linux/kernel/events/core.c
<<
>>
Prefs
   1/*
   2 * Performance events core code:
   3 *
   4 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
   5 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
   6 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
   7 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
   8 *
   9 * For licensing details see kernel-base/COPYING
  10 */
  11
  12#include <linux/fs.h>
  13#include <linux/mm.h>
  14#include <linux/cpu.h>
  15#include <linux/smp.h>
  16#include <linux/idr.h>
  17#include <linux/file.h>
  18#include <linux/poll.h>
  19#include <linux/slab.h>
  20#include <linux/hash.h>
  21#include <linux/sysfs.h>
  22#include <linux/dcache.h>
  23#include <linux/percpu.h>
  24#include <linux/ptrace.h>
  25#include <linux/reboot.h>
  26#include <linux/vmstat.h>
  27#include <linux/device.h>
  28#include <linux/export.h>
  29#include <linux/vmalloc.h>
  30#include <linux/hardirq.h>
  31#include <linux/rculist.h>
  32#include <linux/uaccess.h>
  33#include <linux/syscalls.h>
  34#include <linux/anon_inodes.h>
  35#include <linux/kernel_stat.h>
  36#include <linux/perf_event.h>
  37#include <linux/ftrace_event.h>
  38#include <linux/hw_breakpoint.h>
  39
  40#include "internal.h"
  41
  42#include <asm/irq_regs.h>
  43
  44struct remote_function_call {
  45        struct task_struct      *p;
  46        int                     (*func)(void *info);
  47        void                    *info;
  48        int                     ret;
  49};
  50
  51static void remote_function(void *data)
  52{
  53        struct remote_function_call *tfc = data;
  54        struct task_struct *p = tfc->p;
  55
  56        if (p) {
  57                tfc->ret = -EAGAIN;
  58                if (task_cpu(p) != smp_processor_id() || !task_curr(p))
  59                        return;
  60        }
  61
  62        tfc->ret = tfc->func(tfc->info);
  63}
  64
  65/**
  66 * task_function_call - call a function on the cpu on which a task runs
  67 * @p:          the task to evaluate
  68 * @func:       the function to be called
  69 * @info:       the function call argument
  70 *
  71 * Calls the function @func when the task is currently running. This might
  72 * be on the current CPU, which just calls the function directly
  73 *
  74 * returns: @func return value, or
  75 *          -ESRCH  - when the process isn't running
  76 *          -EAGAIN - when the process moved away
  77 */
  78static int
  79task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
  80{
  81        struct remote_function_call data = {
  82                .p      = p,
  83                .func   = func,
  84                .info   = info,
  85                .ret    = -ESRCH, /* No such (running) process */
  86        };
  87
  88        if (task_curr(p))
  89                smp_call_function_single(task_cpu(p), remote_function, &data, 1);
  90
  91        return data.ret;
  92}
  93
  94/**
  95 * cpu_function_call - call a function on the cpu
  96 * @func:       the function to be called
  97 * @info:       the function call argument
  98 *
  99 * Calls the function @func on the remote cpu.
 100 *
 101 * returns: @func return value or -ENXIO when the cpu is offline
 102 */
 103static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
 104{
 105        struct remote_function_call data = {
 106                .p      = NULL,
 107                .func   = func,
 108                .info   = info,
 109                .ret    = -ENXIO, /* No such CPU */
 110        };
 111
 112        smp_call_function_single(cpu, remote_function, &data, 1);
 113
 114        return data.ret;
 115}
 116
 117#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
 118                       PERF_FLAG_FD_OUTPUT  |\
 119                       PERF_FLAG_PID_CGROUP)
 120
 121/*
 122 * branch priv levels that need permission checks
 123 */
 124#define PERF_SAMPLE_BRANCH_PERM_PLM \
 125        (PERF_SAMPLE_BRANCH_KERNEL |\
 126         PERF_SAMPLE_BRANCH_HV)
 127
 128enum event_type_t {
 129        EVENT_FLEXIBLE = 0x1,
 130        EVENT_PINNED = 0x2,
 131        EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
 132};
 133
 134/*
 135 * perf_sched_events : >0 events exist
 136 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 137 */
 138struct static_key_deferred perf_sched_events __read_mostly;
 139static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
 140static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
 141
 142static atomic_t nr_mmap_events __read_mostly;
 143static atomic_t nr_comm_events __read_mostly;
 144static atomic_t nr_task_events __read_mostly;
 145
 146static LIST_HEAD(pmus);
 147static DEFINE_MUTEX(pmus_lock);
 148static struct srcu_struct pmus_srcu;
 149
 150/*
 151 * perf event paranoia level:
 152 *  -1 - not paranoid at all
 153 *   0 - disallow raw tracepoint access for unpriv
 154 *   1 - disallow cpu events for unpriv
 155 *   2 - disallow kernel profiling for unpriv
 156 */
 157int sysctl_perf_event_paranoid __read_mostly = 1;
 158
 159/* Minimum for 512 kiB + 1 user control page */
 160int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
 161
 162/*
 163 * max perf event sample rate
 164 */
 165#define DEFAULT_MAX_SAMPLE_RATE 100000
 166int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
 167static int max_samples_per_tick __read_mostly =
 168        DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
 169
 170int perf_proc_update_handler(struct ctl_table *table, int write,
 171                void __user *buffer, size_t *lenp,
 172                loff_t *ppos)
 173{
 174        int ret = proc_dointvec(table, write, buffer, lenp, ppos);
 175
 176        if (ret || !write)
 177                return ret;
 178
 179        max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
 180
 181        return 0;
 182}
 183
 184static atomic64_t perf_event_id;
 185
 186static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
 187                              enum event_type_t event_type);
 188
 189static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
 190                             enum event_type_t event_type,
 191                             struct task_struct *task);
 192
 193static void update_context_time(struct perf_event_context *ctx);
 194static u64 perf_event_time(struct perf_event *event);
 195
 196static void ring_buffer_attach(struct perf_event *event,
 197                               struct ring_buffer *rb);
 198
 199void __weak perf_event_print_debug(void)        { }
 200
 201extern __weak const char *perf_pmu_name(void)
 202{
 203        return "pmu";
 204}
 205
 206static inline u64 perf_clock(void)
 207{
 208        return local_clock();
 209}
 210
 211static inline struct perf_cpu_context *
 212__get_cpu_context(struct perf_event_context *ctx)
 213{
 214        return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
 215}
 216
 217static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
 218                          struct perf_event_context *ctx)
 219{
 220        raw_spin_lock(&cpuctx->ctx.lock);
 221        if (ctx)
 222                raw_spin_lock(&ctx->lock);
 223}
 224
 225static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
 226                            struct perf_event_context *ctx)
 227{
 228        if (ctx)
 229                raw_spin_unlock(&ctx->lock);
 230        raw_spin_unlock(&cpuctx->ctx.lock);
 231}
 232
 233#ifdef CONFIG_CGROUP_PERF
 234
 235/*
 236 * Must ensure cgroup is pinned (css_get) before calling
 237 * this function. In other words, we cannot call this function
 238 * if there is no cgroup event for the current CPU context.
 239 */
 240static inline struct perf_cgroup *
 241perf_cgroup_from_task(struct task_struct *task)
 242{
 243        return container_of(task_subsys_state(task, perf_subsys_id),
 244                        struct perf_cgroup, css);
 245}
 246
 247static inline bool
 248perf_cgroup_match(struct perf_event *event)
 249{
 250        struct perf_event_context *ctx = event->ctx;
 251        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 252
 253        return !event->cgrp || event->cgrp == cpuctx->cgrp;
 254}
 255
 256static inline void perf_get_cgroup(struct perf_event *event)
 257{
 258        css_get(&event->cgrp->css);
 259}
 260
 261static inline void perf_put_cgroup(struct perf_event *event)
 262{
 263        css_put(&event->cgrp->css);
 264}
 265
 266static inline void perf_detach_cgroup(struct perf_event *event)
 267{
 268        perf_put_cgroup(event);
 269        event->cgrp = NULL;
 270}
 271
 272static inline int is_cgroup_event(struct perf_event *event)
 273{
 274        return event->cgrp != NULL;
 275}
 276
 277static inline u64 perf_cgroup_event_time(struct perf_event *event)
 278{
 279        struct perf_cgroup_info *t;
 280
 281        t = per_cpu_ptr(event->cgrp->info, event->cpu);
 282        return t->time;
 283}
 284
 285static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
 286{
 287        struct perf_cgroup_info *info;
 288        u64 now;
 289
 290        now = perf_clock();
 291
 292        info = this_cpu_ptr(cgrp->info);
 293
 294        info->time += now - info->timestamp;
 295        info->timestamp = now;
 296}
 297
 298static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
 299{
 300        struct perf_cgroup *cgrp_out = cpuctx->cgrp;
 301        if (cgrp_out)
 302                __update_cgrp_time(cgrp_out);
 303}
 304
 305static inline void update_cgrp_time_from_event(struct perf_event *event)
 306{
 307        struct perf_cgroup *cgrp;
 308
 309        /*
 310         * ensure we access cgroup data only when needed and
 311         * when we know the cgroup is pinned (css_get)
 312         */
 313        if (!is_cgroup_event(event))
 314                return;
 315
 316        cgrp = perf_cgroup_from_task(current);
 317        /*
 318         * Do not update time when cgroup is not active
 319         */
 320        if (cgrp == event->cgrp)
 321                __update_cgrp_time(event->cgrp);
 322}
 323
 324static inline void
 325perf_cgroup_set_timestamp(struct task_struct *task,
 326                          struct perf_event_context *ctx)
 327{
 328        struct perf_cgroup *cgrp;
 329        struct perf_cgroup_info *info;
 330
 331        /*
 332         * ctx->lock held by caller
 333         * ensure we do not access cgroup data
 334         * unless we have the cgroup pinned (css_get)
 335         */
 336        if (!task || !ctx->nr_cgroups)
 337                return;
 338
 339        cgrp = perf_cgroup_from_task(task);
 340        info = this_cpu_ptr(cgrp->info);
 341        info->timestamp = ctx->timestamp;
 342}
 343
 344#define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
 345#define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
 346
 347/*
 348 * reschedule events based on the cgroup constraint of task.
 349 *
 350 * mode SWOUT : schedule out everything
 351 * mode SWIN : schedule in based on cgroup for next
 352 */
 353void perf_cgroup_switch(struct task_struct *task, int mode)
 354{
 355        struct perf_cpu_context *cpuctx;
 356        struct pmu *pmu;
 357        unsigned long flags;
 358
 359        /*
 360         * disable interrupts to avoid geting nr_cgroup
 361         * changes via __perf_event_disable(). Also
 362         * avoids preemption.
 363         */
 364        local_irq_save(flags);
 365
 366        /*
 367         * we reschedule only in the presence of cgroup
 368         * constrained events.
 369         */
 370        rcu_read_lock();
 371
 372        list_for_each_entry_rcu(pmu, &pmus, entry) {
 373                cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
 374
 375                /*
 376                 * perf_cgroup_events says at least one
 377                 * context on this CPU has cgroup events.
 378                 *
 379                 * ctx->nr_cgroups reports the number of cgroup
 380                 * events for a context.
 381                 */
 382                if (cpuctx->ctx.nr_cgroups > 0) {
 383                        perf_ctx_lock(cpuctx, cpuctx->task_ctx);
 384                        perf_pmu_disable(cpuctx->ctx.pmu);
 385
 386                        if (mode & PERF_CGROUP_SWOUT) {
 387                                cpu_ctx_sched_out(cpuctx, EVENT_ALL);
 388                                /*
 389                                 * must not be done before ctxswout due
 390                                 * to event_filter_match() in event_sched_out()
 391                                 */
 392                                cpuctx->cgrp = NULL;
 393                        }
 394
 395                        if (mode & PERF_CGROUP_SWIN) {
 396                                WARN_ON_ONCE(cpuctx->cgrp);
 397                                /* set cgrp before ctxsw in to
 398                                 * allow event_filter_match() to not
 399                                 * have to pass task around
 400                                 */
 401                                cpuctx->cgrp = perf_cgroup_from_task(task);
 402                                cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
 403                        }
 404                        perf_pmu_enable(cpuctx->ctx.pmu);
 405                        perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
 406                }
 407        }
 408
 409        rcu_read_unlock();
 410
 411        local_irq_restore(flags);
 412}
 413
 414static inline void perf_cgroup_sched_out(struct task_struct *task,
 415                                         struct task_struct *next)
 416{
 417        struct perf_cgroup *cgrp1;
 418        struct perf_cgroup *cgrp2 = NULL;
 419
 420        /*
 421         * we come here when we know perf_cgroup_events > 0
 422         */
 423        cgrp1 = perf_cgroup_from_task(task);
 424
 425        /*
 426         * next is NULL when called from perf_event_enable_on_exec()
 427         * that will systematically cause a cgroup_switch()
 428         */
 429        if (next)
 430                cgrp2 = perf_cgroup_from_task(next);
 431
 432        /*
 433         * only schedule out current cgroup events if we know
 434         * that we are switching to a different cgroup. Otherwise,
 435         * do no touch the cgroup events.
 436         */
 437        if (cgrp1 != cgrp2)
 438                perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
 439}
 440
 441static inline void perf_cgroup_sched_in(struct task_struct *prev,
 442                                        struct task_struct *task)
 443{
 444        struct perf_cgroup *cgrp1;
 445        struct perf_cgroup *cgrp2 = NULL;
 446
 447        /*
 448         * we come here when we know perf_cgroup_events > 0
 449         */
 450        cgrp1 = perf_cgroup_from_task(task);
 451
 452        /* prev can never be NULL */
 453        cgrp2 = perf_cgroup_from_task(prev);
 454
 455        /*
 456         * only need to schedule in cgroup events if we are changing
 457         * cgroup during ctxsw. Cgroup events were not scheduled
 458         * out of ctxsw out if that was not the case.
 459         */
 460        if (cgrp1 != cgrp2)
 461                perf_cgroup_switch(task, PERF_CGROUP_SWIN);
 462}
 463
 464static inline int perf_cgroup_connect(int fd, struct perf_event *event,
 465                                      struct perf_event_attr *attr,
 466                                      struct perf_event *group_leader)
 467{
 468        struct perf_cgroup *cgrp;
 469        struct cgroup_subsys_state *css;
 470        struct file *file;
 471        int ret = 0, fput_needed;
 472
 473        file = fget_light(fd, &fput_needed);
 474        if (!file)
 475                return -EBADF;
 476
 477        css = cgroup_css_from_dir(file, perf_subsys_id);
 478        if (IS_ERR(css)) {
 479                ret = PTR_ERR(css);
 480                goto out;
 481        }
 482
 483        cgrp = container_of(css, struct perf_cgroup, css);
 484        event->cgrp = cgrp;
 485
 486        /* must be done before we fput() the file */
 487        perf_get_cgroup(event);
 488
 489        /*
 490         * all events in a group must monitor
 491         * the same cgroup because a task belongs
 492         * to only one perf cgroup at a time
 493         */
 494        if (group_leader && group_leader->cgrp != cgrp) {
 495                perf_detach_cgroup(event);
 496                ret = -EINVAL;
 497        }
 498out:
 499        fput_light(file, fput_needed);
 500        return ret;
 501}
 502
 503static inline void
 504perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
 505{
 506        struct perf_cgroup_info *t;
 507        t = per_cpu_ptr(event->cgrp->info, event->cpu);
 508        event->shadow_ctx_time = now - t->timestamp;
 509}
 510
 511static inline void
 512perf_cgroup_defer_enabled(struct perf_event *event)
 513{
 514        /*
 515         * when the current task's perf cgroup does not match
 516         * the event's, we need to remember to call the
 517         * perf_mark_enable() function the first time a task with
 518         * a matching perf cgroup is scheduled in.
 519         */
 520        if (is_cgroup_event(event) && !perf_cgroup_match(event))
 521                event->cgrp_defer_enabled = 1;
 522}
 523
 524static inline void
 525perf_cgroup_mark_enabled(struct perf_event *event,
 526                         struct perf_event_context *ctx)
 527{
 528        struct perf_event *sub;
 529        u64 tstamp = perf_event_time(event);
 530
 531        if (!event->cgrp_defer_enabled)
 532                return;
 533
 534        event->cgrp_defer_enabled = 0;
 535
 536        event->tstamp_enabled = tstamp - event->total_time_enabled;
 537        list_for_each_entry(sub, &event->sibling_list, group_entry) {
 538                if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
 539                        sub->tstamp_enabled = tstamp - sub->total_time_enabled;
 540                        sub->cgrp_defer_enabled = 0;
 541                }
 542        }
 543}
 544#else /* !CONFIG_CGROUP_PERF */
 545
 546static inline bool
 547perf_cgroup_match(struct perf_event *event)
 548{
 549        return true;
 550}
 551
 552static inline void perf_detach_cgroup(struct perf_event *event)
 553{}
 554
 555static inline int is_cgroup_event(struct perf_event *event)
 556{
 557        return 0;
 558}
 559
 560static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
 561{
 562        return 0;
 563}
 564
 565static inline void update_cgrp_time_from_event(struct perf_event *event)
 566{
 567}
 568
 569static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
 570{
 571}
 572
 573static inline void perf_cgroup_sched_out(struct task_struct *task,
 574                                         struct task_struct *next)
 575{
 576}
 577
 578static inline void perf_cgroup_sched_in(struct task_struct *prev,
 579                                        struct task_struct *task)
 580{
 581}
 582
 583static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
 584                                      struct perf_event_attr *attr,
 585                                      struct perf_event *group_leader)
 586{
 587        return -EINVAL;
 588}
 589
 590static inline void
 591perf_cgroup_set_timestamp(struct task_struct *task,
 592                          struct perf_event_context *ctx)
 593{
 594}
 595
 596void
 597perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
 598{
 599}
 600
 601static inline void
 602perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
 603{
 604}
 605
 606static inline u64 perf_cgroup_event_time(struct perf_event *event)
 607{
 608        return 0;
 609}
 610
 611static inline void
 612perf_cgroup_defer_enabled(struct perf_event *event)
 613{
 614}
 615
 616static inline void
 617perf_cgroup_mark_enabled(struct perf_event *event,
 618                         struct perf_event_context *ctx)
 619{
 620}
 621#endif
 622
 623void perf_pmu_disable(struct pmu *pmu)
 624{
 625        int *count = this_cpu_ptr(pmu->pmu_disable_count);
 626        if (!(*count)++)
 627                pmu->pmu_disable(pmu);
 628}
 629
 630void perf_pmu_enable(struct pmu *pmu)
 631{
 632        int *count = this_cpu_ptr(pmu->pmu_disable_count);
 633        if (!--(*count))
 634                pmu->pmu_enable(pmu);
 635}
 636
 637static DEFINE_PER_CPU(struct list_head, rotation_list);
 638
 639/*
 640 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 641 * because they're strictly cpu affine and rotate_start is called with IRQs
 642 * disabled, while rotate_context is called from IRQ context.
 643 */
 644static void perf_pmu_rotate_start(struct pmu *pmu)
 645{
 646        struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
 647        struct list_head *head = &__get_cpu_var(rotation_list);
 648
 649        WARN_ON(!irqs_disabled());
 650
 651        if (list_empty(&cpuctx->rotation_list))
 652                list_add(&cpuctx->rotation_list, head);
 653}
 654
 655static void get_ctx(struct perf_event_context *ctx)
 656{
 657        WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
 658}
 659
 660static void put_ctx(struct perf_event_context *ctx)
 661{
 662        if (atomic_dec_and_test(&ctx->refcount)) {
 663                if (ctx->parent_ctx)
 664                        put_ctx(ctx->parent_ctx);
 665                if (ctx->task)
 666                        put_task_struct(ctx->task);
 667                kfree_rcu(ctx, rcu_head);
 668        }
 669}
 670
 671static void unclone_ctx(struct perf_event_context *ctx)
 672{
 673        if (ctx->parent_ctx) {
 674                put_ctx(ctx->parent_ctx);
 675                ctx->parent_ctx = NULL;
 676        }
 677}
 678
 679static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
 680{
 681        /*
 682         * only top level events have the pid namespace they were created in
 683         */
 684        if (event->parent)
 685                event = event->parent;
 686
 687        return task_tgid_nr_ns(p, event->ns);
 688}
 689
 690static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
 691{
 692        /*
 693         * only top level events have the pid namespace they were created in
 694         */
 695        if (event->parent)
 696                event = event->parent;
 697
 698        return task_pid_nr_ns(p, event->ns);
 699}
 700
 701/*
 702 * If we inherit events we want to return the parent event id
 703 * to userspace.
 704 */
 705static u64 primary_event_id(struct perf_event *event)
 706{
 707        u64 id = event->id;
 708
 709        if (event->parent)
 710                id = event->parent->id;
 711
 712        return id;
 713}
 714
 715/*
 716 * Get the perf_event_context for a task and lock it.
 717 * This has to cope with with the fact that until it is locked,
 718 * the context could get moved to another task.
 719 */
 720static struct perf_event_context *
 721perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
 722{
 723        struct perf_event_context *ctx;
 724
 725        rcu_read_lock();
 726retry:
 727        ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
 728        if (ctx) {
 729                /*
 730                 * If this context is a clone of another, it might
 731                 * get swapped for another underneath us by
 732                 * perf_event_task_sched_out, though the
 733                 * rcu_read_lock() protects us from any context
 734                 * getting freed.  Lock the context and check if it
 735                 * got swapped before we could get the lock, and retry
 736                 * if so.  If we locked the right context, then it
 737                 * can't get swapped on us any more.
 738                 */
 739                raw_spin_lock_irqsave(&ctx->lock, *flags);
 740                if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
 741                        raw_spin_unlock_irqrestore(&ctx->lock, *flags);
 742                        goto retry;
 743                }
 744
 745                if (!atomic_inc_not_zero(&ctx->refcount)) {
 746                        raw_spin_unlock_irqrestore(&ctx->lock, *flags);
 747                        ctx = NULL;
 748                }
 749        }
 750        rcu_read_unlock();
 751        return ctx;
 752}
 753
 754/*
 755 * Get the context for a task and increment its pin_count so it
 756 * can't get swapped to another task.  This also increments its
 757 * reference count so that the context can't get freed.
 758 */
 759static struct perf_event_context *
 760perf_pin_task_context(struct task_struct *task, int ctxn)
 761{
 762        struct perf_event_context *ctx;
 763        unsigned long flags;
 764
 765        ctx = perf_lock_task_context(task, ctxn, &flags);
 766        if (ctx) {
 767                ++ctx->pin_count;
 768                raw_spin_unlock_irqrestore(&ctx->lock, flags);
 769        }
 770        return ctx;
 771}
 772
 773static void perf_unpin_context(struct perf_event_context *ctx)
 774{
 775        unsigned long flags;
 776
 777        raw_spin_lock_irqsave(&ctx->lock, flags);
 778        --ctx->pin_count;
 779        raw_spin_unlock_irqrestore(&ctx->lock, flags);
 780}
 781
 782/*
 783 * Update the record of the current time in a context.
 784 */
 785static void update_context_time(struct perf_event_context *ctx)
 786{
 787        u64 now = perf_clock();
 788
 789        ctx->time += now - ctx->timestamp;
 790        ctx->timestamp = now;
 791}
 792
 793static u64 perf_event_time(struct perf_event *event)
 794{
 795        struct perf_event_context *ctx = event->ctx;
 796
 797        if (is_cgroup_event(event))
 798                return perf_cgroup_event_time(event);
 799
 800        return ctx ? ctx->time : 0;
 801}
 802
 803/*
 804 * Update the total_time_enabled and total_time_running fields for a event.
 805 * The caller of this function needs to hold the ctx->lock.
 806 */
 807static void update_event_times(struct perf_event *event)
 808{
 809        struct perf_event_context *ctx = event->ctx;
 810        u64 run_end;
 811
 812        if (event->state < PERF_EVENT_STATE_INACTIVE ||
 813            event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
 814                return;
 815        /*
 816         * in cgroup mode, time_enabled represents
 817         * the time the event was enabled AND active
 818         * tasks were in the monitored cgroup. This is
 819         * independent of the activity of the context as
 820         * there may be a mix of cgroup and non-cgroup events.
 821         *
 822         * That is why we treat cgroup events differently
 823         * here.
 824         */
 825        if (is_cgroup_event(event))
 826                run_end = perf_cgroup_event_time(event);
 827        else if (ctx->is_active)
 828                run_end = ctx->time;
 829        else
 830                run_end = event->tstamp_stopped;
 831
 832        event->total_time_enabled = run_end - event->tstamp_enabled;
 833
 834        if (event->state == PERF_EVENT_STATE_INACTIVE)
 835                run_end = event->tstamp_stopped;
 836        else
 837                run_end = perf_event_time(event);
 838
 839        event->total_time_running = run_end - event->tstamp_running;
 840
 841}
 842
 843/*
 844 * Update total_time_enabled and total_time_running for all events in a group.
 845 */
 846static void update_group_times(struct perf_event *leader)
 847{
 848        struct perf_event *event;
 849
 850        update_event_times(leader);
 851        list_for_each_entry(event, &leader->sibling_list, group_entry)
 852                update_event_times(event);
 853}
 854
 855static struct list_head *
 856ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
 857{
 858        if (event->attr.pinned)
 859                return &ctx->pinned_groups;
 860        else
 861                return &ctx->flexible_groups;
 862}
 863
 864/*
 865 * Add a event from the lists for its context.
 866 * Must be called with ctx->mutex and ctx->lock held.
 867 */
 868static void
 869list_add_event(struct perf_event *event, struct perf_event_context *ctx)
 870{
 871        WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
 872        event->attach_state |= PERF_ATTACH_CONTEXT;
 873
 874        /*
 875         * If we're a stand alone event or group leader, we go to the context
 876         * list, group events are kept attached to the group so that
 877         * perf_group_detach can, at all times, locate all siblings.
 878         */
 879        if (event->group_leader == event) {
 880                struct list_head *list;
 881
 882                if (is_software_event(event))
 883                        event->group_flags |= PERF_GROUP_SOFTWARE;
 884
 885                list = ctx_group_list(event, ctx);
 886                list_add_tail(&event->group_entry, list);
 887        }
 888
 889        if (is_cgroup_event(event))
 890                ctx->nr_cgroups++;
 891
 892        if (has_branch_stack(event))
 893                ctx->nr_branch_stack++;
 894
 895        list_add_rcu(&event->event_entry, &ctx->event_list);
 896        if (!ctx->nr_events)
 897                perf_pmu_rotate_start(ctx->pmu);
 898        ctx->nr_events++;
 899        if (event->attr.inherit_stat)
 900                ctx->nr_stat++;
 901}
 902
 903/*
 904 * Called at perf_event creation and when events are attached/detached from a
 905 * group.
 906 */
 907static void perf_event__read_size(struct perf_event *event)
 908{
 909        int entry = sizeof(u64); /* value */
 910        int size = 0;
 911        int nr = 1;
 912
 913        if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
 914                size += sizeof(u64);
 915
 916        if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
 917                size += sizeof(u64);
 918
 919        if (event->attr.read_format & PERF_FORMAT_ID)
 920                entry += sizeof(u64);
 921
 922        if (event->attr.read_format & PERF_FORMAT_GROUP) {
 923                nr += event->group_leader->nr_siblings;
 924                size += sizeof(u64);
 925        }
 926
 927        size += entry * nr;
 928        event->read_size = size;
 929}
 930
 931static void perf_event__header_size(struct perf_event *event)
 932{
 933        struct perf_sample_data *data;
 934        u64 sample_type = event->attr.sample_type;
 935        u16 size = 0;
 936
 937        perf_event__read_size(event);
 938
 939        if (sample_type & PERF_SAMPLE_IP)
 940                size += sizeof(data->ip);
 941
 942        if (sample_type & PERF_SAMPLE_ADDR)
 943                size += sizeof(data->addr);
 944
 945        if (sample_type & PERF_SAMPLE_PERIOD)
 946                size += sizeof(data->period);
 947
 948        if (sample_type & PERF_SAMPLE_READ)
 949                size += event->read_size;
 950
 951        event->header_size = size;
 952}
 953
 954static void perf_event__id_header_size(struct perf_event *event)
 955{
 956        struct perf_sample_data *data;
 957        u64 sample_type = event->attr.sample_type;
 958        u16 size = 0;
 959
 960        if (sample_type & PERF_SAMPLE_TID)
 961                size += sizeof(data->tid_entry);
 962
 963        if (sample_type & PERF_SAMPLE_TIME)
 964                size += sizeof(data->time);
 965
 966        if (sample_type & PERF_SAMPLE_ID)
 967                size += sizeof(data->id);
 968
 969        if (sample_type & PERF_SAMPLE_STREAM_ID)
 970                size += sizeof(data->stream_id);
 971
 972        if (sample_type & PERF_SAMPLE_CPU)
 973                size += sizeof(data->cpu_entry);
 974
 975        event->id_header_size = size;
 976}
 977
 978static void perf_group_attach(struct perf_event *event)
 979{
 980        struct perf_event *group_leader = event->group_leader, *pos;
 981
 982        /*
 983         * We can have double attach due to group movement in perf_event_open.
 984         */
 985        if (event->attach_state & PERF_ATTACH_GROUP)
 986                return;
 987
 988        event->attach_state |= PERF_ATTACH_GROUP;
 989
 990        if (group_leader == event)
 991                return;
 992
 993        if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
 994                        !is_software_event(event))
 995                group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
 996
 997        list_add_tail(&event->group_entry, &group_leader->sibling_list);
 998        group_leader->nr_siblings++;
 999
1000        perf_event__header_size(group_leader);
1001
1002        list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1003                perf_event__header_size(pos);
1004}
1005
1006/*
1007 * Remove a event from the lists for its context.
1008 * Must be called with ctx->mutex and ctx->lock held.
1009 */
1010static void
1011list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1012{
1013        struct perf_cpu_context *cpuctx;
1014        /*
1015         * We can have double detach due to exit/hot-unplug + close.
1016         */
1017        if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1018                return;
1019
1020        event->attach_state &= ~PERF_ATTACH_CONTEXT;
1021
1022        if (is_cgroup_event(event)) {
1023                ctx->nr_cgroups--;
1024                cpuctx = __get_cpu_context(ctx);
1025                /*
1026                 * if there are no more cgroup events
1027                 * then cler cgrp to avoid stale pointer
1028                 * in update_cgrp_time_from_cpuctx()
1029                 */
1030                if (!ctx->nr_cgroups)
1031                        cpuctx->cgrp = NULL;
1032        }
1033
1034        if (has_branch_stack(event))
1035                ctx->nr_branch_stack--;
1036
1037        ctx->nr_events--;
1038        if (event->attr.inherit_stat)
1039                ctx->nr_stat--;
1040
1041        list_del_rcu(&event->event_entry);
1042
1043        if (event->group_leader == event)
1044                list_del_init(&event->group_entry);
1045
1046        update_group_times(event);
1047
1048        /*
1049         * If event was in error state, then keep it
1050         * that way, otherwise bogus counts will be
1051         * returned on read(). The only way to get out
1052         * of error state is by explicit re-enabling
1053         * of the event
1054         */
1055        if (event->state > PERF_EVENT_STATE_OFF)
1056                event->state = PERF_EVENT_STATE_OFF;
1057}
1058
1059static void perf_group_detach(struct perf_event *event)
1060{
1061        struct perf_event *sibling, *tmp;
1062        struct list_head *list = NULL;
1063
1064        /*
1065         * We can have double detach due to exit/hot-unplug + close.
1066         */
1067        if (!(event->attach_state & PERF_ATTACH_GROUP))
1068                return;
1069
1070        event->attach_state &= ~PERF_ATTACH_GROUP;
1071
1072        /*
1073         * If this is a sibling, remove it from its group.
1074         */
1075        if (event->group_leader != event) {
1076                list_del_init(&event->group_entry);
1077                event->group_leader->nr_siblings--;
1078                goto out;
1079        }
1080
1081        if (!list_empty(&event->group_entry))
1082                list = &event->group_entry;
1083
1084        /*
1085         * If this was a group event with sibling events then
1086         * upgrade the siblings to singleton events by adding them
1087         * to whatever list we are on.
1088         */
1089        list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1090                if (list)
1091                        list_move_tail(&sibling->group_entry, list);
1092                sibling->group_leader = sibling;
1093
1094                /* Inherit group flags from the previous leader */
1095                sibling->group_flags = event->group_flags;
1096        }
1097
1098out:
1099        perf_event__header_size(event->group_leader);
1100
1101        list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1102                perf_event__header_size(tmp);
1103}
1104
1105static inline int
1106event_filter_match(struct perf_event *event)
1107{
1108        return (event->cpu == -1 || event->cpu == smp_processor_id())
1109            && perf_cgroup_match(event);
1110}
1111
1112static void
1113event_sched_out(struct perf_event *event,
1114                  struct perf_cpu_context *cpuctx,
1115                  struct perf_event_context *ctx)
1116{
1117        u64 tstamp = perf_event_time(event);
1118        u64 delta;
1119        /*
1120         * An event which could not be activated because of
1121         * filter mismatch still needs to have its timings
1122         * maintained, otherwise bogus information is return
1123         * via read() for time_enabled, time_running:
1124         */
1125        if (event->state == PERF_EVENT_STATE_INACTIVE
1126            && !event_filter_match(event)) {
1127                delta = tstamp - event->tstamp_stopped;
1128                event->tstamp_running += delta;
1129                event->tstamp_stopped = tstamp;
1130        }
1131
1132        if (event->state != PERF_EVENT_STATE_ACTIVE)
1133                return;
1134
1135        event->state = PERF_EVENT_STATE_INACTIVE;
1136        if (event->pending_disable) {
1137                event->pending_disable = 0;
1138                event->state = PERF_EVENT_STATE_OFF;
1139        }
1140        event->tstamp_stopped = tstamp;
1141        event->pmu->del(event, 0);
1142        event->oncpu = -1;
1143
1144        if (!is_software_event(event))
1145                cpuctx->active_oncpu--;
1146        ctx->nr_active--;
1147        if (event->attr.freq && event->attr.sample_freq)
1148                ctx->nr_freq--;
1149        if (event->attr.exclusive || !cpuctx->active_oncpu)
1150                cpuctx->exclusive = 0;
1151}
1152
1153static void
1154group_sched_out(struct perf_event *group_event,
1155                struct perf_cpu_context *cpuctx,
1156                struct perf_event_context *ctx)
1157{
1158        struct perf_event *event;
1159        int state = group_event->state;
1160
1161        event_sched_out(group_event, cpuctx, ctx);
1162
1163        /*
1164         * Schedule out siblings (if any):
1165         */
1166        list_for_each_entry(event, &group_event->sibling_list, group_entry)
1167                event_sched_out(event, cpuctx, ctx);
1168
1169        if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1170                cpuctx->exclusive = 0;
1171}
1172
1173/*
1174 * Cross CPU call to remove a performance event
1175 *
1176 * We disable the event on the hardware level first. After that we
1177 * remove it from the context list.
1178 */
1179static int __perf_remove_from_context(void *info)
1180{
1181        struct perf_event *event = info;
1182        struct perf_event_context *ctx = event->ctx;
1183        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1184
1185        raw_spin_lock(&ctx->lock);
1186        event_sched_out(event, cpuctx, ctx);
1187        list_del_event(event, ctx);
1188        if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1189                ctx->is_active = 0;
1190                cpuctx->task_ctx = NULL;
1191        }
1192        raw_spin_unlock(&ctx->lock);
1193
1194        return 0;
1195}
1196
1197
1198/*
1199 * Remove the event from a task's (or a CPU's) list of events.
1200 *
1201 * CPU events are removed with a smp call. For task events we only
1202 * call when the task is on a CPU.
1203 *
1204 * If event->ctx is a cloned context, callers must make sure that
1205 * every task struct that event->ctx->task could possibly point to
1206 * remains valid.  This is OK when called from perf_release since
1207 * that only calls us on the top-level context, which can't be a clone.
1208 * When called from perf_event_exit_task, it's OK because the
1209 * context has been detached from its task.
1210 */
1211static void perf_remove_from_context(struct perf_event *event)
1212{
1213        struct perf_event_context *ctx = event->ctx;
1214        struct task_struct *task = ctx->task;
1215
1216        lockdep_assert_held(&ctx->mutex);
1217
1218        if (!task) {
1219                /*
1220                 * Per cpu events are removed via an smp call and
1221                 * the removal is always successful.
1222                 */
1223                cpu_function_call(event->cpu, __perf_remove_from_context, event);
1224                return;
1225        }
1226
1227retry:
1228        if (!task_function_call(task, __perf_remove_from_context, event))
1229                return;
1230
1231        raw_spin_lock_irq(&ctx->lock);
1232        /*
1233         * If we failed to find a running task, but find the context active now
1234         * that we've acquired the ctx->lock, retry.
1235         */
1236        if (ctx->is_active) {
1237                raw_spin_unlock_irq(&ctx->lock);
1238                goto retry;
1239        }
1240
1241        /*
1242         * Since the task isn't running, its safe to remove the event, us
1243         * holding the ctx->lock ensures the task won't get scheduled in.
1244         */
1245        list_del_event(event, ctx);
1246        raw_spin_unlock_irq(&ctx->lock);
1247}
1248
1249/*
1250 * Cross CPU call to disable a performance event
1251 */
1252static int __perf_event_disable(void *info)
1253{
1254        struct perf_event *event = info;
1255        struct perf_event_context *ctx = event->ctx;
1256        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1257
1258        /*
1259         * If this is a per-task event, need to check whether this
1260         * event's task is the current task on this cpu.
1261         *
1262         * Can trigger due to concurrent perf_event_context_sched_out()
1263         * flipping contexts around.
1264         */
1265        if (ctx->task && cpuctx->task_ctx != ctx)
1266                return -EINVAL;
1267
1268        raw_spin_lock(&ctx->lock);
1269
1270        /*
1271         * If the event is on, turn it off.
1272         * If it is in error state, leave it in error state.
1273         */
1274        if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1275                update_context_time(ctx);
1276                update_cgrp_time_from_event(event);
1277                update_group_times(event);
1278                if (event == event->group_leader)
1279                        group_sched_out(event, cpuctx, ctx);
1280                else
1281                        event_sched_out(event, cpuctx, ctx);
1282                event->state = PERF_EVENT_STATE_OFF;
1283        }
1284
1285        raw_spin_unlock(&ctx->lock);
1286
1287        return 0;
1288}
1289
1290/*
1291 * Disable a event.
1292 *
1293 * If event->ctx is a cloned context, callers must make sure that
1294 * every task struct that event->ctx->task could possibly point to
1295 * remains valid.  This condition is satisifed when called through
1296 * perf_event_for_each_child or perf_event_for_each because they
1297 * hold the top-level event's child_mutex, so any descendant that
1298 * goes to exit will block in sync_child_event.
1299 * When called from perf_pending_event it's OK because event->ctx
1300 * is the current context on this CPU and preemption is disabled,
1301 * hence we can't get into perf_event_task_sched_out for this context.
1302 */
1303void perf_event_disable(struct perf_event *event)
1304{
1305        struct perf_event_context *ctx = event->ctx;
1306        struct task_struct *task = ctx->task;
1307
1308        if (!task) {
1309                /*
1310                 * Disable the event on the cpu that it's on
1311                 */
1312                cpu_function_call(event->cpu, __perf_event_disable, event);
1313                return;
1314        }
1315
1316retry:
1317        if (!task_function_call(task, __perf_event_disable, event))
1318                return;
1319
1320        raw_spin_lock_irq(&ctx->lock);
1321        /*
1322         * If the event is still active, we need to retry the cross-call.
1323         */
1324        if (event->state == PERF_EVENT_STATE_ACTIVE) {
1325                raw_spin_unlock_irq(&ctx->lock);
1326                /*
1327                 * Reload the task pointer, it might have been changed by
1328                 * a concurrent perf_event_context_sched_out().
1329                 */
1330                task = ctx->task;
1331                goto retry;
1332        }
1333
1334        /*
1335         * Since we have the lock this context can't be scheduled
1336         * in, so we can change the state safely.
1337         */
1338        if (event->state == PERF_EVENT_STATE_INACTIVE) {
1339                update_group_times(event);
1340                event->state = PERF_EVENT_STATE_OFF;
1341        }
1342        raw_spin_unlock_irq(&ctx->lock);
1343}
1344EXPORT_SYMBOL_GPL(perf_event_disable);
1345
1346static void perf_set_shadow_time(struct perf_event *event,
1347                                 struct perf_event_context *ctx,
1348                                 u64 tstamp)
1349{
1350        /*
1351         * use the correct time source for the time snapshot
1352         *
1353         * We could get by without this by leveraging the
1354         * fact that to get to this function, the caller
1355         * has most likely already called update_context_time()
1356         * and update_cgrp_time_xx() and thus both timestamp
1357         * are identical (or very close). Given that tstamp is,
1358         * already adjusted for cgroup, we could say that:
1359         *    tstamp - ctx->timestamp
1360         * is equivalent to
1361         *    tstamp - cgrp->timestamp.
1362         *
1363         * Then, in perf_output_read(), the calculation would
1364         * work with no changes because:
1365         * - event is guaranteed scheduled in
1366         * - no scheduled out in between
1367         * - thus the timestamp would be the same
1368         *
1369         * But this is a bit hairy.
1370         *
1371         * So instead, we have an explicit cgroup call to remain
1372         * within the time time source all along. We believe it
1373         * is cleaner and simpler to understand.
1374         */
1375        if (is_cgroup_event(event))
1376                perf_cgroup_set_shadow_time(event, tstamp);
1377        else
1378                event->shadow_ctx_time = tstamp - ctx->timestamp;
1379}
1380
1381#define MAX_INTERRUPTS (~0ULL)
1382
1383static void perf_log_throttle(struct perf_event *event, int enable);
1384
1385static int
1386event_sched_in(struct perf_event *event,
1387                 struct perf_cpu_context *cpuctx,
1388                 struct perf_event_context *ctx)
1389{
1390        u64 tstamp = perf_event_time(event);
1391
1392        if (event->state <= PERF_EVENT_STATE_OFF)
1393                return 0;
1394
1395        event->state = PERF_EVENT_STATE_ACTIVE;
1396        event->oncpu = smp_processor_id();
1397
1398        /*
1399         * Unthrottle events, since we scheduled we might have missed several
1400         * ticks already, also for a heavily scheduling task there is little
1401         * guarantee it'll get a tick in a timely manner.
1402         */
1403        if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1404                perf_log_throttle(event, 1);
1405                event->hw.interrupts = 0;
1406        }
1407
1408        /*
1409         * The new state must be visible before we turn it on in the hardware:
1410         */
1411        smp_wmb();
1412
1413        if (event->pmu->add(event, PERF_EF_START)) {
1414                event->state = PERF_EVENT_STATE_INACTIVE;
1415                event->oncpu = -1;
1416                return -EAGAIN;
1417        }
1418
1419        event->tstamp_running += tstamp - event->tstamp_stopped;
1420
1421        perf_set_shadow_time(event, ctx, tstamp);
1422
1423        if (!is_software_event(event))
1424                cpuctx->active_oncpu++;
1425        ctx->nr_active++;
1426        if (event->attr.freq && event->attr.sample_freq)
1427                ctx->nr_freq++;
1428
1429        if (event->attr.exclusive)
1430                cpuctx->exclusive = 1;
1431
1432        return 0;
1433}
1434
1435static int
1436group_sched_in(struct perf_event *group_event,
1437               struct perf_cpu_context *cpuctx,
1438               struct perf_event_context *ctx)
1439{
1440        struct perf_event *event, *partial_group = NULL;
1441        struct pmu *pmu = group_event->pmu;
1442        u64 now = ctx->time;
1443        bool simulate = false;
1444
1445        if (group_event->state == PERF_EVENT_STATE_OFF)
1446                return 0;
1447
1448        pmu->start_txn(pmu);
1449
1450        if (event_sched_in(group_event, cpuctx, ctx)) {
1451                pmu->cancel_txn(pmu);
1452                return -EAGAIN;
1453        }
1454
1455        /*
1456         * Schedule in siblings as one group (if any):
1457         */
1458        list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1459                if (event_sched_in(event, cpuctx, ctx)) {
1460                        partial_group = event;
1461                        goto group_error;
1462                }
1463        }
1464
1465        if (!pmu->commit_txn(pmu))
1466                return 0;
1467
1468group_error:
1469        /*
1470         * Groups can be scheduled in as one unit only, so undo any
1471         * partial group before returning:
1472         * The events up to the failed event are scheduled out normally,
1473         * tstamp_stopped will be updated.
1474         *
1475         * The failed events and the remaining siblings need to have
1476         * their timings updated as if they had gone thru event_sched_in()
1477         * and event_sched_out(). This is required to get consistent timings
1478         * across the group. This also takes care of the case where the group
1479         * could never be scheduled by ensuring tstamp_stopped is set to mark
1480         * the time the event was actually stopped, such that time delta
1481         * calculation in update_event_times() is correct.
1482         */
1483        list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1484                if (event == partial_group)
1485                        simulate = true;
1486
1487                if (simulate) {
1488                        event->tstamp_running += now - event->tstamp_stopped;
1489                        event->tstamp_stopped = now;
1490                } else {
1491                        event_sched_out(event, cpuctx, ctx);
1492                }
1493        }
1494        event_sched_out(group_event, cpuctx, ctx);
1495
1496        pmu->cancel_txn(pmu);
1497
1498        return -EAGAIN;
1499}
1500
1501/*
1502 * Work out whether we can put this event group on the CPU now.
1503 */
1504static int group_can_go_on(struct perf_event *event,
1505                           struct perf_cpu_context *cpuctx,
1506                           int can_add_hw)
1507{
1508        /*
1509         * Groups consisting entirely of software events can always go on.
1510         */
1511        if (event->group_flags & PERF_GROUP_SOFTWARE)
1512                return 1;
1513        /*
1514         * If an exclusive group is already on, no other hardware
1515         * events can go on.
1516         */
1517        if (cpuctx->exclusive)
1518                return 0;
1519        /*
1520         * If this group is exclusive and there are already
1521         * events on the CPU, it can't go on.
1522         */
1523        if (event->attr.exclusive && cpuctx->active_oncpu)
1524                return 0;
1525        /*
1526         * Otherwise, try to add it if all previous groups were able
1527         * to go on.
1528         */
1529        return can_add_hw;
1530}
1531
1532static void add_event_to_ctx(struct perf_event *event,
1533                               struct perf_event_context *ctx)
1534{
1535        u64 tstamp = perf_event_time(event);
1536
1537        list_add_event(event, ctx);
1538        perf_group_attach(event);
1539        event->tstamp_enabled = tstamp;
1540        event->tstamp_running = tstamp;
1541        event->tstamp_stopped = tstamp;
1542}
1543
1544static void task_ctx_sched_out(struct perf_event_context *ctx);
1545static void
1546ctx_sched_in(struct perf_event_context *ctx,
1547             struct perf_cpu_context *cpuctx,
1548             enum event_type_t event_type,
1549             struct task_struct *task);
1550
1551static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1552                                struct perf_event_context *ctx,
1553                                struct task_struct *task)
1554{
1555        cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1556        if (ctx)
1557                ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1558        cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1559        if (ctx)
1560                ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1561}
1562
1563/*
1564 * Cross CPU call to install and enable a performance event
1565 *
1566 * Must be called with ctx->mutex held
1567 */
1568static int  __perf_install_in_context(void *info)
1569{
1570        struct perf_event *event = info;
1571        struct perf_event_context *ctx = event->ctx;
1572        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1573        struct perf_event_context *task_ctx = cpuctx->task_ctx;
1574        struct task_struct *task = current;
1575
1576        perf_ctx_lock(cpuctx, task_ctx);
1577        perf_pmu_disable(cpuctx->ctx.pmu);
1578
1579        /*
1580         * If there was an active task_ctx schedule it out.
1581         */
1582        if (task_ctx)
1583                task_ctx_sched_out(task_ctx);
1584
1585        /*
1586         * If the context we're installing events in is not the
1587         * active task_ctx, flip them.
1588         */
1589        if (ctx->task && task_ctx != ctx) {
1590                if (task_ctx)
1591                        raw_spin_unlock(&task_ctx->lock);
1592                raw_spin_lock(&ctx->lock);
1593                task_ctx = ctx;
1594        }
1595
1596        if (task_ctx) {
1597                cpuctx->task_ctx = task_ctx;
1598                task = task_ctx->task;
1599        }
1600
1601        cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1602
1603        update_context_time(ctx);
1604        /*
1605         * update cgrp time only if current cgrp
1606         * matches event->cgrp. Must be done before
1607         * calling add_event_to_ctx()
1608         */
1609        update_cgrp_time_from_event(event);
1610
1611        add_event_to_ctx(event, ctx);
1612
1613        /*
1614         * Schedule everything back in
1615         */
1616        perf_event_sched_in(cpuctx, task_ctx, task);
1617
1618        perf_pmu_enable(cpuctx->ctx.pmu);
1619        perf_ctx_unlock(cpuctx, task_ctx);
1620
1621        return 0;
1622}
1623
1624/*
1625 * Attach a performance event to a context
1626 *
1627 * First we add the event to the list with the hardware enable bit
1628 * in event->hw_config cleared.
1629 *
1630 * If the event is attached to a task which is on a CPU we use a smp
1631 * call to enable it in the task context. The task might have been
1632 * scheduled away, but we check this in the smp call again.
1633 */
1634static void
1635perf_install_in_context(struct perf_event_context *ctx,
1636                        struct perf_event *event,
1637                        int cpu)
1638{
1639        struct task_struct *task = ctx->task;
1640
1641        lockdep_assert_held(&ctx->mutex);
1642
1643        event->ctx = ctx;
1644
1645        if (!task) {
1646                /*
1647                 * Per cpu events are installed via an smp call and
1648                 * the install is always successful.
1649                 */
1650                cpu_function_call(cpu, __perf_install_in_context, event);
1651                return;
1652        }
1653
1654retry:
1655        if (!task_function_call(task, __perf_install_in_context, event))
1656                return;
1657
1658        raw_spin_lock_irq(&ctx->lock);
1659        /*
1660         * If we failed to find a running task, but find the context active now
1661         * that we've acquired the ctx->lock, retry.
1662         */
1663        if (ctx->is_active) {
1664                raw_spin_unlock_irq(&ctx->lock);
1665                goto retry;
1666        }
1667
1668        /*
1669         * Since the task isn't running, its safe to add the event, us holding
1670         * the ctx->lock ensures the task won't get scheduled in.
1671         */
1672        add_event_to_ctx(event, ctx);
1673        raw_spin_unlock_irq(&ctx->lock);
1674}
1675
1676/*
1677 * Put a event into inactive state and update time fields.
1678 * Enabling the leader of a group effectively enables all
1679 * the group members that aren't explicitly disabled, so we
1680 * have to update their ->tstamp_enabled also.
1681 * Note: this works for group members as well as group leaders
1682 * since the non-leader members' sibling_lists will be empty.
1683 */
1684static void __perf_event_mark_enabled(struct perf_event *event)
1685{
1686        struct perf_event *sub;
1687        u64 tstamp = perf_event_time(event);
1688
1689        event->state = PERF_EVENT_STATE_INACTIVE;
1690        event->tstamp_enabled = tstamp - event->total_time_enabled;
1691        list_for_each_entry(sub, &event->sibling_list, group_entry) {
1692                if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1693                        sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1694        }
1695}
1696
1697/*
1698 * Cross CPU call to enable a performance event
1699 */
1700static int __perf_event_enable(void *info)
1701{
1702        struct perf_event *event = info;
1703        struct perf_event_context *ctx = event->ctx;
1704        struct perf_event *leader = event->group_leader;
1705        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1706        int err;
1707
1708        if (WARN_ON_ONCE(!ctx->is_active))
1709                return -EINVAL;
1710
1711        raw_spin_lock(&ctx->lock);
1712        update_context_time(ctx);
1713
1714        if (event->state >= PERF_EVENT_STATE_INACTIVE)
1715                goto unlock;
1716
1717        /*
1718         * set current task's cgroup time reference point
1719         */
1720        perf_cgroup_set_timestamp(current, ctx);
1721
1722        __perf_event_mark_enabled(event);
1723
1724        if (!event_filter_match(event)) {
1725                if (is_cgroup_event(event))
1726                        perf_cgroup_defer_enabled(event);
1727                goto unlock;
1728        }
1729
1730        /*
1731         * If the event is in a group and isn't the group leader,
1732         * then don't put it on unless the group is on.
1733         */
1734        if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1735                goto unlock;
1736
1737        if (!group_can_go_on(event, cpuctx, 1)) {
1738                err = -EEXIST;
1739        } else {
1740                if (event == leader)
1741                        err = group_sched_in(event, cpuctx, ctx);
1742                else
1743                        err = event_sched_in(event, cpuctx, ctx);
1744        }
1745
1746        if (err) {
1747                /*
1748                 * If this event can't go on and it's part of a
1749                 * group, then the whole group has to come off.
1750                 */
1751                if (leader != event)
1752                        group_sched_out(leader, cpuctx, ctx);
1753                if (leader->attr.pinned) {
1754                        update_group_times(leader);
1755                        leader->state = PERF_EVENT_STATE_ERROR;
1756                }
1757        }
1758
1759unlock:
1760        raw_spin_unlock(&ctx->lock);
1761
1762        return 0;
1763}
1764
1765/*
1766 * Enable a event.
1767 *
1768 * If event->ctx is a cloned context, callers must make sure that
1769 * every task struct that event->ctx->task could possibly point to
1770 * remains valid.  This condition is satisfied when called through
1771 * perf_event_for_each_child or perf_event_for_each as described
1772 * for perf_event_disable.
1773 */
1774void perf_event_enable(struct perf_event *event)
1775{
1776        struct perf_event_context *ctx = event->ctx;
1777        struct task_struct *task = ctx->task;
1778
1779        if (!task) {
1780                /*
1781                 * Enable the event on the cpu that it's on
1782                 */
1783                cpu_function_call(event->cpu, __perf_event_enable, event);
1784                return;
1785        }
1786
1787        raw_spin_lock_irq(&ctx->lock);
1788        if (event->state >= PERF_EVENT_STATE_INACTIVE)
1789                goto out;
1790
1791        /*
1792         * If the event is in error state, clear that first.
1793         * That way, if we see the event in error state below, we
1794         * know that it has gone back into error state, as distinct
1795         * from the task having been scheduled away before the
1796         * cross-call arrived.
1797         */
1798        if (event->state == PERF_EVENT_STATE_ERROR)
1799                event->state = PERF_EVENT_STATE_OFF;
1800
1801retry:
1802        if (!ctx->is_active) {
1803                __perf_event_mark_enabled(event);
1804                goto out;
1805        }
1806
1807        raw_spin_unlock_irq(&ctx->lock);
1808
1809        if (!task_function_call(task, __perf_event_enable, event))
1810                return;
1811
1812        raw_spin_lock_irq(&ctx->lock);
1813
1814        /*
1815         * If the context is active and the event is still off,
1816         * we need to retry the cross-call.
1817         */
1818        if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1819                /*
1820                 * task could have been flipped by a concurrent
1821                 * perf_event_context_sched_out()
1822                 */
1823                task = ctx->task;
1824                goto retry;
1825        }
1826
1827out:
1828        raw_spin_unlock_irq(&ctx->lock);
1829}
1830EXPORT_SYMBOL_GPL(perf_event_enable);
1831
1832int perf_event_refresh(struct perf_event *event, int refresh)
1833{
1834        /*
1835         * not supported on inherited events
1836         */
1837        if (event->attr.inherit || !is_sampling_event(event))
1838                return -EINVAL;
1839
1840        atomic_add(refresh, &event->event_limit);
1841        perf_event_enable(event);
1842
1843        return 0;
1844}
1845EXPORT_SYMBOL_GPL(perf_event_refresh);
1846
1847static void ctx_sched_out(struct perf_event_context *ctx,
1848                          struct perf_cpu_context *cpuctx,
1849                          enum event_type_t event_type)
1850{
1851        struct perf_event *event;
1852        int is_active = ctx->is_active;
1853
1854        ctx->is_active &= ~event_type;
1855        if (likely(!ctx->nr_events))
1856                return;
1857
1858        update_context_time(ctx);
1859        update_cgrp_time_from_cpuctx(cpuctx);
1860        if (!ctx->nr_active)
1861                return;
1862
1863        perf_pmu_disable(ctx->pmu);
1864        if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1865                list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1866                        group_sched_out(event, cpuctx, ctx);
1867        }
1868
1869        if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1870                list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1871                        group_sched_out(event, cpuctx, ctx);
1872        }
1873        perf_pmu_enable(ctx->pmu);
1874}
1875
1876/*
1877 * Test whether two contexts are equivalent, i.e. whether they
1878 * have both been cloned from the same version of the same context
1879 * and they both have the same number of enabled events.
1880 * If the number of enabled events is the same, then the set
1881 * of enabled events should be the same, because these are both
1882 * inherited contexts, therefore we can't access individual events
1883 * in them directly with an fd; we can only enable/disable all
1884 * events via prctl, or enable/disable all events in a family
1885 * via ioctl, which will have the same effect on both contexts.
1886 */
1887static int context_equiv(struct perf_event_context *ctx1,
1888                         struct perf_event_context *ctx2)
1889{
1890        return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1891                && ctx1->parent_gen == ctx2->parent_gen
1892                && !ctx1->pin_count && !ctx2->pin_count;
1893}
1894
1895static void __perf_event_sync_stat(struct perf_event *event,
1896                                     struct perf_event *next_event)
1897{
1898        u64 value;
1899
1900        if (!event->attr.inherit_stat)
1901                return;
1902
1903        /*
1904         * Update the event value, we cannot use perf_event_read()
1905         * because we're in the middle of a context switch and have IRQs
1906         * disabled, which upsets smp_call_function_single(), however
1907         * we know the event must be on the current CPU, therefore we
1908         * don't need to use it.
1909         */
1910        switch (event->state) {
1911        case PERF_EVENT_STATE_ACTIVE:
1912                event->pmu->read(event);
1913                /* fall-through */
1914
1915        case PERF_EVENT_STATE_INACTIVE:
1916                update_event_times(event);
1917                break;
1918
1919        default:
1920                break;
1921        }
1922
1923        /*
1924         * In order to keep per-task stats reliable we need to flip the event
1925         * values when we flip the contexts.
1926         */
1927        value = local64_read(&next_event->count);
1928        value = local64_xchg(&event->count, value);
1929        local64_set(&next_event->count, value);
1930
1931        swap(event->total_time_enabled, next_event->total_time_enabled);
1932        swap(event->total_time_running, next_event->total_time_running);
1933
1934        /*
1935         * Since we swizzled the values, update the user visible data too.
1936         */
1937        perf_event_update_userpage(event);
1938        perf_event_update_userpage(next_event);
1939}
1940
1941#define list_next_entry(pos, member) \
1942        list_entry(pos->member.next, typeof(*pos), member)
1943
1944static void perf_event_sync_stat(struct perf_event_context *ctx,
1945                                   struct perf_event_context *next_ctx)
1946{
1947        struct perf_event *event, *next_event;
1948
1949        if (!ctx->nr_stat)
1950                return;
1951
1952        update_context_time(ctx);
1953
1954        event = list_first_entry(&ctx->event_list,
1955                                   struct perf_event, event_entry);
1956
1957        next_event = list_first_entry(&next_ctx->event_list,
1958                                        struct perf_event, event_entry);
1959
1960        while (&event->event_entry != &ctx->event_list &&
1961               &next_event->event_entry != &next_ctx->event_list) {
1962
1963                __perf_event_sync_stat(event, next_event);
1964
1965                event = list_next_entry(event, event_entry);
1966                next_event = list_next_entry(next_event, event_entry);
1967        }
1968}
1969
1970static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1971                                         struct task_struct *next)
1972{
1973        struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1974        struct perf_event_context *next_ctx;
1975        struct perf_event_context *parent;
1976        struct perf_cpu_context *cpuctx;
1977        int do_switch = 1;
1978
1979        if (likely(!ctx))
1980                return;
1981
1982        cpuctx = __get_cpu_context(ctx);
1983        if (!cpuctx->task_ctx)
1984                return;
1985
1986        rcu_read_lock();
1987        parent = rcu_dereference(ctx->parent_ctx);
1988        next_ctx = next->perf_event_ctxp[ctxn];
1989        if (parent && next_ctx &&
1990            rcu_dereference(next_ctx->parent_ctx) == parent) {
1991                /*
1992                 * Looks like the two contexts are clones, so we might be
1993                 * able to optimize the context switch.  We lock both
1994                 * contexts and check that they are clones under the
1995                 * lock (including re-checking that neither has been
1996                 * uncloned in the meantime).  It doesn't matter which
1997                 * order we take the locks because no other cpu could
1998                 * be trying to lock both of these tasks.
1999                 */
2000                raw_spin_lock(&ctx->lock);
2001                raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2002                if (context_equiv(ctx, next_ctx)) {
2003                        /*
2004                         * XXX do we need a memory barrier of sorts
2005                         * wrt to rcu_dereference() of perf_event_ctxp
2006                         */
2007                        task->perf_event_ctxp[ctxn] = next_ctx;
2008                        next->perf_event_ctxp[ctxn] = ctx;
2009                        ctx->task = next;
2010                        next_ctx->task = task;
2011                        do_switch = 0;
2012
2013                        perf_event_sync_stat(ctx, next_ctx);
2014                }
2015                raw_spin_unlock(&next_ctx->lock);
2016                raw_spin_unlock(&ctx->lock);
2017        }
2018        rcu_read_unlock();
2019
2020        if (do_switch) {
2021                raw_spin_lock(&ctx->lock);
2022                ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2023                cpuctx->task_ctx = NULL;
2024                raw_spin_unlock(&ctx->lock);
2025        }
2026}
2027
2028#define for_each_task_context_nr(ctxn)                                  \
2029        for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2030
2031/*
2032 * Called from scheduler to remove the events of the current task,
2033 * with interrupts disabled.
2034 *
2035 * We stop each event and update the event value in event->count.
2036 *
2037 * This does not protect us against NMI, but disable()
2038 * sets the disabled bit in the control field of event _before_
2039 * accessing the event control register. If a NMI hits, then it will
2040 * not restart the event.
2041 */
2042void __perf_event_task_sched_out(struct task_struct *task,
2043                                 struct task_struct *next)
2044{
2045        int ctxn;
2046
2047        for_each_task_context_nr(ctxn)
2048                perf_event_context_sched_out(task, ctxn, next);
2049
2050        /*
2051         * if cgroup events exist on this CPU, then we need
2052         * to check if we have to switch out PMU state.
2053         * cgroup event are system-wide mode only
2054         */
2055        if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2056                perf_cgroup_sched_out(task, next);
2057}
2058
2059static void task_ctx_sched_out(struct perf_event_context *ctx)
2060{
2061        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2062
2063        if (!cpuctx->task_ctx)
2064                return;
2065
2066        if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2067                return;
2068
2069        ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2070        cpuctx->task_ctx = NULL;
2071}
2072
2073/*
2074 * Called with IRQs disabled
2075 */
2076static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2077                              enum event_type_t event_type)
2078{
2079        ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2080}
2081
2082static void
2083ctx_pinned_sched_in(struct perf_event_context *ctx,
2084                    struct perf_cpu_context *cpuctx)
2085{
2086        struct perf_event *event;
2087
2088        list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2089                if (event->state <= PERF_EVENT_STATE_OFF)
2090                        continue;
2091                if (!event_filter_match(event))
2092                        continue;
2093
2094                /* may need to reset tstamp_enabled */
2095                if (is_cgroup_event(event))
2096                        perf_cgroup_mark_enabled(event, ctx);
2097
2098                if (group_can_go_on(event, cpuctx, 1))
2099                        group_sched_in(event, cpuctx, ctx);
2100
2101                /*
2102                 * If this pinned group hasn't been scheduled,
2103                 * put it in error state.
2104                 */
2105                if (event->state == PERF_EVENT_STATE_INACTIVE) {
2106                        update_group_times(event);
2107                        event->state = PERF_EVENT_STATE_ERROR;
2108                }
2109        }
2110}
2111
2112static void
2113ctx_flexible_sched_in(struct perf_event_context *ctx,
2114                      struct perf_cpu_context *cpuctx)
2115{
2116        struct perf_event *event;
2117        int can_add_hw = 1;
2118
2119        list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2120                /* Ignore events in OFF or ERROR state */
2121                if (event->state <= PERF_EVENT_STATE_OFF)
2122                        continue;
2123                /*
2124                 * Listen to the 'cpu' scheduling filter constraint
2125                 * of events:
2126                 */
2127                if (!event_filter_match(event))
2128                        continue;
2129
2130                /* may need to reset tstamp_enabled */
2131                if (is_cgroup_event(event))
2132                        perf_cgroup_mark_enabled(event, ctx);
2133
2134                if (group_can_go_on(event, cpuctx, can_add_hw)) {
2135                        if (group_sched_in(event, cpuctx, ctx))
2136                                can_add_hw = 0;
2137                }
2138        }
2139}
2140
2141static void
2142ctx_sched_in(struct perf_event_context *ctx,
2143             struct perf_cpu_context *cpuctx,
2144             enum event_type_t event_type,
2145             struct task_struct *task)
2146{
2147        u64 now;
2148        int is_active = ctx->is_active;
2149
2150        ctx->is_active |= event_type;
2151        if (likely(!ctx->nr_events))
2152                return;
2153
2154        now = perf_clock();
2155        ctx->timestamp = now;
2156        perf_cgroup_set_timestamp(task, ctx);
2157        /*
2158         * First go through the list and put on any pinned groups
2159         * in order to give them the best chance of going on.
2160         */
2161        if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2162                ctx_pinned_sched_in(ctx, cpuctx);
2163
2164        /* Then walk through the lower prio flexible groups */
2165        if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2166                ctx_flexible_sched_in(ctx, cpuctx);
2167}
2168
2169static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2170                             enum event_type_t event_type,
2171                             struct task_struct *task)
2172{
2173        struct perf_event_context *ctx = &cpuctx->ctx;
2174
2175        ctx_sched_in(ctx, cpuctx, event_type, task);
2176}
2177
2178static void perf_event_context_sched_in(struct perf_event_context *ctx,
2179                                        struct task_struct *task)
2180{
2181        struct perf_cpu_context *cpuctx;
2182
2183        cpuctx = __get_cpu_context(ctx);
2184        if (cpuctx->task_ctx == ctx)
2185                return;
2186
2187        perf_ctx_lock(cpuctx, ctx);
2188        perf_pmu_disable(ctx->pmu);
2189        /*
2190         * We want to keep the following priority order:
2191         * cpu pinned (that don't need to move), task pinned,
2192         * cpu flexible, task flexible.
2193         */
2194        cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2195
2196        if (ctx->nr_events)
2197                cpuctx->task_ctx = ctx;
2198
2199        perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2200
2201        perf_pmu_enable(ctx->pmu);
2202        perf_ctx_unlock(cpuctx, ctx);
2203
2204        /*
2205         * Since these rotations are per-cpu, we need to ensure the
2206         * cpu-context we got scheduled on is actually rotating.
2207         */
2208        perf_pmu_rotate_start(ctx->pmu);
2209}
2210
2211/*
2212 * When sampling the branck stack in system-wide, it may be necessary
2213 * to flush the stack on context switch. This happens when the branch
2214 * stack does not tag its entries with the pid of the current task.
2215 * Otherwise it becomes impossible to associate a branch entry with a
2216 * task. This ambiguity is more likely to appear when the branch stack
2217 * supports priv level filtering and the user sets it to monitor only
2218 * at the user level (which could be a useful measurement in system-wide
2219 * mode). In that case, the risk is high of having a branch stack with
2220 * branch from multiple tasks. Flushing may mean dropping the existing
2221 * entries or stashing them somewhere in the PMU specific code layer.
2222 *
2223 * This function provides the context switch callback to the lower code
2224 * layer. It is invoked ONLY when there is at least one system-wide context
2225 * with at least one active event using taken branch sampling.
2226 */
2227static void perf_branch_stack_sched_in(struct task_struct *prev,
2228                                       struct task_struct *task)
2229{
2230        struct perf_cpu_context *cpuctx;
2231        struct pmu *pmu;
2232        unsigned long flags;
2233
2234        /* no need to flush branch stack if not changing task */
2235        if (prev == task)
2236                return;
2237
2238        local_irq_save(flags);
2239
2240        rcu_read_lock();
2241
2242        list_for_each_entry_rcu(pmu, &pmus, entry) {
2243                cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2244
2245                /*
2246                 * check if the context has at least one
2247                 * event using PERF_SAMPLE_BRANCH_STACK
2248                 */
2249                if (cpuctx->ctx.nr_branch_stack > 0
2250                    && pmu->flush_branch_stack) {
2251
2252                        pmu = cpuctx->ctx.pmu;
2253
2254                        perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2255
2256                        perf_pmu_disable(pmu);
2257
2258                        pmu->flush_branch_stack();
2259
2260                        perf_pmu_enable(pmu);
2261
2262                        perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2263                }
2264        }
2265
2266        rcu_read_unlock();
2267
2268        local_irq_restore(flags);
2269}
2270
2271/*
2272 * Called from scheduler to add the events of the current task
2273 * with interrupts disabled.
2274 *
2275 * We restore the event value and then enable it.
2276 *
2277 * This does not protect us against NMI, but enable()
2278 * sets the enabled bit in the control field of event _before_
2279 * accessing the event control register. If a NMI hits, then it will
2280 * keep the event running.
2281 */
2282void __perf_event_task_sched_in(struct task_struct *prev,
2283                                struct task_struct *task)
2284{
2285        struct perf_event_context *ctx;
2286        int ctxn;
2287
2288        for_each_task_context_nr(ctxn) {
2289                ctx = task->perf_event_ctxp[ctxn];
2290                if (likely(!ctx))
2291                        continue;
2292
2293                perf_event_context_sched_in(ctx, task);
2294        }
2295        /*
2296         * if cgroup events exist on this CPU, then we need
2297         * to check if we have to switch in PMU state.
2298         * cgroup event are system-wide mode only
2299         */
2300        if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2301                perf_cgroup_sched_in(prev, task);
2302
2303        /* check for system-wide branch_stack events */
2304        if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2305                perf_branch_stack_sched_in(prev, task);
2306}
2307
2308static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2309{
2310        u64 frequency = event->attr.sample_freq;
2311        u64 sec = NSEC_PER_SEC;
2312        u64 divisor, dividend;
2313
2314        int count_fls, nsec_fls, frequency_fls, sec_fls;
2315
2316        count_fls = fls64(count);
2317        nsec_fls = fls64(nsec);
2318        frequency_fls = fls64(frequency);
2319        sec_fls = 30;
2320
2321        /*
2322         * We got @count in @nsec, with a target of sample_freq HZ
2323         * the target period becomes:
2324         *
2325         *             @count * 10^9
2326         * period = -------------------
2327         *          @nsec * sample_freq
2328         *
2329         */
2330
2331        /*
2332         * Reduce accuracy by one bit such that @a and @b converge
2333         * to a similar magnitude.
2334         */
2335#define REDUCE_FLS(a, b)                \
2336do {                                    \
2337        if (a##_fls > b##_fls) {        \
2338                a >>= 1;                \
2339                a##_fls--;              \
2340        } else {                        \
2341                b >>= 1;                \
2342                b##_fls--;              \
2343        }                               \
2344} while (0)
2345
2346        /*
2347         * Reduce accuracy until either term fits in a u64, then proceed with
2348         * the other, so that finally we can do a u64/u64 division.
2349         */
2350        while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2351                REDUCE_FLS(nsec, frequency);
2352                REDUCE_FLS(sec, count);
2353        }
2354
2355        if (count_fls + sec_fls > 64) {
2356                divisor = nsec * frequency;
2357
2358                while (count_fls + sec_fls > 64) {
2359                        REDUCE_FLS(count, sec);
2360                        divisor >>= 1;
2361                }
2362
2363                dividend = count * sec;
2364        } else {
2365                dividend = count * sec;
2366
2367                while (nsec_fls + frequency_fls > 64) {
2368                        REDUCE_FLS(nsec, frequency);
2369                        dividend >>= 1;
2370                }
2371
2372                divisor = nsec * frequency;
2373        }
2374
2375        if (!divisor)
2376                return dividend;
2377
2378        return div64_u64(dividend, divisor);
2379}
2380
2381static DEFINE_PER_CPU(int, perf_throttled_count);
2382static DEFINE_PER_CPU(u64, perf_throttled_seq);
2383
2384static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2385{
2386        struct hw_perf_event *hwc = &event->hw;
2387        s64 period, sample_period;
2388        s64 delta;
2389
2390        period = perf_calculate_period(event, nsec, count);
2391
2392        delta = (s64)(period - hwc->sample_period);
2393        delta = (delta + 7) / 8; /* low pass filter */
2394
2395        sample_period = hwc->sample_period + delta;
2396
2397        if (!sample_period)
2398                sample_period = 1;
2399
2400        hwc->sample_period = sample_period;
2401
2402        if (local64_read(&hwc->period_left) > 8*sample_period) {
2403                if (disable)
2404                        event->pmu->stop(event, PERF_EF_UPDATE);
2405
2406                local64_set(&hwc->period_left, 0);
2407
2408                if (disable)
2409                        event->pmu->start(event, PERF_EF_RELOAD);
2410        }
2411}
2412
2413/*
2414 * combine freq adjustment with unthrottling to avoid two passes over the
2415 * events. At the same time, make sure, having freq events does not change
2416 * the rate of unthrottling as that would introduce bias.
2417 */
2418static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2419                                           int needs_unthr)
2420{
2421        struct perf_event *event;
2422        struct hw_perf_event *hwc;
2423        u64 now, period = TICK_NSEC;
2424        s64 delta;
2425
2426        /*
2427         * only need to iterate over all events iff:
2428         * - context have events in frequency mode (needs freq adjust)
2429         * - there are events to unthrottle on this cpu
2430         */
2431        if (!(ctx->nr_freq || needs_unthr))
2432                return;
2433
2434        raw_spin_lock(&ctx->lock);
2435        perf_pmu_disable(ctx->pmu);
2436
2437        list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2438                if (event->state != PERF_EVENT_STATE_ACTIVE)
2439                        continue;
2440
2441                if (!event_filter_match(event))
2442                        continue;
2443
2444                hwc = &event->hw;
2445
2446                if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
2447                        hwc->interrupts = 0;
2448                        perf_log_throttle(event, 1);
2449                        event->pmu->start(event, 0);
2450                }
2451
2452                if (!event->attr.freq || !event->attr.sample_freq)
2453                        continue;
2454
2455                /*
2456                 * stop the event and update event->count
2457                 */
2458                event->pmu->stop(event, PERF_EF_UPDATE);
2459
2460                now = local64_read(&event->count);
2461                delta = now - hwc->freq_count_stamp;
2462                hwc->freq_count_stamp = now;
2463
2464                /*
2465                 * restart the event
2466                 * reload only if value has changed
2467                 * we have stopped the event so tell that
2468                 * to perf_adjust_period() to avoid stopping it
2469                 * twice.
2470                 */
2471                if (delta > 0)
2472                        perf_adjust_period(event, period, delta, false);
2473
2474                event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2475        }
2476
2477        perf_pmu_enable(ctx->pmu);
2478        raw_spin_unlock(&ctx->lock);
2479}
2480
2481/*
2482 * Round-robin a context's events:
2483 */
2484static void rotate_ctx(struct perf_event_context *ctx)
2485{
2486        /*
2487         * Rotate the first entry last of non-pinned groups. Rotation might be
2488         * disabled by the inheritance code.
2489         */
2490        if (!ctx->rotate_disable)
2491                list_rotate_left(&ctx->flexible_groups);
2492}
2493
2494/*
2495 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2496 * because they're strictly cpu affine and rotate_start is called with IRQs
2497 * disabled, while rotate_context is called from IRQ context.
2498 */
2499static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2500{
2501        struct perf_event_context *ctx = NULL;
2502        int rotate = 0, remove = 1;
2503
2504        if (cpuctx->ctx.nr_events) {
2505                remove = 0;
2506                if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2507                        rotate = 1;
2508        }
2509
2510        ctx = cpuctx->task_ctx;
2511        if (ctx && ctx->nr_events) {
2512                remove = 0;
2513                if (ctx->nr_events != ctx->nr_active)
2514                        rotate = 1;
2515        }
2516
2517        if (!rotate)
2518                goto done;
2519
2520        perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2521        perf_pmu_disable(cpuctx->ctx.pmu);
2522
2523        cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2524        if (ctx)
2525                ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2526
2527        rotate_ctx(&cpuctx->ctx);
2528        if (ctx)
2529                rotate_ctx(ctx);
2530
2531        perf_event_sched_in(cpuctx, ctx, current);
2532
2533        perf_pmu_enable(cpuctx->ctx.pmu);
2534        perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2535done:
2536        if (remove)
2537                list_del_init(&cpuctx->rotation_list);
2538}
2539
2540void perf_event_task_tick(void)
2541{
2542        struct list_head *head = &__get_cpu_var(rotation_list);
2543        struct perf_cpu_context *cpuctx, *tmp;
2544        struct perf_event_context *ctx;
2545        int throttled;
2546
2547        WARN_ON(!irqs_disabled());
2548
2549        __this_cpu_inc(perf_throttled_seq);
2550        throttled = __this_cpu_xchg(perf_throttled_count, 0);
2551
2552        list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2553                ctx = &cpuctx->ctx;
2554                perf_adjust_freq_unthr_context(ctx, throttled);
2555
2556                ctx = cpuctx->task_ctx;
2557                if (ctx)
2558                        perf_adjust_freq_unthr_context(ctx, throttled);
2559
2560                if (cpuctx->jiffies_interval == 1 ||
2561                                !(jiffies % cpuctx->jiffies_interval))
2562                        perf_rotate_context(cpuctx);
2563        }
2564}
2565
2566static int event_enable_on_exec(struct perf_event *event,
2567                                struct perf_event_context *ctx)
2568{
2569        if (!event->attr.enable_on_exec)
2570                return 0;
2571
2572        event->attr.enable_on_exec = 0;
2573        if (event->state >= PERF_EVENT_STATE_INACTIVE)
2574                return 0;
2575
2576        __perf_event_mark_enabled(event);
2577
2578        return 1;
2579}
2580
2581/*
2582 * Enable all of a task's events that have been marked enable-on-exec.
2583 * This expects task == current.
2584 */
2585static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2586{
2587        struct perf_event *event;
2588        unsigned long flags;
2589        int enabled = 0;
2590        int ret;
2591
2592        local_irq_save(flags);
2593        if (!ctx || !ctx->nr_events)
2594                goto out;
2595
2596        /*
2597         * We must ctxsw out cgroup events to avoid conflict
2598         * when invoking perf_task_event_sched_in() later on
2599         * in this function. Otherwise we end up trying to
2600         * ctxswin cgroup events which are already scheduled
2601         * in.
2602         */
2603        perf_cgroup_sched_out(current, NULL);
2604
2605        raw_spin_lock(&ctx->lock);
2606        task_ctx_sched_out(ctx);
2607
2608        list_for_each_entry(event, &ctx->event_list, event_entry) {
2609                ret = event_enable_on_exec(event, ctx);
2610                if (ret)
2611                        enabled = 1;
2612        }
2613
2614        /*
2615         * Unclone this context if we enabled any event.
2616         */
2617        if (enabled)
2618                unclone_ctx(ctx);
2619
2620        raw_spin_unlock(&ctx->lock);
2621
2622        /*
2623         * Also calls ctxswin for cgroup events, if any:
2624         */
2625        perf_event_context_sched_in(ctx, ctx->task);
2626out:
2627        local_irq_restore(flags);
2628}
2629
2630/*
2631 * Cross CPU call to read the hardware event
2632 */
2633static void __perf_event_read(void *info)
2634{
2635        struct perf_event *event = info;
2636        struct perf_event_context *ctx = event->ctx;
2637        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2638
2639        /*
2640         * If this is a task context, we need to check whether it is
2641         * the current task context of this cpu.  If not it has been
2642         * scheduled out before the smp call arrived.  In that case
2643         * event->count would have been updated to a recent sample
2644         * when the event was scheduled out.
2645         */
2646        if (ctx->task && cpuctx->task_ctx != ctx)
2647                return;
2648
2649        raw_spin_lock(&ctx->lock);
2650        if (ctx->is_active) {
2651                update_context_time(ctx);
2652                update_cgrp_time_from_event(event);
2653        }
2654        update_event_times(event);
2655        if (event->state == PERF_EVENT_STATE_ACTIVE)
2656                event->pmu->read(event);
2657        raw_spin_unlock(&ctx->lock);
2658}
2659
2660static inline u64 perf_event_count(struct perf_event *event)
2661{
2662        return local64_read(&event->count) + atomic64_read(&event->child_count);
2663}
2664
2665static u64 perf_event_read(struct perf_event *event)
2666{
2667        /*
2668         * If event is enabled and currently active on a CPU, update the
2669         * value in the event structure:
2670         */
2671        if (event->state == PERF_EVENT_STATE_ACTIVE) {
2672                smp_call_function_single(event->oncpu,
2673                                         __perf_event_read, event, 1);
2674        } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2675                struct perf_event_context *ctx = event->ctx;
2676                unsigned long flags;
2677
2678                raw_spin_lock_irqsave(&ctx->lock, flags);
2679                /*
2680                 * may read while context is not active
2681                 * (e.g., thread is blocked), in that case
2682                 * we cannot update context time
2683                 */
2684                if (ctx->is_active) {
2685                        update_context_time(ctx);
2686                        update_cgrp_time_from_event(event);
2687                }
2688                update_event_times(event);
2689                raw_spin_unlock_irqrestore(&ctx->lock, flags);
2690        }
2691
2692        return perf_event_count(event);
2693}
2694
2695/*
2696 * Initialize the perf_event context in a task_struct:
2697 */
2698static void __perf_event_init_context(struct perf_event_context *ctx)
2699{
2700        raw_spin_lock_init(&ctx->lock);
2701        mutex_init(&ctx->mutex);
2702        INIT_LIST_HEAD(&ctx->pinned_groups);
2703        INIT_LIST_HEAD(&ctx->flexible_groups);
2704        INIT_LIST_HEAD(&ctx->event_list);
2705        atomic_set(&ctx->refcount, 1);
2706}
2707
2708static struct perf_event_context *
2709alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2710{
2711        struct perf_event_context *ctx;
2712
2713        ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2714        if (!ctx)
2715                return NULL;
2716
2717        __perf_event_init_context(ctx);
2718        if (task) {
2719                ctx->task = task;
2720                get_task_struct(task);
2721        }
2722        ctx->pmu = pmu;
2723
2724        return ctx;
2725}
2726
2727static struct task_struct *
2728find_lively_task_by_vpid(pid_t vpid)
2729{
2730        struct task_struct *task;
2731        int err;
2732
2733        rcu_read_lock();
2734        if (!vpid)
2735                task = current;
2736        else
2737                task = find_task_by_vpid(vpid);
2738        if (task)
2739                get_task_struct(task);
2740        rcu_read_unlock();
2741
2742        if (!task)
2743                return ERR_PTR(-ESRCH);
2744
2745        /* Reuse ptrace permission checks for now. */
2746        err = -EACCES;
2747        if (!ptrace_may_access(task, PTRACE_MODE_READ))
2748                goto errout;
2749
2750        return task;
2751errout:
2752        put_task_struct(task);
2753        return ERR_PTR(err);
2754
2755}
2756
2757/*
2758 * Returns a matching context with refcount and pincount.
2759 */
2760static struct perf_event_context *
2761find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2762{
2763        struct perf_event_context *ctx;
2764        struct perf_cpu_context *cpuctx;
2765        unsigned long flags;
2766        int ctxn, err;
2767
2768        if (!task) {
2769                /* Must be root to operate on a CPU event: */
2770                if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2771                        return ERR_PTR(-EACCES);
2772
2773                /*
2774                 * We could be clever and allow to attach a event to an
2775                 * offline CPU and activate it when the CPU comes up, but
2776                 * that's for later.
2777                 */
2778                if (!cpu_online(cpu))
2779                        return ERR_PTR(-ENODEV);
2780
2781                cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2782                ctx = &cpuctx->ctx;
2783                get_ctx(ctx);
2784                ++ctx->pin_count;
2785
2786                return ctx;
2787        }
2788
2789        err = -EINVAL;
2790        ctxn = pmu->task_ctx_nr;
2791        if (ctxn < 0)
2792                goto errout;
2793
2794retry:
2795        ctx = perf_lock_task_context(task, ctxn, &flags);
2796        if (ctx) {
2797                unclone_ctx(ctx);
2798                ++ctx->pin_count;
2799                raw_spin_unlock_irqrestore(&ctx->lock, flags);
2800        } else {
2801                ctx = alloc_perf_context(pmu, task);
2802                err = -ENOMEM;
2803                if (!ctx)
2804                        goto errout;
2805
2806                err = 0;
2807                mutex_lock(&task->perf_event_mutex);
2808                /*
2809                 * If it has already passed perf_event_exit_task().
2810                 * we must see PF_EXITING, it takes this mutex too.
2811                 */
2812                if (task->flags & PF_EXITING)
2813                        err = -ESRCH;
2814                else if (task->perf_event_ctxp[ctxn])
2815                        err = -EAGAIN;
2816                else {
2817                        get_ctx(ctx);
2818                        ++ctx->pin_count;
2819                        rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2820                }
2821                mutex_unlock(&task->perf_event_mutex);
2822
2823                if (unlikely(err)) {
2824                        put_ctx(ctx);
2825
2826                        if (err == -EAGAIN)
2827                                goto retry;
2828                        goto errout;
2829                }
2830        }
2831
2832        return ctx;
2833
2834errout:
2835        return ERR_PTR(err);
2836}
2837
2838static void perf_event_free_filter(struct perf_event *event);
2839
2840static void free_event_rcu(struct rcu_head *head)
2841{
2842        struct perf_event *event;
2843
2844        event = container_of(head, struct perf_event, rcu_head);
2845        if (event->ns)
2846                put_pid_ns(event->ns);
2847        perf_event_free_filter(event);
2848        kfree(event);
2849}
2850
2851static void ring_buffer_put(struct ring_buffer *rb);
2852
2853static void free_event(struct perf_event *event)
2854{
2855        irq_work_sync(&event->pending);
2856
2857        if (!event->parent) {
2858                if (event->attach_state & PERF_ATTACH_TASK)
2859                        static_key_slow_dec_deferred(&perf_sched_events);
2860                if (event->attr.mmap || event->attr.mmap_data)
2861                        atomic_dec(&nr_mmap_events);
2862                if (event->attr.comm)
2863                        atomic_dec(&nr_comm_events);
2864                if (event->attr.task)
2865                        atomic_dec(&nr_task_events);
2866                if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2867                        put_callchain_buffers();
2868                if (is_cgroup_event(event)) {
2869                        atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2870                        static_key_slow_dec_deferred(&perf_sched_events);
2871                }
2872
2873                if (has_branch_stack(event)) {
2874                        static_key_slow_dec_deferred(&perf_sched_events);
2875                        /* is system-wide event */
2876                        if (!(event->attach_state & PERF_ATTACH_TASK))
2877                                atomic_dec(&per_cpu(perf_branch_stack_events,
2878                                                    event->cpu));
2879                }
2880        }
2881
2882        if (event->rb) {
2883                ring_buffer_put(event->rb);
2884                event->rb = NULL;
2885        }
2886
2887        if (is_cgroup_event(event))
2888                perf_detach_cgroup(event);
2889
2890        if (event->destroy)
2891                event->destroy(event);
2892
2893        if (event->ctx)
2894                put_ctx(event->ctx);
2895
2896        call_rcu(&event->rcu_head, free_event_rcu);
2897}
2898
2899int perf_event_release_kernel(struct perf_event *event)
2900{
2901        struct perf_event_context *ctx = event->ctx;
2902
2903        WARN_ON_ONCE(ctx->parent_ctx);
2904        /*
2905         * There are two ways this annotation is useful:
2906         *
2907         *  1) there is a lock recursion from perf_event_exit_task
2908         *     see the comment there.
2909         *
2910         *  2) there is a lock-inversion with mmap_sem through
2911         *     perf_event_read_group(), which takes faults while
2912         *     holding ctx->mutex, however this is called after
2913         *     the last filedesc died, so there is no possibility
2914         *     to trigger the AB-BA case.
2915         */
2916        mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2917        raw_spin_lock_irq(&ctx->lock);
2918        perf_group_detach(event);
2919        raw_spin_unlock_irq(&ctx->lock);
2920        perf_remove_from_context(event);
2921        mutex_unlock(&ctx->mutex);
2922
2923        free_event(event);
2924
2925        return 0;
2926}
2927EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2928
2929/*
2930 * Called when the last reference to the file is gone.
2931 */
2932static int perf_release(struct inode *inode, struct file *file)
2933{
2934        struct perf_event *event = file->private_data;
2935        struct task_struct *owner;
2936
2937        file->private_data = NULL;
2938
2939        rcu_read_lock();
2940        owner = ACCESS_ONCE(event->owner);
2941        /*
2942         * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2943         * !owner it means the list deletion is complete and we can indeed
2944         * free this event, otherwise we need to serialize on
2945         * owner->perf_event_mutex.
2946         */
2947        smp_read_barrier_depends();
2948        if (owner) {
2949                /*
2950                 * Since delayed_put_task_struct() also drops the last
2951                 * task reference we can safely take a new reference
2952                 * while holding the rcu_read_lock().
2953                 */
2954                get_task_struct(owner);
2955        }
2956        rcu_read_unlock();
2957
2958        if (owner) {
2959                mutex_lock(&owner->perf_event_mutex);
2960                /*
2961                 * We have to re-check the event->owner field, if it is cleared
2962                 * we raced with perf_event_exit_task(), acquiring the mutex
2963                 * ensured they're done, and we can proceed with freeing the
2964                 * event.
2965                 */
2966                if (event->owner)
2967                        list_del_init(&event->owner_entry);
2968                mutex_unlock(&owner->perf_event_mutex);
2969                put_task_struct(owner);
2970        }
2971
2972        return perf_event_release_kernel(event);
2973}
2974
2975u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2976{
2977        struct perf_event *child;
2978        u64 total = 0;
2979
2980        *enabled = 0;
2981        *running = 0;
2982
2983        mutex_lock(&event->child_mutex);
2984        total += perf_event_read(event);
2985        *enabled += event->total_time_enabled +
2986                        atomic64_read(&event->child_total_time_enabled);
2987        *running += event->total_time_running +
2988                        atomic64_read(&event->child_total_time_running);
2989
2990        list_for_each_entry(child, &event->child_list, child_list) {
2991                total += perf_event_read(child);
2992                *enabled += child->total_time_enabled;
2993                *running += child->total_time_running;
2994        }
2995        mutex_unlock(&event->child_mutex);
2996
2997        return total;
2998}
2999EXPORT_SYMBOL_GPL(perf_event_read_value);
3000
3001static int perf_event_read_group(struct perf_event *event,
3002                                   u64 read_format, char __user *buf)
3003{
3004        struct perf_event *leader = event->group_leader, *sub;
3005        int n = 0, size = 0, ret = -EFAULT;
3006        struct perf_event_context *ctx = leader->ctx;
3007        u64 values[5];
3008        u64 count, enabled, running;
3009
3010        mutex_lock(&ctx->mutex);
3011        count = perf_event_read_value(leader, &enabled, &running);
3012
3013        values[n++] = 1 + leader->nr_siblings;
3014        if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3015                values[n++] = enabled;
3016        if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3017                values[n++] = running;
3018        values[n++] = count;
3019        if (read_format & PERF_FORMAT_ID)
3020                values[n++] = primary_event_id(leader);
3021
3022        size = n * sizeof(u64);
3023
3024        if (copy_to_user(buf, values, size))
3025                goto unlock;
3026
3027        ret = size;
3028
3029        list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3030                n = 0;
3031
3032                values[n++] = perf_event_read_value(sub, &enabled, &running);
3033                if (read_format & PERF_FORMAT_ID)
3034                        values[n++] = primary_event_id(sub);
3035
3036                size = n * sizeof(u64);
3037
3038                if (copy_to_user(buf + ret, values, size)) {
3039                        ret = -EFAULT;
3040                        goto unlock;
3041                }
3042
3043                ret += size;
3044        }
3045unlock:
3046        mutex_unlock(&ctx->mutex);
3047
3048        return ret;
3049}
3050
3051static int perf_event_read_one(struct perf_event *event,
3052                                 u64 read_format, char __user *buf)
3053{
3054        u64 enabled, running;
3055        u64 values[4];
3056        int n = 0;
3057
3058        values[n++] = perf_event_read_value(event, &enabled, &running);
3059        if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3060                values[n++] = enabled;
3061        if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3062                values[n++] = running;
3063        if (read_format & PERF_FORMAT_ID)
3064                values[n++] = primary_event_id(event);
3065
3066        if (copy_to_user(buf, values, n * sizeof(u64)))
3067                return -EFAULT;
3068
3069        return n * sizeof(u64);
3070}
3071
3072/*
3073 * Read the performance event - simple non blocking version for now
3074 */
3075static ssize_t
3076perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3077{
3078        u64 read_format = event->attr.read_format;
3079        int ret;
3080
3081        /*
3082         * Return end-of-file for a read on a event that is in
3083         * error state (i.e. because it was pinned but it couldn't be
3084         * scheduled on to the CPU at some point).
3085         */
3086        if (event->state == PERF_EVENT_STATE_ERROR)
3087                return 0;
3088
3089        if (count < event->read_size)
3090                return -ENOSPC;
3091
3092        WARN_ON_ONCE(event->ctx->parent_ctx);
3093        if (read_format & PERF_FORMAT_GROUP)
3094                ret = perf_event_read_group(event, read_format, buf);
3095        else
3096                ret = perf_event_read_one(event, read_format, buf);
3097
3098        return ret;
3099}
3100
3101static ssize_t
3102perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3103{
3104        struct perf_event *event = file->private_data;
3105
3106        return perf_read_hw(event, buf, count);
3107}
3108
3109static unsigned int perf_poll(struct file *file, poll_table *wait)
3110{
3111        struct perf_event *event = file->private_data;
3112        struct ring_buffer *rb;
3113        unsigned int events = POLL_HUP;
3114
3115        /*
3116         * Race between perf_event_set_output() and perf_poll(): perf_poll()
3117         * grabs the rb reference but perf_event_set_output() overrides it.
3118         * Here is the timeline for two threads T1, T2:
3119         * t0: T1, rb = rcu_dereference(event->rb)
3120         * t1: T2, old_rb = event->rb
3121         * t2: T2, event->rb = new rb
3122         * t3: T2, ring_buffer_detach(old_rb)
3123         * t4: T1, ring_buffer_attach(rb1)
3124         * t5: T1, poll_wait(event->waitq)
3125         *
3126         * To avoid this problem, we grab mmap_mutex in perf_poll()
3127         * thereby ensuring that the assignment of the new ring buffer
3128         * and the detachment of the old buffer appear atomic to perf_poll()
3129         */
3130        mutex_lock(&event->mmap_mutex);
3131
3132        rcu_read_lock();
3133        rb = rcu_dereference(event->rb);
3134        if (rb) {
3135                ring_buffer_attach(event, rb);
3136                events = atomic_xchg(&rb->poll, 0);
3137        }
3138        rcu_read_unlock();
3139
3140        mutex_unlock(&event->mmap_mutex);
3141
3142        poll_wait(file, &event->waitq, wait);
3143
3144        return events;
3145}
3146
3147static void perf_event_reset(struct perf_event *event)
3148{
3149        (void)perf_event_read(event);
3150        local64_set(&event->count, 0);
3151        perf_event_update_userpage(event);
3152}
3153
3154/*
3155 * Holding the top-level event's child_mutex means that any
3156 * descendant process that has inherited this event will block
3157 * in sync_child_event if it goes to exit, thus satisfying the
3158 * task existence requirements of perf_event_enable/disable.
3159 */
3160static void perf_event_for_each_child(struct perf_event *event,
3161                                        void (*func)(struct perf_event *))
3162{
3163        struct perf_event *child;
3164
3165        WARN_ON_ONCE(event->ctx->parent_ctx);
3166        mutex_lock(&event->child_mutex);
3167        func(event);
3168        list_for_each_entry(child, &event->child_list, child_list)
3169                func(child);
3170        mutex_unlock(&event->child_mutex);
3171}
3172
3173static void perf_event_for_each(struct perf_event *event,
3174                                  void (*func)(struct perf_event *))
3175{
3176        struct perf_event_context *ctx = event->ctx;
3177        struct perf_event *sibling;
3178
3179        WARN_ON_ONCE(ctx->parent_ctx);
3180        mutex_lock(&ctx->mutex);
3181        event = event->group_leader;
3182
3183        perf_event_for_each_child(event, func);
3184        func(event);
3185        list_for_each_entry(sibling, &event->sibling_list, group_entry)
3186                perf_event_for_each_child(sibling, func);
3187        mutex_unlock(&ctx->mutex);
3188}
3189
3190static int perf_event_period(struct perf_event *event, u64 __user *arg)
3191{
3192        struct perf_event_context *ctx = event->ctx;
3193        int ret = 0;
3194        u64 value;
3195
3196        if (!is_sampling_event(event))
3197                return -EINVAL;
3198
3199        if (copy_from_user(&value, arg, sizeof(value)))
3200                return -EFAULT;
3201
3202        if (!value)
3203                return -EINVAL;
3204
3205        raw_spin_lock_irq(&ctx->lock);
3206        if (event->attr.freq) {
3207                if (value > sysctl_perf_event_sample_rate) {
3208                        ret = -EINVAL;
3209                        goto unlock;
3210                }
3211
3212                event->attr.sample_freq = value;
3213        } else {
3214                event->attr.sample_period = value;
3215                event->hw.sample_period = value;
3216        }
3217unlock:
3218        raw_spin_unlock_irq(&ctx->lock);
3219
3220        return ret;
3221}
3222
3223static const struct file_operations perf_fops;
3224
3225static struct perf_event *perf_fget_light(int fd, int *fput_needed)
3226{
3227        struct file *file;
3228
3229        file = fget_light(fd, fput_needed);
3230        if (!file)
3231                return ERR_PTR(-EBADF);
3232
3233        if (file->f_op != &perf_fops) {
3234                fput_light(file, *fput_needed);
3235                *fput_needed = 0;
3236                return ERR_PTR(-EBADF);
3237        }
3238
3239        return file->private_data;
3240}
3241
3242static int perf_event_set_output(struct perf_event *event,
3243                                 struct perf_event *output_event);
3244static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3245
3246static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3247{
3248        struct perf_event *event = file->private_data;
3249        void (*func)(struct perf_event *);
3250        u32 flags = arg;
3251
3252        switch (cmd) {
3253        case PERF_EVENT_IOC_ENABLE:
3254                func = perf_event_enable;
3255                break;
3256        case PERF_EVENT_IOC_DISABLE:
3257                func = perf_event_disable;
3258                break;
3259        case PERF_EVENT_IOC_RESET:
3260                func = perf_event_reset;
3261                break;
3262
3263        case PERF_EVENT_IOC_REFRESH:
3264                return perf_event_refresh(event, arg);
3265
3266        case PERF_EVENT_IOC_PERIOD:
3267                return perf_event_period(event, (u64 __user *)arg);
3268
3269        case PERF_EVENT_IOC_SET_OUTPUT:
3270        {
3271                struct perf_event *output_event = NULL;
3272                int fput_needed = 0;
3273                int ret;
3274
3275                if (arg != -1) {
3276                        output_event = perf_fget_light(arg, &fput_needed);
3277                        if (IS_ERR(output_event))
3278                                return PTR_ERR(output_event);
3279                }
3280
3281                ret = perf_event_set_output(event, output_event);
3282                if (output_event)
3283                        fput_light(output_event->filp, fput_needed);
3284
3285                return ret;
3286        }
3287
3288        case PERF_EVENT_IOC_SET_FILTER:
3289                return perf_event_set_filter(event, (void __user *)arg);
3290
3291        default:
3292                return -ENOTTY;
3293        }
3294
3295        if (flags & PERF_IOC_FLAG_GROUP)
3296                perf_event_for_each(event, func);
3297        else
3298                perf_event_for_each_child(event, func);
3299
3300        return 0;
3301}
3302
3303int perf_event_task_enable(void)
3304{
3305        struct perf_event *event;
3306
3307        mutex_lock(&current->perf_event_mutex);
3308        list_for_each_entry(event, &current->perf_event_list, owner_entry)
3309                perf_event_for_each_child(event, perf_event_enable);
3310        mutex_unlock(&current->perf_event_mutex);
3311
3312        return 0;
3313}
3314
3315int perf_event_task_disable(void)
3316{
3317        struct perf_event *event;
3318
3319        mutex_lock(&current->perf_event_mutex);
3320        list_for_each_entry(event, &current->perf_event_list, owner_entry)
3321                perf_event_for_each_child(event, perf_event_disable);
3322        mutex_unlock(&current->perf_event_mutex);
3323
3324        return 0;
3325}
3326
3327static int perf_event_index(struct perf_event *event)
3328{
3329        if (event->hw.state & PERF_HES_STOPPED)
3330                return 0;
3331
3332        if (event->state != PERF_EVENT_STATE_ACTIVE)
3333                return 0;
3334
3335        return event->pmu->event_idx(event);
3336}
3337
3338static void calc_timer_values(struct perf_event *event,
3339                                u64 *now,
3340                                u64 *enabled,
3341                                u64 *running)
3342{
3343        u64 ctx_time;
3344
3345        *now = perf_clock();
3346        ctx_time = event->shadow_ctx_time + *now;
3347        *enabled = ctx_time - event->tstamp_enabled;
3348        *running = ctx_time - event->tstamp_running;
3349}
3350
3351void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3352{
3353}
3354
3355/*
3356 * Callers need to ensure there can be no nesting of this function, otherwise
3357 * the seqlock logic goes bad. We can not serialize this because the arch
3358 * code calls this from NMI context.
3359 */
3360void perf_event_update_userpage(struct perf_event *event)
3361{
3362        struct perf_event_mmap_page *userpg;
3363        struct ring_buffer *rb;
3364        u64 enabled, running, now;
3365
3366        rcu_read_lock();
3367        /*
3368         * compute total_time_enabled, total_time_running
3369         * based on snapshot values taken when the event
3370         * was last scheduled in.
3371         *
3372         * we cannot simply called update_context_time()
3373         * because of locking issue as we can be called in
3374         * NMI context
3375         */
3376        calc_timer_values(event, &now, &enabled, &running);
3377        rb = rcu_dereference(event->rb);
3378        if (!rb)
3379                goto unlock;
3380
3381        userpg = rb->user_page;
3382
3383        /*
3384         * Disable preemption so as to not let the corresponding user-space
3385         * spin too long if we get preempted.
3386         */
3387        preempt_disable();
3388        ++userpg->lock;
3389        barrier();
3390        userpg->index = perf_event_index(event);
3391        userpg->offset = perf_event_count(event);
3392        if (userpg->index)
3393                userpg->offset -= local64_read(&event->hw.prev_count);
3394
3395        userpg->time_enabled = enabled +
3396                        atomic64_read(&event->child_total_time_enabled);
3397
3398        userpg->time_running = running +
3399                        atomic64_read(&event->child_total_time_running);
3400
3401        arch_perf_update_userpage(userpg, now);
3402
3403        barrier();
3404        ++userpg->lock;
3405        preempt_enable();
3406unlock:
3407        rcu_read_unlock();
3408}
3409
3410static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3411{
3412        struct perf_event *event = vma->vm_file->private_data;
3413        struct ring_buffer *rb;
3414        int ret = VM_FAULT_SIGBUS;
3415
3416        if (vmf->flags & FAULT_FLAG_MKWRITE) {
3417                if (vmf->pgoff == 0)
3418                        ret = 0;
3419                return ret;
3420        }
3421
3422        rcu_read_lock();
3423        rb = rcu_dereference(event->rb);
3424        if (!rb)
3425                goto unlock;
3426
3427        if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3428                goto unlock;
3429
3430        vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3431        if (!vmf->page)
3432                goto unlock;
3433
3434        get_page(vmf->page);
3435        vmf->page->mapping = vma->vm_file->f_mapping;
3436        vmf->page->index   = vmf->pgoff;
3437
3438        ret = 0;
3439unlock:
3440        rcu_read_unlock();
3441
3442        return ret;
3443}
3444
3445static void ring_buffer_attach(struct perf_event *event,
3446                               struct ring_buffer *rb)
3447{
3448        unsigned long flags;
3449
3450        if (!list_empty(&event->rb_entry))
3451                return;
3452
3453        spin_lock_irqsave(&rb->event_lock, flags);
3454        if (!list_empty(&event->rb_entry))
3455                goto unlock;
3456
3457        list_add(&event->rb_entry, &rb->event_list);
3458unlock:
3459        spin_unlock_irqrestore(&rb->event_lock, flags);
3460}
3461
3462static void ring_buffer_detach(struct perf_event *event,
3463                               struct ring_buffer *rb)
3464{
3465        unsigned long flags;
3466
3467        if (list_empty(&event->rb_entry))
3468                return;
3469
3470        spin_lock_irqsave(&rb->event_lock, flags);
3471        list_del_init(&event->rb_entry);
3472        wake_up_all(&event->waitq);
3473        spin_unlock_irqrestore(&rb->event_lock, flags);
3474}
3475
3476static void ring_buffer_wakeup(struct perf_event *event)
3477{
3478        struct ring_buffer *rb;
3479
3480        rcu_read_lock();
3481        rb = rcu_dereference(event->rb);
3482        if (!rb)
3483                goto unlock;
3484
3485        list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3486                wake_up_all(&event->waitq);
3487
3488unlock:
3489        rcu_read_unlock();
3490}
3491
3492static void rb_free_rcu(struct rcu_head *rcu_head)
3493{
3494        struct ring_buffer *rb;
3495
3496        rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3497        rb_free(rb);
3498}
3499
3500static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3501{
3502        struct ring_buffer *rb;
3503
3504        rcu_read_lock();
3505        rb = rcu_dereference(event->rb);
3506        if (rb) {
3507                if (!atomic_inc_not_zero(&rb->refcount))
3508                        rb = NULL;
3509        }
3510        rcu_read_unlock();
3511
3512        return rb;
3513}
3514
3515static void ring_buffer_put(struct ring_buffer *rb)
3516{
3517        struct perf_event *event, *n;
3518        unsigned long flags;
3519
3520        if (!atomic_dec_and_test(&rb->refcount))
3521                return;
3522
3523        spin_lock_irqsave(&rb->event_lock, flags);
3524        list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
3525                list_del_init(&event->rb_entry);
3526                wake_up_all(&event->waitq);
3527        }
3528        spin_unlock_irqrestore(&rb->event_lock, flags);
3529
3530        call_rcu(&rb->rcu_head, rb_free_rcu);
3531}
3532
3533static void perf_mmap_open(struct vm_area_struct *vma)
3534{
3535        struct perf_event *event = vma->vm_file->private_data;
3536
3537        atomic_inc(&event->mmap_count);
3538}
3539
3540static void perf_mmap_close(struct vm_area_struct *vma)
3541{
3542        struct perf_event *event = vma->vm_file->private_data;
3543
3544        if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3545                unsigned long size = perf_data_size(event->rb);
3546                struct user_struct *user = event->mmap_user;
3547                struct ring_buffer *rb = event->rb;
3548
3549                atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3550                vma->vm_mm->pinned_vm -= event->mmap_locked;
3551                rcu_assign_pointer(event->rb, NULL);
3552                ring_buffer_detach(event, rb);
3553                mutex_unlock(&event->mmap_mutex);
3554
3555                ring_buffer_put(rb);
3556                free_uid(user);
3557        }
3558}
3559
3560static const struct vm_operations_struct perf_mmap_vmops = {
3561        .open           = perf_mmap_open,
3562        .close          = perf_mmap_close,
3563        .fault          = perf_mmap_fault,
3564        .page_mkwrite   = perf_mmap_fault,
3565};
3566
3567static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3568{
3569        struct perf_event *event = file->private_data;
3570        unsigned long user_locked, user_lock_limit;
3571        struct user_struct *user = current_user();
3572        unsigned long locked, lock_limit;
3573        struct ring_buffer *rb;
3574        unsigned long vma_size;
3575        unsigned long nr_pages;
3576        long user_extra, extra;
3577        int ret = 0, flags = 0;
3578
3579        /*
3580         * Don't allow mmap() of inherited per-task counters. This would
3581         * create a performance issue due to all children writing to the
3582         * same rb.
3583         */
3584        if (event->cpu == -1 && event->attr.inherit)
3585                return -EINVAL;
3586
3587        if (!(vma->vm_flags & VM_SHARED))
3588                return -EINVAL;
3589
3590        vma_size = vma->vm_end - vma->vm_start;
3591        nr_pages = (vma_size / PAGE_SIZE) - 1;
3592
3593        /*
3594         * If we have rb pages ensure they're a power-of-two number, so we
3595         * can do bitmasks instead of modulo.
3596         */
3597        if (nr_pages != 0 && !is_power_of_2(nr_pages))
3598                return -EINVAL;
3599
3600        if (vma_size != PAGE_SIZE * (1 + nr_pages))
3601                return -EINVAL;
3602
3603        if (vma->vm_pgoff != 0)
3604                return -EINVAL;
3605
3606        WARN_ON_ONCE(event->ctx->parent_ctx);
3607        mutex_lock(&event->mmap_mutex);
3608        if (event->rb) {
3609                if (event->rb->nr_pages == nr_pages)
3610                        atomic_inc(&event->rb->refcount);
3611                else
3612                        ret = -EINVAL;
3613                goto unlock;
3614        }
3615
3616        user_extra = nr_pages + 1;
3617        user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3618
3619        /*
3620         * Increase the limit linearly with more CPUs:
3621         */
3622        user_lock_limit *= num_online_cpus();
3623
3624        user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3625
3626        extra = 0;
3627        if (user_locked > user_lock_limit)
3628                extra = user_locked - user_lock_limit;
3629
3630        lock_limit = rlimit(RLIMIT_MEMLOCK);
3631        lock_limit >>= PAGE_SHIFT;
3632        locked = vma->vm_mm->pinned_vm + extra;
3633
3634        if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3635                !capable(CAP_IPC_LOCK)) {
3636                ret = -EPERM;
3637                goto unlock;
3638        }
3639
3640        WARN_ON(event->rb);
3641
3642        if (vma->vm_flags & VM_WRITE)
3643                flags |= RING_BUFFER_WRITABLE;
3644
3645        rb = rb_alloc(nr_pages, 
3646                event->attr.watermark ? event->attr.wakeup_watermark : 0,
3647                event->cpu, flags);
3648
3649        if (!rb) {
3650                ret = -ENOMEM;
3651                goto unlock;
3652        }
3653        rcu_assign_pointer(event->rb, rb);
3654
3655        atomic_long_add(user_extra, &user->locked_vm);
3656        event->mmap_locked = extra;
3657        event->mmap_user = get_current_user();
3658        vma->vm_mm->pinned_vm += event->mmap_locked;
3659
3660        perf_event_update_userpage(event);
3661
3662unlock:
3663        if (!ret)
3664                atomic_inc(&event->mmap_count);
3665        mutex_unlock(&event->mmap_mutex);
3666
3667        vma->vm_flags |= VM_RESERVED;
3668        vma->vm_ops = &perf_mmap_vmops;
3669
3670        return ret;
3671}
3672
3673static int perf_fasync(int fd, struct file *filp, int on)
3674{
3675        struct inode *inode = filp->f_path.dentry->d_inode;
3676        struct perf_event *event = filp->private_data;
3677        int retval;
3678
3679        mutex_lock(&inode->i_mutex);
3680        retval = fasync_helper(fd, filp, on, &event->fasync);
3681        mutex_unlock(&inode->i_mutex);
3682
3683        if (retval < 0)
3684                return retval;
3685
3686        return 0;
3687}
3688
3689static const struct file_operations perf_fops = {
3690        .llseek                 = no_llseek,
3691        .release                = perf_release,
3692        .read                   = perf_read,
3693        .poll                   = perf_poll,
3694        .unlocked_ioctl         = perf_ioctl,
3695        .compat_ioctl           = perf_ioctl,
3696        .mmap                   = perf_mmap,
3697        .fasync                 = perf_fasync,
3698};
3699
3700/*
3701 * Perf event wakeup
3702 *
3703 * If there's data, ensure we set the poll() state and publish everything
3704 * to user-space before waking everybody up.
3705 */
3706
3707void perf_event_wakeup(struct perf_event *event)
3708{
3709        ring_buffer_wakeup(event);
3710
3711        if (event->pending_kill) {
3712                kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3713                event->pending_kill = 0;
3714        }
3715}
3716
3717static void perf_pending_event(struct irq_work *entry)
3718{
3719        struct perf_event *event = container_of(entry,
3720                        struct perf_event, pending);
3721
3722        if (event->pending_disable) {
3723                event->pending_disable = 0;
3724                __perf_event_disable(event);
3725        }
3726
3727        if (event->pending_wakeup) {
3728                event->pending_wakeup = 0;
3729                perf_event_wakeup(event);
3730        }
3731}
3732
3733/*
3734 * We assume there is only KVM supporting the callbacks.
3735 * Later on, we might change it to a list if there is
3736 * another virtualization implementation supporting the callbacks.
3737 */
3738struct perf_guest_info_callbacks *perf_guest_cbs;
3739
3740int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3741{
3742        perf_guest_cbs = cbs;
3743        return 0;
3744}
3745EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3746
3747int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3748{
3749        perf_guest_cbs = NULL;
3750        return 0;
3751}
3752EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3753
3754static void __perf_event_header__init_id(struct perf_event_header *header,
3755                                         struct perf_sample_data *data,
3756                                         struct perf_event *event)
3757{
3758        u64 sample_type = event->attr.sample_type;
3759
3760        data->type = sample_type;
3761        header->size += event->id_header_size;
3762
3763        if (sample_type & PERF_SAMPLE_TID) {
3764                /* namespace issues */
3765                data->tid_entry.pid = perf_event_pid(event, current);
3766                data->tid_entry.tid = perf_event_tid(event, current);
3767        }
3768
3769        if (sample_type & PERF_SAMPLE_TIME)
3770                data->time = perf_clock();
3771
3772        if (sample_type & PERF_SAMPLE_ID)
3773                data->id = primary_event_id(event);
3774
3775        if (sample_type & PERF_SAMPLE_STREAM_ID)
3776                data->stream_id = event->id;
3777
3778        if (sample_type & PERF_SAMPLE_CPU) {
3779                data->cpu_entry.cpu      = raw_smp_processor_id();
3780                data->cpu_entry.reserved = 0;
3781        }
3782}
3783
3784void perf_event_header__init_id(struct perf_event_header *header,
3785                                struct perf_sample_data *data,
3786                                struct perf_event *event)
3787{
3788        if (event->attr.sample_id_all)
3789                __perf_event_header__init_id(header, data, event);
3790}
3791
3792static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3793                                           struct perf_sample_data *data)
3794{
3795        u64 sample_type = data->type;
3796
3797        if (sample_type & PERF_SAMPLE_TID)
3798                perf_output_put(handle, data->tid_entry);
3799
3800        if (sample_type & PERF_SAMPLE_TIME)
3801                perf_output_put(handle, data->time);
3802
3803        if (sample_type & PERF_SAMPLE_ID)
3804                perf_output_put(handle, data->id);
3805
3806        if (sample_type & PERF_SAMPLE_STREAM_ID)
3807                perf_output_put(handle, data->stream_id);
3808
3809        if (sample_type & PERF_SAMPLE_CPU)
3810                perf_output_put(handle, data->cpu_entry);
3811}
3812
3813void perf_event__output_id_sample(struct perf_event *event,
3814                                  struct perf_output_handle *handle,
3815                                  struct perf_sample_data *sample)
3816{
3817        if (event->attr.sample_id_all)
3818                __perf_event__output_id_sample(handle, sample);
3819}
3820
3821static void perf_output_read_one(struct perf_output_handle *handle,
3822                                 struct perf_event *event,
3823                                 u64 enabled, u64 running)
3824{
3825        u64 read_format = event->attr.read_format;
3826        u64 values[4];
3827        int n = 0;
3828
3829        values[n++] = perf_event_count(event);
3830        if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3831                values[n++] = enabled +
3832                        atomic64_read(&event->child_total_time_enabled);
3833        }
3834        if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3835                values[n++] = running +
3836                        atomic64_read(&event->child_total_time_running);
3837        }
3838        if (read_format & PERF_FORMAT_ID)
3839                values[n++] = primary_event_id(event);
3840
3841        __output_copy(handle, values, n * sizeof(u64));
3842}
3843
3844/*
3845 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3846 */
3847static void perf_output_read_group(struct perf_output_handle *handle,
3848                            struct perf_event *event,
3849                            u64 enabled, u64 running)
3850{
3851        struct perf_event *leader = event->group_leader, *sub;
3852        u64 read_format = event->attr.read_format;
3853        u64 values[5];
3854        int n = 0;
3855
3856        values[n++] = 1 + leader->nr_siblings;
3857
3858        if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3859                values[n++] = enabled;
3860
3861        if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3862                values[n++] = running;
3863
3864        if (leader != event)
3865                leader->pmu->read(leader);
3866
3867        values[n++] = perf_event_count(leader);
3868        if (read_format & PERF_FORMAT_ID)
3869                values[n++] = primary_event_id(leader);
3870
3871        __output_copy(handle, values, n * sizeof(u64));
3872
3873        list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3874                n = 0;
3875
3876                if (sub != event)
3877                        sub->pmu->read(sub);
3878
3879                values[n++] = perf_event_count(sub);
3880                if (read_format & PERF_FORMAT_ID)
3881                        values[n++] = primary_event_id(sub);
3882
3883                __output_copy(handle, values, n * sizeof(u64));
3884        }
3885}
3886
3887#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3888                                 PERF_FORMAT_TOTAL_TIME_RUNNING)
3889
3890static void perf_output_read(struct perf_output_handle *handle,
3891                             struct perf_event *event)
3892{
3893        u64 enabled = 0, running = 0, now;
3894        u64 read_format = event->attr.read_format;
3895
3896        /*
3897         * compute total_time_enabled, total_time_running
3898         * based on snapshot values taken when the event
3899         * was last scheduled in.
3900         *
3901         * we cannot simply called update_context_time()
3902         * because of locking issue as we are called in
3903         * NMI context
3904         */
3905        if (read_format & PERF_FORMAT_TOTAL_TIMES)
3906                calc_timer_values(event, &now, &enabled, &running);
3907
3908        if (event->attr.read_format & PERF_FORMAT_GROUP)
3909                perf_output_read_group(handle, event, enabled, running);
3910        else
3911                perf_output_read_one(handle, event, enabled, running);
3912}
3913
3914void perf_output_sample(struct perf_output_handle *handle,
3915                        struct perf_event_header *header,
3916                        struct perf_sample_data *data,
3917                        struct perf_event *event)
3918{
3919        u64 sample_type = data->type;
3920
3921        perf_output_put(handle, *header);
3922
3923        if (sample_type & PERF_SAMPLE_IP)
3924                perf_output_put(handle, data->ip);
3925
3926        if (sample_type & PERF_SAMPLE_TID)
3927                perf_output_put(handle, data->tid_entry);
3928
3929        if (sample_type & PERF_SAMPLE_TIME)
3930                perf_output_put(handle, data->time);
3931
3932        if (sample_type & PERF_SAMPLE_ADDR)
3933                perf_output_put(handle, data->addr);
3934
3935        if (sample_type & PERF_SAMPLE_ID)
3936                perf_output_put(handle, data->id);
3937
3938        if (sample_type & PERF_SAMPLE_STREAM_ID)
3939                perf_output_put(handle, data->stream_id);
3940
3941        if (sample_type & PERF_SAMPLE_CPU)
3942                perf_output_put(handle, data->cpu_entry);
3943
3944        if (sample_type & PERF_SAMPLE_PERIOD)
3945                perf_output_put(handle, data->period);
3946
3947        if (sample_type & PERF_SAMPLE_READ)
3948                perf_output_read(handle, event);
3949
3950        if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3951                if (data->callchain) {
3952                        int size = 1;
3953
3954                        if (data->callchain)
3955                                size += data->callchain->nr;
3956
3957                        size *= sizeof(u64);
3958
3959                        __output_copy(handle, data->callchain, size);
3960                } else {
3961                        u64 nr = 0;
3962                        perf_output_put(handle, nr);
3963                }
3964        }
3965
3966        if (sample_type & PERF_SAMPLE_RAW) {
3967                if (data->raw) {
3968                        perf_output_put(handle, data->raw->size);
3969                        __output_copy(handle, data->raw->data,
3970                                           data->raw->size);
3971                } else {
3972                        struct {
3973                                u32     size;
3974                                u32     data;
3975                        } raw = {
3976                                .size = sizeof(u32),
3977                                .data = 0,
3978                        };
3979                        perf_output_put(handle, raw);
3980                }
3981        }
3982
3983        if (!event->attr.watermark) {
3984                int wakeup_events = event->attr.wakeup_events;
3985
3986                if (wakeup_events) {
3987                        struct ring_buffer *rb = handle->rb;
3988                        int events = local_inc_return(&rb->events);
3989
3990                        if (events >= wakeup_events) {
3991                                local_sub(wakeup_events, &rb->events);
3992                                local_inc(&rb->wakeup);
3993                        }
3994                }
3995        }
3996
3997        if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
3998                if (data->br_stack) {
3999                        size_t size;
4000
4001                        size = data->br_stack->nr
4002                             * sizeof(struct perf_branch_entry);
4003
4004                        perf_output_put(handle, data->br_stack->nr);
4005                        perf_output_copy(handle, data->br_stack->entries, size);
4006                } else {
4007                        /*
4008                         * we always store at least the value of nr
4009                         */
4010                        u64 nr = 0;
4011                        perf_output_put(handle, nr);
4012                }
4013        }
4014}
4015
4016void perf_prepare_sample(struct perf_event_header *header,
4017                         struct perf_sample_data *data,
4018                         struct perf_event *event,
4019                         struct pt_regs *regs)
4020{
4021        u64 sample_type = event->attr.sample_type;
4022
4023        header->type = PERF_RECORD_SAMPLE;
4024        header->size = sizeof(*header) + event->header_size;
4025
4026        header->misc = 0;
4027        header->misc |= perf_misc_flags(regs);
4028
4029        __perf_event_header__init_id(header, data, event);
4030
4031        if (sample_type & PERF_SAMPLE_IP)
4032                data->ip = perf_instruction_pointer(regs);
4033
4034        if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4035                int size = 1;
4036
4037                data->callchain = perf_callchain(regs);
4038
4039                if (data->callchain)
4040                        size += data->callchain->nr;
4041
4042                header->size += size * sizeof(u64);
4043        }
4044
4045        if (sample_type & PERF_SAMPLE_RAW) {
4046                int size = sizeof(u32);
4047
4048                if (data->raw)
4049                        size += data->raw->size;
4050                else
4051                        size += sizeof(u32);
4052
4053                WARN_ON_ONCE(size & (sizeof(u64)-1));
4054                header->size += size;
4055        }
4056
4057        if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4058                int size = sizeof(u64); /* nr */
4059                if (data->br_stack) {
4060                        size += data->br_stack->nr
4061                              * sizeof(struct perf_branch_entry);
4062                }
4063                header->size += size;
4064        }
4065}
4066
4067static void perf_event_output(struct perf_event *event,
4068                                struct perf_sample_data *data,
4069                                struct pt_regs *regs)
4070{
4071        struct perf_output_handle handle;
4072        struct perf_event_header header;
4073
4074        /* protect the callchain buffers */
4075        rcu_read_lock();
4076
4077        perf_prepare_sample(&header, data, event, regs);
4078
4079        if (perf_output_begin(&handle, event, header.size))
4080                goto exit;
4081
4082        perf_output_sample(&handle, &header, data, event);
4083
4084        perf_output_end(&handle);
4085
4086exit:
4087        rcu_read_unlock();
4088}
4089
4090/*
4091 * read event_id
4092 */
4093
4094struct perf_read_event {
4095        struct perf_event_header        header;
4096
4097        u32                             pid;
4098        u32                             tid;
4099};
4100
4101static void
4102perf_event_read_event(struct perf_event *event,
4103                        struct task_struct *task)
4104{
4105        struct perf_output_handle handle;
4106        struct perf_sample_data sample;
4107        struct perf_read_event read_event = {
4108                .header = {
4109                        .type = PERF_RECORD_READ,
4110                        .misc = 0,
4111                        .size = sizeof(read_event) + event->read_size,
4112                },
4113                .pid = perf_event_pid(event, task),
4114                .tid = perf_event_tid(event, task),
4115        };
4116        int ret;
4117
4118        perf_event_header__init_id(&read_event.header, &sample, event);
4119        ret = perf_output_begin(&handle, event, read_event.header.size);
4120        if (ret)
4121                return;
4122
4123        perf_output_put(&handle, read_event);
4124        perf_output_read(&handle, event);
4125        perf_event__output_id_sample(event, &handle, &sample);
4126
4127        perf_output_end(&handle);
4128}
4129
4130/*
4131 * task tracking -- fork/exit
4132 *
4133 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4134 */
4135
4136struct perf_task_event {
4137        struct task_struct              *task;
4138        struct perf_event_context       *task_ctx;
4139
4140        struct {
4141                struct perf_event_header        header;
4142
4143                u32                             pid;
4144                u32                             ppid;
4145                u32                             tid;
4146                u32                             ptid;
4147                u64                             time;
4148        } event_id;
4149};
4150
4151static void perf_event_task_output(struct perf_event *event,
4152                                     struct perf_task_event *task_event)
4153{
4154        struct perf_output_handle handle;
4155        struct perf_sample_data sample;
4156        struct task_struct *task = task_event->task;
4157        int ret, size = task_event->event_id.header.size;
4158
4159        perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4160
4161        ret = perf_output_begin(&handle, event,
4162                                task_event->event_id.header.size);
4163        if (ret)
4164                goto out;
4165
4166        task_event->event_id.pid = perf_event_pid(event, task);
4167        task_event->event_id.ppid = perf_event_pid(event, current);
4168
4169        task_event->event_id.tid = perf_event_tid(event, task);
4170        task_event->event_id.ptid = perf_event_tid(event, current);
4171
4172        perf_output_put(&handle, task_event->event_id);
4173
4174        perf_event__output_id_sample(event, &handle, &sample);
4175
4176        perf_output_end(&handle);
4177out:
4178        task_event->event_id.header.size = size;
4179}
4180
4181static int perf_event_task_match(struct perf_event *event)
4182{
4183        if (event->state < PERF_EVENT_STATE_INACTIVE)
4184                return 0;
4185
4186        if (!event_filter_match(event))
4187                return 0;
4188
4189        if (event->attr.comm || event->attr.mmap ||
4190            event->attr.mmap_data || event->attr.task)
4191                return 1;
4192
4193        return 0;
4194}
4195
4196static void perf_event_task_ctx(struct perf_event_context *ctx,
4197                                  struct perf_task_event *task_event)
4198{
4199        struct perf_event *event;
4200
4201        list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4202                if (perf_event_task_match(event))
4203                        perf_event_task_output(event, task_event);
4204        }
4205}
4206
4207static void perf_event_task_event(struct perf_task_event *task_event)
4208{
4209        struct perf_cpu_context *cpuctx;
4210        struct perf_event_context *ctx;
4211        struct pmu *pmu;
4212        int ctxn;
4213
4214        rcu_read_lock();
4215        list_for_each_entry_rcu(pmu, &pmus, entry) {
4216                cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4217                if (cpuctx->active_pmu != pmu)
4218                        goto next;
4219                perf_event_task_ctx(&cpuctx->ctx, task_event);
4220
4221                ctx = task_event->task_ctx;
4222                if (!ctx) {
4223                        ctxn = pmu->task_ctx_nr;
4224                        if (ctxn < 0)
4225                                goto next;
4226                        ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4227                }
4228                if (ctx)
4229                        perf_event_task_ctx(ctx, task_event);
4230next:
4231                put_cpu_ptr(pmu->pmu_cpu_context);
4232        }
4233        rcu_read_unlock();
4234}
4235
4236static void perf_event_task(struct task_struct *task,
4237                              struct perf_event_context *task_ctx,
4238                              int new)
4239{
4240        struct perf_task_event task_event;
4241
4242        if (!atomic_read(&nr_comm_events) &&
4243            !atomic_read(&nr_mmap_events) &&
4244            !atomic_read(&nr_task_events))
4245                return;
4246
4247        task_event = (struct perf_task_event){
4248                .task     = task,
4249                .task_ctx = task_ctx,
4250                .event_id    = {
4251                        .header = {
4252                                .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4253                                .misc = 0,
4254                                .size = sizeof(task_event.event_id),
4255                        },
4256                        /* .pid  */
4257                        /* .ppid */
4258                        /* .tid  */
4259                        /* .ptid */
4260                        .time = perf_clock(),
4261                },
4262        };
4263
4264        perf_event_task_event(&task_event);
4265}
4266
4267void perf_event_fork(struct task_struct *task)
4268{
4269        perf_event_task(task, NULL, 1);
4270}
4271
4272/*
4273 * comm tracking
4274 */
4275
4276struct perf_comm_event {
4277        struct task_struct      *task;
4278        char                    *comm;
4279        int                     comm_size;
4280
4281        struct {
4282                struct perf_event_header        header;
4283
4284                u32                             pid;
4285                u32                             tid;
4286        } event_id;
4287};
4288
4289static void perf_event_comm_output(struct perf_event *event,
4290                                     struct perf_comm_event *comm_event)
4291{
4292        struct perf_output_handle handle;
4293        struct perf_sample_data sample;
4294        int size = comm_event->event_id.header.size;
4295        int ret;
4296
4297        perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4298        ret = perf_output_begin(&handle, event,
4299                                comm_event->event_id.header.size);
4300
4301        if (ret)
4302                goto out;
4303
4304        comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4305        comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4306
4307        perf_output_put(&handle, comm_event->event_id);
4308        __output_copy(&handle, comm_event->comm,
4309                                   comm_event->comm_size);
4310
4311        perf_event__output_id_sample(event, &handle, &sample);
4312
4313        perf_output_end(&handle);
4314out:
4315        comm_event->event_id.header.size = size;
4316}
4317
4318static int perf_event_comm_match(struct perf_event *event)
4319{
4320        if (event->state < PERF_EVENT_STATE_INACTIVE)
4321                return 0;
4322
4323        if (!event_filter_match(event))
4324                return 0;
4325
4326        if (event->attr.comm)
4327                return 1;
4328
4329        return 0;
4330}
4331
4332static void perf_event_comm_ctx(struct perf_event_context *ctx,
4333                                  struct perf_comm_event *comm_event)
4334{
4335        struct perf_event *event;
4336
4337        list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4338                if (perf_event_comm_match(event))
4339                        perf_event_comm_output(event, comm_event);
4340        }
4341}
4342
4343static void perf_event_comm_event(struct perf_comm_event *comm_event)
4344{
4345        struct perf_cpu_context *cpuctx;
4346        struct perf_event_context *ctx;
4347        char comm[TASK_COMM_LEN];
4348        unsigned int size;
4349        struct pmu *pmu;
4350        int ctxn;
4351
4352        memset(comm, 0, sizeof(comm));
4353        strlcpy(comm, comm_event->task->comm, sizeof(comm));
4354        size = ALIGN(strlen(comm)+1, sizeof(u64));
4355
4356        comm_event->comm = comm;
4357        comm_event->comm_size = size;
4358
4359        comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4360        rcu_read_lock();
4361        list_for_each_entry_rcu(pmu, &pmus, entry) {
4362                cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4363                if (cpuctx->active_pmu != pmu)
4364                        goto next;
4365                perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4366
4367                ctxn = pmu->task_ctx_nr;
4368                if (ctxn < 0)
4369                        goto next;
4370
4371                ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4372                if (ctx)
4373                        perf_event_comm_ctx(ctx, comm_event);
4374next:
4375                put_cpu_ptr(pmu->pmu_cpu_context);
4376        }
4377        rcu_read_unlock();
4378}
4379
4380void perf_event_comm(struct task_struct *task)
4381{
4382        struct perf_comm_event comm_event;
4383        struct perf_event_context *ctx;
4384        int ctxn;
4385
4386        for_each_task_context_nr(ctxn) {
4387                ctx = task->perf_event_ctxp[ctxn];
4388                if (!ctx)
4389                        continue;
4390
4391                perf_event_enable_on_exec(ctx);
4392        }
4393
4394        if (!atomic_read(&nr_comm_events))
4395                return;
4396
4397        comm_event = (struct perf_comm_event){
4398                .task   = task,
4399                /* .comm      */
4400                /* .comm_size */
4401                .event_id  = {
4402                        .header = {
4403                                .type = PERF_RECORD_COMM,
4404                                .misc = 0,
4405                                /* .size */
4406                        },
4407                        /* .pid */
4408                        /* .tid */
4409                },
4410        };
4411
4412        perf_event_comm_event(&comm_event);
4413}
4414
4415/*
4416 * mmap tracking
4417 */
4418
4419struct perf_mmap_event {
4420        struct vm_area_struct   *vma;
4421
4422        const char              *file_name;
4423        int                     file_size;
4424
4425        struct {
4426                struct perf_event_header        header;
4427
4428                u32                             pid;
4429                u32                             tid;
4430                u64                             start;
4431                u64                             len;
4432                u64                             pgoff;
4433        } event_id;
4434};
4435
4436static void perf_event_mmap_output(struct perf_event *event,
4437                                     struct perf_mmap_event *mmap_event)
4438{
4439        struct perf_output_handle handle;
4440        struct perf_sample_data sample;
4441        int size = mmap_event->event_id.header.size;
4442        int ret;
4443
4444        perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4445        ret = perf_output_begin(&handle, event,
4446                                mmap_event->event_id.header.size);
4447        if (ret)
4448                goto out;
4449
4450        mmap_event->event_id.pid = perf_event_pid(event, current);
4451        mmap_event->event_id.tid = perf_event_tid(event, current);
4452
4453        perf_output_put(&handle, mmap_event->event_id);
4454        __output_copy(&handle, mmap_event->file_name,
4455                                   mmap_event->file_size);
4456
4457        perf_event__output_id_sample(event, &handle, &sample);
4458
4459        perf_output_end(&handle);
4460out:
4461        mmap_event->event_id.header.size = size;
4462}
4463
4464static int perf_event_mmap_match(struct perf_event *event,
4465                                   struct perf_mmap_event *mmap_event,
4466                                   int executable)
4467{
4468        if (event->state < PERF_EVENT_STATE_INACTIVE)
4469                return 0;
4470
4471        if (!event_filter_match(event))
4472                return 0;
4473
4474        if ((!executable && event->attr.mmap_data) ||
4475            (executable && event->attr.mmap))
4476                return 1;
4477
4478        return 0;
4479}
4480
4481static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4482                                  struct perf_mmap_event *mmap_event,
4483                                  int executable)
4484{
4485        struct perf_event *event;
4486
4487        list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4488                if (perf_event_mmap_match(event, mmap_event, executable))
4489                        perf_event_mmap_output(event, mmap_event);
4490        }
4491}
4492
4493static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4494{
4495        struct perf_cpu_context *cpuctx;
4496        struct perf_event_context *ctx;
4497        struct vm_area_struct *vma = mmap_event->vma;
4498        struct file *file = vma->vm_file;
4499        unsigned int size;
4500        char tmp[16];
4501        char *buf = NULL;
4502        const char *name;
4503        struct pmu *pmu;
4504        int ctxn;
4505
4506        memset(tmp, 0, sizeof(tmp));
4507
4508        if (file) {
4509                /*
4510                 * d_path works from the end of the rb backwards, so we
4511                 * need to add enough zero bytes after the string to handle
4512                 * the 64bit alignment we do later.
4513                 */
4514                buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4515                if (!buf) {
4516                        name = strncpy(tmp, "//enomem", sizeof(tmp));
4517                        goto got_name;
4518                }
4519                name = d_path(&file->f_path, buf, PATH_MAX);
4520                if (IS_ERR(name)) {
4521                        name = strncpy(tmp, "//toolong", sizeof(tmp));
4522                        goto got_name;
4523                }
4524        } else {
4525                if (arch_vma_name(mmap_event->vma)) {
4526                        name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4527                                       sizeof(tmp));
4528                        goto got_name;
4529                }
4530
4531                if (!vma->vm_mm) {
4532                        name = strncpy(tmp, "[vdso]", sizeof(tmp));
4533                        goto got_name;
4534                } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4535                                vma->vm_end >= vma->vm_mm->brk) {
4536                        name = strncpy(tmp, "[heap]", sizeof(tmp));
4537                        goto got_name;
4538                } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4539                                vma->vm_end >= vma->vm_mm->start_stack) {
4540                        name = strncpy(tmp, "[stack]", sizeof(tmp));
4541                        goto got_name;
4542                }
4543
4544                name = strncpy(tmp, "//anon", sizeof(tmp));
4545                goto got_name;
4546        }
4547
4548got_name:
4549        size = ALIGN(strlen(name)+1, sizeof(u64));
4550
4551        mmap_event->file_name = name;
4552        mmap_event->file_size = size;
4553
4554        mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4555
4556        rcu_read_lock();
4557        list_for_each_entry_rcu(pmu, &pmus, entry) {
4558                cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4559                if (cpuctx->active_pmu != pmu)
4560                        goto next;
4561                perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4562                                        vma->vm_flags & VM_EXEC);
4563
4564                ctxn = pmu->task_ctx_nr;
4565                if (ctxn < 0)
4566                        goto next;
4567
4568                ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4569                if (ctx) {
4570                        perf_event_mmap_ctx(ctx, mmap_event,
4571                                        vma->vm_flags & VM_EXEC);
4572                }
4573next:
4574                put_cpu_ptr(pmu->pmu_cpu_context);
4575        }
4576        rcu_read_unlock();
4577
4578        kfree(buf);
4579}
4580
4581void perf_event_mmap(struct vm_area_struct *vma)
4582{
4583        struct perf_mmap_event mmap_event;
4584
4585        if (!atomic_read(&nr_mmap_events))
4586                return;
4587
4588        mmap_event = (struct perf_mmap_event){
4589                .vma    = vma,
4590                /* .file_name */
4591                /* .file_size */
4592                .event_id  = {
4593                        .header = {
4594                                .type = PERF_RECORD_MMAP,
4595                                .misc = PERF_RECORD_MISC_USER,
4596                                /* .size */
4597                        },
4598                        /* .pid */
4599                        /* .tid */
4600                        .start  = vma->vm_start,
4601                        .len    = vma->vm_end - vma->vm_start,
4602                        .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4603                },
4604        };
4605
4606        perf_event_mmap_event(&mmap_event);
4607}
4608
4609/*
4610 * IRQ throttle logging
4611 */
4612
4613static void perf_log_throttle(struct perf_event *event, int enable)
4614{
4615        struct perf_output_handle handle;
4616        struct perf_sample_data sample;
4617        int ret;
4618
4619        struct {
4620                struct perf_event_header        header;
4621                u64                             time;
4622                u64                             id;
4623                u64                             stream_id;
4624        } throttle_event = {
4625                .header = {
4626                        .type = PERF_RECORD_THROTTLE,
4627                        .misc = 0,
4628                        .size = sizeof(throttle_event),
4629                },
4630                .time           = perf_clock(),
4631                .id             = primary_event_id(event),
4632                .stream_id      = event->id,
4633        };
4634
4635        if (enable)
4636                throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4637
4638        perf_event_header__init_id(&throttle_event.header, &sample, event);
4639
4640        ret = perf_output_begin(&handle, event,
4641                                throttle_event.header.size);
4642        if (ret)
4643                return;
4644
4645        perf_output_put(&handle, throttle_event);
4646        perf_event__output_id_sample(event, &handle, &sample);
4647        perf_output_end(&handle);
4648}
4649
4650/*
4651 * Generic event overflow handling, sampling.
4652 */
4653
4654static int __perf_event_overflow(struct perf_event *event,
4655                                   int throttle, struct perf_sample_data *data,
4656                                   struct pt_regs *regs)
4657{
4658        int events = atomic_read(&event->event_limit);
4659        struct hw_perf_event *hwc = &event->hw;
4660        u64 seq;
4661        int ret = 0;
4662
4663        /*
4664         * Non-sampling counters might still use the PMI to fold short
4665         * hardware counters, ignore those.
4666         */
4667        if (unlikely(!is_sampling_event(event)))
4668                return 0;
4669
4670        seq = __this_cpu_read(perf_throttled_seq);
4671        if (seq != hwc->interrupts_seq) {
4672                hwc->interrupts_seq = seq;
4673                hwc->interrupts = 1;
4674        } else {
4675                hwc->interrupts++;
4676                if (unlikely(throttle
4677                             && hwc->interrupts >= max_samples_per_tick)) {
4678                        __this_cpu_inc(perf_throttled_count);
4679                        hwc->interrupts = MAX_INTERRUPTS;
4680                        perf_log_throttle(event, 0);
4681                        ret = 1;
4682                }
4683        }
4684
4685        if (event->attr.freq) {
4686                u64 now = perf_clock();
4687                s64 delta = now - hwc->freq_time_stamp;
4688
4689                hwc->freq_time_stamp = now;
4690
4691                if (delta > 0 && delta < 2*TICK_NSEC)
4692                        perf_adjust_period(event, delta, hwc->last_period, true);
4693        }
4694
4695        /*
4696         * XXX event_limit might not quite work as expected on inherited
4697         * events
4698         */
4699
4700        event->pending_kill = POLL_IN;
4701        if (events && atomic_dec_and_test(&event->event_limit)) {
4702                ret = 1;
4703                event->pending_kill = POLL_HUP;
4704                event->pending_disable = 1;
4705                irq_work_queue(&event->pending);
4706        }
4707
4708        if (event->overflow_handler)
4709                event->overflow_handler(event, data, regs);
4710        else
4711                perf_event_output(event, data, regs);
4712
4713        if (event->fasync && event->pending_kill) {
4714                event->pending_wakeup = 1;
4715                irq_work_queue(&event->pending);
4716        }
4717
4718        return ret;
4719}
4720
4721int perf_event_overflow(struct perf_event *event,
4722                          struct perf_sample_data *data,
4723                          struct pt_regs *regs)
4724{
4725        return __perf_event_overflow(event, 1, data, regs);
4726}
4727
4728/*
4729 * Generic software event infrastructure
4730 */
4731
4732struct swevent_htable {
4733        struct swevent_hlist            *swevent_hlist;
4734        struct mutex                    hlist_mutex;
4735        int                             hlist_refcount;
4736
4737        /* Recursion avoidance in each contexts */
4738        int                             recursion[PERF_NR_CONTEXTS];
4739};
4740
4741static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4742
4743/*
4744 * We directly increment event->count and keep a second value in
4745 * event->hw.period_left to count intervals. This period event
4746 * is kept in the range [-sample_period, 0] so that we can use the
4747 * sign as trigger.
4748 */
4749
4750static u64 perf_swevent_set_period(struct perf_event *event)
4751{
4752        struct hw_perf_event *hwc = &event->hw;
4753        u64 period = hwc->last_period;
4754        u64 nr, offset;
4755        s64 old, val;
4756
4757        hwc->last_period = hwc->sample_period;
4758
4759again:
4760        old = val = local64_read(&hwc->period_left);
4761        if (val < 0)
4762                return 0;
4763
4764        nr = div64_u64(period + val, period);
4765        offset = nr * period;
4766        val -= offset;
4767        if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4768                goto again;
4769
4770        return nr;
4771}
4772
4773static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4774                                    struct perf_sample_data *data,
4775                                    struct pt_regs *regs)
4776{
4777        struct hw_perf_event *hwc = &event->hw;
4778        int throttle = 0;
4779
4780        if (!overflow)
4781                overflow = perf_swevent_set_period(event);
4782
4783        if (hwc->interrupts == MAX_INTERRUPTS)
4784                return;
4785
4786        for (; overflow; overflow--) {
4787                if (__perf_event_overflow(event, throttle,
4788                                            data, regs)) {
4789                        /*
4790                         * We inhibit the overflow from happening when
4791                         * hwc->interrupts == MAX_INTERRUPTS.
4792                         */
4793                        break;
4794                }
4795                throttle = 1;
4796        }
4797}
4798
4799static void perf_swevent_event(struct perf_event *event, u64 nr,
4800                               struct perf_sample_data *data,
4801                               struct pt_regs *regs)
4802{
4803        struct hw_perf_event *hwc = &event->hw;
4804
4805        local64_add(nr, &event->count);
4806
4807        if (!regs)
4808                return;
4809
4810        if (!is_sampling_event(event))
4811                return;
4812
4813        if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
4814                data->period = nr;
4815                return perf_swevent_overflow(event, 1, data, regs);
4816        } else
4817                data->period = event->hw.last_period;
4818
4819        if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4820                return perf_swevent_overflow(event, 1, data, regs);
4821
4822        if (local64_add_negative(nr, &hwc->period_left))
4823                return;
4824
4825        perf_swevent_overflow(event, 0, data, regs);
4826}
4827
4828static int perf_exclude_event(struct perf_event *event,
4829                              struct pt_regs *regs)
4830{
4831        if (event->hw.state & PERF_HES_STOPPED)
4832                return 1;
4833
4834        if (regs) {
4835                if (event->attr.exclude_user && user_mode(regs))
4836                        return 1;
4837
4838                if (event->attr.exclude_kernel && !user_mode(regs))
4839                        return 1;
4840        }
4841
4842        return 0;
4843}
4844
4845static int perf_swevent_match(struct perf_event *event,
4846                                enum perf_type_id type,
4847                                u32 event_id,
4848                                struct perf_sample_data *data,
4849                                struct pt_regs *regs)
4850{
4851        if (event->attr.type != type)
4852                return 0;
4853
4854        if (event->attr.config != event_id)
4855                return 0;
4856
4857        if (perf_exclude_event(event, regs))
4858                return 0;
4859
4860        return 1;
4861}
4862
4863static inline u64 swevent_hash(u64 type, u32 event_id)
4864{
4865        u64 val = event_id | (type << 32);
4866
4867        return hash_64(val, SWEVENT_HLIST_BITS);
4868}
4869
4870static inline struct hlist_head *
4871__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4872{
4873        u64 hash = swevent_hash(type, event_id);
4874
4875        return &hlist->heads[hash];
4876}
4877
4878/* For the read side: events when they trigger */
4879static inline struct hlist_head *
4880find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4881{
4882        struct swevent_hlist *hlist;
4883
4884        hlist = rcu_dereference(swhash->swevent_hlist);
4885        if (!hlist)
4886                return NULL;
4887
4888        return __find_swevent_head(hlist, type, event_id);
4889}
4890
4891/* For the event head insertion and removal in the hlist */
4892static inline struct hlist_head *
4893find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4894{
4895        struct swevent_hlist *hlist;
4896        u32 event_id = event->attr.config;
4897        u64 type = event->attr.type;
4898
4899        /*
4900         * Event scheduling is always serialized against hlist allocation
4901         * and release. Which makes the protected version suitable here.
4902         * The context lock guarantees that.
4903         */
4904        hlist = rcu_dereference_protected(swhash->swevent_hlist,
4905                                          lockdep_is_held(&event->ctx->lock));
4906        if (!hlist)
4907                return NULL;
4908
4909        return __find_swevent_head(hlist, type, event_id);
4910}
4911
4912static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4913                                    u64 nr,
4914                                    struct perf_sample_data *data,
4915                                    struct pt_regs *regs)
4916{
4917        struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4918        struct perf_event *event;
4919        struct hlist_node *node;
4920        struct hlist_head *head;
4921
4922        rcu_read_lock();
4923        head = find_swevent_head_rcu(swhash, type, event_id);
4924        if (!head)
4925                goto end;
4926
4927        hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4928                if (perf_swevent_match(event, type, event_id, data, regs))
4929                        perf_swevent_event(event, nr, data, regs);
4930        }
4931end:
4932        rcu_read_unlock();
4933}
4934
4935int perf_swevent_get_recursion_context(void)
4936{
4937        struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4938
4939        return get_recursion_context(swhash->recursion);
4940}
4941EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4942
4943inline void perf_swevent_put_recursion_context(int rctx)
4944{
4945        struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4946
4947        put_recursion_context(swhash->recursion, rctx);
4948}
4949
4950void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
4951{
4952        struct perf_sample_data data;
4953        int rctx;
4954
4955        preempt_disable_notrace();
4956        rctx = perf_swevent_get_recursion_context();
4957        if (rctx < 0)
4958                return;
4959
4960        perf_sample_data_init(&data, addr);
4961
4962        do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4963
4964        perf_swevent_put_recursion_context(rctx);
4965        preempt_enable_notrace();
4966}
4967
4968static void perf_swevent_read(struct perf_event *event)
4969{
4970}
4971
4972static int perf_swevent_add(struct perf_event *event, int flags)
4973{
4974        struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4975        struct hw_perf_event *hwc = &event->hw;
4976        struct hlist_head *head;
4977
4978        if (is_sampling_event(event)) {
4979                hwc->last_period = hwc->sample_period;
4980                perf_swevent_set_period(event);
4981        }
4982
4983        hwc->state = !(flags & PERF_EF_START);
4984
4985        head = find_swevent_head(swhash, event);
4986        if (WARN_ON_ONCE(!head))
4987                return -EINVAL;
4988
4989        hlist_add_head_rcu(&event->hlist_entry, head);
4990
4991        return 0;
4992}
4993
4994static void perf_swevent_del(struct perf_event *event, int flags)
4995{
4996        hlist_del_rcu(&event->hlist_entry);
4997}
4998
4999static void perf_swevent_start(struct perf_event *event, int flags)
5000{
5001        event->hw.state = 0;
5002}
5003
5004static void perf_swevent_stop(struct perf_event *event, int flags)
5005{
5006        event->hw.state = PERF_HES_STOPPED;
5007}
5008
5009/* Deref the hlist from the update side */
5010static inline struct swevent_hlist *
5011swevent_hlist_deref(struct swevent_htable *swhash)
5012{
5013        return rcu_dereference_protected(swhash->swevent_hlist,
5014                                         lockdep_is_held(&swhash->hlist_mutex));
5015}
5016
5017static void swevent_hlist_release(struct swevent_htable *swhash)
5018{
5019        struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5020
5021        if (!hlist)
5022                return;
5023
5024        rcu_assign_pointer(swhash->swevent_hlist, NULL);
5025        kfree_rcu(hlist, rcu_head);
5026}
5027
5028static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5029{
5030        struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5031
5032        mutex_lock(&swhash->hlist_mutex);
5033
5034        if (!--swhash->hlist_refcount)
5035                swevent_hlist_release(swhash);
5036
5037        mutex_unlock(&swhash->hlist_mutex);
5038}
5039
5040static void swevent_hlist_put(struct perf_event *event)
5041{
5042        int cpu;
5043
5044        if (event->cpu != -1) {
5045                swevent_hlist_put_cpu(event, event->cpu);
5046                return;
5047        }
5048
5049        for_each_possible_cpu(cpu)
5050                swevent_hlist_put_cpu(event, cpu);
5051}
5052
5053static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5054{
5055        struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5056        int err = 0;
5057
5058        mutex_lock(&swhash->hlist_mutex);
5059
5060        if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5061                struct swevent_hlist *hlist;
5062
5063                hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5064                if (!hlist) {
5065                        err = -ENOMEM;
5066                        goto exit;
5067                }
5068                rcu_assign_pointer(swhash->swevent_hlist, hlist);
5069        }
5070        swhash->hlist_refcount++;
5071exit:
5072        mutex_unlock(&swhash->hlist_mutex);
5073
5074        return err;
5075}
5076
5077static int swevent_hlist_get(struct perf_event *event)
5078{
5079        int err;
5080        int cpu, failed_cpu;
5081
5082        if (event->cpu != -1)
5083                return swevent_hlist_get_cpu(event, event->cpu);
5084
5085        get_online_cpus();
5086        for_each_possible_cpu(cpu) {
5087                err = swevent_hlist_get_cpu(event, cpu);
5088                if (err) {
5089                        failed_cpu = cpu;
5090                        goto fail;
5091                }
5092        }
5093        put_online_cpus();
5094
5095        return 0;
5096fail:
5097        for_each_possible_cpu(cpu) {
5098                if (cpu == failed_cpu)
5099                        break;
5100                swevent_hlist_put_cpu(event, cpu);
5101        }
5102
5103        put_online_cpus();
5104        return err;
5105}
5106
5107struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5108
5109static void sw_perf_event_destroy(struct perf_event *event)
5110{
5111        u64 event_id = event->attr.config;
5112
5113        WARN_ON(event->parent);
5114
5115        static_key_slow_dec(&perf_swevent_enabled[event_id]);
5116        swevent_hlist_put(event);
5117}
5118
5119static int perf_swevent_init(struct perf_event *event)
5120{
5121        int event_id = event->attr.config;
5122
5123        if (event->attr.type != PERF_TYPE_SOFTWARE)
5124                return -ENOENT;
5125
5126        /*
5127         * no branch sampling for software events
5128         */
5129        if (has_branch_stack(event))
5130                return -EOPNOTSUPP;
5131
5132        switch (event_id) {
5133        case PERF_COUNT_SW_CPU_CLOCK:
5134        case PERF_COUNT_SW_TASK_CLOCK:
5135                return -ENOENT;
5136
5137        default:
5138                break;
5139        }
5140
5141        if (event_id >= PERF_COUNT_SW_MAX)
5142                return -ENOENT;
5143
5144        if (!event->parent) {
5145                int err;
5146
5147                err = swevent_hlist_get(event);
5148                if (err)
5149                        return err;
5150
5151                static_key_slow_inc(&perf_swevent_enabled[event_id]);
5152                event->destroy = sw_perf_event_destroy;
5153        }
5154
5155        return 0;
5156}
5157
5158static int perf_swevent_event_idx(struct perf_event *event)
5159{
5160        return 0;
5161}
5162
5163static struct pmu perf_swevent = {
5164        .task_ctx_nr    = perf_sw_context,
5165
5166        .event_init     = perf_swevent_init,
5167        .add            = perf_swevent_add,
5168        .del            = perf_swevent_del,
5169        .start          = perf_swevent_start,
5170        .stop           = perf_swevent_stop,
5171        .read           = perf_swevent_read,
5172
5173        .event_idx      = perf_swevent_event_idx,
5174};
5175
5176#ifdef CONFIG_EVENT_TRACING
5177
5178static int perf_tp_filter_match(struct perf_event *event,
5179                                struct perf_sample_data *data)
5180{
5181        void *record = data->raw->data;
5182
5183        if (likely(!event->filter) || filter_match_preds(event->filter, record))
5184                return 1;
5185        return 0;
5186}
5187
5188static int perf_tp_event_match(struct perf_event *event,
5189                                struct perf_sample_data *data,
5190                                struct pt_regs *regs)
5191{
5192        if (event->hw.state & PERF_HES_STOPPED)
5193                return 0;
5194        /*
5195         * All tracepoints are from kernel-space.
5196         */
5197        if (event->attr.exclude_kernel)
5198                return 0;
5199
5200        if (!perf_tp_filter_match(event, data))
5201                return 0;
5202
5203        return 1;
5204}
5205
5206void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5207                   struct pt_regs *regs, struct hlist_head *head, int rctx)
5208{
5209        struct perf_sample_data data;
5210        struct perf_event *event;
5211        struct hlist_node *node;
5212
5213        struct perf_raw_record raw = {
5214                .size = entry_size,
5215                .data = record,
5216        };
5217
5218        perf_sample_data_init(&data, addr);
5219        data.raw = &raw;
5220
5221        hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5222                if (perf_tp_event_match(event, &data, regs))
5223                        perf_swevent_event(event, count, &data, regs);
5224        }
5225
5226        perf_swevent_put_recursion_context(rctx);
5227}
5228EXPORT_SYMBOL_GPL(perf_tp_event);
5229
5230static void tp_perf_event_destroy(struct perf_event *event)
5231{
5232        perf_trace_destroy(event);
5233}
5234
5235static int perf_tp_event_init(struct perf_event *event)
5236{
5237        int err;
5238
5239        if (event->attr.type != PERF_TYPE_TRACEPOINT)
5240                return -ENOENT;
5241
5242        /*
5243         * no branch sampling for tracepoint events
5244         */
5245        if (has_branch_stack(event))
5246                return -EOPNOTSUPP;
5247
5248        err = perf_trace_init(event);
5249        if (err)
5250                return err;
5251
5252        event->destroy = tp_perf_event_destroy;
5253
5254        return 0;
5255}
5256
5257static struct pmu perf_tracepoint = {
5258        .task_ctx_nr    = perf_sw_context,
5259
5260        .event_init     = perf_tp_event_init,
5261        .add            = perf_trace_add,
5262        .del            = perf_trace_del,
5263        .start          = perf_swevent_start,
5264        .stop           = perf_swevent_stop,
5265        .read           = perf_swevent_read,
5266
5267        .event_idx      = perf_swevent_event_idx,
5268};
5269
5270static inline void perf_tp_register(void)
5271{
5272        perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5273}
5274
5275static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5276{
5277        char *filter_str;
5278        int ret;
5279
5280        if (event->attr.type != PERF_TYPE_TRACEPOINT)
5281                return -EINVAL;
5282
5283        filter_str = strndup_user(arg, PAGE_SIZE);
5284        if (IS_ERR(filter_str))
5285                return PTR_ERR(filter_str);
5286
5287        ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5288
5289        kfree(filter_str);
5290        return ret;
5291}
5292
5293static void perf_event_free_filter(struct perf_event *event)
5294{
5295        ftrace_profile_free_filter(event);
5296}
5297
5298#else
5299
5300static inline void perf_tp_register(void)
5301{
5302}
5303
5304static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5305{
5306        return -ENOENT;
5307}
5308
5309static void perf_event_free_filter(struct perf_event *event)
5310{
5311}
5312
5313#endif /* CONFIG_EVENT_TRACING */
5314
5315#ifdef CONFIG_HAVE_HW_BREAKPOINT
5316void perf_bp_event(struct perf_event *bp, void *data)
5317{
5318        struct perf_sample_data sample;
5319        struct pt_regs *regs = data;
5320
5321        perf_sample_data_init(&sample, bp->attr.bp_addr);
5322
5323        if (!bp->hw.state && !perf_exclude_event(bp, regs))
5324                perf_swevent_event(bp, 1, &sample, regs);
5325}
5326#endif
5327
5328/*
5329 * hrtimer based swevent callback
5330 */
5331
5332static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5333{
5334        enum hrtimer_restart ret = HRTIMER_RESTART;
5335        struct perf_sample_data data;
5336        struct pt_regs *regs;
5337        struct perf_event *event;
5338        u64 period;
5339
5340        event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5341
5342        if (event->state != PERF_EVENT_STATE_ACTIVE)
5343                return HRTIMER_NORESTART;
5344
5345        event->pmu->read(event);
5346
5347        perf_sample_data_init(&data, 0);
5348        data.period = event->hw.last_period;
5349        regs = get_irq_regs();
5350
5351        if (regs && !perf_exclude_event(event, regs)) {
5352                if (!(event->attr.exclude_idle && is_idle_task(current)))
5353                        if (perf_event_overflow(event, &data, regs))
5354                                ret = HRTIMER_NORESTART;
5355        }
5356
5357        period = max_t(u64, 10000, event->hw.sample_period);
5358        hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5359
5360        return ret;
5361}
5362
5363static void perf_swevent_start_hrtimer(struct perf_event *event)
5364{
5365        struct hw_perf_event *hwc = &event->hw;
5366        s64 period;
5367
5368        if (!is_sampling_event(event))
5369                return;
5370
5371        period = local64_read(&hwc->period_left);
5372        if (period) {
5373                if (period < 0)
5374                        period = 10000;
5375
5376                local64_set(&hwc->period_left, 0);
5377        } else {
5378                period = max_t(u64, 10000, hwc->sample_period);
5379        }
5380        __hrtimer_start_range_ns(&hwc->hrtimer,
5381                                ns_to_ktime(period), 0,
5382                                HRTIMER_MODE_REL_PINNED, 0);
5383}
5384
5385static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5386{
5387        struct hw_perf_event *hwc = &event->hw;
5388
5389        if (is_sampling_event(event)) {
5390                ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5391                local64_set(&hwc->period_left, ktime_to_ns(remaining));
5392
5393                hrtimer_cancel(&hwc->hrtimer);
5394        }
5395}
5396
5397static void perf_swevent_init_hrtimer(struct perf_event *event)
5398{
5399        struct hw_perf_event *hwc = &event->hw;
5400
5401        if (!is_sampling_event(event))
5402                return;
5403
5404        hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5405        hwc->hrtimer.function = perf_swevent_hrtimer;
5406
5407        /*
5408         * Since hrtimers have a fixed rate, we can do a static freq->period
5409         * mapping and avoid the whole period adjust feedback stuff.
5410         */
5411        if (event->attr.freq) {
5412                long freq = event->attr.sample_freq;
5413
5414                event->attr.sample_period = NSEC_PER_SEC / freq;
5415                hwc->sample_period = event->attr.sample_period;
5416                local64_set(&hwc->period_left, hwc->sample_period);
5417                event->attr.freq = 0;
5418        }
5419}
5420
5421/*
5422 * Software event: cpu wall time clock
5423 */
5424
5425static void cpu_clock_event_update(struct perf_event *event)
5426{
5427        s64 prev;
5428        u64 now;
5429
5430        now = local_clock();
5431        prev = local64_xchg(&event->hw.prev_count, now);
5432        local64_add(now - prev, &event->count);
5433}
5434
5435static void cpu_clock_event_start(struct perf_event *event, int flags)
5436{
5437        local64_set(&event->hw.prev_count, local_clock());
5438        perf_swevent_start_hrtimer(event);
5439}
5440
5441static void cpu_clock_event_stop(struct perf_event *event, int flags)
5442{
5443        perf_swevent_cancel_hrtimer(event);
5444        cpu_clock_event_update(event);
5445}
5446
5447static int cpu_clock_event_add(struct perf_event *event, int flags)
5448{
5449        if (flags & PERF_EF_START)
5450                cpu_clock_event_start(event, flags);
5451
5452        return 0;
5453}
5454
5455static void cpu_clock_event_del(struct perf_event *event, int flags)
5456{
5457        cpu_clock_event_stop(event, flags);
5458}
5459
5460static void cpu_clock_event_read(struct perf_event *event)
5461{
5462        cpu_clock_event_update(event);
5463}
5464
5465static int cpu_clock_event_init(struct perf_event *event)
5466{
5467        if (event->attr.type != PERF_TYPE_SOFTWARE)
5468                return -ENOENT;
5469
5470        if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5471                return -ENOENT;
5472
5473        /*
5474         * no branch sampling for software events
5475         */
5476        if (has_branch_stack(event))
5477                return -EOPNOTSUPP;
5478
5479        perf_swevent_init_hrtimer(event);
5480
5481        return 0;
5482}
5483
5484static struct pmu perf_cpu_clock = {
5485        .task_ctx_nr    = perf_sw_context,
5486
5487        .event_init     = cpu_clock_event_init,
5488        .add            = cpu_clock_event_add,
5489        .del            = cpu_clock_event_del,
5490        .start          = cpu_clock_event_start,
5491        .stop           = cpu_clock_event_stop,
5492        .read           = cpu_clock_event_read,
5493
5494        .event_idx      = perf_swevent_event_idx,
5495};
5496
5497/*
5498 * Software event: task time clock
5499 */
5500
5501static void task_clock_event_update(struct perf_event *event, u64 now)
5502{
5503        u64 prev;
5504        s64 delta;
5505
5506        prev = local64_xchg(&event->hw.prev_count, now);
5507        delta = now - prev;
5508        local64_add(delta, &event->count);
5509}
5510
5511static void task_clock_event_start(struct perf_event *event, int flags)
5512{
5513        local64_set(&event->hw.prev_count, event->ctx->time);
5514        perf_swevent_start_hrtimer(event);
5515}
5516
5517static void task_clock_event_stop(struct perf_event *event, int flags)
5518{
5519        perf_swevent_cancel_hrtimer(event);
5520        task_clock_event_update(event, event->ctx->time);
5521}
5522
5523static int task_clock_event_add(struct perf_event *event, int flags)
5524{
5525        if (flags & PERF_EF_START)
5526                task_clock_event_start(event, flags);
5527
5528        return 0;
5529}
5530
5531static void task_clock_event_del(struct perf_event *event, int flags)
5532{
5533        task_clock_event_stop(event, PERF_EF_UPDATE);
5534}
5535
5536static void task_clock_event_read(struct perf_event *event)
5537{
5538        u64 now = perf_clock();
5539        u64 delta = now - event->ctx->timestamp;
5540        u64 time = event->ctx->time + delta;
5541
5542        task_clock_event_update(event, time);
5543}
5544
5545static int task_clock_event_init(struct perf_event *event)
5546{
5547        if (event->attr.type != PERF_TYPE_SOFTWARE)
5548                return -ENOENT;
5549
5550        if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5551                return -ENOENT;
5552
5553        /*
5554         * no branch sampling for software events
5555         */
5556        if (has_branch_stack(event))
5557                return -EOPNOTSUPP;
5558
5559        perf_swevent_init_hrtimer(event);
5560
5561        return 0;
5562}
5563
5564static struct pmu perf_task_clock = {
5565        .task_ctx_nr    = perf_sw_context,
5566
5567        .event_init     = task_clock_event_init,
5568        .add            = task_clock_event_add,
5569        .del            = task_clock_event_del,
5570        .start          = task_clock_event_start,
5571        .stop           = task_clock_event_stop,
5572        .read           = task_clock_event_read,
5573
5574        .event_idx      = perf_swevent_event_idx,
5575};
5576
5577static void perf_pmu_nop_void(struct pmu *pmu)
5578{
5579}
5580
5581static int perf_pmu_nop_int(struct pmu *pmu)
5582{
5583        return 0;
5584}
5585
5586static void perf_pmu_start_txn(struct pmu *pmu)
5587{
5588        perf_pmu_disable(pmu);
5589}
5590
5591static int perf_pmu_commit_txn(struct pmu *pmu)
5592{
5593        perf_pmu_enable(pmu);
5594        return 0;
5595}
5596
5597static void perf_pmu_cancel_txn(struct pmu *pmu)
5598{
5599        perf_pmu_enable(pmu);
5600}
5601
5602static int perf_event_idx_default(struct perf_event *event)
5603{
5604        return event->hw.idx + 1;
5605}
5606
5607/*
5608 * Ensures all contexts with the same task_ctx_nr have the same
5609 * pmu_cpu_context too.
5610 */
5611static void *find_pmu_context(int ctxn)
5612{
5613        struct pmu *pmu;
5614
5615        if (ctxn < 0)
5616                return NULL;
5617
5618        list_for_each_entry(pmu, &pmus, entry) {
5619                if (pmu->task_ctx_nr == ctxn)
5620                        return pmu->pmu_cpu_context;
5621        }
5622
5623        return NULL;
5624}
5625
5626static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5627{
5628        int cpu;
5629
5630        for_each_possible_cpu(cpu) {
5631                struct perf_cpu_context *cpuctx;
5632
5633                cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5634
5635                if (cpuctx->active_pmu == old_pmu)
5636                        cpuctx->active_pmu = pmu;
5637        }
5638}
5639
5640static void free_pmu_context(struct pmu *pmu)
5641{
5642        struct pmu *i;
5643
5644        mutex_lock(&pmus_lock);
5645        /*
5646         * Like a real lame refcount.
5647         */
5648        list_for_each_entry(i, &pmus, entry) {
5649                if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5650                        update_pmu_context(i, pmu);
5651                        goto out;
5652                }
5653        }
5654
5655        free_percpu(pmu->pmu_cpu_context);
5656out:
5657        mutex_unlock(&pmus_lock);
5658}
5659static struct idr pmu_idr;
5660
5661static ssize_t
5662type_show(struct device *dev, struct device_attribute *attr, char *page)
5663{
5664        struct pmu *pmu = dev_get_drvdata(dev);
5665
5666        return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5667}
5668
5669static struct device_attribute pmu_dev_attrs[] = {
5670       __ATTR_RO(type),
5671       __ATTR_NULL,
5672};
5673
5674static int pmu_bus_running;
5675static struct bus_type pmu_bus = {
5676        .name           = "event_source",
5677        .dev_attrs      = pmu_dev_attrs,
5678};
5679
5680static void pmu_dev_release(struct device *dev)
5681{
5682        kfree(dev);
5683}
5684
5685static int pmu_dev_alloc(struct pmu *pmu)
5686{
5687        int ret = -ENOMEM;
5688
5689        pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5690        if (!pmu->dev)
5691                goto out;
5692
5693        pmu->dev->groups = pmu->attr_groups;
5694        device_initialize(pmu->dev);
5695        ret = dev_set_name(pmu->dev, "%s", pmu->name);
5696        if (ret)
5697                goto free_dev;
5698
5699        dev_set_drvdata(pmu->dev, pmu);
5700        pmu->dev->bus = &pmu_bus;
5701        pmu->dev->release = pmu_dev_release;
5702        ret = device_add(pmu->dev);
5703        if (ret)
5704                goto free_dev;
5705
5706out:
5707        return ret;
5708
5709free_dev:
5710        put_device(pmu->dev);
5711        goto out;
5712}
5713
5714static struct lock_class_key cpuctx_mutex;
5715static struct lock_class_key cpuctx_lock;
5716
5717int perf_pmu_register(struct pmu *pmu, char *name, int type)
5718{
5719        int cpu, ret;
5720
5721        mutex_lock(&pmus_lock);
5722        ret = -ENOMEM;
5723        pmu->pmu_disable_count = alloc_percpu(int);
5724        if (!pmu->pmu_disable_count)
5725                goto unlock;
5726
5727        pmu->type = -1;
5728        if (!name)
5729                goto skip_type;
5730        pmu->name = name;
5731
5732        if (type < 0) {
5733                int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
5734                if (!err)
5735                        goto free_pdc;
5736
5737                err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
5738                if (err) {
5739                        ret = err;
5740                        goto free_pdc;
5741                }
5742        }
5743        pmu->type = type;
5744
5745        if (pmu_bus_running) {
5746                ret = pmu_dev_alloc(pmu);
5747                if (ret)
5748                        goto free_idr;
5749        }
5750
5751skip_type:
5752        pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5753        if (pmu->pmu_cpu_context)
5754                goto got_cpu_context;
5755
5756        pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5757        if (!pmu->pmu_cpu_context)
5758                goto free_dev;
5759
5760        for_each_possible_cpu(cpu) {
5761                struct perf_cpu_context *cpuctx;
5762
5763                cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5764                __perf_event_init_context(&cpuctx->ctx);
5765                lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5766                lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
5767                cpuctx->ctx.type = cpu_context;
5768                cpuctx->ctx.pmu = pmu;
5769                cpuctx->jiffies_interval = 1;
5770                INIT_LIST_HEAD(&cpuctx->rotation_list);
5771                cpuctx->active_pmu = pmu;
5772        }
5773
5774got_cpu_context:
5775        if (!pmu->start_txn) {
5776                if (pmu->pmu_enable) {
5777                        /*
5778                         * If we have pmu_enable/pmu_disable calls, install
5779                         * transaction stubs that use that to try and batch
5780                         * hardware accesses.
5781                         */
5782                        pmu->start_txn  = perf_pmu_start_txn;
5783                        pmu->commit_txn = perf_pmu_commit_txn;
5784                        pmu->cancel_txn = perf_pmu_cancel_txn;
5785                } else {
5786                        pmu->start_txn  = perf_pmu_nop_void;
5787                        pmu->commit_txn = perf_pmu_nop_int;
5788                        pmu->cancel_txn = perf_pmu_nop_void;
5789                }
5790        }
5791
5792        if (!pmu->pmu_enable) {
5793                pmu->pmu_enable  = perf_pmu_nop_void;
5794                pmu->pmu_disable = perf_pmu_nop_void;
5795        }
5796
5797        if (!pmu->event_idx)
5798                pmu->event_idx = perf_event_idx_default;
5799
5800        list_add_rcu(&pmu->entry, &pmus);
5801        ret = 0;
5802unlock:
5803        mutex_unlock(&pmus_lock);
5804
5805        return ret;
5806
5807free_dev:
5808        device_del(pmu->dev);
5809        put_device(pmu->dev);
5810
5811free_idr:
5812        if (pmu->type >= PERF_TYPE_MAX)
5813                idr_remove(&pmu_idr, pmu->type);
5814
5815free_pdc:
5816        free_percpu(pmu->pmu_disable_count);
5817        goto unlock;
5818}
5819
5820void perf_pmu_unregister(struct pmu *pmu)
5821{
5822        mutex_lock(&pmus_lock);
5823        list_del_rcu(&pmu->entry);
5824        mutex_unlock(&pmus_lock);
5825
5826        /*
5827         * We dereference the pmu list under both SRCU and regular RCU, so
5828         * synchronize against both of those.
5829         */
5830        synchronize_srcu(&pmus_srcu);
5831        synchronize_rcu();
5832
5833        free_percpu(pmu->pmu_disable_count);
5834        if (pmu->type >= PERF_TYPE_MAX)
5835                idr_remove(&pmu_idr, pmu->type);
5836        device_del(pmu->dev);
5837        put_device(pmu->dev);
5838        free_pmu_context(pmu);
5839}
5840
5841struct pmu *perf_init_event(struct perf_event *event)
5842{
5843        struct pmu *pmu = NULL;
5844        int idx;
5845        int ret;
5846
5847        idx = srcu_read_lock(&pmus_srcu);
5848
5849        rcu_read_lock();
5850        pmu = idr_find(&pmu_idr, event->attr.type);
5851        rcu_read_unlock();
5852        if (pmu) {
5853                event->pmu = pmu;
5854                ret = pmu->event_init(event);
5855                if (ret)
5856                        pmu = ERR_PTR(ret);
5857                goto unlock;
5858        }
5859
5860        list_for_each_entry_rcu(pmu, &pmus, entry) {
5861                event->pmu = pmu;
5862                ret = pmu->event_init(event);
5863                if (!ret)
5864                        goto unlock;
5865
5866                if (ret != -ENOENT) {
5867                        pmu = ERR_PTR(ret);
5868                        goto unlock;
5869                }
5870        }
5871        pmu = ERR_PTR(-ENOENT);
5872unlock:
5873        srcu_read_unlock(&pmus_srcu, idx);
5874
5875        return pmu;
5876}
5877
5878/*
5879 * Allocate and initialize a event structure
5880 */
5881static struct perf_event *
5882perf_event_alloc(struct perf_event_attr *attr, int cpu,
5883                 struct task_struct *task,
5884                 struct perf_event *group_leader,
5885                 struct perf_event *parent_event,
5886                 perf_overflow_handler_t overflow_handler,
5887                 void *context)
5888{
5889        struct pmu *pmu;
5890        struct perf_event *event;
5891        struct hw_perf_event *hwc;
5892        long err;
5893
5894        if ((unsigned)cpu >= nr_cpu_ids) {
5895                if (!task || cpu != -1)
5896                        return ERR_PTR(-EINVAL);
5897        }
5898
5899        event = kzalloc(sizeof(*event), GFP_KERNEL);
5900        if (!event)
5901                return ERR_PTR(-ENOMEM);
5902
5903        /*
5904         * Single events are their own group leaders, with an
5905         * empty sibling list:
5906         */
5907        if (!group_leader)
5908                group_leader = event;
5909
5910        mutex_init(&event->child_mutex);
5911        INIT_LIST_HEAD(&event->child_list);
5912
5913        INIT_LIST_HEAD(&event->group_entry);
5914        INIT_LIST_HEAD(&event->event_entry);
5915        INIT_LIST_HEAD(&event->sibling_list);
5916        INIT_LIST_HEAD(&event->rb_entry);
5917
5918        init_waitqueue_head(&event->waitq);
5919        init_irq_work(&event->pending, perf_pending_event);
5920
5921        mutex_init(&event->mmap_mutex);
5922
5923        event->cpu              = cpu;
5924        event->attr             = *attr;
5925        event->group_leader     = group_leader;
5926        event->pmu              = NULL;
5927        event->oncpu            = -1;
5928
5929        event->parent           = parent_event;
5930
5931        event->ns               = get_pid_ns(current->nsproxy->pid_ns);
5932        event->id               = atomic64_inc_return(&perf_event_id);
5933
5934        event->state            = PERF_EVENT_STATE_INACTIVE;
5935
5936        if (task) {
5937                event->attach_state = PERF_ATTACH_TASK;
5938#ifdef CONFIG_HAVE_HW_BREAKPOINT
5939                /*
5940                 * hw_breakpoint is a bit difficult here..
5941                 */
5942                if (attr->type == PERF_TYPE_BREAKPOINT)
5943                        event->hw.bp_target = task;
5944#endif
5945        }
5946
5947        if (!overflow_handler && parent_event) {
5948                overflow_handler = parent_event->overflow_handler;
5949                context = parent_event->overflow_handler_context;
5950        }
5951
5952        event->overflow_handler = overflow_handler;
5953        event->overflow_handler_context = context;
5954
5955        if (attr->disabled)
5956                event->state = PERF_EVENT_STATE_OFF;
5957
5958        pmu = NULL;
5959
5960        hwc = &event->hw;
5961        hwc->sample_period = attr->sample_period;
5962        if (attr->freq && attr->sample_freq)
5963                hwc->sample_period = 1;
5964        hwc->last_period = hwc->sample_period;
5965
5966        local64_set(&hwc->period_left, hwc->sample_period);
5967
5968        /*
5969         * we currently do not support PERF_FORMAT_GROUP on inherited events
5970         */
5971        if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5972                goto done;
5973
5974        pmu = perf_init_event(event);
5975
5976done:
5977        err = 0;
5978        if (!pmu)
5979                err = -EINVAL;
5980        else if (IS_ERR(pmu))
5981                err = PTR_ERR(pmu);
5982
5983        if (err) {
5984                if (event->ns)
5985                        put_pid_ns(event->ns);
5986                kfree(event);
5987                return ERR_PTR(err);
5988        }
5989
5990        if (!event->parent) {
5991                if (event->attach_state & PERF_ATTACH_TASK)
5992                        static_key_slow_inc(&perf_sched_events.key);
5993                if (event->attr.mmap || event->attr.mmap_data)
5994                        atomic_inc(&nr_mmap_events);
5995                if (event->attr.comm)
5996                        atomic_inc(&nr_comm_events);
5997                if (event->attr.task)
5998                        atomic_inc(&nr_task_events);
5999                if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6000                        err = get_callchain_buffers();
6001                        if (err) {
6002                                free_event(event);
6003                                return ERR_PTR(err);
6004                        }
6005                }
6006                if (has_branch_stack(event)) {
6007                        static_key_slow_inc(&perf_sched_events.key);
6008                        if (!(event->attach_state & PERF_ATTACH_TASK))
6009                                atomic_inc(&per_cpu(perf_branch_stack_events,
6010                                                    event->cpu));
6011                }
6012        }
6013
6014        return event;
6015}
6016
6017static int perf_copy_attr(struct perf_event_attr __user *uattr,
6018                          struct perf_event_attr *attr)
6019{
6020        u32 size;
6021        int ret;
6022
6023        if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6024                return -EFAULT;
6025
6026        /*
6027         * zero the full structure, so that a short copy will be nice.
6028         */
6029        memset(attr, 0, sizeof(*attr));
6030
6031        ret = get_user(size, &uattr->size);
6032        if (ret)
6033                return ret;
6034
6035        if (size > PAGE_SIZE)   /* silly large */
6036                goto err_size;
6037
6038        if (!size)              /* abi compat */
6039                size = PERF_ATTR_SIZE_VER0;
6040
6041        if (size < PERF_ATTR_SIZE_VER0)
6042                goto err_size;
6043
6044        /*
6045         * If we're handed a bigger struct than we know of,
6046         * ensure all the unknown bits are 0 - i.e. new
6047         * user-space does not rely on any kernel feature
6048         * extensions we dont know about yet.
6049         */
6050        if (size > sizeof(*attr)) {
6051                unsigned char __user *addr;
6052                unsigned char __user *end;
6053                unsigned char val;
6054
6055                addr = (void __user *)uattr + sizeof(*attr);
6056                end  = (void __user *)uattr + size;
6057
6058                for (; addr < end; addr++) {
6059                        ret = get_user(val, addr);
6060                        if (ret)
6061                                return ret;
6062                        if (val)
6063                                goto err_size;
6064                }
6065                size = sizeof(*attr);
6066        }
6067
6068        ret = copy_from_user(attr, uattr, size);
6069        if (ret)
6070                return -EFAULT;
6071
6072        if (attr->__reserved_1)
6073                return -EINVAL;
6074
6075        if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6076                return -EINVAL;
6077
6078        if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6079                return -EINVAL;
6080
6081        if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6082                u64 mask = attr->branch_sample_type;
6083
6084                /* only using defined bits */
6085                if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6086                        return -EINVAL;
6087
6088                /* at least one branch bit must be set */
6089                if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6090                        return -EINVAL;
6091
6092                /* kernel level capture: check permissions */
6093                if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6094                    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6095                        return -EACCES;
6096
6097                /* propagate priv level, when not set for branch */
6098                if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6099
6100                        /* exclude_kernel checked on syscall entry */
6101                        if (!attr->exclude_kernel)
6102                                mask |= PERF_SAMPLE_BRANCH_KERNEL;
6103
6104                        if (!attr->exclude_user)
6105                                mask |= PERF_SAMPLE_BRANCH_USER;
6106
6107                        if (!attr->exclude_hv)
6108                                mask |= PERF_SAMPLE_BRANCH_HV;
6109                        /*
6110                         * adjust user setting (for HW filter setup)
6111                         */
6112                        attr->branch_sample_type = mask;
6113                }
6114        }
6115out:
6116        return ret;
6117
6118err_size:
6119        put_user(sizeof(*attr), &uattr->size);
6120        ret = -E2BIG;
6121        goto out;
6122}
6123
6124static int
6125perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6126{
6127        struct ring_buffer *rb = NULL, *old_rb = NULL;
6128        int ret = -EINVAL;
6129
6130        if (!output_event)
6131                goto set;
6132
6133        /* don't allow circular references */
6134        if (event == output_event)
6135                goto out;
6136
6137        /*
6138         * Don't allow cross-cpu buffers
6139         */
6140        if (output_event->cpu != event->cpu)
6141                goto out;
6142
6143        /*
6144         * If its not a per-cpu rb, it must be the same task.
6145         */
6146        if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6147                goto out;
6148
6149set:
6150        mutex_lock(&event->mmap_mutex);
6151        /* Can't redirect output if we've got an active mmap() */
6152        if (atomic_read(&event->mmap_count))
6153                goto unlock;
6154
6155        if (output_event) {
6156                /* get the rb we want to redirect to */
6157                rb = ring_buffer_get(output_event);
6158                if (!rb)
6159                        goto unlock;
6160        }
6161
6162        old_rb = event->rb;
6163        rcu_assign_pointer(event->rb, rb);
6164        if (old_rb)
6165                ring_buffer_detach(event, old_rb);
6166        ret = 0;
6167unlock:
6168        mutex_unlock(&event->mmap_mutex);
6169
6170        if (old_rb)
6171                ring_buffer_put(old_rb);
6172out:
6173        return ret;
6174}
6175
6176/**
6177 * sys_perf_event_open - open a performance event, associate it to a task/cpu
6178 *
6179 * @attr_uptr:  event_id type attributes for monitoring/sampling
6180 * @pid:                target pid
6181 * @cpu:                target cpu
6182 * @group_fd:           group leader event fd
6183 */
6184SYSCALL_DEFINE5(perf_event_open,
6185                struct perf_event_attr __user *, attr_uptr,
6186                pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6187{
6188        struct perf_event *group_leader = NULL, *output_event = NULL;
6189        struct perf_event *event, *sibling;
6190        struct perf_event_attr attr;
6191        struct perf_event_context *ctx;
6192        struct file *event_file = NULL;
6193        struct file *group_file = NULL;
6194        struct task_struct *task = NULL;
6195        struct pmu *pmu;
6196        int event_fd;
6197        int move_group = 0;
6198        int fput_needed = 0;
6199        int err;
6200
6201        /* for future expandability... */
6202        if (flags & ~PERF_FLAG_ALL)
6203                return -EINVAL;
6204
6205        err = perf_copy_attr(attr_uptr, &attr);
6206        if (err)
6207                return err;
6208
6209        if (!attr.exclude_kernel) {
6210                if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6211                        return -EACCES;
6212        }
6213
6214        if (attr.freq) {
6215                if (attr.sample_freq > sysctl_perf_event_sample_rate)
6216                        return -EINVAL;
6217        }
6218
6219        /*
6220         * In cgroup mode, the pid argument is used to pass the fd
6221         * opened to the cgroup directory in cgroupfs. The cpu argument
6222         * designates the cpu on which to monitor threads from that
6223         * cgroup.
6224         */
6225        if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6226                return -EINVAL;
6227
6228        event_fd = get_unused_fd_flags(O_RDWR);
6229        if (event_fd < 0)
6230                return event_fd;
6231
6232        if (group_fd != -1) {
6233                group_leader = perf_fget_light(group_fd, &fput_needed);
6234                if (IS_ERR(group_leader)) {
6235                        err = PTR_ERR(group_leader);
6236                        goto err_fd;
6237                }
6238                group_file = group_leader->filp;
6239                if (flags & PERF_FLAG_FD_OUTPUT)
6240                        output_event = group_leader;
6241                if (flags & PERF_FLAG_FD_NO_GROUP)
6242                        group_leader = NULL;
6243        }
6244
6245        if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6246                task = find_lively_task_by_vpid(pid);
6247                if (IS_ERR(task)) {
6248                        err = PTR_ERR(task);
6249                        goto err_group_fd;
6250                }
6251        }
6252
6253        event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6254                                 NULL, NULL);
6255        if (IS_ERR(event)) {
6256                err = PTR_ERR(event);
6257                goto err_task;
6258        }
6259
6260        if (flags & PERF_FLAG_PID_CGROUP) {
6261                err = perf_cgroup_connect(pid, event, &attr, group_leader);
6262                if (err)
6263                        goto err_alloc;
6264                /*
6265                 * one more event:
6266                 * - that has cgroup constraint on event->cpu
6267                 * - that may need work on context switch
6268                 */
6269                atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6270                static_key_slow_inc(&perf_sched_events.key);
6271        }
6272
6273        /*
6274         * Special case software events and allow them to be part of
6275         * any hardware group.
6276         */
6277        pmu = event->pmu;
6278
6279        if (group_leader &&
6280            (is_software_event(event) != is_software_event(group_leader))) {
6281                if (is_software_event(event)) {
6282                        /*
6283                         * If event and group_leader are not both a software
6284                         * event, and event is, then group leader is not.
6285                         *
6286                         * Allow the addition of software events to !software
6287                         * groups, this is safe because software events never
6288                         * fail to schedule.
6289                         */
6290                        pmu = group_leader->pmu;
6291                } else if (is_software_event(group_leader) &&
6292                           (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6293                        /*
6294                         * In case the group is a pure software group, and we
6295                         * try to add a hardware event, move the whole group to
6296                         * the hardware context.
6297                         */
6298                        move_group = 1;
6299                }
6300        }
6301
6302        /*
6303         * Get the target context (task or percpu):
6304         */
6305        ctx = find_get_context(pmu, task, cpu);
6306        if (IS_ERR(ctx)) {
6307                err = PTR_ERR(ctx);
6308                goto err_alloc;
6309        }
6310
6311        if (task) {
6312                put_task_struct(task);
6313                task = NULL;
6314        }
6315
6316        /*
6317         * Look up the group leader (we will attach this event to it):
6318         */
6319        if (group_leader) {
6320                err = -EINVAL;
6321
6322                /*
6323                 * Do not allow a recursive hierarchy (this new sibling
6324                 * becoming part of another group-sibling):
6325                 */
6326                if (group_leader->group_leader != group_leader)
6327                        goto err_context;
6328                /*
6329                 * Do not allow to attach to a group in a different
6330                 * task or CPU context:
6331                 */
6332                if (move_group) {
6333                        if (group_leader->ctx->type != ctx->type)
6334                                goto err_context;
6335                } else {
6336                        if (group_leader->ctx != ctx)
6337                                goto err_context;
6338                }
6339
6340                /*
6341                 * Only a group leader can be exclusive or pinned
6342                 */
6343                if (attr.exclusive || attr.pinned)
6344                        goto err_context;
6345        }
6346
6347        if (output_event) {
6348                err = perf_event_set_output(event, output_event);
6349                if (err)
6350                        goto err_context;
6351        }
6352
6353        event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6354        if (IS_ERR(event_file)) {
6355                err = PTR_ERR(event_file);
6356                goto err_context;
6357        }
6358
6359        if (move_group) {
6360                struct perf_event_context *gctx = group_leader->ctx;
6361
6362                mutex_lock(&gctx->mutex);
6363                perf_remove_from_context(group_leader);
6364                list_for_each_entry(sibling, &group_leader->sibling_list,
6365                                    group_entry) {
6366                        perf_remove_from_context(sibling);
6367                        put_ctx(gctx);
6368                }
6369                mutex_unlock(&gctx->mutex);
6370                put_ctx(gctx);
6371        }
6372
6373        event->filp = event_file;
6374        WARN_ON_ONCE(ctx->parent_ctx);
6375        mutex_lock(&ctx->mutex);
6376
6377        if (move_group) {
6378                perf_install_in_context(ctx, group_leader, cpu);
6379                get_ctx(ctx);
6380                list_for_each_entry(sibling, &group_leader->sibling_list,
6381                                    group_entry) {
6382                        perf_install_in_context(ctx, sibling, cpu);
6383                        get_ctx(ctx);
6384                }
6385        }
6386
6387        perf_install_in_context(ctx, event, cpu);
6388        ++ctx->generation;
6389        perf_unpin_context(ctx);
6390        mutex_unlock(&ctx->mutex);
6391
6392        event->owner = current;
6393
6394        mutex_lock(&current->perf_event_mutex);
6395        list_add_tail(&event->owner_entry, &current->perf_event_list);
6396        mutex_unlock(&current->perf_event_mutex);
6397
6398        /*
6399         * Precalculate sample_data sizes
6400         */
6401        perf_event__header_size(event);
6402        perf_event__id_header_size(event);
6403
6404        /*
6405         * Drop the reference on the group_event after placing the
6406         * new event on the sibling_list. This ensures destruction
6407         * of the group leader will find the pointer to itself in
6408         * perf_group_detach().
6409         */
6410        fput_light(group_file, fput_needed);
6411        fd_install(event_fd, event_file);
6412        return event_fd;
6413
6414err_context:
6415        perf_unpin_context(ctx);
6416        put_ctx(ctx);
6417err_alloc:
6418        free_event(event);
6419err_task:
6420        if (task)
6421                put_task_struct(task);
6422err_group_fd:
6423        fput_light(group_file, fput_needed);
6424err_fd:
6425        put_unused_fd(event_fd);
6426        return err;
6427}
6428
6429/**
6430 * perf_event_create_kernel_counter
6431 *
6432 * @attr: attributes of the counter to create
6433 * @cpu: cpu in which the counter is bound
6434 * @task: task to profile (NULL for percpu)
6435 */
6436struct perf_event *
6437perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6438                                 struct task_struct *task,
6439                                 perf_overflow_handler_t overflow_handler,
6440                                 void *context)
6441{
6442        struct perf_event_context *ctx;
6443        struct perf_event *event;
6444        int err;
6445
6446        /*
6447         * Get the target context (task or percpu):
6448         */
6449
6450        event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6451                                 overflow_handler, context);
6452        if (IS_ERR(event)) {
6453                err = PTR_ERR(event);
6454                goto err;
6455        }
6456
6457        ctx = find_get_context(event->pmu, task, cpu);
6458        if (IS_ERR(ctx)) {
6459                err = PTR_ERR(ctx);
6460                goto err_free;
6461        }
6462
6463        event->filp = NULL;
6464        WARN_ON_ONCE(ctx->parent_ctx);
6465        mutex_lock(&ctx->mutex);
6466        perf_install_in_context(ctx, event, cpu);
6467        ++ctx->generation;
6468        perf_unpin_context(ctx);
6469        mutex_unlock(&ctx->mutex);
6470
6471        return event;
6472
6473err_free:
6474        free_event(event);
6475err:
6476        return ERR_PTR(err);
6477}
6478EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6479
6480static void sync_child_event(struct perf_event *child_event,
6481                               struct task_struct *child)
6482{
6483        struct perf_event *parent_event = child_event->parent;
6484        u64 child_val;
6485
6486        if (child_event->attr.inherit_stat)
6487                perf_event_read_event(child_event, child);
6488
6489        child_val = perf_event_count(child_event);
6490
6491        /*
6492         * Add back the child's count to the parent's count:
6493         */
6494        atomic64_add(child_val, &parent_event->child_count);
6495        atomic64_add(child_event->total_time_enabled,
6496                     &parent_event->child_total_time_enabled);
6497        atomic64_add(child_event->total_time_running,
6498                     &parent_event->child_total_time_running);
6499
6500        /*
6501         * Remove this event from the parent's list
6502         */
6503        WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6504        mutex_lock(&parent_event->child_mutex);
6505        list_del_init(&child_event->child_list);
6506        mutex_unlock(&parent_event->child_mutex);
6507
6508        /*
6509         * Release the parent event, if this was the last
6510         * reference to it.
6511         */
6512        fput(parent_event->filp);
6513}
6514
6515static void
6516__perf_event_exit_task(struct perf_event *child_event,
6517                         struct perf_event_context *child_ctx,
6518                         struct task_struct *child)
6519{
6520        if (child_event->parent) {
6521                raw_spin_lock_irq(&child_ctx->lock);
6522                perf_group_detach(child_event);
6523                raw_spin_unlock_irq(&child_ctx->lock);
6524        }
6525
6526        perf_remove_from_context(child_event);
6527
6528        /*
6529         * It can happen that the parent exits first, and has events
6530         * that are still around due to the child reference. These
6531         * events need to be zapped.
6532         */
6533        if (child_event->parent) {
6534                sync_child_event(child_event, child);
6535                free_event(child_event);
6536        }
6537}
6538
6539static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6540{
6541        struct perf_event *child_event, *tmp;
6542        struct perf_event_context *child_ctx;
6543        unsigned long flags;
6544
6545        if (likely(!child->perf_event_ctxp[ctxn])) {
6546                perf_event_task(child, NULL, 0);
6547                return;
6548        }
6549
6550        local_irq_save(flags);
6551        /*
6552         * We can't reschedule here because interrupts are disabled,
6553         * and either child is current or it is a task that can't be
6554         * scheduled, so we are now safe from rescheduling changing
6555         * our context.
6556         */
6557        child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6558
6559        /*
6560         * Take the context lock here so that if find_get_context is
6561         * reading child->perf_event_ctxp, we wait until it has
6562         * incremented the context's refcount before we do put_ctx below.
6563         */
6564        raw_spin_lock(&child_ctx->lock);
6565        task_ctx_sched_out(child_ctx);
6566        child->perf_event_ctxp[ctxn] = NULL;
6567        /*
6568         * If this context is a clone; unclone it so it can't get
6569         * swapped to another process while we're removing all
6570         * the events from it.
6571         */
6572        unclone_ctx(child_ctx);
6573        update_context_time(child_ctx);
6574        raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6575
6576        /*
6577         * Report the task dead after unscheduling the events so that we
6578         * won't get any samples after PERF_RECORD_EXIT. We can however still
6579         * get a few PERF_RECORD_READ events.
6580         */
6581        perf_event_task(child, child_ctx, 0);
6582
6583        /*
6584         * We can recurse on the same lock type through:
6585         *
6586         *   __perf_event_exit_task()
6587         *     sync_child_event()
6588         *       fput(parent_event->filp)
6589         *         perf_release()
6590         *           mutex_lock(&ctx->mutex)
6591         *
6592         * But since its the parent context it won't be the same instance.
6593         */
6594        mutex_lock(&child_ctx->mutex);
6595
6596again:
6597        list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6598                                 group_entry)
6599                __perf_event_exit_task(child_event, child_ctx, child);
6600
6601        list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6602                                 group_entry)
6603                __perf_event_exit_task(child_event, child_ctx, child);
6604
6605        /*
6606         * If the last event was a group event, it will have appended all
6607         * its siblings to the list, but we obtained 'tmp' before that which
6608         * will still point to the list head terminating the iteration.
6609         */
6610        if (!list_empty(&child_ctx->pinned_groups) ||
6611            !list_empty(&child_ctx->flexible_groups))
6612                goto again;
6613
6614        mutex_unlock(&child_ctx->mutex);
6615
6616        put_ctx(child_ctx);
6617}
6618
6619/*
6620 * When a child task exits, feed back event values to parent events.
6621 */
6622void perf_event_exit_task(struct task_struct *child)
6623{
6624        struct perf_event *event, *tmp;
6625        int ctxn;
6626
6627        mutex_lock(&child->perf_event_mutex);
6628        list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6629                                 owner_entry) {
6630                list_del_init(&event->owner_entry);
6631
6632                /*
6633                 * Ensure the list deletion is visible before we clear
6634                 * the owner, closes a race against perf_release() where
6635                 * we need to serialize on the owner->perf_event_mutex.
6636                 */
6637                smp_wmb();
6638                event->owner = NULL;
6639        }
6640        mutex_unlock(&child->perf_event_mutex);
6641
6642        for_each_task_context_nr(ctxn)
6643                perf_event_exit_task_context(child, ctxn);
6644}
6645
6646static void perf_free_event(struct perf_event *event,
6647                            struct perf_event_context *ctx)
6648{
6649        struct perf_event *parent = event->parent;
6650
6651        if (WARN_ON_ONCE(!parent))
6652                return;
6653
6654        mutex_lock(&parent->child_mutex);
6655        list_del_init(&event->child_list);
6656        mutex_unlock(&parent->child_mutex);
6657
6658        fput(parent->filp);
6659
6660        perf_group_detach(event);
6661        list_del_event(event, ctx);
6662        free_event(event);
6663}
6664
6665/*
6666 * free an unexposed, unused context as created by inheritance by
6667 * perf_event_init_task below, used by fork() in case of fail.
6668 */
6669void perf_event_free_task(struct task_struct *task)
6670{
6671        struct perf_event_context *ctx;
6672        struct perf_event *event, *tmp;
6673        int ctxn;
6674
6675        for_each_task_context_nr(ctxn) {
6676                ctx = task->perf_event_ctxp[ctxn];
6677                if (!ctx)
6678                        continue;
6679
6680                mutex_lock(&ctx->mutex);
6681again:
6682                list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6683                                group_entry)
6684                        perf_free_event(event, ctx);
6685
6686                list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6687                                group_entry)
6688                        perf_free_event(event, ctx);
6689
6690                if (!list_empty(&ctx->pinned_groups) ||
6691                                !list_empty(&ctx->flexible_groups))
6692                        goto again;
6693
6694                mutex_unlock(&ctx->mutex);
6695
6696                put_ctx(ctx);
6697        }
6698}
6699
6700void perf_event_delayed_put(struct task_struct *task)
6701{
6702        int ctxn;
6703
6704        for_each_task_context_nr(ctxn)
6705                WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6706}
6707
6708/*
6709 * inherit a event from parent task to child task:
6710 */
6711static struct perf_event *
6712inherit_event(struct perf_event *parent_event,
6713              struct task_struct *parent,
6714              struct perf_event_context *parent_ctx,
6715              struct task_struct *child,
6716              struct perf_event *group_leader,
6717              struct perf_event_context *child_ctx)
6718{
6719        struct perf_event *child_event;
6720        unsigned long flags;
6721
6722        /*
6723         * Instead of creating recursive hierarchies of events,
6724         * we link inherited events back to the original parent,
6725         * which has a filp for sure, which we use as the reference
6726         * count:
6727         */
6728        if (parent_event->parent)
6729                parent_event = parent_event->parent;
6730
6731        child_event = perf_event_alloc(&parent_event->attr,
6732                                           parent_event->cpu,
6733                                           child,
6734                                           group_leader, parent_event,
6735                                           NULL, NULL);
6736        if (IS_ERR(child_event))
6737                return child_event;
6738        get_ctx(child_ctx);
6739
6740        /*
6741         * Make the child state follow the state of the parent event,
6742         * not its attr.disabled bit.  We hold the parent's mutex,
6743         * so we won't race with perf_event_{en, dis}able_family.
6744         */
6745        if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6746                child_event->state = PERF_EVENT_STATE_INACTIVE;
6747        else
6748                child_event->state = PERF_EVENT_STATE_OFF;
6749
6750        if (parent_event->attr.freq) {
6751                u64 sample_period = parent_event->hw.sample_period;
6752                struct hw_perf_event *hwc = &child_event->hw;
6753
6754                hwc->sample_period = sample_period;
6755                hwc->last_period   = sample_period;
6756
6757                local64_set(&hwc->period_left, sample_period);
6758        }
6759
6760        child_event->ctx = child_ctx;
6761        child_event->overflow_handler = parent_event->overflow_handler;
6762        child_event->overflow_handler_context
6763                = parent_event->overflow_handler_context;
6764
6765        /*
6766         * Precalculate sample_data sizes
6767         */
6768        perf_event__header_size(child_event);
6769        perf_event__id_header_size(child_event);
6770
6771        /*
6772         * Link it up in the child's context:
6773         */
6774        raw_spin_lock_irqsave(&child_ctx->lock, flags);
6775        add_event_to_ctx(child_event, child_ctx);
6776        raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6777
6778        /*
6779         * Get a reference to the parent filp - we will fput it
6780         * when the child event exits. This is safe to do because
6781         * we are in the parent and we know that the filp still
6782         * exists and has a nonzero count:
6783         */
6784        atomic_long_inc(&parent_event->filp->f_count);
6785
6786        /*
6787         * Link this into the parent event's child list
6788         */
6789        WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6790        mutex_lock(&parent_event->child_mutex);
6791        list_add_tail(&child_event->child_list, &parent_event->child_list);
6792        mutex_unlock(&parent_event->child_mutex);
6793
6794        return child_event;
6795}
6796
6797static int inherit_group(struct perf_event *parent_event,
6798              struct task_struct *parent,
6799              struct perf_event_context *parent_ctx,
6800              struct task_struct *child,
6801              struct perf_event_context *child_ctx)
6802{
6803        struct perf_event *leader;
6804        struct perf_event *sub;
6805        struct perf_event *child_ctr;
6806
6807        leader = inherit_event(parent_event, parent, parent_ctx,
6808                                 child, NULL, child_ctx);
6809        if (IS_ERR(leader))
6810                return PTR_ERR(leader);
6811        list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6812                child_ctr = inherit_event(sub, parent, parent_ctx,
6813                                            child, leader, child_ctx);
6814                if (IS_ERR(child_ctr))
6815                        return PTR_ERR(child_ctr);
6816        }
6817        return 0;
6818}
6819
6820static int
6821inherit_task_group(struct perf_event *event, struct task_struct *parent,
6822                   struct perf_event_context *parent_ctx,
6823                   struct task_struct *child, int ctxn,
6824                   int *inherited_all)
6825{
6826        int ret;
6827        struct perf_event_context *child_ctx;
6828
6829        if (!event->attr.inherit) {
6830                *inherited_all = 0;
6831                return 0;
6832        }
6833
6834        child_ctx = child->perf_event_ctxp[ctxn];
6835        if (!child_ctx) {
6836                /*
6837                 * This is executed from the parent task context, so
6838                 * inherit events that have been marked for cloning.
6839                 * First allocate and initialize a context for the
6840                 * child.
6841                 */
6842
6843                child_ctx = alloc_perf_context(event->pmu, child);
6844                if (!child_ctx)
6845                        return -ENOMEM;
6846
6847                child->perf_event_ctxp[ctxn] = child_ctx;
6848        }
6849
6850        ret = inherit_group(event, parent, parent_ctx,
6851                            child, child_ctx);
6852
6853        if (ret)
6854                *inherited_all = 0;
6855
6856        return ret;
6857}
6858
6859/*
6860 * Initialize the perf_event context in task_struct
6861 */
6862int perf_event_init_context(struct task_struct *child, int ctxn)
6863{
6864        struct perf_event_context *child_ctx, *parent_ctx;
6865        struct perf_event_context *cloned_ctx;
6866        struct perf_event *event;
6867        struct task_struct *parent = current;
6868        int inherited_all = 1;
6869        unsigned long flags;
6870        int ret = 0;
6871
6872        if (likely(!parent->perf_event_ctxp[ctxn]))
6873                return 0;
6874
6875        /*
6876         * If the parent's context is a clone, pin it so it won't get
6877         * swapped under us.
6878         */
6879        parent_ctx = perf_pin_task_context(parent, ctxn);
6880
6881        /*
6882         * No need to check if parent_ctx != NULL here; since we saw
6883         * it non-NULL earlier, the only reason for it to become NULL
6884         * is if we exit, and since we're currently in the middle of
6885         * a fork we can't be exiting at the same time.
6886         */
6887
6888        /*
6889         * Lock the parent list. No need to lock the child - not PID
6890         * hashed yet and not running, so nobody can access it.
6891         */
6892        mutex_lock(&parent_ctx->mutex);
6893
6894        /*
6895         * We dont have to disable NMIs - we are only looking at
6896         * the list, not manipulating it:
6897         */
6898        list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6899                ret = inherit_task_group(event, parent, parent_ctx,
6900                                         child, ctxn, &inherited_all);
6901                if (ret)
6902                        break;
6903        }
6904
6905        /*
6906         * We can't hold ctx->lock when iterating the ->flexible_group list due
6907         * to allocations, but we need to prevent rotation because
6908         * rotate_ctx() will change the list from interrupt context.
6909         */
6910        raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6911        parent_ctx->rotate_disable = 1;
6912        raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6913
6914        list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6915                ret = inherit_task_group(event, parent, parent_ctx,
6916                                         child, ctxn, &inherited_all);
6917                if (ret)
6918                        break;
6919        }
6920
6921        raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6922        parent_ctx->rotate_disable = 0;
6923
6924        child_ctx = child->perf_event_ctxp[ctxn];
6925
6926        if (child_ctx && inherited_all) {
6927                /*
6928                 * Mark the child context as a clone of the parent
6929                 * context, or of whatever the parent is a clone of.
6930                 *
6931                 * Note that if the parent is a clone, the holding of
6932                 * parent_ctx->lock avoids it from being uncloned.
6933                 */
6934                cloned_ctx = parent_ctx->parent_ctx;
6935                if (cloned_ctx) {
6936                        child_ctx->parent_ctx = cloned_ctx;
6937                        child_ctx->parent_gen = parent_ctx->parent_gen;
6938                } else {
6939                        child_ctx->parent_ctx = parent_ctx;
6940                        child_ctx->parent_gen = parent_ctx->generation;
6941                }
6942                get_ctx(child_ctx->parent_ctx);
6943        }
6944
6945        raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6946        mutex_unlock(&parent_ctx->mutex);
6947
6948        perf_unpin_context(parent_ctx);
6949        put_ctx(parent_ctx);
6950
6951        return ret;
6952}
6953
6954/*
6955 * Initialize the perf_event context in task_struct
6956 */
6957int perf_event_init_task(struct task_struct *child)
6958{
6959        int ctxn, ret;
6960
6961        memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
6962        mutex_init(&child->perf_event_mutex);
6963        INIT_LIST_HEAD(&child->perf_event_list);
6964
6965        for_each_task_context_nr(ctxn) {
6966                ret = perf_event_init_context(child, ctxn);
6967                if (ret)
6968                        return ret;
6969        }
6970
6971        return 0;
6972}
6973
6974static void __init perf_event_init_all_cpus(void)
6975{
6976        struct swevent_htable *swhash;
6977        int cpu;
6978
6979        for_each_possible_cpu(cpu) {
6980                swhash = &per_cpu(swevent_htable, cpu);
6981                mutex_init(&swhash->hlist_mutex);
6982                INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6983        }
6984}
6985
6986static void __cpuinit perf_event_init_cpu(int cpu)
6987{
6988        struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6989
6990        mutex_lock(&swhash->hlist_mutex);
6991        if (swhash->hlist_refcount > 0) {
6992                struct swevent_hlist *hlist;
6993
6994                hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6995                WARN_ON(!hlist);
6996                rcu_assign_pointer(swhash->swevent_hlist, hlist);
6997        }
6998        mutex_unlock(&swhash->hlist_mutex);
6999}
7000
7001#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7002static void perf_pmu_rotate_stop(struct pmu *pmu)
7003{
7004        struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7005
7006        WARN_ON(!irqs_disabled());
7007
7008        list_del_init(&cpuctx->rotation_list);
7009}
7010
7011static void __perf_event_exit_context(void *__info)
7012{
7013        struct perf_event_context *ctx = __info;
7014        struct perf_event *event, *tmp;
7015
7016        perf_pmu_rotate_stop(ctx->pmu);
7017
7018        list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7019                __perf_remove_from_context(event);
7020        list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7021                __perf_remove_from_context(event);
7022}
7023
7024static void perf_event_exit_cpu_context(int cpu)
7025{
7026        struct perf_event_context *ctx;
7027        struct pmu *pmu;
7028        int idx;
7029
7030        idx = srcu_read_lock(&pmus_srcu);
7031        list_for_each_entry_rcu(pmu, &pmus, entry) {
7032                ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
7033
7034                mutex_lock(&ctx->mutex);
7035                smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7036                mutex_unlock(&ctx->mutex);
7037        }
7038        srcu_read_unlock(&pmus_srcu, idx);
7039}
7040
7041static void perf_event_exit_cpu(int cpu)
7042{
7043        struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7044
7045        mutex_lock(&swhash->hlist_mutex);
7046        swevent_hlist_release(swhash);
7047        mutex_unlock(&swhash->hlist_mutex);
7048
7049        perf_event_exit_cpu_context(cpu);
7050}
7051#else
7052static inline void perf_event_exit_cpu(int cpu) { }
7053#endif
7054
7055static int
7056perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7057{
7058        int cpu;
7059
7060        for_each_online_cpu(cpu)
7061                perf_event_exit_cpu(cpu);
7062
7063        return NOTIFY_OK;
7064}
7065
7066/*
7067 * Run the perf reboot notifier at the very last possible moment so that
7068 * the generic watchdog code runs as long as possible.
7069 */
7070static struct notifier_block perf_reboot_notifier = {
7071        .notifier_call = perf_reboot,
7072        .priority = INT_MIN,
7073};
7074
7075static int __cpuinit
7076perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7077{
7078        unsigned int cpu = (long)hcpu;
7079
7080        switch (action & ~CPU_TASKS_FROZEN) {
7081
7082        case CPU_UP_PREPARE:
7083        case CPU_DOWN_FAILED:
7084                perf_event_init_cpu(cpu);
7085                break;
7086
7087        case CPU_UP_CANCELED:
7088        case CPU_DOWN_PREPARE:
7089                perf_event_exit_cpu(cpu);
7090                break;
7091
7092        default:
7093                break;
7094        }
7095
7096        return NOTIFY_OK;
7097}
7098
7099void __init perf_event_init(void)
7100{
7101        int ret;
7102
7103        idr_init(&pmu_idr);
7104
7105        perf_event_init_all_cpus();
7106        init_srcu_struct(&pmus_srcu);
7107        perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7108        perf_pmu_register(&perf_cpu_clock, NULL, -1);
7109        perf_pmu_register(&perf_task_clock, NULL, -1);
7110        perf_tp_register();
7111        perf_cpu_notifier(perf_cpu_notify);
7112        register_reboot_notifier(&perf_reboot_notifier);
7113
7114        ret = init_hw_breakpoint();
7115        WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7116
7117        /* do not patch jump label more than once per second */
7118        jump_label_rate_limit(&perf_sched_events, HZ);
7119
7120        /*
7121         * Build time assertion that we keep the data_head at the intended
7122         * location.  IOW, validation we got the __reserved[] size right.
7123         */
7124        BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7125                     != 1024);
7126}
7127
7128static int __init perf_event_sysfs_init(void)
7129{
7130        struct pmu *pmu;
7131        int ret;
7132
7133        mutex_lock(&pmus_lock);
7134
7135        ret = bus_register(&pmu_bus);
7136        if (ret)
7137                goto unlock;
7138
7139        list_for_each_entry(pmu, &pmus, entry) {
7140                if (!pmu->name || pmu->type < 0)
7141                        continue;
7142
7143                ret = pmu_dev_alloc(pmu);
7144                WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7145        }
7146        pmu_bus_running = 1;
7147        ret = 0;
7148
7149unlock:
7150        mutex_unlock(&pmus_lock);
7151
7152        return ret;
7153}
7154device_initcall(perf_event_sysfs_init);
7155
7156#ifdef CONFIG_CGROUP_PERF
7157static struct cgroup_subsys_state *perf_cgroup_create(struct cgroup *cont)
7158{
7159        struct perf_cgroup *jc;
7160
7161        jc = kzalloc(sizeof(*jc), GFP_KERNEL);
7162        if (!jc)
7163                return ERR_PTR(-ENOMEM);
7164
7165        jc->info = alloc_percpu(struct perf_cgroup_info);
7166        if (!jc->info) {
7167                kfree(jc);
7168                return ERR_PTR(-ENOMEM);
7169        }
7170
7171        return &jc->css;
7172}
7173
7174static void perf_cgroup_destroy(struct cgroup *cont)
7175{
7176        struct perf_cgroup *jc;
7177        jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7178                          struct perf_cgroup, css);
7179        free_percpu(jc->info);
7180        kfree(jc);
7181}
7182
7183static int __perf_cgroup_move(void *info)
7184{
7185        struct task_struct *task = info;
7186        perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7187        return 0;
7188}
7189
7190static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
7191{
7192        struct task_struct *task;
7193
7194        cgroup_taskset_for_each(task, cgrp, tset)
7195                task_function_call(task, __perf_cgroup_move, task);
7196}
7197
7198static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7199                             struct task_struct *task)
7200{
7201        /*
7202         * cgroup_exit() is called in the copy_process() failure path.
7203         * Ignore this case since the task hasn't ran yet, this avoids
7204         * trying to poke a half freed task state from generic code.
7205         */
7206        if (!(task->flags & PF_EXITING))
7207                return;
7208
7209        task_function_call(task, __perf_cgroup_move, task);
7210}
7211
7212struct cgroup_subsys perf_subsys = {
7213        .name           = "perf_event",
7214        .subsys_id      = perf_subsys_id,
7215        .create         = perf_cgroup_create,
7216        .destroy        = perf_cgroup_destroy,
7217        .exit           = perf_cgroup_exit,
7218        .attach         = perf_cgroup_attach,
7219};
7220#endif /* CONFIG_CGROUP_PERF */
7221