645        /*
1646         * This can be called while sk is owned by the caller only,
1647         * with no state that can be checked in a rcu_dereference_check() cond
1648         */
1649        old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1650        rcu_assign_pointer(sk->sk_dst_cache, dst);
1651        dst_release(old_dst);
1652}
1653
1654static inline void
1655sk_dst_set(struct sock *sk, struct dst_entry *dst)
1656{
1657        spin_lock(&sk->sk_dst_lock);
1658        __sk_dst_set(sk, dst);
1659        spin_unlock(&sk->sk_dst_lock);
1660}
1661
1662static inline void
1663__sk_dst_reset(struct sock *sk)
1664{
1665        __sk_dst_set(sk, NULL);
1666}
1667
1668static inline void
1669sk_dst_reset(struct sock *sk)
1670{
1671        spin_lock(&sk->sk_dst_lock);
1672        __sk_dst_reset(sk);
1673        spin_unlock(&sk->sk_dst_lock);
1674}
1675
1676extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1677
1678extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1679
1680static inline int sk_can_gso(const struct sock *sk)
1681{
1682        return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1683}
1684
1685extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1686
1687static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1688{
1689        sk->sk_route_nocaps |= flags;
1690        sk->sk_route_caps &= ~flags;
1691}
1692
1693static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1694                                           char __user *from, char *to,
1695                                           int copy, int offset)
1696{
1697        if (skb->ip_summed == CHECKSUM_NONE) {
1698                int err = 0;
1699                __wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err);
1700                if (err)
1701                        return err;
1702                skb->csum = csum_block_add(skb->csum, csum, offset);
1703        } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1704                if (!access_ok(VERIFY_READ, from, copy) ||
1705                    __copy_from_user_nocache(to, from, copy))
1706                        return -EFAULT;
1707        } else if (copy_from_user(to, from, copy))
1708                return -EFAULT;
1709
1710        return 0;
1711}
1712
1713static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1714                                       char __user *from, int copy)
1715{
1716        int err, offset = skb->len;
1717
1718        err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1719                                       copy, offset);
1720        if (err)
1721                __skb_trim(skb, offset);
1722
1723        return err;
1724}
1725
1726static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from,
1727                                           struct sk_buff *skb,
1728                                           struct page *page,
1729                                           int off, int copy)
1730{
1731        int err;
1732
1733        err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1734                                       copy, skb->len);
1735        if (err)
1736                return err;
1737
1738        skb->len             += copy;
1739        skb->data_len        += copy;
1740        skb->truesize        += copy;
1741        sk->sk_wmem_queued   += copy;
1742        sk_mem_charge(sk, copy);
1743        return 0;
1744}
1745
1746static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1747                                   struct sk_buff *skb, struct page *page,
1748                                   int off, int copy)
1749{
1750        if (skb->ip_summed == CHECKSUM_NONE) {
1751                int err = 0;
1752                __wsum csum = csum_and_copy_from_user(from,
1753                                                     page_address(page) + off,
1754                                                            copy, 0, &err);
1755                if (err)
1756                        return err;
1757                skb->csum = csum_block_add(skb->csum, csum, skb->len);
1758        } else if (copy_from_user(page_address(page) + off, from, copy))
1759                return -EFAULT;
1760
1761        skb->len             += copy;
1762        skb->data_len        += copy;
1763        skb->truesize        += copy;
1764        sk->sk_wmem_queued   += copy;
1765        sk_mem_charge(sk, copy);
1766        return 0;
1767}
1768
1769/**
1770 * sk_wmem_alloc_get - returns write allocations
1771 * @sk: socket
1772 *
1773 * Returns sk_wmem_alloc minus initial offset of one
1774 */
1775static inline int sk_wmem_alloc_get(const struct sock *sk)
1776{
1777        return atomic_read(&sk->sk_wmem_alloc) - 1;
1778}
1779
1780/**
1781 * sk_rmem_alloc_get - returns read allocations
1782 * @sk: socket
1783 *
1784 * Returns sk_rmem_alloc
1785 */
1786static inline int sk_rmem_alloc_get(const struct sock *sk)
1787{
1788        return atomic_read(&sk->sk_rmem_alloc);
1789}
1790
1791/**
1792 * sk_has_allocations - check if allocations are outstanding
1793 * @sk: socket
1794 *
1795 * Returns true if socket has write or read allocations
1796 */
1797static inline int sk_has_allocations(const struct sock *sk)
1798{
1799        return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1800}
1801
1802/**
1803 * wq_has_sleeper - check if there are any waiting processes
1804 * @wq: struct socket_wq
1805 *
1806 * Returns true if socket_wq has waiting processes
1807 *
1808 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1809 * barrier call. They were added due to the race found within the tcp code.
1810 *
1811 * Consider following tcp code paths:
1812 *
1813 * CPU1                  CPU2
1814 *
1815 * sys_select            receive packet
1816 *   ...                 ...
1817 *   __add_wait_queue    update tp->rcv_nxt
1818 *   ...                 ...
1819 *   tp->rcv_nxt check   sock_def_readable
1820 *   ...                 {
1821 *   schedule               rcu_read_lock();
1822 *                          wq = rcu_dereference(sk->sk_wq);
1823 *                          if (wq && waitqueue_active(&wq->wait))
1824 *                              wake_up_interruptible(&wq->wait)
1825 *                          ...
1826 *                       }
1827 *
1828 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1829 * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1830 * could then endup calling schedule and sleep forever if there are no more
1831 * data on the socket.
1832 *
1833 */
1834static inline bool wq_has_sleeper(struct socket_wq *wq)
1835{
1836
1837        /*
1838         * We need to be sure we are in sync with the
1839         * add_wait_queue modifications to the wait queue.
1840         *
1841         * This memory barrier is paired in the sock_poll_wait.
1842         */
1843        smp_mb();
1844        return wq && waitqueue_active(&wq->wait);
1845}
1846
1847/**
1848 * sock_poll_wait - place memory barrier behind the poll_wait call.
1849 * @filp:           file
1850 * @wait_address:   socket wait queue
1851 * @p:              poll_table
1852 *
1853 * See the comments in the wq_has_sleeper function.
1854 */
1855static inline void sock_poll_wait(struct file *filp,
1856                wait_queue_head_t *wait_address, poll_table *p)
1857{
1858        if (!poll_does_not_wait(p) && wait_address) {
1859                poll_wait(filp, wait_address, p);
1860                /*
1861                 * We need to be sure we are in sync with the
1862                 * socket flags modification.
1863                 *
1864                 * This memory barrier is paired in the wq_has_sleeper.
1865                */
1866                smp_mb();
1867        }
1868}
1869
1870/*
1871 *      Queue a received datagram if it will fit. Stream and sequenced
1872 *      protocols can't normally use this as they need to fit buffers in
1873 *      and play with them.
1874 *
1875 *      Inlined as it's very short and called for pretty much every
1876 *      packet ever received.
1877 */
1878
1879static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1880{
1881        skb_orphan(skb);
1882        skb->sk = sk;
1883        skb->destructor = sock_wfree;
1884        /*
1885         * We used to take a refcount on sk, but following operation
1886         * is enough to guarantee sk_free() wont free this sock until
1887         * all in-flight packets are completed
1888         */
1889        atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1890}
1891
1892static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1893{
1894        skb_orphan(skb);
1895        skb->sk = sk;
1896        skb->destructor = sock_rfree;
1897        atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1898        sk_mem_charge(sk, skb->truesize);
1899}
1900
1901extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1902                           unsigned long expires);
1903
1904extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
1905
1906extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1907
1908extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1909
1910/*
1911 *      Recover an error report and clear atomically
1912 */
1913 
1914static inline int sock_error(struct sock *sk)
1915{
1916        int err;
1917        if (likely(!sk->sk_err))
1918                return 0;
1919        err = xchg(&sk->sk_err, 0);
1920        return -err;
1921}
1922
1923static inline unsigned long sock_wspace(struct sock *sk)
1924{
1925        int amt = 0;
1926
1927        if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1928                amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1929                if (amt < 0) 
1930                        amt = 0;
1931        }
1932        return amt;
1933}
1934
1935static inline void sk_wake_async(struct sock *sk, int how, int band)
1936{
1937        if (sock_flag(sk, SOCK_FASYNC))
1938                sock_wake_async(sk->sk_socket, how, band);
1939}
1940
1941#define SOCK_MIN_SNDBUF 2048
1942/*
1943 * Since sk_rmem_alloc sums skb->truesize, even a small frame might need
1944 * sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak
1945 */
1946#define SOCK_MIN_RCVBUF (2048 + sizeof(struct sk_buff))
1947
1948static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1949{
1950        if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1951                sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
1952                sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1953        }
1954}
1955
1956struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
1957
1958static inline struct page *sk_stream_alloc_page(struct sock *sk)
1959{
1960        struct page *page = NULL;
1961
1962        page = alloc_pages(sk->sk_allocation, 0);
1963        if (!page) {
1964                sk_enter_memory_pressure(sk);
1965                sk_stream_moderate_sndbuf(sk);
1966        }
1967        return page;
1968}
1969
1970/*
1971 *      Default write policy as shown to user space via poll/select/SIGIO
1972 */
1973static inline int sock_writeable(const struct sock *sk) 
1974{
1975        return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
1976}
1977
1978static inline gfp_t gfp_any(void)
1979{
1980        return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1981}
1982
1983static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
1984{
1985        return noblock ? 0 : sk->sk_rcvtimeo;
1986}
1987
1988static inline long sock_sndtimeo(const struct sock *sk, int noblock)
1989{
1990        return noblock ? 0 : sk->sk_sndtimeo;
1991}
1992
1993static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1994{
1995        return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1996}
1997
1998/* Alas, with timeout socket operations are not restartable.
1999 * Compare this to poll().
2000 */
2001static inline int sock_intr_errno(long timeo)
2002{
2003        return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2004}
2005
2006extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2007        struct sk_buff *skb);
2008extern void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2009        struct sk_buff *skb);
2010
2011static __inline__ void
2012sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2013{
2014        ktime_t kt = skb->tstamp;
2015        struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2016
2017        /*
2018         * generate control messages if
2019         * - receive time stamping in software requested (SOCK_RCVTSTAMP
2020         *   or SOCK_TIMESTAMPING_RX_SOFTWARE)
2021         * - software time stamp available and wanted
2022         *   (SOCK_TIMESTAMPING_SOFTWARE)
2023         * - hardware time stamps available and wanted
2024         *   (SOCK_TIMESTAMPING_SYS_HARDWARE or
2025         *   SOCK_TIMESTAMPING_RAW_HARDWARE)
2026         */
2027        if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2028            sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
2029            (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
2030            (hwtstamps->hwtstamp.tv64 &&
2031             sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
2032            (hwtstamps->syststamp.tv64 &&
2033             sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
2034                __sock_recv_timestamp(msg, sk, skb);
2035        else
2036                sk->sk_stamp = kt;
2037
2038        if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2039                __sock_recv_wifi_status(msg, sk, skb);
2040}
2041
2042extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2043                                     struct sk_buff *skb);
2044
2045static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2046                                          struct sk_buff *skb)
2047{
2048#define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)                       | \
2049                           (1UL << SOCK_RCVTSTAMP)                      | \
2050                           (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)       | \
2051                           (1UL << SOCK_TIMESTAMPING_SOFTWARE)          | \
2052                           (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE)      | \
2053                           (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
2054
2055        if (sk->sk_flags & FLAGS_TS_OR_DROPS)
2056                __sock_recv_ts_and_drops(msg, sk, skb);
2057        else
2058                sk->sk_stamp = skb->tstamp;
2059}
2060
2061/**
2062 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2063 * @sk:         socket sending this packet
2064 * @tx_flags:   filled with instructions for time stamping
2065 *
2066 * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if
2067 * parameters are invalid.
2068 */
2069extern int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
2070
2071/**
2072 * sk_eat_skb - Release a skb if it is no longer needed
2073 * @sk: socket to eat this skb from
2074 * @skb: socket buffer to eat
2075 * @copied_early: flag indicating whether DMA operations copied this data early
2076 *
2077 * This routine must be called with interrupts disabled or with the socket
2078 * locked so that the sk_buff queue operation is ok.
2079*/
2080#ifdef CONFIG_NET_DMA
2081static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
2082{
2083        __skb_unlink(skb, &sk->sk_receive_queue);
2084        if (!copied_early)
2085                __kfree_skb(skb);
2086        else
2087                __skb_queue_tail(&sk->sk_async_wait_queue, skb);
2088}
2089#else
2090static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
2091{
2092        __skb_unlink(skb, &sk->sk_receive_queue);
2093        __kfree_skb(skb);
2094}
2095#endif
2096
2097static inline
2098struct net *sock_net(const struct sock *sk)
2099{
2100        return read_pnet(&sk->sk_net);
2101}
2102
2103static inline
2104void sock_net_set(struct sock *sk, struct net *net)
2105{
2106        write_pnet(&sk->sk_net, net);
2107}
2108
2109/*
2110 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
2111 * They should not hold a reference to a namespace in order to allow
2112 * to stop it.
2113 * Sockets after sk_change_net should be released using sk_release_kernel
2114 */
2115static inline void sk_change_net(struct sock *sk, struct net *net)
2116{
2117        put_net(sock_net(sk));
2118        sock_net_set(sk, hold_net(net));
2119}
2120
2121static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2122{
2123        if (unlikely(skb->sk)) {
2124                struct sock *sk = skb->sk;
2125
2126                skb->destructor = NULL;
2127                skb->sk = NULL;
2128                return sk;
2129        }
2130        return NULL;
2131}
2132
2133extern void sock_enable_timestamp(struct sock *sk, int flag);
2134extern int sock_get_timestamp(struct sock *, struct timeval __user *);
2135extern int sock_get_timestampns(struct sock *, struct timespec __user *);
2136
2137/* 
2138 *      Enable debug/info messages 
2139 */
2140extern int net_msg_warn;
2141#define NETDEBUG(fmt, args...) \
2142        do { if (net_msg_warn) printk(fmt,##args); } while (0)
2143
2144#define LIMIT_NETDEBUG(fmt, args...) \
2145        do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
2146
2147extern __u32 sysctl_wmem_max;
2148extern __u32 sysctl_rmem_max;
2149
2150extern void sk_init(void);
2151
2152extern int sysctl_optmem_max;
2153
2154extern __u32 sysctl_wmem_default;
2155extern __u32 sysctl_rmem_default;
2156
2157#endif  /* _SOCK_H */
2158